七年级数学整式的加减
人教版数学七年级上册 整式的加减
小真没抄错题,但他们做出的结果却都一样,你知道这
是怎么回事吗?说明理由.
解:将原多项式化简后,得-b2+b+3. 因为这个式子的值与 a 的取值无关,所以即使把
ቤተ መጻሕፍቲ ባይዱ
a 的值抄错,最后的结果都会一样.
当堂练习
1. 已知一个多项式与
的和等于
,
则这个多项式是( A )
A.
B.
C.
D.
2. 长方形的一边长等于 3a + 2b,相邻边比它大 a - b, 那么这个长方形的周长是( A ) A.14a + 6b B.7a + 3b C.10a + 10b D.12a + 8b
2
3 23
3x y2.
→合并同类项
将式子化简
当x
2,y
2 3
时,
原式
3
(2)
2 3
2
6 4 9
6 4. 9
能力提升 有这样一道题“当 a=2,b=-2 时,求多项
式 3a3b3- 1 a2b+b-(4a3b3- 1 a2b-b2)+(a3b3+1 a2b)
2
4
4
-2b2+3 的值”,小虎做题时把 a=2 错抄成 a=-2,
6. 若 mn = m + 3,则 2mn + 3m - 5mn + 10 =__1__.
7.
计算:(1)
- 5 ab3
3
+
2a3b-
9 2
a2b-ab3-
1 2
a2b-a3b;
(2) (7m2-4mn-n2)-(2m2-mn+2n2);
(3)-3(3x + 2y)-0.3(6y-5x);
七年级上册数学《整式的加减》教案优秀
七年级上册数学《整式的加减》教案优秀整式的加减篇一整式的加减篇二教学目的:1.经历及字母表示数量关系的过程,发展符号感;2.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。
教学重点:会进行整式加减的运算,并能说明其中的算理。
教学难点:正确地去括号、合并同类项,及符号的正确处理。
教学过程:一、课前练习: 1.填空:整式包括_____________和_______________2.单项式的系数是___________、次数是__________3.多项式3m3-2m-5+m2是_____次______项式,其中二次项系数是______,一次项是__________,常数项是____________.4.下列各式,是同类项的一组是()(a)22x2y 与 yx2(b)2m2n与2mn2(c) ab与abc5.去括号后合并同类项:(3a-b)+(5a+2b)-(7a+4b).二、探索练习:1.如果用a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为_____________交换这个两位数的十位数字和个位数字后得到的两位数为__________________,这两个两位数的和为_________________________________.2.如果用a、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为___________,交换这个三位数的百位数字和个位数字后得到的三位数为______________,这两个三位数的差为___________________________.●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的?▲整式的加减运算实质就是____________________________,运算的结果是一个多项式或单项式。
三、巩固练习:1.填空:(1)2a-b与a-b的差是__________________________;(2)单项式、、、的和为___________;(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需_______个棋子,n个三角形需__________个棋子。
人教版七年级数学上册第二章《整式的加减》教案
人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。
本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。
通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。
二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。
但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。
三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。
四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。
六. 教学准备教师准备教案、PPT、练习题等教学资源。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。
2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。
例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。
同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。
3.操练(15分钟)教师布置一些练习题,让学生独立完成。
例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。
7年级上册数学整式的加减
7年级上册数学整式的加减
7年级上册数学整式的加减,指的是在七年级上学期数学课程中,学习整式加减的内容。
整式加减是代数中的基础知识点,主要涉及单项式、多项式、同类项、合并同类项等概念,以及整式的加减运算。
整式加减的示例包括:
1.单项式的加减:例如,2x和3x的加法,结果为5x。
2.多项式的加减:例如,2x+3y和3x+4y的加法,结果为5x+7y。
3.同类项的合并:例如,2x+3x可以合并为5x,2y-2y可以合并为0。
4.整式的加减混合运算:例如,(2x+3y)-(-4x+5y)可以化简为6x-2y。
总结:7年级上册数学整式的加减指的是七年级上学期数学课程中学习的整式加减的知识点。
通过学习整式的加减,学生可以掌握单项式、多项式、同类项等概念,并能够进行整式的加减运算和化简。
这些知识点是代数学习的基础,对于培养学生的数学思维和解决问题的能力具有重要意义。
初中七年级数学《整式的加减》教案3篇
初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。
2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。
3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。
过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。
情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。
感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:娴熟地进展合并同类项,化简代数式。
教学难点;如何推断同类项,正确合并同类项。
教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。
(2)甲比乙油漆面积大多少。
(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。
并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生沟通、争论。
③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母一样②一样字母的指数也一样简称“两同”。
人教版七年级数学上册《整式》整式的加减PPT课件
B.系数是1,次数是6; D.系数是-1,次数是6;
2.单项式 -4πr2 的系数及次数分别为( C )
A. -4,2
B.-4,3
C. 4π ,2
D. 4π ,3
当堂训练
3.如果 1 a2b2n1 是五次单项式,则n的值为( B )
2
A.1
B.2
C.3
D.4
课堂小结
单项式
概念:数或字母的积组成的式子 (包括单独的数或字母) 系数:单项式中的数字因数 次数:所有字母的指数的和
第四章 整式的加减
4.1 整式
第2课时 多项式和整式
学习目标
1. 掌握多项式、多项式的项、次数以及常数项 的概念. 2. 会准确迅速的确定一个多项式的项数和次数. 3. 归纳出整式的概念会区别单项式和多项式.
学习重难点
学习重点:理解多项式、多项式的项与次 数概念以及整式的概念.
学习难点:正确的找出多项式的项和次数.
单项式与多项式统称为整式。
巩固练习
用多项式填空,并指出它们的项和次数。
(1)一个长方形相邻两边长分别为a,b,则这个长方形的
周长为 2a+2b . (2)m为一个有理数,m的立方与2的差为 m3-2 .
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环 保和安全起见,从第三年年初起不再投放,且每个月回b辆,第
课堂小结
巩固练习
练一练:判断下列代数式是否是单项式?
