用因式分解法解方程

合集下载

用因式分解法解方程

用因式分解法解方程
当一元二次方程的一边是0,而另一边易于分 解成两个一次因式的乘积时,我们就可以用分 解因式的方法求解.这种用分解因式解一元二 次方程的方法称为分解因式法.
提示: 1.用分解因式法的条件是:方程左边易于分解,
而右边等于零; 2. 关键是熟练掌握因式分解的知识;
3.理论依旧是“如果两个因式的积等于零, 那么至少有一个因式等于零.”
快速回答:下列各方程的根分 别是多少?
(1)x2+x=0 (2) (x+2)(4x-3)=0 (3) x2-2x+1=0 (4)(y-1)(y-3) =0
学习是件很愉快的事
解:原方程可变形为:
=0 ( 一次因式A )( 一次因式B )=0
一次因式A =0或 一次因式B =0 ∴ x1= A解 , x2= A解
复习引入:
1、已学过的一元二次方程解 法有哪些?
2、请用已学过的方法解方程 x2 -4=0
x2-4=0
解:原方程可变形为
(x+2)(x-2)=0
AB=0A=0或B=0 X+2=0 或 x-2=0
∴ x1=-2 ,x2=2
X2-4= (x+2)(x-2) (2)9x2 - 25=0
1.解下列方程:
小 结:
一、用因式分解法解一元二次方程的步骤:
1、方程右边化为 零 。 2、将方程左边分解成两个一次因式 的乘积。 3、至少 有一个 因式为零,得到两个一元一
次方程。 4、两个一元一次方程的解 就是原方程的解
简记歌诀:右化零 左分解
两因式 各求解
2.把小圆形场地的半径增加5m得到大圆形场地,场地 面积增加了一倍,求小圆形场地的半径.
解:设小圆形场地的半径为r 根据题意 ( r + 5 )2×π=2r2π. 因式分解,得

初中数学解方程的因式分解法

初中数学解方程的因式分解法

初中数学解方程的因式分解法解方程是数学中常见的问题,通过找到方程的解可以解决实际生活中的许多问题。

在解方程的过程中,因式分解是一种十分有效的方法。

因式分解法可以将给定的方程转化为更简单的形式,从而更容易找到解。

本文将详细介绍初中数学解方程的因式分解法。

一、一元一次方程的因式分解法一元一次方程是指含有一个未知数的一次方程。

例如:2x + 3 = 9。

为了解这个方程,可以使用因式分解法进行求解。

首先,将方程的所有项都移到等号的一侧,得到2x - 6 = 0。

然后,将方程进行因式分解,即将方程的左侧进行因式分解。

在本例中,2x - 6可以因式分解为2(x - 3)。

因此,得到方程2(x - 3) = 0。

最后,根据零乘积法则,得知方程的解为x = 3。

二、一元二次方程的因式分解法一元二次方程是指含有一个未知数的二次方程。

例如:x² - 5x + 6 = 0。

为了解这个方程,可以使用因式分解法进行求解。

首先,将方程的所有项都移到等号的一侧,得到x² - 5x + 6 = 0。

然后,观察方程的三个项,确定其是否可以进行因式分解。

在本例中,可以将x² - 5x + 6进行因式分解。

找出方程的两个因式,使其乘积等于6,而和等于-5。

在本例中,-2和-3是符合条件的因式。

因此,得到方程(x - 2)(x - 3) = 0。

最后,根据零乘积法则,得知方程的解为x = 2或x = 3。

三、方程组的因式分解法方程组是指同时包含多个方程的一组方程。

为了解这组方程,可以将其转化为一个整体的方程,再使用因式分解法进行求解。

例如,解方程组2x + y = 7x + 3y = 11首先,根据第一个方程,将y的表达式表示为y = 7 - 2x。

然后,将y的表达式代入第二个方程得到x + 3(7 - 2x) = 11。

接着,使用分配律和合并同类项得到x - 6x = -10,即-5x = -10。

最后,解得x = 2。

用因式分解法解一元二次方程(教案练习)

用因式分解法解一元二次方程(教案练习)

新湘教版数学九年级上2.2.3用因式分解法解一元二次方程教学设计课题 2.2.3用因式分解法解一元二次方程单元第二单元学科数学年级九年级学习目标1.知识与技能:①了解因式分解法的概念与步骤。

②会用因式分解法解简单系数的一元二次方程。

2.过程与方法:探索因式分解法的步骤,培养学生分析问题、解决问题的能力,从而使学生树立数学转换的思想。

3.情感态度与价值观:通过运用因式分解法解一元二次方程,让学生体会解决问题方法的多样化,让学生体验数学逻辑的严密性。

重点能灵活地运用因式分解法解一元二次方程。

难点 1.能理解并灵活运用“若ab=0,则a=0或b=0”的概念;2.能灵活地运用因式分解法解一元二次方程。

教学过程教学环节教师活动学生活动设计意图回顾知识+导入新课同学们,在上节课中,我们已将学习了用直接开方的方法、配方法以及公式法解一元二次方程的方法,这节课开始我们将学习一直解一元二次方程的另一种新的方法,在上新课之前,我们一起回顾下前面学习的知识:解下列一元二次方程:(1)x²-81=0(直接开方法)解:x²=81∴x=±9∴x1=9;x2=-9.(2)x²+4x+1=0(配方法)解:移项:x²+4x=-1配方:x²+4x+4=-1+4即(x+2)²=3∴x+2=±∴x1=-2;x2=--2.学生跟着教师回忆知识,并思考本节回顾学过的知识,帮学生复习知识,引出这节课的教学内容,同时也帮回顾知识+导入新课(3)x²+x-2=0(公式法)解:这里a=1,b=,c=-2b²-4ac=2-4×1×(-2)=10>0∴x=∴x1=-;x2=.因式分解:把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解.平方差公式:a²-b²=(a+b)(a-b)完全平方公式:a²±2ab+b²=(a±b)²分解因式:(1)x²-81=x²-9²=(x+9)(x-9)(2)x²+4x=x(x+4)(3)x²+x+4=x²+x+2²=(x+2)²【知识探究】若ab=0,则a、b的值可能有哪几种情况?1.当a≠b时:①a=0,b≠0;②a≠0,b=0.2.当a=b时,a=b=0.结论:若ab=0,则a=0或b=0.【导入新知】解方程:x2-3x=0.在解这个方程的时候,我们可以用配方法:将原方程化为(x-)²=进行求解,我们也可以用公式进行公式法求解.有没有更简便的方法呢?解:对方程左边进行因式分解:x(x-3)=0根据“若ab=0,则a=0或b=0”,可以得到x=0或x-3=0∴x1=0;x2=3.课的知识,注意与老师一起推导公式。

解方程的因式分解法

解方程的因式分解法

解方程的因式分解法一、引言解方程是数学中常见的问题之一,而因式分解法是解方程的一种常用方法。

通过将方程进行因式分解,可以将复杂的方程简化为更简单的形式,从而更容易求解。

本文将详细介绍解方程的因式分解法,并给出一些例子来帮助读者更好地理解和掌握这一方法。

二、基本概念在了解因式分解法之前,我们需要了解一些基本概念。

首先,方程是一个等式,其中包含一个或多个未知数,并且需要找到使等式成立的未知数的值。

其次,因式分解是将一个多项式拆解为更简单的乘积形式的过程。

在解方程时,我们可以利用已知的因式分解形式来帮助我们求解未知数。

三、解方程的因式分解法步骤解方程的因式分解法可以分为以下几个步骤:1. 将方程移项,将所有项都移到等式的一边,使方程等于零。

2. 因式分解多项式。

将多项式进行因式分解,找到可以整除多项式的因子。

3. 令每个因子等于零,解出因子对应的未知数值。

4. 将解得的未知数值代入原方程中验证。

四、例子下面我们通过几个例子来演示解方程的因式分解法。

例子1:解方程:2x^2 - 5x - 12 = 0步骤1:将方程移项,得到2x^2 - 5x - 12 = 0步骤2:因式分解多项式,得到(2x + 3)(x - 4) = 0步骤3:令每个因子等于零,解得2x + 3 = 0 或 x - 4 = 0,得到x = -3/2 或 x = 4步骤4:将解得的未知数值代入原方程中验证,验证通过。

例子2:解方程:x^2 + 7x + 12 = 0步骤1:将方程移项,得到x^2 + 7x + 12 = 0步骤2:因式分解多项式,得到(x + 3)(x + 4) = 0步骤3:令每个因子等于零,解得x + 3 = 0 或 x + 4 = 0,得到x = -3 或 x = -4步骤4:将解得的未知数值代入原方程中验证,验证通过。

通过以上两个例子,我们可以看出解方程的因式分解法能够有效地求解方程,并且验证结果的准确性。

五、总结解方程的因式分解法是一种常用的解方程方法。

用因式分解法求解一元二次方程 (6种题型)-2023年新九年级数学常见题型(北师大版)(解析版)

用因式分解法求解一元二次方程 (6种题型)-2023年新九年级数学常见题型(北师大版)(解析版)

用因式分解法求解一元二次方程 (6种题型)【知识梳理】一、用因式分解法解一元二次方程的步骤 ①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程; ④解这两个一元一次方程,它们的解就是原方程的解. 二、常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【考点剖析】题型1利用提公因式法例1.解关于x 的方程(因式分解方法):(1)230x =; (2)7(3)39x x x −=−.【答案】(1)120x x ==, (2)12337x x ==,.【解析】(1)(30x x = (2)7(3)3(3)x x x −=−①0x = ②30x 7(3)3(3)0x x x −−−=∴120x x ==, (3)(73)0x x −−= ① 30x −= ②730x −=∴12337x x ==,. 【总结】本题考查了因式分解法解一元二次方程.【变式】(2023春·北京房山·八年级统考期末)方程224x x −=的解为:___________. 【答案】10x =,22x =−【分析】先移项,然后用分解因式法解方程即可.【详解】解:224x x −=,移项得:2240x x +=,分解因式得:()220x x +=,∴20x =或20x +=, 解得:10x =,22x =−. 故答案为:10x =,22x =−.【点睛】本题主要考查了一元二次方程的解法:因式分解法,是基础知识比较简单,解题的关键是分解因式.题型2利用平方差公式例2.用因式分解法解下列方程:(2x+3)2-25=0. 【答案与解析】(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0,∴ x 1=1,x 2=-4.【变式】解关于x 的一元二次方程:22(2016)(2015)1x x −+−=. 【答案】1220162015x x ==,.【解析】移项,得:22(2016)1(2015)x x −=−−,2(2016)[1(2015)][1(2015)]x x x −=+−−−, 2(2016)(2014)(2016)x x x −=−−, 2(2016)(2014)(2016)0x x x −−−−=, (2016)(40302)0x x −−=,解得:1220162015x x ==,.【总结】本题考查了一元二次方程的解法,当系数比较大时,要注意寻找规律进行变型求解.题型3利用完全平方公式例3.解下列一元二次方程:(2x+1)2+4(2x+1)+4=0; 【答案与解析】(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0. 即, ∴ . 题型4十字相乘法因式分解例4.用合适的方法解下列关于x 的方程:(1)2(1(30x x −+=; (2)2(35)5(35)40x x +−++=;【答案】(1)121x x =, (2)124133x x =−=−,;【解析】(1)2(1(30x x −+=,[(11](0x x −=,解得:121x =−=, (2)2(35)5(35)40x x +−++=351354x x +−+−(351)(354)0x x +−+−=,解得:124133x x =−=−,;【总结】本题考查了一元二次方程的解法.题型5:选择合适的方法解一元二次方程例5.解关于x 的方程(合适的方法 ): (1)2110464x x −+=; (2)22((1x +=+. 【答案】(1)1218x x ==;(2)1211x x ==−−, 【解析】(1)因式分解法 (2)直接开方法2(23)0x +=1232x x ==−21()08x −= (1x +=±+108x −= ①1x + ②(1x =−∴1218x x ==; ∴1211x x ==−−, 【总结】本题考查了特殊一元二次方程的解法,注意重根的写法! 【变式1】解关于x 的方程(合适的方法):(1)236350x x +−=; (2)2(41)10(14)240x x −+−−=. 【答案】(1)1235136x x ==−,; (2)1213144x x ==−,. 【解析】(1)因式分解法 (2)把41x −看作一个整体,因式分解 (3635)(1)0x x −+= 2(41)10(14)240x x −−−−= ①36350x −= ②10x += (4112)(412)0x x −−−+= ∴1235136x x ==−,; (413)(41)0x x −+= ① 4130x −= ②410x +=∴1213144x x ==−,. 【变式2】用适当的方法解下列方程:(1)22((1x =; (2)2x x =;(3)(3)(1)5x x +−=; (4)2()()0()b a x a c x c b a b −+−+−=≠.【答案】(1)1211x x =−=−; (2)1201x x ==,; (3)1242x x =−=,; (4)121c bx x b a−==−,.【解析】(1)(1x =± (2)20x x −=① 1x +=− ②(1x =− , (1)0x x −=,解得:1211x x =−=−; 解得:1201x x ==,; (3)整理得:2235x x +−= (4)∵a b ≠原方程是一元二次方程,2280x x +−=, 2()()0()b a x a c x c b a b −+−+−=≠, (4)(2)0x x +−=,()()1b a xc b x −−−− 解得:1242x x =−=,; [()()](1)0b a x c b x −−−−=, 解得:121c bx x b a−==−,. 【总结】本题考查了一元二次方程的解法,注意方法的恰当选择.【答案】B【分析】根据题意进行分类讨论,当0x >时,可得2450x x −−=,求出x 的值即可;当0x <时,可得2250x x −−=求出x 的值即可.【详解】解:当0x >时,则0x x >>−, ∴{}2max ,35x x x x x −==−−,即2450x x −=,解得:125,1x x ==−(不符合题意,舍去),当0x <时,则0x x −>>,∴{}2max ,35x x x x x −=−=−−,即2250x x −−=,解得:11x =,21x =综上:x 的值是5或1 故选:B .【点睛】本题主要考查了新定义下的运算和解一元二次方程,解题的关键是正确理解题目所给新定义的运算法则,熟练掌握解一元二次方程的方法和步骤.【变式】在正数范围内定义运算“※”,其规则为2a b a b =+※,则方程()15x x +=※的解是( ) A .4x =或1x = B .2x =C .1x =或4x =−D .1x =【答案】D【分析】根据规则可得:()215x x ++=,再解此方程,即可求解.【详解】解:根据题意得:()()2115x x x x +=++=※,得2340x x +−=,得()()410x x +−=,故40x +=或10x −=,解得14x =−(舍去),21x =, 所以,原方程的解为1x =, 故选:D .【点睛】本题考查了新定义,一元二次方程的解法,理解题意,得到方程并求解是解决本题的关键.【答案】3【分析】先通过因式分解法解方程260x x −−=,求出12x x ,,根据新定义的运算规则,12x x ※的值为1x 和2x 中较大的那个数,由此可解.【详解】解:方程260x x −−=,分解因式得:()()320x x −+=,解得:3x =或=2x −, 则()12323x x =−=※※或()233−=※.故答案为:3.【点睛】本题考查新定义运算和解一元二次方程,读懂题意,理解新定义的运算规则是解题的关键. 题型7:因式分解综合应用(1)问梯子的长是多少?(2)若梯子的长度保持不变,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等吗?为什么?请你利用学过的知识解答上面的问题. 【答案】(1)2.69m (2)有可能,理由见解析【分析】(1)根据梯子长度不变进而得出等式求出即可;(2)设梯子顶端从A 处下滑y 米,点B 向外也移动y 米代入(1)中方程,求出y 的值符合题意. 【详解】(1)解:设A C '的长是m x ,根据题意得出:2222A C B C BC AC ''+=+,2222(0.41)1(0.2)x x ∴++=++,解得: 2.3x =,2.69m AB ∴≈,答:梯子的长是2.69m ; (2)有可能.设梯子顶端从A 处下滑y 米,点B 向外也移动y 米,则有22(1)(2.5)7.25y y ++−=,解得:1 1.5y =或20y =(舍)∴当梯子顶端从A 处下滑1.5米时,点B 向外也移动1.5米,即梯子顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等.【点睛】本题考查的是勾股定理的应用,根据题意得出关于y 的一元二次方程是解答此题的关键. 【变式1】(2023·河北石家庄·统考二模)老师就式子39⨯+−,请同学们自己出问题并解答. (1)小磊的问题:若W 代表()22−,代表()31−,计算该式的值;(2)小敏的问题:若398⨯+−=□,W 代表某数的平方,代表该数与1的和的平方,求该数.【答案】(1)22 (2)0或1【分析】(1)根据代数式代入值进行计算即可; (2)设该数为a ,则()22391=8a a ⨯+−+,再进行求解即可.【详解】(1)解:由题意可得:原式()()233291=⨯−+−−()3491=⨯+−−22=;(2)解:设该数为a ,则()22391=8a a ⨯+−+,解得:10a =,21a =,∴求该数为0或1.【点睛】本题考查代数值求值、解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键. 【变式2】(2023·河北石家庄·校考一模)发现:存在三个连续整数使得这三个连续整数的和等于这三个连续整数的积;验证:连续整数1−,2−,3−______(填“满足”或“不满足”)这种关系; 连续整数2,3,4,______(填“满足”或“不满足”)这种关系; 延伸:设中间整数为n(1)列式表示出三个连续整数的和、积,并分别化简; (2)再写出一组符合“发现”要求的连续整数(直接写结果).【答案】验证:满足;不满足;(1)和为3n ,积为3n n −;(2)1−,0,1(答案不唯一)【分析】先分别计算123−−−和()()()123−⨯−⨯−的值,比较两组值是否相等;再分别计算234++和234⨯⨯的值,比较两组值是否相等即可;(1)设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +,将n 1−,n ,1n +三数相加得其和;将n 1−,n ,1n +三数相乘得其积;(2)令(1)中的和等于积,解方程,求得n 的值,从而可得符合要求的连续整数.【详解】验证:解:1236−−−=−,()()()1236−⨯−⨯−=− ()()()123123∴−−−=−⨯−⨯−1∴−,2−,3−满足这种关系;2349++=,23424⨯⨯=,924≠, 234234∴++≠⨯⨯,∴2,3,4不满足这种关系.