4b2
,
π,2+3m
,3xy
,
a 3
,
1 t
答:4b2
,
π,3xy
,
a 3
是单项式.
探究新知
学生活动二 【一起探究】
整式的加减课件人教版七年级数学上册(完整版)
水库中水位第一天连续下降了a小时,每小时平均 下降2cm;第二天连续上升了a小时,每小时平均 上,这两天水位总的变化情况如何?
其中x =1/2; 分析:在多项式求值时,可以先将多项式 中的同类项合并,然后再代入求值,这样可 以简化计算.
解:(1) 2x2 5x x2 4x 3x2 2 x 2. 当x =1/2时,原式=-5/2
例3 (2)求多项式 3a abc 1 c2 3a 1 c2 的值,
3
3
其中a=-1/6,b=2,c=-3.
解:3a abc 1 c2 3a 1 c2 =abc
3
3
当a=-1/6,b=2,c=-3时,原式=1.
例4 一天,王村的小明奶奶提着一篮子土豆去换苹 果,双方商定的结果是:1千克土豆换0.5千克苹果.当 称完带篮子的土豆重量后,摊主对小明奶奶说:“别 称篮子的重量了,称苹果时也带篮子称,这样既省事 又互不吃亏.”你认为摊主的话有道理吗?请你用所 学的有关数学知识加以判定.
与字母在单项式中的排列顺序无关; (2)抓住“两个相同”:一是所含的字母要完全相
同,二是相同字母的指数要相同,这两个条件缺 一不可.
(3)不要忘记几个单独的数也是同类项.
例1 (1)在6xy-3x2-4x2y-5yx2+x2中没有同类 项的项是 6xy . (2)如果2a2bn+1与-4amb3是同类项,则m= 2 , n= 2 . 分析:根据同类项的定义,可知a的指数 相同,b的指数也相同,即m=2,n+1=3.
人教版七年级数学上册《整式的加减》课件(共12张PPT)
3、多项式 x-5xy2 与-3x+xy2 的和是 -2x-4xy2 ,它们的差 是 4x-6xy2 ,多项式 -5a+4ab3 减去一个多项 后是 2a ,则 这个多项式是 -7a+4ab3 。
整式的加减
知识回顾
用字母表示数
整
整 单项式: 系数、次数 、常数项
的
同类项: 定义、“两相同、两无关”
练习(二)
加
合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
知识回顾
用字母表示数
整
整 单项式: 系数、次数 练习(一)
式
式 多项式: 项、次数、常数项
1 1
n n1
。
.....
2006 (2)计算:1 122 133 1420 12 00 6 02007 7 .
2、小丽做一道数学题:“已知两个多项式A,B,B 为4x2-5x-6,求A+B.”,小丽把A+B看成A-B计 算结果是-7x2+10x+12.根据以上信息,你能求 出A+B的结果吗?
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
数学七年级上册整式的加减
数学七年级上册整式的加减整式的加减实质就是去括号,合并同类项同类项:所含字母相同,并且相同字母的指数也相同的项,叫同类项。
几个常数项也是同类项。
合并同类项定义:把多项式中的同类项合并成一项,叫做合并同类项。
依据:逆用乘法对加法的分配律法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
合并同类项的一般步骤:1)准确找出同类项(可用不同的记号标出同类项);2)利用法则把同类项的系数相加,字母和字母的指数不变;合并下列各式中的同类项(1)-3x+2y-5x-7y;(2)a2-3ab+5-a2-3ab-7;(3)5m3-3m2n-m32nm2-7+2m3.去括号去括号法则:括号前面是”+”,把括号和它前面的”+”去掉,括号里的各项符号都不改变。
括号前面是”-”,把括号和它前面的”-”去掉,括号里的各项符号都要改变。
先去括号,再合并同类项(1)5a-(2a-4b);(2)2x2+3(2x-x2).去括号的方法:1.)对于单一的去括号,遵循“单一去括号直接”的原则,即根据去括号的法则(结合乘法分配律)直接把括号去掉。
2)对于多重括号,可遵循“由里向外逐层去”的原则,即先去小括号,再去中括号、大括号,最后合并同类项,也可“由外向里”逐层去括号,注意中括号内有两个小括号可同时进行。
化简:1)8(x2-xy)-4(xy+2x2-1)2)(3a-2a2) -[5a-1(6a2-9a) -4 a2]3化简求值化简求值是指我们不直接把字母的值带入代数式中计算,而是先化简(即去括号,合并同类项),再代入求值。
步骤:1)化通过去括号、合并同类项将整式化简2)代把已知的字母或某个整式的取值代入化简后的式子3)算依据有理数的混合运算法则进行计算如:先化简,再求值求5(3a2b-ab2)-4(-ab2+3a2b)的值,其中a=-2,b=3.。
数学七年级整式加减
数学七年级整式加减一、整式的概念。
1. 单项式。
- 定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如:3x,-2y,5,a等都是单项式。
- 系数:单项式中的数字因数叫做这个单项式的系数。
例如在单项式3x中,系数是3;在单项式-2y中,系数是-2;对于单项式5,可以看作5×1,系数就是5。
- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如在单项式3x^2中,字母x的指数是2,所以这个单项式的次数是2;在单项式-2xy中,x 的次数是1,y的次数是1,那么所有字母指数的和为1 + 1=2,所以这个单项式的次数是2。
2. 多项式。
- 定义:几个单项式的和叫做多项式。
例如2x+3y,x^2-2x + 1等都是多项式。
- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
例如在多项式x^2-2x + 1中,x^2、-2x、1都是它的项,其中1是常数项。
- 次数:多项式里,次数最高项的次数,就是这个多项式的次数。
例如在多项式x^2-2x + 1中,次数最高的项是x^2,其次数为2,所以这个多项式的次数是2。
3. 整式。
- 定义:单项式与多项式统称为整式。
二、整式的加减。
1. 同类项。
- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如3x和5x是同类项,2y^2和-3y^2是同类项,4和-7也是同类项。
- 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如:3x+5x=(3 + 5)x=8x;2y^2-3y^2=(2-3)y^2=-y^2。
2. 去括号法则。
- 括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
例如a+(b - c)=a + b-c。
- 括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
七年级数学思维探究(5)整式的加减(含答案)