延伸:设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +, (1)三个连续整数的和可表示为:()()113−+++=n n n n ,三个连续整数的积可表示为:()()311−⋅⋅+=−n n n n n ,(2)当33=−n n n 时,340−=n n ()()220∴+−=n n n解得:0n =,2n =−或2n =,∴符合要求的一组连续整数为:1−,0,1.【点睛】本题考查了探究某类数的规律性问题,其中涉及到了因式分解方法的运用,按照要求写出相关数或式子,按照规则计算,是解答本题的关键.【过关检测】一、单选题【答案】D【分析】变形后利用因式分解法解一元二次方程即可. 【详解】解:()()2131x x x −=−移项,得2(1)3(1)0x x x −−−=, 因式分解,得()()2310x x −−=,则10x −=或230x −=,解得2131,2x x ==.故选:D【点睛】此题考查了一元二次方程的解法,熟练掌握因式分解法是解题的关键. 2.(2023·全国·九年级假期作业)已知20x ax b +−=的解是11x =,24x =−,则方程()()223230x a x b +++−=的解是( )A .11x =−,2 3.5x =−B .11x =,2 3.5x =−C .11x =−,2 3.5x =D .11x =,2 3.5x =【答案】A【分析】由这两个方程结合整体思想,可得231x +=,234x +=−,解这两个一元一次方程即得方程()()223230x a x b +++−=的解.【详解】解:令23x y +=,∵方程20x ax b +−=的解是11x =,24x =−,∴方程20y ay b +−=的解是11y =,24y =−,∴对于方程方程()()223230x a x b +++−=而言,231x +=或234x +=−,解得=1x −或 3.5x =−,故选A .【点睛】本题考查了一元二次方程的解,整体思想解一元二次方程,关键是把方程()()22332340m x x +++−=中的23x +当作一个整体,则此方程与²340mx x +−=毫无二致.3.(2023·全国·九年级假期作业)方程29180x x −+=的两个根是等腰三角形的底和腰,则这个三角形是周长是( ) A .12 B .15 C .12或15 D .9或15或18【答案】B【分析】利用因式分解法求出方程的解得到x 的值,分类讨论腰与底,利用三角形边角关系判断即可确定出周长.【详解】解:29180x x −+=,(3)(6)0x x −−=,30x −=,60x −=,13x =,26x =,有两种情况:①三角形的三边为3,3,6,此时不符合三角形三边关系定理,②三角形的三边为3,6,6,此时符合三角形三边关系定理,此时三角形的周长为36615++=, 故选:B .【点睛】此题考查了因式分解法解一元二次方程,等腰三角形的定义,熟练掌握分解因式的方法是解本题的关键.【答案】C【分析】利用换元法求解即可.【详解】解:设33x m y +=,∵()()3333130x y x y +−++=,∴()()130m m −+=,∴10m −=或30m +=, 解得1m =或3m =−,∴331x y +=或333x y +=−,故选C .【点睛】本题主要考查了换元法解一元二次方程,熟知换元法是解题的关键.【答案】D【分析】利用因式分解法求出两个根,再从中找出较小的根即可.【详解】解:提公因式,得:331()()0442x x x −−+−=, 整理得:35()(2)044x x −−=,∴123548x x ==,, ∵3548>,∴较小的根是58,故选:D .【点睛】本题考查了因式分解法解一元二次方程,解题的关键是通过提取公因式将等号左边的式子进行因式分解.【答案】B【分析】由2212m m +=可得42210m m −+=,则有21m =,即1m =,然后问题可求解.【详解】解:∵2212m m +=,∴42210m m −+=,解得:21m =,∵0m >, ∴1m =,∴2251254m m −+=−+=;故选B .【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 7.(2023·全国·九年级假期作业)实数x 满足方程222()()20x x x x +++−=,则2x x +的值等于( ) A .2− B .1 C .2−或1 D .2或1−【答案】B【分析】运用换元法解方程,再根据根的判别式判断根的情况,由此即可求解.【详解】解:根据题意,设2x x M +=,则原式变形得220M M +−=,因式分解法解一元二次方程得,22(1)(2)0M M M M +−=−+=, ∴12M =−,21M =,当2M =−时,22x x +=−,变形得,220x x ++=,根据判别式24141270b ac ∆=−=−⨯⨯=−<,无实根;当1M =时,21x x +=,变形得,210x x +−=,根据判别式24141(1)50b ac ∆=−=−⨯⨯−=>,方程有两个实根;∴21x x +=,故选:B .【点睛】本题主要考查换元法解高次方程,掌握换元法解方程的方法,根的判别式判断根的情况等知识是解题的关键.8.(2023·全国·九年级假期作业)若关于x 的一元二次方程()230x k x k +++=的一个根是2−,则另一个根是( ) A .1 B .1−C .3−D .2【答案】A【分析】将2x =−代入方程得:()4230k k −++=,解得:2k =−,再把2k =−代入原方程求解.【详解】解:将2x =−代入方程得:()4230k k −++=,解得:2k =−,∴原方程为:220x x +−=,则()2(1)0x x +−=,解得:2x =−或1x =, ∴另一个根为1. 故选:A .【点睛】本题考查了一元二次方程的根,因式分解法解一元二次方程,属于基础题.【答案】D【分析】设221x y x −=,则原方程可变形为15y y +=,再化为整式方程即可得出答案.【详解】解:设221x y x −=,则原方程可变形为15y y +=,即2510y y −+=;故选:D.【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.10.(2023春·重庆合川·九年级重庆市合川中学校考阶段练习)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了()()12345na b n +=⋯,,,,,的展开式的系数规律(其中,字母按a 的降幂排列,b 的升幂排列).例如,在三角形中第2行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第三行的的4个数1,3,3,1,恰好对应()3322333a b a a b ab b +=+++展开式中各项的系数;第4行的五个数1,4,6,4,1;恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数,有如下结论:①()3322333b a b a a ab b −−+=−; ②“杨辉三角”中第9行所有数之和1024; ③“杨辉三角”中第20行第3个数为190; ④32993993991+⨯+⨯+的结果是610;⑤当代数式4328243216a a a a ++++的值是1时,实数a 的值是1−或3−,上述结论中,正确的有( )A .2个B .3个C .4个D .5个【答案】C【分析】把()3322333a b a a b ab b +=+++中b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,由此即可判断①;观察并计算可以发现第n 行所有数字之和为2n,由此即可判断②;观察并计算可以发现第n 行(n 大于2)第三个数诶为()12n n −,由此即可判断③;991a b ==,时,()326399139939999110=+++=+⨯⨯,即可判断④;当2b =时,()443228243216a a a a a +=++++,再由4328243216a a a a ++++的值为1,得到()421a +=,解方程即可判断⑤.【详解】解:∵()3322333a b a a b ab b +=+++,∴把上述式子中的b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,∴()3322333b a b a a ab b −−+=−,故①正确;第1行的所有数字之和为11122+==,第2行的所有数字之和为212124++==,第3行的所有数字之和为3133128+++==,第4行的所有数字之和为414641216++++==,……,∴可以得到规律第n 行所有数字之和为2n,∴“杨辉三角”中第9行所有数之和92512=,故②错误;第2行第三个数为()22112⨯−=, 第3行第三个数为()33132⨯−=,第4行第三个数为()44162⨯−=,第5行第三个数为()551102⨯−=,……,∴第n 行(n 大于2)第三个数为()12n n −, ∴“杨辉三角”中第20行第3个数为()202011902−=,故③正确;∵()3322333a b a a b ab b +=+++,∴当991a b ==,时,()326399139939999110=+++=+⨯⨯,故④正确;∵()4432234464a b a a b a b ab b +=++++,∴当2b =时,()443228243216a a a a a +=++++,∵4328243216a a a a ++++的值为1,∴()421a +=, ∴()221a +=,∴21a +=±, ∴1213a a =−=−,,故⑤正确;故选C .【点睛】本题主要考查了多项式乘法中得规律探索,正确理解题意找到规律是解题的关键.二、填空题11.(2023·全国·九年级假期作业)若关于x 的一元二次方程230ax bx +−=(0a ≠)有一个根为5x =,则方程()213a x bx b −+−=必有一根为______. 【答案】6x = 【分析】把()213a x bx b−+−=化为()2(1)130,a xb x −+−−=再结合题意得到15,x −=解出即可.【详解】解:()213a x bx b−+−=,()2(1)130a xb x ∴−+−−=.令1x t −=,则230,at bt +−=∵方程230ax bx +−=(0a ≠)有一个根为5x =,∴方程230at bt +−=有一根为5t =,()2(1)130a xb x ∴−+−−=有一根为15x −=,15,x ∴−=6.x ∴=故答案为: 6.x =【点睛】本题主要考查了一元二次方程的根的含义,掌握利用整体未知数求解方程的根是解此题的关键. 12.(2023·全国·九年级假期作业)一元二次方程220x x +−=的解是________. 【答案】122,1x x =−= 【分析】原方程可转化为()()210x x +−=,再化为两个一次方程即可.【详解】解:∵220x x +−=,∴()()210x x +−=,∴20x +=或10x −=, 解得122,1x x =−=.故答案为:122,1x x =−=.【点睛】本题考查的是一元二次方程的解法,熟练的掌握因式分解的方法解一元二次方程是解本题的关键. 