5.整式的加减解读课标代数式是用加、减、乘、除等运算符号把数或表示数的字母连接而成的式子,是后续学习中进行运算、解决问题的基础.在代数式中,我们把那些含相同的字母,并且相同字母的次数也分别相同的单项式看作一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项,整式的加减就是合并同类项. 代数式的化简求值是代数式研究的一个重要课题,解这类问题的基本方法有:将字母的值代入或字母间的关系整体代人,而关键是对代数式进行恰当变形,其中去括号、添括号能改变代数式的结构,是变形求解的常用工具. 问题解决例1甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是____.试一试用m 的式子分别表示三家超市降价后的价格. 例2下列四个数中可以写成100个连续自然数之和的是( )A .1627384950B .2345678910C .3579111300D .4692581470 试一试用字母表示数,从揭示100个连续自然数之和的规律人手.例3已知关于x 的二次多项式()()3223325a x x x b x x x -++++-,当2x =时的值为17-,求当2x =-时该多项式的值.试一试设法求出a 、b 的值,解题的突破口是根据多项式降幂排列、多项式次数等概念隐含的关于a 、b 的等式.例4有这样的两位数,交换该数数码所得到的两位数与原数的和是一个完全平方数.例如,29就是这样的两位数,因为229 92 12111+==,请你找出所有这样的两位数. 试一试设原数为___ab ,发现______ab ba +的特点是解本例的出发点.例5如图,是用棋子摆成盼图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要______枚棋子,摆第n 个图案需要____枚棋子.…解法一 列表填数,观察数值,体会从特殊到一般的数学思想.1716116a ==+=+⨯()21916121126a ==++=++⨯; ()33716121811236a ==+++=+++⨯; ……猜想()2112346331na n n n =++++++⨯=++…,再将6n =代入该代数式得137.解法二数形结合,分解图形,感悟从部分研究整体的思想.问题中“按照这样的方式摆下去”,何种方式并没有明确的界定,我们可以有不同的理解,如从平行四边形角度看,把图形分成三个平行四边形.如图,图的序列号:1,2,3,4,5,… 图中的点的数目:7,19,37,61,91,… ()171123a ==+⨯⨯;()2191233a ==+⨯⨯; ()3371343a ==+⨯⨯; ()4611453a ==+⨯⨯; ()5911563a ==+⨯⨯; ……猜想()2113331n a n n n n =++⨯=++⎡⎤⎣⎦整体思考整体思考是将问题看成一个完整的整体,从大处着眼,由整体入手,突出对问题的整体结构的分析与改造,从整体上把握问题的特征和解题方向,例6(1)已知当1x =时,22ax bx +的值为3,则当2x =时,28ax bx +-的值为___(2)把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为cm m ,宽为cm n )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4cm mB .4cm nC .()2cm m n +D .()4cm m n -图1图2(3)记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”,已知1a ,2a ,…,500a 的“理想数”为2004,求8,1a ,2a ,…,500a 的理想数试一试整体思考具体体现为:整体观察、整体变形、整体代入.对子(1),能求出a 、b 的值吗?对于(2),为表示图②中相关量,还需知道什么?对于(3),从理解“理想数”的意义人手,导出n T 与1a ,2a ,…,n a 的关系,要求的是501T 的值.数学冲浪 知识技能广场1.(1)若523m x y +与3n x y 的和是单项式,则n m =______.(2)有一组单项式:2a ,32a -,43a ,54a -,…请观察它们的构成规律,用你发现的规律写出10个单项式为_______.2.(1)如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用 含n 的等式表示第n 个正方形点阵中的规律是_______.1=11+3=223+6=326+10=42…(2)如图是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是______(用含n 的代数式表示). 3.数学翻译牛顿是举世闻名的伟大数学家、物理学家,他创立了微积分(另一个创立者是莱布尼茨)、经典力学,在代数学、光学、天文学等方面也作出了重要贡献.牛顿用数学的语言、方法描述和研究自然规律,他呕心沥血写成的光辉著作《自然哲学的数学原理》,照亮了人类科学文明的大道.牛顿在他的《普遍的算术》一书中写道:“要解答一个含有数量间的抽象关系的问题,只要把题目由日常的语言译成代数的语言就行了.”下表是由牛顿给出,的1个例子改写、简化而成的,请将表的空白补上(不必求出问题的最后答案).235a b -=1023a b -+(2)若m 、n 互为倒数,则()21mn n --的值为________.5.小王第一周每小时工资为a 元,工作b 小时.第二周每小时工资增加10%,工作总时间减少10%,则第二周工资总额与第一周工资总额相比( )A .增加1%B .减少1%C .减少1.5%D .不变 6.已知有理数a 、b 、c 在数轴上的位置如图b0c a 所示,且a b =,则代数式a c a c b b --+---的值为( ) A .2c - B .0 C .2c D .222a b c -+7.如果210x x +-=,那么代数式3227x x +-的值为( )A .6B .8C .6-D .8- 8.已知多项式239x x +的和等于2341x x +-,则这个多项式是( ) A .51x -- B .51x + C .131x -- D .131x + 9.已知多项式()()22262351x ax y bx x y +-+--+-.(1)若多项式的值与字母x 的取值无关,求a 、b 的值_____;(2)在(l )的条件下,求多项式()()2222323a ab b a ab b ---++的值;(3)在(1)的条件下,求()2222111239122389b a b a b a b a ⎛⎫⎛⎫⎛⎫+++⋅++⋅+++⋅ ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭… 10.如图所示,1925年数学家莫伦发现了世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形.如果图中标注的①、②正方形边长分别是x ,y ,那么你能计算出其他8个正方形的边长吗?思维方法天地11.已知多项式432434325132021213ax ax x x x bx bx x +--+++--是二次多项式,则22a b +=_______.12.已知381P xy x =-+,22Q x xy =--,当0x ≠时,327P Q -=恒成立,则y 的值为______. 13.(1)若0m n p +-=,则111111m n p n p m p m n ⎛⎫⎛⎫⎛⎫-+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值等于_______. (2)已知2004a b -=,2005b c -=-,2007c d -=,则()()a c b d a d---的值为______.14.如图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是________.第1个图第2个图第3个图15.当1x =-时,代数式3238ax bx -+的值为18,那么,代数式962b a -+=( ) A .28 B .28- C .32 D .32-16.关于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如3235=+,337911=++,3413151719,=+++…,若3m 分裂后,其中有一个奇数是2013,则m 的值是( )A .43B .44C .45D .4617.有甲、乙两种糖果,原价分别为每千克a 元和b 元.根据柜台组调查,将两种糖果按甲种糖果m 千克与乙种糖果n 千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价上涨%c ,乙种糖果单价下跌%d ,但按原比例混合的糖果单价恰好不变,那么mn等于( ) A .ac bd B .ad bc C .bc ad D .bdac18.若一个两位数恰等于它的各位数字之和的4倍,则这个两位数称为“巧数”,则不是“巧数”的两位数的个数是( )A .82B .84C .86D 8819.有一张纸,第1次把它分割成4片,第2次把其中的1片分割成4片,以后每一次都把前面所得的其中一片分割成4片,如此进行下去,试问: (1)经5次分割后,共得到多少张纸片? (2)经n 次分割后,共得到多少张纸片?(3)能否经若干次分割后共得到2003张纸片?为什么?20.已知:b 是最小的正整数且a 、b 、c 满足()250c a b -++=,试回答问题.(1)求a ,b ,c 的值;(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在1到2之间运动时(即12x ≤≤时),请化简式子:1125x x x +--+-;(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 应用探究乐园21. 一条公交线路上从起点到终点有8个站,一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点站下车的乘客有多少人?22.在一次游戏中,魔术师请一个人随意想一个三位数abc (a 、b 、c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数acb ,bac 、bca 、cab 与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc .现在设3194N =,请你当魔术师,求出数abc 来. 自然数的排序把自然数1,2,3,…,n 按一定的方式排列顺序,可得到形式特异、内涵丰富的排序问题,融知识性与趣味性于一体.解这类问题的关键是:通过观察能发现排序后的数阵中的规律,如行或列中数的规律、特殊位置数的规律等.例1 将正整数按如图所示的规律排列下去,若用有序数对(),n m 表示第n 排、第m 个数,比如()4,3表示的数是9,则7,2表示的数是______.1 第1排2 3 第2排 4 5 6 第3排7 8 9 10 第4排 … …分析与解弄清题意是前提,找准规律是关键,正确表达尤重要,对于本例,最明显也对解题最有指导价值的规律是:第n 排有n 个数,要求(),n m 只需知道它是这个数中的第n 个数即可.前6排共有12345621+++++=个数,即第6排最后一个数是21,故()7,2表示的数是21223+=. 例2 正整数按如图所示的规律排列,请写出第二十行第二十一列的数字: 第一列 第二列 第三列 第四列 第五列 … 第一行 1 2 5 10 17 … ↓ ↓ ↓ ↓ 第二行 4 ← 3 6 11 18 …↓ ↓ ↓ 第三行 9 ← 8 ← 7 12 19 … ↓ ↓ 第四行 16 ← 15 ← 14 ← 13 20 … ↓ 第五行 25 ← 24 ← 23 ← 22 ← 21 …试一试这个自然数表的特点可从以下方面观察:第n 行的第一个数,第一行第n 个数,每行或每列数的增减性.例3 将正偶数按下表排列5列.第一列 第二列 第三列 第四列 第五列第一行 2 4 6 8 第二行 16 14 12 10 第三行 18 20 22 24 …… …… 28 26根据上面排规律,则2000应在( ) A .第125行,第1列 B .第125行,第2列 C .第250行,第1列 D .第250行,第2列试一试注意到每一行排4个数,奇数行空第一列,偶数行空第五列,只要计算出2000是第几个数即可.例4 将自然数按如图所示的顺序排列,在这样的排列下,数字3排在第二行第一列,13排在第三行第三列.问:1993排在第几行第几列? 1 2 6 7 15 16 …3 5 8 14 17 …4 9 13 …10 12 …11 ……试一试从斜行方向上看,奇数斜行中的数由下向上递增,偶数斜行中的数由上向下递增. 例5 将正整数从1开始按如图所示的规律排成一个数阵,其中,2在第一个拐弯处,3在第二个拐弯处,5在第三个拐弯处,7在第四个拐弯处……问:在第2007个拐弯处的数是多少. 试一试用n a 表示第n 次拐弯时所对应的数,从寻求n a 与n 之间的关系入手. (12345678910111213)141516171819202122练一练1.已知一列数:1,2-,3,4-,5,6-,7,…将这列数排成下列形式: 第1行 1 第2行 2- 3 第3行 4- 5 6- 第4行 7 8- 9 10- 第5行 11 12- 13 14- 15 …… ……按照上述规律排下去,那么第10行从左边数第5个数等于______. 2.将正奇数按下表排列:3.自然数1,2,3,…,按下表规律排列:横排为行,记数据1,2,3,4的那一行为第一行,依次记下面的各行分别是2行,第3行,….试问2011位于该表的第_____行,并对应于“启智杯竞赛有趣”中的汉字:_______.4+=123++=+45678+++=++9101112131415++++=+++161718192021222324…………由上,我们可知第100行的最后一个数是______.5.奇数宝塔东方传统建筑中的塔,千姿百态,造型各异,数学中的宝塔更是千变万化、不计其数.从1开始的奇数,按照规律排成下面形式的宝塔:第几行行中各数的和1131352327911333131********2123252729535313335373941636……………………观察行中各数的规律:前2行的各数之和332=++=+=;135123前3行的各数之和3332=+++++=++=;135**** ****前4行的各数之和33332…;=++++=+++=1 3 519 123410前5行的各数之和333332…;=++++=++++=135291234515因此,可推知前6行的各数之和333333…________;135********=++++=+++++=根据以上规律,猜想:333…=________.12n+++6.如图,数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.1234567891011121314151617181920212223242526272829303133343536………(1)表中第8行的最后一个数是____,它是自然数______的平方,第8行共有____ 个数. (2)用含n 的代数式表示:第n 行的第一个数是______,最后一个数是____,第n 行共有______个数.(3)求第n 行各数之和. 7.自然数按右表的规律排列:(1)求上起第十行、左起第十三列的数; (2)数127应在上起第几行、左起第几列?252423222120191817161514131211109876543215.