13.(2023·全国·九年级假期作业)一元二次方程()()23121x x =−−的解是________.【答案】12531,x x ==【分析】先移项,再提取公因式分解因式,把原方程化为两个一次方程,再解一次方程即可. 【详解】∵()()23121x x =−−,∴()()231201x x −−−=.∴()()13120x x −−−⎤⎣⎦=⎡.∴10x −=或()3120x −−=,解得12531,x x ==.故答案为:12531,x x ==.【点睛】本题考查的是一元二次方程的解法,熟练的利用因式分解的方法解方程是解本题的关键. 14.(2023·河南信阳·校考三模)小明在解方程2320x x −+=时,发现用配方法和公式法计算量都比较大,因此他又想到了另外一种方法,快速解出了答案: 方法如下: 2320x x −+=2220x x x −−+= 第①步222x x x −=− 第②步()22x x x −=− 第③步1x = 第④步老师看到后,夸小明很聪明,方法很好,但是有一步做错了,请问小明出错的步骤为________(填序号). 【答案】④ 【分析】由()22x x x −=−,()()120x x −−=,解得1x =或2x =,进而判断作答即可.【详解】解:()22x x x −=−,()()120x x −−=,解得1x =或2x =,∴第④步错误, 故答案为:④.【点睛】本题考查了解一元二次方程.解题的关键在于正确的解一元二次方程.15.(2023秋·湖南常德·九年级统考期末)若()()22222340x y x y +−+−=,则22x y +=______.【答案】4【分析】设22t x y =+,则0t >,根据换元法解一元二次方程,即可求解.【详解】解:设22t x y =+,则0t >,∴原方程可以化为2340t t −−=,解得:4t =或1t =−(舍去)即22x y +=4 故答案为:4.【点睛】本题考查了换元法解一元二次方程,掌握换元法解一元二次方程是解题的关键.16.(2022秋·甘肃平凉·九年级校考阶段练习)已知实数x 满足2220()(23)x x x x −−−−=,则代数式22020x x −+的值为_______.【答案】2023【分析】设2t x x =−,则原方程转化为关于t 的一元二次方程2230t t −−=,利用因式分解法解该方程即可求得t 的值;然后整体代入所求的代数式进行解答,注意判断方程的根的判别式0≥,方程有解.【详解】解:设2t x x =−,由原方程,得2230t t −−=,整理,得()()310t t −+=,所以3t =或1t =−.当3t =时,23−=x x ,则220202023x x −+=;当1t =−时,21x x −=−即210x x −+=时,()214110∆=−−⨯⨯<,方程无解,此种情形不存在.故答案是:2023.【点睛】本题考查了换元法解一元二次方程.换元的实质是转化,关键是构造元和设元,理论依据是等量代换.三、解答题17.(2023·江苏·九年级假期作业)用适当的方法解下列各一元二次方程: (1)(2)15x x −=;(2)23680x x +−=(用配方法); (3)2(2)10(2)210x x +−++=; (4)23520x x −+=;(5)22(2)(1)6x x ++−=. 【答案】(1)15a =,23a =−(2)11x =−,21x =−(3)15=x ,21x = (4)123x =,21x =(5)1x =,2x =【分析】(1)(4)用因式分解的十字相乘法求解比较简便;(2)先把常数项移到等号的另一边,把二次项系数化为1,配方,利用直接开平方法求解; (3)把(2)x +看成一个整体,利用因式分解的十字相乘法求解比较简便; (5)先整理方程,用公式法比较简便. 【详解】(1)解:(2)15x x −=,整理,得22150a a −−=,(5)(3)0a a ∴−+=.50a ∴−=或30a +=.15a ∴=,23a =−;(2)23680x x +−=(用配方法),移项,得2368x x +=,二次项系数化为1,得2823x x +=,配方,得211213x x ++=,211(1)3x ∴+=.1x ∴+=.11x ∴=−,21x =−;(3)2(2)10(2)210x x +−++=,[(2)7][(2)3]0x x ∴+−+−=,即(5)(1)0x x −−=.50x ∴−=或10x −=.15x ∴=,21x =;(4)23520x x −+=,(32)(1)0x x −−=,320x −=或10x −=,123x ∴=,21x =;(5)22(2)(1)6x x ++−=,方程整理,得22210x x +−=,x ===.1x ∴=,2x =. 【点睛】本题考查了解一元二次方程,掌握一元二次方程的直接开平方法、配方法、因式分解法、公式法是解决本题的关键.18.(2023·全国·九年级假期作业)已知()()22222150a b a b +++−=,求22a b +的值. 【答案】3【分析】先用换元法令22(0)a b x x +=>,再解关于x 的一元二次方程即可. 【详解】解:令22(0)a b x x +=>,则原等式可化为:(2)150x x +−=,解得:123,5x x ==−,0x >,3x ∴=,即223a b +=.22a b +的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意22a b +为非负数是本题的关键.【答案】2x = 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:2211x x x =+−方程两边同乘()()11x x +−, 得()12x x −=,整理得,220x x −−=,∴()()120x x +−=,解得:11x −=,22x =,检验:当=1x −时,()()110x x +−=,=1x −是增根, 当2x =时,()()1130x x +−=≠,∴原方程的解为2x =.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题关键.【答案】,21x −+【分析】先对分式进行化简,然后求出一元二次方程的解,进而代值求解即可.【详解】2222421121x x x x x x x −−−÷+−−+()()()()222121112x x x x x x x −−=−⋅++−−()21211x x x x −=−++, 2221x x x −+=+ 21x =+解方程220x x +−=得:2x =−或1x =,如果已知分式有意义,必须x 不等于2,1−,1,∵x 为方程220x x +−=的根,∴x 只能为2−,∴当2x =−时,原式2221−+==−.【点睛】本题主要考查分式的化简求值及一元二次方程的解法,解题的关键是熟练掌握各个运算方法. 21.(2023·陕西榆林·校考模拟预测)已知数字A 为负数,将其加6得到数字B ,若数字A 与数字B 的积为7,求数字A .【答案】7A =−【分析】根据题意得()67A A +=,解一元二次方程即可求解.【详解】解:由题意得6A B +=,7A B ⨯=,∴()67A A +=,∴2670A A +−=,即()()710A A +−=, 解得7A =−或1A =,∵数字A 为负数,∴7A =−.【点睛】本题考查了一元二次方程的应用,掌握“因式分解法”解一元二次方程是解题的关键.22.(2023·全国·九年级假期作业)阅读下面的材料:【答案】(1)1x =,2x =,3x ,4x =;(2)5【分析】(1)设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解关于y 的一元二次方程,然后解关于x 的一元二次方程即可求解;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解一元二次方程即可求解.【详解】(1)解:设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解得11y =,24y =,当21x x +=即210x x +−=时,解得x = ;当24x x +=即240x x +−=时,解得x ;∴原方程的解为112x −=, 212x −=, 312x −=, 412x −=;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解得15y =,2(2y =−舍去),225a b +=.【点睛】本题考查了换元法解一元二次方程,熟练掌握换元法是解题的关键.【答案】(1)1x =±(2)114x =−,21x =【分析】(1)设2x y =,则由已知方程得到:2560y y −=+,利用因式分解法求得该方程的解,然后解关于x 的一元二次方程;(2)设1x y x +=,则由已知方程得到:260y y +−=,利用因式分解法求得该方程的解,然后进行检验即可.【详解】(1)令2x y =∴2560y y −=+∴(6)(1)0y y +−=∴16y =−,21y =∴26x =−(舍去),21x =∴1x =±;(2)令1x y x += ∴610y y −+=∴260y y +−=∴(3)(2)0y y +−=∴13y =−,22y = ∴13x x +=−,12x x += ∴114x =−,21x = 经检验,114x =−,21x =为原方程的解.【点睛】本题主要考查了换元法解一元二次方程,分式方程,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.任务:(1)判断:方程2560x x −+= ______ “邻根方程”(填“是”或“不是”);(2)已知关于x 的一元二次方程()210(x m x m m +++=是常数)是“邻根方程”,求m 的值.【答案】(1)是(2)0m =或2m =【分析】(1)先利用因式分解法解一元二次方程,然后根据“邻根方程”的定义进行判断;(2)先利用因式分解法解一元二次方程得到1x m =,21x =−,再根据“邻根方程”的定义得到11m −=−或11+=−m ,然后解关于m 的方程即可.【详解】(1)解方程2560x x −+=得13x =,22x =, 3比2大1,∴方程是“邻根方程”;(2)()210x m x m +++=, ()()10x m x ∴++=, 0x m ∴+=或10x +=,1x m ∴=−,21x =−,方程()210(x m x m m +++=是常数)是“邻根方程”,11m ∴−−=−或11m −+=−,0m ∴=或2m =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.【答案】14x =,214x =m =m =代入方程得22520m m −+=,求出m 的值,再求出x 即可.m .原方程化为:22520m m −+=,解得:12m =,212m =.当2m =2,解得:14x =;当12m =12=,解得:214x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是正确理解题意,会根据题目所描述的换元法求解方程.。

因式分解法解一元二次方程

因式分解法解一元二次方程

因式分解法解一元二次方程
因式分解法解一元二次方程的口诀:一移,二分,三转化,四再求根容易得。

步骤:将方程右边化为0;将方程左边分解为两个一次式的积;令这两个一次式分别为0,得到两个一元一次方程;解这两个一元一次方程,它们的解就是原方程的解。

数学中用以求解高次一元方程的一种方法。

把方程的一侧的数(包括未知数),通过移动使其值化成0,把方程的另一侧各项化成若干因式的乘积,然后分别令各因式等于0而求出其解的方法叫因式分解法。

在使用因式分解法解一元二次方程时:
①因式分解法解一元二次方程时,等式右边必须为0。

②方程中如果有括号不要急于去掉括号,要先观察方程是否可采用因式分解法求解。

③因式分解法有提公因式法,公式法,分组分解法等(十字相乘法最常用)。

④利用因式分解法解一元二次方程时,注意不能将方程两边同时约去相同的因式或未知数。

因式分解法解方程步骤

因式分解法解方程步骤

因式分解法解方程步骤一、引言方程是数学中重要的概念,它描述了数值之间的关系。

解方程是求解未知数的值,因式分解法是解方程的一种常用方法。

本文将介绍使用因式分解法解方程的具体步骤。

二、因式分解法解方程的基本思想因式分解法是将一个复杂的方程转化为一个或多个简单的因式相乘的形式,从而得到方程的解。

这种方法常用于一次方程、二次方程和高次方程的求解。

三、一次方程的因式分解法解法步骤1. 将一次方程移到等式的一边,使等式为0。

2. 将方程进行因式分解,将其转化为两个或多个因式相乘的形式。

3. 令每个因式等于0,得到多个子方程。

4. 解每个子方程,得到对应的解。

5. 将所有解合并,得到原方程的全部解。

四、二次方程的因式分解法解法步骤1. 将二次方程移到等式的一边,使等式为0。

2. 将方程进行因式分解,将其转化为两个一次因式相乘的形式。

3. 令每个一次因式等于0,得到两个子方程。

4. 解每个子方程,得到对应的解。

5. 将所有解合并,得到原方程的全部解。

五、高次方程的因式分解法解法步骤1. 将高次方程移到等式的一边,使等式为0。

2. 将方程进行因式分解,将其转化为多个一次或二次因式相乘的形式。

3. 令每个一次或二次因式等于0,得到多个子方程。

4. 解每个子方程,得到对应的解。

5. 将所有解合并,得到原方程的全部解。

六、注意事项1. 在进行因式分解时,要注意是否存在公因式,可以通过提取公因式简化方程。

2. 在解子方程时,要考虑每个因式的根是否为实数或复数,进而得到方程的实数解或复数解。

3. 在合并解时,要注意去除重复解,得到方程的不同解。

七、例题解析以下是几个例题的解析,以帮助读者更好地理解因式分解法解方程的步骤和思路。

例题1:解方程2x + 4 = 01. 将方程移到等式的一边,得到2x = -4。

2. 由于2和-4没有公因式,无法进行因式分解。

3. 将方程除以2,得到x = -2。

4. 所以方程的解为x = -2。

用因式分解法解下列方程

用因式分解法解下列方程

用因式分解法解下列方程方程是数学中的基本概念,是研究数量关系和量的相等关系的代数式。

解方程是数学中的一个重要内容,可以帮助我们找到方程中未知数的取值,进而解决实际问题。

因式分解法是解方程的一种常用方法,通过将方程中的多项式进行因式分解,将复杂的方程化简为简单的乘法形式,从而求解方程中的未知数。

下面我们来看几个用因式分解法解方程的例子。

第一个例子:解方程x² - 4x + 4 = 0首先,我们将方程进行因式分解,得到 (x-2)² = 0然后,根据乘法公式得到 x-2 = 0 或 x-2 = 0最终解得 x = 2第二个例子:解方程2x² + 5x - 3 = 0首先,我们将方程进行因式分解,得到 (2x-1)(x+3) = 0然后,根据乘法公式得到 2x-1 = 0 或 x+3 = 0最终解得 x = 1/2 或 x = -3第三个例子:解方程x³ - 8 = 0首先,我们将方程进行因式分解,得到 (x-2)(x² + 2x + 4) = 0然后,根据乘法公式得到 x-2 = 0 或x² + 2x + 4 = 0其中x² + 2x + 4 = 0 为一个一元二次方程,通过求根公式或配方法可以解得 x = -1 + √3i 或 x = -1 - √3i最终解得 x = 2 或 x = -1 + √3i 或 x = -1 - √3i通过以上几个例子,我们可以看到,因式分解法在解方程中的应用十分灵活和方便,可以帮助我们更快地找到方程的解。

当然,对于更复杂的方程,我们还可以结合其他方法进行求解,如配方法、求根公式等。

总的来说,解方程是数学中的一项重要技能,掌握不同的解方程方法可以帮助我们更好地理解数学知识,提高数学解题能力。

希望通过学习因式分解法解方程的方法,能够帮助大家更好地应对数学问题,提高解题效率。

用因式分解法解一元二次方程

用因式分解法解一元二次方程
1.一般地,当一元二次方程一次项系数为0时(ax2+c=0),
应选用直接开平方法;
2.若常数项为0( ax2+bx=0),应选用因式分解法;
3.若一次项系数和常数项都不为0 (ax2+bx+c=0),先化为
一般式,看一边的整式是否容易因式分解,若容易,宜选用
因式分解法,不然选用公式法;
4.当二次项系数是1,且一次项系数是偶数时,用配方法也较
即5x-2 = 0 或x+8 = 0,
2
5
∴ x1 = ,x2 =-8.
(4)9x2-12x-1 = 0.
分析:方程的结构没有明显特殊性,考虑公式法.
解:∵ a = 9,b = -12,c = -1,
∴ Δ = b 2-4 a c =(-12)2-4×9×(-1)=
144+36 = 180>0,
b b 2 4ac (12) 180 2 5
因式分解,得 x5 x 4 0.
x 0, 或5 x 4 0.
4
x1 0,x2
5
(2)移项,得 x 2 xx 2 0,
因式分解,得 x 21 x 0.
x 2 0, 或1 x 0.
x1 2,x2 1
几种常见的用因式分解法求解的方程
(1)形如x2 +bx = 0 的一元二次方程,将左边运用提公因式法因式分解为
x(x+b)= 0,则x = 0 或x+b = 0,即x1= 0, x2 = -b.
(2)形如x2 - a2 = 0 的一元二次方程,将左边用平方差公式因式分
解为(x+a)(x-a)= 0,则x+a = 0 或x-a = 0,即x1 = -a, x2

高一数学:用因式分解法解下列方程

高一数学:用因式分解法解下列方程

高一数学:用因式分解法解下列方程1.a^4-4a+32.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n3.x^2+(a+1/a)xy+y^24.9a^2-4b^2+4bc-c^25.(c-a)^2-4(b-c)(a-b)答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3)2.[1-(a+x)^m][(b+x)^n-1]3.(ax+y)(1/ax+y)4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c)5.(c-a)^2-4(b-c)(a-b)= (c-a)(c-a)-4(ab-b^2-ac+bc)=c^2-2ac+a^2-4ab+4b^2+4ac-4bc=c^2+a^2+4b^2-4ab+2ac-4bc=(a-2b)^2+c^2-(2c)(a-2b)=(a-2b-c)^21.x^2+2x-82.x^2+3x-103.x^2-x-204.x^2+x-65.2x^2+5x-36.6x^2+4x-27.x^2-2x-38.x^2+6x+89.x^2-x-1210.x^2-7x+1011.6x^2+x+212.4x^2+4x-3解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。