整式的加减答案问题解决例1 乙例2A 设自然数从1a +开始,这100个连续自然数的和为()()()12100a a a ++++++…1005050a =+例3 1-原多项式整理得()()()321235a x b a x b a x ++-++-由题意得10a +=从而1a =-,1b =-例4()()1010a b b a +++()11a b =+因而a b +是11的倍数,即11a b k +=⋅,且k 是完全平方数,由于a ≤9,9b ≤,得18a b +≤,1k =,从而11a b +=.推得这样的两位数有8个:29,38,47,56,65,74,83,92. 例6(1)由条件得23a b +=,原式2=-;(2)设小长方形的长为a ,宽为b∴上面的阴影周长为:()2n a m a -+-,下面的阴影周长为:()222m b n b -+-∴总周长为:()44442m n n a b +--+又∵2a b m +=∴()4442m n a b +-+4n =故选B(3)由定义得()()()112123121n n T a a a a a a a a a n ⎡⎤=++++++++++⎣⎦…… 即()()12311122n n n T na n a n a a a n -=+-+-++-⎡⎤⎣⎦… 又[]50012349950015004994982500T a a a a a =+++++… 1234995005004994982a a a a a +++++…2004500=⨯故8,1a ,2a ,……,500a 的“理想数” 为[]501123499500150185004994982501T a a a a a =⨯++++++… []150182004500501=⨯+⨯2008=数学冲浪1.(1)4 (2)1110a - 2.(1)()()21122n n n n n -++= (2)42n -3.(1)()()11147004700333x x ⎡⎤-+-⎢⎥⎣⎦ ()41470033x ⎡⎤=-⎢⎥⎣⎦(2)()41470033x ⎡⎤-⎢⎥⎣⎦x =4.(1)5; (2)15.B 6.A 7.C 8.A9.(1)3a =-,1b =;(2)原式17=(3)原式62=10.③的边长为①、②边长之和:x y +;⑨的边长为③、②边长之和:()2y x y x y ++=+;⑧的边长为⑨、②边长之和:()23y x y x y =++=+;⑦的边长为⑧的边长加上②与①边长之差:()()34x y x y y ++-=;⑥的边长为⑦的边长减去①边长:4y x -;④的边长为⑥的边长减去①与③边长这客:()()4y x x x y --++33y x =-;⑤的边长为④、⑥边长之和:()()433y x y x -+-74y x =-;⑩的边长为⑤、④边长之和:()()7433y x y x -+-107y x =-11.2213a b +=由条件可得210a b --=且513a b +-0=12.2代入化简得()1320x y -=20y -=13.(1)3-(2)11003-14.22n n ++15.C 16.C 3m 分裂后的第一个数是()11m m -+,共有m 个奇数,由()4545111981⨯-+=()464612071⨯-=,得45m =17.D18.C 90486-=(个)19.(1)共得到13516+⨯=张纸片;(2)经n 次分割,共得到()13n +张纸片.(3)若能分得2003张纸片,则132003n +=,32002n =,无整数解,所以不可能经若干次分割后得到2003张纸片.20.(1)1a =-,1b =,5c =(2)原式122x =-(3)32AB t =+,34BC t =+,2BC AB -=,不随时间t 的改变而改变21.设前7站上车的乘客数量依次为1a ,2a ,3a ,4a ,5a ,6a ,7a 人,从第2站到第8站下车的乘客数量依次为2b ,3b ,4b ,5b ,6b ,7b ,8b 人,则1234567a a a a a a a ++++++2345678b b b b b b b =++++++又123456100a a a a a a +++++=,23456780b b b b b b +++++=,即7810080a b +=+,8720b a -=22.将abc 也加到和N 上,由于a 、b 、c 在每一位上都恰好出现两次, 所以()222abc N a b c +=++①从而()100031942223194a b c +>++>,于是1518a b c ++≤≤因为222153194136⨯-=,222163194358⨯-=,222173194580⨯-=,222183194802⨯-=.其中只有35816++=满足要求,即能使①成立,故358abc =.自然数的排序例2第n 行第一列数字为2n ,第1n +列数字为2n n +,故第二十行第二十一列的数字为22020420+=例3C 由22000n =,得1000n =,又10004250÷=例4第n 斜行中共有n 个连续的自然数,其中最大的数是()12n n +, 第62斜行的最大数是()6262119532+=, 第63斜行的最大数是()6363120162+=, 因此,1933位于第63斜行.又第63斜行中的数是由下向上递增的,左边第一个数是1954,则1993是位于第63斜行的由下向上数第199********-+=个位置的数,换数成原图中行和列是第6340124-+=行、第40列.例512a =,23a =,35a =,47a =,510a =,613a =,717a =,821a =,……, 又313a a =+,535a a =+,757a a =+,……即后一拐弯数=前一拐弯数+后一拐弯次数. 故200720052003200720052007a a a =+=++3572007a ==++++……2352007=++++…()11352007=+++++…()12007100412+⨯=+ 210041=+1008017=故第2007个拐弯处的数是1008017.练一练1.50-提示:前9行的数的个数和为123945++++=…,故第10行数为46-,47,48-,49,50-,51,……2.251,5参见例33.575;杯2011被7除得商287(为奇数),余数24.10200第k 行的最后一个数是()211k +-5.221;()2123n ++++…6.(1)64;8;15(2)222n n -+;2n ;21n -(3)设第n 行各数之和为S ,则()()()222212223n S n n n n n -=-++-+++项…()()()222212223n n n n n n -=-++-+++项…()()2222221n n n n =-++-322331n n n =-+-7.提示:经观察可得这个自然表的排列特点:①第一列的每一个数都是完全平方数, 并且恰好等于它所在行数的平方,即第n 行的第一个数为2n ;②第一行第n 个数是()211n -+;③第n 行中从第一个数至第n 个数依次递减1;④第n 列中从第一个数至第n 个数次递增1.这样可求:(1)上起第十行,左起第十三列的数应是第十三列的第10个数,即()213119154⎡⎤-++=⎣⎦ (2)数127满足关系式2127116=+()212115⎡⎤=-++⎣⎦即127在左起十二列,上起第六行的位置供应站的最佳位置的确定例1即在数轴上找出表示x 的点,使它到表示1,2,…,617各点距离之和最小, 当309x =时,原式的值最小,最小值是:309130923093080309310309311309616309617-+-++-++-+-++-+-…… 308307112308=+++++++……95127=例2∵213x x ++-≥516y y -++≥ ∴213x x ++-=516y y -++=得21x -≤≤,15y -≤≤故x y +的最大值为6,最小值为3-.