因式分解法解方程

因式分解法解方程

因式分解法解方程1. 引言在数学中,方程是一个数学等式,其中包含未知数和已知数之间的关系。

解方程是求出使得等式成立的未知数的值。

因式分解法是一种常用的解方程方法,它通过将方程中的多项式进行因式分解,从而简化求解过程。

本文将详细介绍因式分解法解方程的基本概念、步骤和示例,并提供一些常见问题的解答。

2. 基本概念在讨论因式分解法解方程之前,我们先来了解一些基本概念。

2.1 方程与多项式方程(equation)是一个等式,其中包含未知数和已知数之间的关系。

通常用字母表示未知数。

多项式(polynomial)是由若干个单项式相加或相减得到的代数表达式。

例如,2x2+3x−5就是一个二次多项式。

2.2 因子与因式因子(factor)是能整除一个数字或代数表达式的数字或代数表达式。

例如,在6中,1,2,3,6都是它的因子;在x2+x中,x是它的因子。

因式(factor)是能整除一个多项式的多项式。

例如,在2x2+3x−5中,2,x+1,x−5都是它的因式。

3. 因式分解法解方程的步骤接下来,我们将介绍因式分解法解方程的基本步骤。

步骤1:将方程转化为多项式形式首先,将所给的方程转化为多项式形式。

确保方程中只包含一个未知数,并将未知数的次数按照降序排列。

例如,对于方程2x2+3x−5=0,已经是多项式形式了。

步骤2:因式分解多项式接下来,我们要对多项式进行因式分解。

通过找到多项式的因子和因子间的关系,将多项式分解为更简单的乘积形式。

例如,在2x2+3x−5中,我们可以发现2x2的因子是2x,而−5的因子是−1,5。

根据乘法运算法则可知:(2x2+3x−5)=(ax+b)(cx+d)其中a,b,c,d是待确定的常数。

步骤3:确定常数的值现在,我们需要确定常数a,b,c,d的值。

这可以通过展开右侧的乘积并与原多项式进行比较来实现。

例如,在(ax+b)(cx+d)中展开并与2x2+3x−5进行比较,我们可以得到以下等式:$$ ac = 2 \\ ad + bc = 3 \\ bd = -5 $$通过解这个方程组,可以求解出a,b,c,d的值。

用因式分解法解一元二次方程

用因式分解法解一元二次方程

用因式分解法解一元二次方程【主体知识归纳】1 •因式分解法若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,X2—9 = 0,这个方程可变形为(x + 3)( X—3) = 0,要(x + 3)( X—3)等于0,必须并且只需(x+ 3)等于0或(x —3) 等于0,因此,解方程(x+ 3)( x —3) = 0就相当于解方程x+ 3 = 0或x —3= 0 了,通过解这两个一次方程就可得到原方程的解•这种解一元二次方程的方法叫做因式分解法.2•因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程. 其理论根据是:若A-B= 0=A=0 或B= 0.【基础知识讲解】1 •只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程•分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2 •在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程•但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便•因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法•而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:2(1) y + 7y+ 6 = 0; (2) t(2t —1) = 3(2 t —1); ⑶(2 x —1)( x—1) = 1.解:(1)方程可变形为(y+1)( y + 6) = 0, y+ 1 = 0 或y+ 6 = 0,二y1 = —1, y2=—6•1(2) 方程可变形为t(2t —1) —3(21 —1) = 0, (2t —1)( t —3) = 0, 2t —1 = 0 或t —3 = 0,二t =2 12=3.2(3) 方程可变形为2x —3x = 0 • x(2x —3) = 0, x = 0 或2x—3= 0 •3…X1= 0, X2=2说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2) 应用因式分解法解形如(x —a)( x —b) = c的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x—e)( x —f) = 0的形式,这时才有X1 = e, X2 = f,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x— 1 = 1 或X—1 = 1 X1 = 1, X2= 2.(3) 在方程(2)中,为什么方程两边不能同除以(2t —1),请同学们思考?例2:用适当方法解下列方程:;2 ' 2 2 2(1) ,3(1 —X) = 27 ;⑵x —6x —19= 0; (3)3 x = 4x+ 1; (4) y —15= 2y; (5)5 x(x —3) —(x —3)( x+ 1) = 0 ;2 2(6)4(3 x+ 1) = 25( x—2).剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.2 移项,得x2—6x= 19,配方,得x2—6x+ ( —3)2= 19+ ( —3)2, (X —3) 2= 28, X—3 =± 27 ,解:(1)(1 —x) 2= . 9 , (x—1) 2= 3, x—1 = ± \ 3 ,二X1= 1 + ••. 3 , X2= 1 —, 3 .X i = 2 ,73^(y —5)( y+ 3) = 0;• X1 = b -a a bX i= 3 + 2 , 7 , X2 = 3—2、L7 .2⑶移项,得3x —4x— 1 = 0,■/ a= 3, b=—4, c =—1,—(⑷2一4 3(_i)2^3⑷移项,得y2—2y—15= 0,把方程左边因式分解,得• y — 5 = 0 或y + 3= 0,二y i = 5, y2= —3.⑸将方程左边因式分解,得(x —3) :5x—(x + 1) ]= 0, (x—3)(4 X—1) = 0,• x — 3 = 0 或4x— 1 = 0, • X1= 3, X2 = 1.4(6)移项,得4(3x+ 1) —25(x—2) = 0,2 2[2(3 x + 1): —[ 5(x—2): = 0,:2(3 x + 1) + 5( x —2): • : 2(3 x + 1) —5( x —2) ]= 0,(11 x —8)( x + 12) = 0,8• 11X—8= 0 或x + 12= 0, • X1= , X2=—12.11说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成般式了.例3:解关于x 的方程:(a2—b2)x2—4abx= a2—b2.解:(1)当a2—b2= 0,即 | a | = | b | 时,方程为一4abx= 0.当a= b = 0时,x为任意实数.当| a | = | b |工0时,x = 0.(2)当a2—b2^ 0,即a+ 0且a—b* 0时,方程为一元二次方程.分解因式,得[(a+ b)x+ (a—b) ] [(a—b)x —(a+ b) ]= 0,a +b 工0 且a —b* 0,a +bX2 =a -b说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即① a = b= 0;②| a | = | b |* 0;③| a |*| b | .例4:已知x2—xy —2y2= 0,且x* 0, y *0,求代数式剖析:要求代数式的值,只要求出x、y的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x、y的二次齐次式,所以知道x与y的比值也可.由已知x2—xy —2y2= 0因式分解即可得x与y的比值.2 2解:由x —xy —2y = 0,得(x —2y)( x + y) = 0, • x —2y= 0 或x+ y = 0, • x= 2y 或x = —y.当x= 2y时,x2 -2xy -5y2 =(2y)2 -2 2y y - 5y2=-5y2 = 一5 x2 +2xy +5y2(2y)2 +2 2y y+5y213y2 131A. . x = —B . x = 22方程 5x ( x + 3) = 3( x + 3)解为()33 A . X 1 =, X 2= 3B . x =C.55方程(y — 5)( y + 2) = 1的根为() A . y 1 = 5, y 2=— 2B. y = 5方程(x — 1)2— 4(x + 2)2= 0 的根为()A . X 1 = 1, X 2=— 5 B. X 1=—1, X =— 5 C. x = 1 X 1=— 3 , X 2=— 35 D. x =— 1D. X 1 = — , X 2= — 35C. y =— 2D.以上答案都不对 C. X 1 = 1, X 2 = 5D. X 1 =— 1, X 2= 52m x — 3x + 2= 0较小的根设为 n ,则m^ n 的值为( 2⑶ X = 7x ;当x — y 时,与2Xy驾二超2("y 5y筠x +2xy +5y(_y) +2 .(_y) ,y +5y 亠4y说明:因式分解法体现了“降次” “化归”的数学思想方法,它不仅可用来解一元二次方程,而且在 「元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】 选择题方程(x — 16)( x + 8) = 0的根是() A . X i =— 16, X 2= 8B . x i = 16, X 2=— 8C. x i = 16, X 2= 8D.x i = — 16, X 2=— 8下列方程 4x — 3x — 1 = 0, 5x — 7x + 2= 0, 13x — 15x + 2 = 0 中,有一个公共解是 () A . 1 B . 2 C.— 4 D. 4已知三角形两边长为 4和7 ,第三边的长是方程x 2— 16X + 55= 0的一个根,则第三边长是()A . 5B . 5 或 11 C. 6D. 11方程x 2— 3| X — 1| = 1的不同解的个数是()A . 0B . 1C. 2D. 3填空题2方程 t (t + 3) = 28 的解为 _________ . (2)方程(2x + 1) + 3(2x + 1) = 0 的解为 ______________方程(2y + 1)2+ 3(2y + 1) + 2 = 0 的解为 ____________ .关于x 的方程x + (耐n )x + mn= 0的解为 _____________. 方程x (x —J5) = J5 — x 的解为 ______________ .用因式分解法解下列方程:2 2(1) x + 12x = 0; (2)4 X — 1= 0;2解- 1.⑴ ⑵⑶ ⑷ ⑸ ⑹ ⑺ (8)2.(1)⑶⑷ ⑸ 3.2(4) X —4x—21 = 0;(5)( x—1)( x + 3) = 12;2(6)3 x + 2x—1 = 0;2(7)10 x —X—3= 0;4 .用适当方法解下列方程:2(1)x —4x+ 3 = 0;2(2)( x—2) = 256;2(3) x —3x + 1 = 0;2(9)2 x — 8x = 7(精确到 0.2 2 (3) x — 2mx- 8m = 0;(8) ,5x 2 — (5 ,2 + 1)x + ,10 = 0;201) ; (10)( x + 5) — 2( x + 5) — 8= 0.5 .解关于x 的方程:2 2 2 2(1) x — 4ax + 3a = 1 — 2a ; (2) x + 5x + k = 2kx + 5k + 6;2 2(4) x + (2 m + 1) x + m + m = 0.6 .已知x 2+ 3xy — 4y 2= 0( y 丰0),试求 m 的值. x + y7.已知(x 2+ y 2)( x 2— 1 + y 2) — 12 = 0.求 x 2 + y 2 的值.8•请你用三种方法解方程: x (x + 12) = 864.9.已知x 2+ 3x + 5的值为9,试求3x 2 + 9x — 2的值.10 .一跳水运动员从 10米高台上跳水,他跳下的高度 h (单位:米)与所用的时间t (单位:秒)的关系式h =— 5( t — 2)( t + 1).求运动员起跳到入水所用的时间.11.为解方程(X 2— 1)2— 5(x 2— 1) + 4= 0,我们可以将x 2— 1视为一个整体,然后设 x 2 — 1 = y ,贝U y 2=(x 2— 1)2,原方程化为y 2— 5y + 4= 0,解此方程,得 y 1= 1, y 2= 4.22当 y = 1 时,x — 1 = 1, x = 2 ,••• x =± 2 . 当 y = 4 时,x — 1 = 4, x = 5, • x =± \ 5 .•原方程的解为 X 1 =—、、2 , X 2 = -.2 , X 3=— . 5 , X 4= 5 .⑷ X 2— 2x — 3 = 0;⑸(2 t + 3)2= 3(21 + 3);2 2(6)(3 — y ) + y = 9 ;(7)(1+ , 2 ) x — (1 —、、2 ) x = 0;以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1) 运用上述方法解方程:X4—3X2—4 = 0.(2) 既然可以将x2—1看作一个整体,你能直接运用因式分解法解这个方程吗当x = — 4y 时, 参考答案【同步达纲练习】1. ⑴B (2)C (3)D (4)D (5)B (6)A (7)A (8)D132. (1) 11 = — 7, 12= 4(2) x i = — — , X 2 =— 2(3) y i =— 1 , y 2=——⑷ x i = — m X 2=—n (5) x i=^5 , X 2=— 12 2113. (1) X 1 = 0, X 2 =— 12; (2)X 1=——,X 2=; (3) X 1= 0, X 2 = 7; (4) X 1 = 7, X 2=— 3; (5)X 1=— 5, X 2 = 3; (6)X 1 =22—1 , X 2 =13(7) X 1 =3 X =一 1; (8) X 1 = 8 , X 2 =— 2523 . . 53 ― '54.(1) X 1 = 1, X 2= 3; (2) X 1 =18, X 2=— 14; (3)为= ,X 2= ;(4) X 1= 3, X 2=— 1 ;2 2(5) 11 = 0, 12=— — ; (6) y 1 = 0, y 2 = 3; (7)为=0, X 2 = 2 . 2 — 3;2(8) X 1=5, X 2= ,10 ; (9) X 1~ 7.24 , X 2=— 3.24 ; (10) X 1=— 1, X 2=— 7. 55. (1) x 2 — 4ax + 4a 2 = a 2— 2a + 1, (x — 2a )2 = (a — 1)2,二 x — 2a =± (a — 1), 二 X 1 = 3a — 1, X 2= a +1.(2) x 2+ (5 — 2k ) x + k 2— 5k — 6= 0,2x + (5 — 2k ) x + (k + 1)( k — 6) = 0, :x — (k + 1)] :x — (k — 6)]= 0,•:X 1 = k + 1, X 2= ( k — 6).(3) x 2— 2m 才 m = 9m , (x —m 2=(3 m 2二 X 1 = 4 m, X 2=— 2m2⑷ x + (21)x +1) =0 ,(x + m [x + (计 1) ]= 0 ,--X 1 = — m X 2= — ir — 16. (x +4y )( x — y ) = 0 ,x =— 4y 或 x = yx — y = -4y _ y _ 5x y -4y y 37. (x 2 + y 2)( x 2+ y 2— 1) —12 = 0 , 2 2 2 2 2(x + y ) — (x + y ) — 12= 0 , (x 2 + y 2— 4)( x 2 + y 2+ 3) = 0 ,x2+ y2= 4 或x2+ y2=—3(舍去)8. X1=—36 , X2= 242 29. v x+3x+ 5 = 9, . x+ 3x= 4 ,.3x2+ 9x—2 = 3( x2+ 3x) —2 = 3 X 4—2 = 1010. 10=- 5( t —2)( t + 1),二t = 1(t = 0 舍去)11. (1) x i=—2, X2 = 2(2)( x2—2)( x2—5) = 0,(x+ , 2 )( x — .、2)(x+ ...5)(x—、. 5) = 0出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。