练一练1.放B 、C (含B 、C )之间任一处2.253.0,1-由条件得23x ≤≤,原式2x =-4.D 只要3x <,1y <,4z <中至少有一个成立,则229x y z x y z -+++<≤, 这与条件矛盾,从而得3x =,1y =,4z =,3x =,1y =-,4z =或3x =-,1y =,4z =-5.B 各线段间的距离如图.首先排除选择点A 和D ,然后比较C 点和G 点.6.A 原式1111111.5 2.5 3.5 4.5 5.5 6.535791113x x x x x x =-+-+-+-+-+- 该式子可以看成数轴上的某点到13,15,…,113各个点的距离乘以相应系数后积的和. 因为1.5 2.5 3.5 4.5+++5.56.5=+,所以该点在111和19之间时,和最小. 7.(1)5;(2)500000提示:当10001002x ≤≤时,原式有最小值,这个最小值为:()()()100221004420001000500000-+-++-=… 8.最大值为11,最小值为5-乘方美谈练一练1.略2.(1)520082008、20092009的个位数字分别与42008、2009的个位数字相同(2)9910109.9109.9910 1.0110 1.110⨯<⨯<⨯<⨯3.823⎛⎫ ⎪⎝⎭4.11312- 5.(1)()10077125⨯++ ()10088125⨯++(2)()100125n n ⨯++(3)39800256.C 7.A 8.C 9.B 10.B11.(1)6提示:1222n n n +-=(2)64729 12.(1)因为20024500233⨯+=,20024500244⨯+=,所以20023与200024的个位数字分别与23、24的个位数字相同,即9,6,从而2002200234+的个位数字为5,因此,20022000234+是5的位数.(2)41k n n +-一定是10的倍数,原式()()()()()2005200520051111n n n n n n ⎡⎤⎡⎤=+-++-+---⎣⎦⎣⎦每个括号里的数都能被10整除,所以全式也能被10整除.13.设金片数为n 时的移动次数为n a ,21n n a =-,完成64片金片的转移总共需要的时间为64215849365246060-=⨯⨯⨯(亿年),而太阳系的寿命是100亿~150亿年,等到那时宇宙早已毁灭.。
七年级数学《整式的加减》教案范文
七年级数学《整式的加减》教案范文整式的加减就是单项式和多项式的加减,可利用去括号法则和合并同类项来完成。
接下来是为大家整理的(七班级数学)《整式的加减》教案(范文),希望大家喜欢!七班级数学《整式的加减》教案范文一数学活动一、内容和内容解析1.内容活动1 用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;活动2 探究月历中数之间所蕴含的关系和变化规律.2.内容解析本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时入视的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现由特殊到一般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进行思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应用整式的加减探究月历中数之间的规律:(1)月历中数的排列规律;(2)由数的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;(3)如何设字母可以简化表示(方法)和运算.基于以上分析,可以确定本节课的教学重点:用整式表示实际问题中的数量关系,掌握数学活动中由特殊到一般的探究方法.二、教材解析本套教科书专门设计了“数学活动”专栏,旨在为学生提供探索的空间,进展学生的思维能力.本节课安排了两个有趣的数学活动.其中活动1从一个开放性的问题入手“如图1所示,用火柴棍拼成一排由三角形组成的图形.如果图形中含有n个三角形,需要多少根火柴棍?”引发学生的思索和探究.问题中并没有先问“图形中含有2,3,4个三角形,分别需要多少根火柴棍?”而是直接问“如果图形中含有n个三角形,需要多少根火柴棍?”目的在于让学生自己发现要解决一般性问题应先从特殊值入手,给学生充分的时间思考和探究,让学生自己寻求解决问题的策略,最终掌握从特殊到一般,从个体到整体地观察、分析问题的方法.之后又设计了一个问题“当图形中含有20xx个三角形时,需要多少根火柴棍?”目的在于让学生体会由特殊一般特殊的分析问题的方法,体会一般性规律的实际意义.活动2设计了一个问题串,6个问题循序渐进地引导学生发现月历中数的排列规律,引导学生应用本章所学的整式的加减探究方框里数之间的关系.这两个活动有一定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学生能够用整式准确地表示数量关系;活动2的重点是让学生能够应用整式的加减探究月历中的数量关系.通过这两个数学活动检验学生对于第二章内容的掌握情况.本节数学活动课老师要注意改进教学方式,充分相信学生,尽可能为学生留出探索的空间,发挥学生的主动性和乐观性,力求使得数学结论的获得是通过学生思考、探究活动而得出的.三、教学目标和目标解析1.教学目标(1)用整式和整式的加减运算表示实际问题中的数量关系;(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培育应用意识和创新意识;(3)乐观参加数学活动,在数学活动过程中,合作沟通、(反思)质疑,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.2.目标解析达成目标(1)的标志:学生用整式表示出火柴棍的根数与三角形的个数之间的对应关系,用整式表示出月历中不同位置上的数字的一般表达式并探寻规律;目标(2)是内容所蕴含的思想方法,学生需要体会在较为复杂的图形中寻找一般规律的方法,先把复杂图形分解,从其中的特殊图形入手,先就个体观察特征,再扩展到一般,最后由整体(总结)规律,感受由特殊到一般的探究模式.在活动2中,分析月历中数字之间的数量关系时,常常先将月历分解,分别从横、纵、对角线等不同的方向入手观察特征,再推广到一般,用整式表示出数的一般规律;学生体验解决问题策略的多样性;让学生尝试评价不同方法之间的差异,从而得出最优方案.学生体会进行数学活动的基本方法:提出问题动手实践寻求规律归纳总结.学生经历发现问题、独立思考、猜想验证,归纳总结这些数学活动,提高应用意识和创新意识;达成目标(3)的标志:学生对数学有好奇心和求知欲,在小组合作活动中乐观思考,勇于质疑,敢于发表自己的想法.在自主探究两个数学活动的过程中,小组成员合作克服困难,解决数学问题,感受成功的快乐,建立学好数学的信心.四、教学问题诊断分析本章学生已经学习用整式表示实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉用符号表示具体情境中的数量关系,对学生而言有一定难度.在拼图的过程中,学生比较容易发现火柴棍根数的变化情况,但要借助观察图形的变化寻找火柴棍的根数与三角形的个数n之间的对应关系,还是有一定困难,在总结变化量与n的对应关系时学生也容易出错.