因式分解法解方程

因式分解法解方程

基础练习题
总结词
掌握基本概念
详细描述
通过简单的因式分解法练习,如x^2 - 4 = 0, 熟悉因式分解的基本步述
通过练习,熟悉因式分解的基本步骤,如提取公因 式、分组、应用差平方公式等。
提高速度和准确性
总结词
详细描述
通过大量的基础练习,提高因式分解的速度和准确性, 为解决更复杂的方程打下基础。
进阶练习题
总结词
应用进阶技巧
总结词
解决实际问题
详细描述
在基础练习的基础上,尝试更复杂的因式分 解,如x^4 - 16,需要应用平方差公式和完 全平方公式。
详细描述
通过解决实际问题,如几何问题、代数问 题等,将因式分解法应用于实际情境中, 提高解决实际问题的能力。
综合练习题
总结词
综合运用知识
详细描述
04 因式分解法的扩展应用
二次方程的因式分解法
总结词
通过因式分解简化求解过程
详细描述
对于形如 ax^2+bx+c=0 的二次方程,可以通过因式分解将其转化为两个一次方程,从而简化求解过程。 例如,对于方程 2x^2-3x+1=0,可以分解为 (2x-1)(x-1)=0,从而得出解 x=1/2 和 x=1。
复杂多项式的因式分解
总结词
复杂多项式的因式分解需要运用更多的技巧和规则,如十字相乘法、差平方公 式等,以将多项式化为整式的积。
详细描述
对于形如 $x^2 - 2x - 3$ 的多项式,可以使用十字相乘法,找到两个数 $a$ 和 $b$,满足 $a + b = -2$ 且 $ab = -3$,即 $-3$ 和 $-1$,得到 $(x - 3)(x + 1)$。差平方公式也可以用于因式分解,如 $a^2 - b^2 = (a - b)(a + b)$。

二元一次方程因式分解法步骤

二元一次方程因式分解法步骤

二元一次方程因式分解法步骤
二元一次方程指的是形如ax + by = c的方程,其中a、b、c为已知数,x、y为未知数,并且a、b、c不全为零。

这里介绍的是如何利用因式分解法来解决二元一次方程。

1. 将方程变形
将方程变形为类似于(x + y)(ax + by) = k的形式,其中k为已知数。

可以通过分配律进行变形,例如将ax + by移项,得到ax = c - by,然后将x用y来表示,得到x = (c - by) / a。

将这个式子代入原方程中,可以得到(y + 1 / a)(ax + by) = c + k / a,其中k为一个常数。

这个式子就是所要求的形式。

2. 求出a、b
接着,我们需要求出a、b的值。

根据上一步得到的式子,可以看出a、b是(x + y)和(ax + by)中的系数。

因此,我们可以根据系数的定义,列出以下两个方程:
a +
b = 1
ab = k / c
将第一个方程带入第二个方程中,可以得到:
a(1 - a) = k / c
解出a的值,再代入第一个方程中,就可以求出b的值。

3. 求出x、y
一旦求出了a、b的值,就可以利用第一步得到的式子,求出x、y 的值。

将a、b代入式子中,即可得到:
x = (c - by) / a
y = (c - ax) / b
这样,二元一次方程就被成功地解决了。

需要注意的是,当a、b、c不满足某些条件时,这个方法可能无法使用。

例如,当a = b时,ab = k / c无解。

此外,在求解过程中,需要注意避免除以零等错误。

根据因式分解常用的六种方法详解方程组的求解

根据因式分解常用的六种方法详解方程组的求解

根据因式分解常用的六种方法详解方程组的求解引言方程组的求解在数学中具有重要的意义。

其中,根据因式分解的方法可以帮助我们更简便地解决方程组。

本文将详细介绍六种常用的因式分解方法,以帮助读者更好地理解和应用这些方法。

方法一:提取公因式这是最基本的因式分解方法之一。

首先,我们找到方程组中每个方程的公因式。

然后,我们将这个公因式提取出来,并用括号括起来。

最后,我们把原方程除以这个公因式得到简化后的方程。

通过这个过程,我们可以更直接地求得方程组的解。

方法二:平方公式对于有平方项的方程组,我们可以使用平方公式来进行因式分解。

平方公式可以将一个平方项表示为两个因式的乘积。

通过这个方法,我们可以将方程组中的平方项转化为两个成立的等式,从而帮助我们解决方程组。

方法三:差平方公式和平方公式类似,差平方公式也可以将一个差平方项表示为两个因式的乘积。

差平方公式在因式分解中经常用到,可以帮助我们更容易地求得方程组的解。

方法四:和差立方公式和差立方公式是一种用于因式分解的方法,可以将和差立方项表示为两个因式的乘积。

通过使用和差立方公式,我们可以更方便地求得方程组的解。

方法五:配方法配方法是一种常见的因式分解方法,可以用于解决一些复杂的方程组。

配方法通过使方程变换为一个可以因式分解的形式,从而帮助我们更容易地求得方程组的解。

方法六:矩阵法对于线性方程组,我们可以使用矩阵法来进行求解。

矩阵法通过将方程组转化为矩阵形式,并进行一系列的矩阵操作,最终求得方程组的解。

这是一种高效且广泛应用的求解方法。

结论通过六种常用的因式分解方法的介绍,我们可以更全面地了解方程组的求解过程。

无论是简单的方程组还是复杂的线性方程组,这些方法都可以帮助我们更轻松地求得解。

希望本文能够帮助读者进一步掌握和应用因式分解的方法,在解决数学问题时更加得心应手。

(注:以上内容仅供参考,具体分析和应用时请根据实际情况进行判断和求解。

)。

因式分解法解一元二次方程典型例题

因式分解法解一元二次方程典型例题

典型例题一例 用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0y +1=0或y +6=0∴y 1=-1,y 2=-6(2)方程可变形为t (2t -1)-3(2t -1)=0(2t -1)(t -3)=0,2t -1=0或t -3=0∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0 x (2x -3)=0,x =0或2x -3=0∴x 1=0,x 2=23说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考典型例题二例 用因式分解法解下列方程6223362+=+x x x解:把方程左边因式分解为:0)23)(32(=-+x x ∴032=+x 或023=-x∴ 32,2321=-=x x 说明: 对于无理数系数的一元二次方程,若左边可分解为一次因式积的形式,均可用因式分解法求出方程的解。

典型例题三例 用因式分解法解下列方程。

1522+=y y解: 移项得:01522=--y y把方程左边因式分解得:0)3)(52(=-+y y∴052=+y 或03=-y ∴.3,2521=-=y y 说明: 在用因式分解法解一元二次方程时,一定要注意,把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式都为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 3, x2 2.
解关于x的方程 x2 2ax a2 b2 0 1 (a b)
1 (a b)
解:[x (a b)][x (a b)] 0 x (a b) 0或x (a b) 0
x1 a b, x2 a b.
解方程 (x 5)(x 2) 18
解: 原方程化为 (x 5)(x 2) 3 6
由x 5 3,得x 8;
( )
由x 2 6,得x 4.
原方程的解为x1 8或x2 4.
小 结:
1.用因式分解法解一元二次方程的步骤:
1o方程右边化为 零 。 2o将方程左边分解成两个一次因式 的乘
x1 0, x2 1
例1、解下列方程
1、x2-3x-10=0
2、(x+3)(x-1)=5
解:原方程可变形为 解:原方程可变形为
(x-5)(x+2)=0
x2+2x-8=0
(x-2)(x+4)=0
x-5=0或x+2=0
x-2=0或x+4=0
∴ x1=5 ,x2=-2
∴ x1=2 ,x2=-4
解题步骤演示
①(x-5)(x+2)=18
②(2a-3)2=(a-2)(3a-4)
③ 2 y2=3y
④x2+7x+12=0
⑤t(t+3)=28
⑥(4x-3)2=(x+3)2
(7)x2 ( 3 2)x 6 0
(8) x2 3 x(3 2x) x(3x 1)
3
23ຫໍສະໝຸດ 解题框架图解:原方程可变形为:
积。
3o至少 有一个 因式为零,得到两个一元
一次方程。 4o两个一元一次方程的解 就是原方程的解
2.解一元二次方程的方法:
直接开平方法 配方法 公式法 因式分解法
右化零 两因式
简记歌诀: 左分解 各求解
(1)(4x 3)2 (x 3)2
解:移项,得 (4x 3)2 (x 3)2 0,
=0 ( 一次因式A )( 一次因式B )=0
一次因式A =0或 一次因式B =0 ∴ x1= A解 , x2= B
作业(人教版):
P.21: A组 1. 2. 3 (选作)B组 1. 2
(4x 3 x 3)(4x 3 x 3) 0 5x(3x 6) 0,
5x 0或3x 6 0, x1 0, x2 2.
(2)x2 ( 3 2)x 6 0
解:原方程变形为 (x 3)(x 2) 0
x 3 0或x 2 0,
右化零 两因式
简记歌诀: 左分解 各求解
快速回答:下列各方程的根分 别是多少?
(1)x(x 2) 0 x1 0, x2 2
(2)( y 2)( y 3) 0 y1 2, y2 3
(3)(3x

2)(2x
1)

0
x1


2 3
,
x2

1 2
(4)x2 x
(x 2)(3x 5) 0
x+2=0或3x-5=0
∴ x1=-2 , x2=
5 3
2、(3x+1)2-5=0 解:原方程可变形为
(3x+1+ 5)(3x+1- 5)=0
3x+1+ 5=0或3x+1- 5=0
∴ x1=

3
5 1
, x2= 3
5
(4)x2 x
解:方程的两边同时除以x,得
3X+5=0 或 3x-5=0
x1

5 3 , x2

5. 3
9X2-25= (3x+5)(3x-5)
快速回答:下列各方程的根分 别是多少?
(1)x(x 2)AB0=0A=0x或1 B0=, 0x2 2
(2)( y 2)( y 3) 0 y1 2, y2 3
(3)(3x

2)(2x
1)

0
x1


2 3
,
x2

1 2
(4)x2 x
x1 0, x2 1
例2、解下列方程
(1)3x(x 2) 5(x 2) (3)(3x 1)2 5 0
(1)3x(x 2) 5(x 2)
解:移项,得
3x(x 2) 5(x 2) 0
检 程,其关键是什么?
测 3、用因式分解法解一元二次方
题 程的理论依据是什么?
4、用因式分解法解一元二方程, 必须要先化成一般形式吗?
9x2 25 0
解法一 (直接开平方法):
x 5,
即x1

53
3 , x2

5. 3
9x2-25=0
解:原方程可变形为
(3x+5)(3x-5)=0
已知: 2x2 11xy 15y2 0. 求证 : x 3y或2x 5y. 1 3y
2 5y
证明:由2x2 11xy 15y2 0,得
(x 3y)(2x 5y) 0,
x 3y 0或2x 5y 0,
x 3y或2x 5y.
1.用因式分解法解下列方程:
解:移项,得
x2 x 0,
x(x 1) 0
x 0,或x 1 0
原方程的解为: x1 0, x2 1.
当一元二次方程的一边为
00 ,而另一边易于分解成
两个一次因式时,就可以 用因式分解法来解.
用因式分解法解一元二次方程的步骤
1o方程右边化为 零 。 2o将方程左边分解成两个一次因式 的 乘积。 3o至少 有一个 因式为零,得到两个 一元一次方程。 4o两个 一元一次方程的解 就是原方 程的解。
x 1.
原方程的解为x 1.
这样解是否正确呢?
(4)x2 x
解:(1)当x 0时,左边 02 0,右边 0. 左边 右边, x 0是原方程的解;
(2)当x 0时,方程的两边同除以x,得 x 1
原方程的解为x1 0, x2 1.
(4)x2 x
用因式分解法解一元二次方程
复习引入:
1、已学过的一元二次方程解 法有哪些?
2、请用已学过的方法解方程 x2 - 4=0
x2-4=0
解:原方程可变形为
(x+2)(x-2)=0
AB=0A=0或B=0
X+2=0 或 x-2=0 ∴ x1=-2 ,x2=2
X2-4= (x+2)(x-2)
教 1、熟练掌握用因式分解法解一 学 元二次方程。 目 2、通过因式分解法解一元二次 标 方程的学习,树立转化的思想。
重 重点: 点 用因式分解法解一元二次方程 难 难点:
点 正确理解AB=0〈=〉A=0或B=0 ( A、B表示两个因式)
自学内容:
5分钟时间自学课本38页内 容,并寻找下面各题答案, 比一比,看谁找得又快又 好。

1、 什么样的一元二次方程可以 用因式分解法来解?
学 2、用因式分解法解一元二次方
例 (x+3)(x-1)=5 解:原方程可变形为
方程x2右+2边x-化8为=零0 左边分解(x成-两2个)(x一+4次)=因0 式 的乘积 至少有一个一x次-因2式=为0零或得x到+两4=个0一元一次方程
两个一元∴一次x1方=2程,的x解2=就-4是原方程的解
下面的解法正确吗?如果不正确, 错误在哪?
相关文档
最新文档