所以用整式准确地表示出这种对应关系是本节课的一个难点.在活动2中,探索月历中数字的排列规律比较容易,但要从不同角度,运用不同方法探究月历中隐含的数量关系及其规律,对学生来说具有一定的挑战性.本节课的教学难点:利用整式和整式的加减运算准确表示出具体情境中的数量关系.五、教学支持条件分析根据活动课的特点,学生准备一盒火柴棍、若干张大小相等的正方形纸片、一张月历.老师准备几何画板软件供学生使用,同时采纳多媒体课件辅助教学.六、教学过程设计1.数学活动1问题1 如图1所示,用火柴棍拼成一排由三角形组成的图形.图1(1)如果图形中含有n个三角形,需要多少根火柴棍?(2)当图形中含有20xx个三角形时,需要多少根火柴棍?师生活动:学生分成小组,利用已准备好的火柴棍动手摆放图形进行自主探究.学生代表(利用几何画板软件)展示小组讨论的过程与结果.老师重点关注学生自主探究的步骤和方法.学生在探究的过程中会从不同角度观察图形,会用不同的表达形式呈现规律,会从数和形两个方面进行探究.老师引导学生借助于“形”进行思考和推理,加强对图形变化的感受.在活动的过程中,整理数据,观察火柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决方法很多,下面列出几种常见方法仅供参考.①从第二个图形起,与前一图形比,每增加一个三角形,增加两根火柴棍,可得三角形个数1 2 3 4 … n 火柴棍根数3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1.②每个三角形由三根火柴棍组成,从第一个图形起,火柴棍根数等于所含三角形个数乘3,再减去重复的火柴棍根数,可得三角形个数1 2 3 4 … 火柴棍根数1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1.③从第一个图形起,以一根火柴棍为基础,每增加一个三角形,增加两根火柴棍,可得三角形个数 1 2 3 4 … n 火柴棍根数1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n.④从火柴棍的根数与三角形的个数的对应关系观察可得三角形个数1 2 3 4 … n 火柴棍根数3=1×2+1 5=2×2+1 7=3×2+1 9=4×2+1 … n×2+1 表达式:2n+1.⑤将组成图形的火柴棍分为“横”放和“斜”放两类统计计数,可得三角形个数1 2 3 4 … n 火柴棍根数1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1.七班级数学《整式的加减》教案范文二教学目标理解同类项的概念,在具体情景中,认识同类项.通过小组讨论、合作学习等方式,经历概念的形成过程,培育学生自主探索知识和合作沟通的能力.初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.教学重难点理解同类项的概念.根据同类项的概念在多项式中找同类项.教学过程一、复习引入师:同学们,在上新课之前,我们先来做几个题目.1.老师读题,指名回答.(1)5个人+8个人=;?(2)5只羊+8只羊=.?2.师:观察下列各单项式,把你认为相同类型的式子归为一类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2.由学生小组讨论后,按不同标准进行多种分类,老师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同的特征.请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.二、讲授新课1.同类项的定义:师:在生活中我们经常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类.8x2y 与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为讨论对象,并称它们为同类项.(板书课题:同类项) (老师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.三、例题讲解老师读题,指名回答.判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.(1)3x与3mx是同类项.()(2)2ab与-5ab是同类项.()(3)3x2y与-yx2是同类项.()(4)5ab2与-2ab2c是同类项.()(5)23与32是同类项.()(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项) 游戏.规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.要求出题同学尽可能使自己的题目与众不同.可请回答正确的同学向大家介绍写一个单项式同类项的(阅历),从而揭示同类项的本质特征,透彻理解同类项的概念.指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+xy2-yx2.(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项.k取何值时,3xky与-x2y是同类项?要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项.若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.(1)(s+t)-(s-t)-(s+t)+(s-t);(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.(组织学生口头回答上面三个例题,例3多项式中的同类项可由老师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作沟通的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.四、课堂练习请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?(学生先在课本上解答,再回答,若有错误请其他同学及时纠正)改变2ab2c3的系数即可,与其本身也是同类项.五、课堂小结理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.第2课时合并同类项教学目标理解合并同类项的概念,掌握合并同类项的法则.经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培育观察、归纳、概括能力,进展应用意识.在独立思考的基础上,乐观参加讨论,敢于发表自己的观点,从沟通中获益.教学重难点正确合并同类项.找出同类项并正确的合并.教学过程一、情境引入师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:(1)他们两次共买了多少本软面抄和多少支水笔?(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?学生完成,老师点评.二、讲授新课合并同类项的定义.学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.由此可得:把多项式中的同类项合并成一项,叫做合并同类项.三、例题讲解找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2.根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.下列各题合并同类项的结果对不对?若不对,请改正.(1)2x2+3x2=5x4;(2)3x+2y=5xy;(3)7x2-3x2=4; (4)9a2b-9ba2=0.(通过这一组题的训练,进一步熟悉法则)求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17.试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?(通过比较两种方法,使学生认识到在求多项式的值时,经常先合并同类项,再求值,这样比较简便)课堂练习.课本P71练习第1~4题.略四、课堂小结1.要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.2.从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.第3课时去括号、添括号教学目标去括号与添括号法则及其应用.在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.教学重难点去括号和添括号法则.当括号前是“-”号时的去括号和添括号.教学过程一、创设情境,引入新课还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为4+3(n-1).?2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为n+n+(n+1).?3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n 个正方形所用的火柴棒的根数为4n-(n-1).?4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为1+3n.?搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗?生:相等.师:那么我们怎样说明它们相等呢?学生讨论、回答.师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1.活动一去括号师:在代数式里,如果遇到括号,那么该如何去括号呢?我们再看看以前做过的习题.七班级数学《整式的加减》教案范文三一、教学内容解析:1.本节课选自:新人教版数学七班级上册§2.2.1节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、讨论的一个课题。
人教版七年级上数学《整式的加减》课堂笔记
《整式的加减》课堂笔记
以下是《整式的加减》的课堂笔记,供您参考:
一、整式的概念
整式:单项式和多项式的统称。
单项式:表示数与字母乘积的代数式叫做单项式。
多项式:几个单项式的和叫做多项式。
每个单项式叫做多项式的项。
不含字母的项叫做常数项。
二、整式的加减运算
1.整式的加减实际上就是去括号、合并同类项。
2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二
是当括号外是“-”时,去括号后括号内的各项都要改变符号。
3.合并同类项时,把同类项的系数相加,字母和字母的指数不变。
三、整式的加减运算举例
例1:计算下列整式的和与差:
(1)3x+2y;(2)4a-3b;(3)5(x-3)-2(y+1)。
解:(1)3x+2y=3x+2y (2)4a-3b=4a-3b (3)5(x-3)-2(y+1)=5x-15-2y-2=5x-2y-17。
四、注意事项
1.在进行整式的加减运算时,要先把单项式和多项式中的同类项进行合并,然后
再进行运算。
2.在进行去括号运算时,要注意括号外的数字因数要乘括号内的每一项,同时当
括号外是“-”时,去括号后括号内的各项都要改变符号。
3.在进行整式的加减运算时,要注意运算顺序,先进行乘方运算,再进行乘除运
算,最后进行加减运算。
同时要注意括号内的运算顺序,先进行乘除运算,再进行加减运算。
七年级上数学整式的加减计算题
七年级上数学整式的加减计算题一、整式加减的直接运算。
1. 计算:(3a + 2b)-(a - b)- 解析:- 先去括号,括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“ - ”号,把括号和它前面的“ - ”号去掉后,原括号里各项的符号都要改变。
- 所以(3a + 2b)-(a - b)=3a+2b - a + b。
- 然后合并同类项,3a - a+2b + b = 2a+3b。
2. 计算:2x^2-3x + 1-(5 - 3x + x^2)- 解析:- 去括号得2x^2-3x + 1 - 5+3x - x^2。
- 合并同类项,(2x^2-x^2)+(-3x + 3x)+(1 - 5)=x^2-4。
3. 计算:(4m^3n - 2mn^2)-(m^3n+mn^2)- 解析:- 去括号得4m^3n-2mn^2-m^3n - mn^2。
- 合并同类项,(4m^3n - m^3n)+(-2mn^2-mn^2) = 3m^3n-3mn^2。
4. 计算:3(a^2b + ab^2)-(3a^2b - 1)-ab^2-1- 解析:- 去括号得3a^2b+3ab^2-3a^2b + 1 - ab^2-1。
- 合并同类项,(3a^2b-3a^2b)+(3ab^2-ab^2)+(1 - 1)=2ab^2。
5. 计算:(5x^2-3y^2)-[(5x^2-2xy - y^2)-(x^2-2xy + 3y^2)]- 解析:- 先去小括号,(5x^2-3y^2)-[(5x^2-2xy - y^2)-(x^2-2xy + 3y^2)]=(5x^2-3y^2)-(5x^2-2xy - y^2-x^2+2xy - 3y^2)。
- 再去中括号得5x^2-3y^2-5x^2+2xy + y^2+x^2-2xy + 3y^2。
- 合并同类项,(5x^2-5x^2+x^2)+(2xy - 2xy)+(-3y^2+y^2+3y^2)=x^2+y^2。
七年级上册数学《整式的加减》教案
七年级上册数学《整式的加减》教案整式的加减篇一整式的加减,其本质是合并同类项,而合并同类项是以有理数的加减为基础。
下面是由小编为大家带来的关于《整式的加减》教学反思,希望能够帮到您!《整式的加减》教学反思一《整式的加减》是全日制人教版七年级数学教材的一个主要内容,它是解方程、解不等式的重要基础,《整式的加减》是在学生已经学习了单项式、多项式的有关概念的基础上学习的。
在《整式的加减》教学中,我主要是从我班学生现有的认知水平和已掌握的知识出发。
第一步:在导入新课时,我首先将各种粉笔头混合在一起,要求学生从中挑出红色、黄色、白色的粉笔头进行分类;再让学生想想,在饭堂吃饭后洗的饭碗与汤匙的摆放,引导学生想一想东西这样摆放有什么好处。
虽然这些事情看似与数学学习毫不相干,但适当的联系生活实际,从学生身边的生活实际出发却可以让学生自然而然地感受到了分类思想,为学习合并同类项的概念及方法打下了较好的基础。
同时也使学生明白在现实生活中还蕴藏着大量的数学信息,从而引起学生学习数学的兴趣。
第二步:为了让学生建立起同类项的概念,我首先出一些单项式,其中也有一些单项式是有相同字母且相同字母的指数也相同的单项式,让学生把这些单项式进行分类,并引导学生观察其特点,找出其相同点:含有相同字母,相同字母的指数也相同的,我就告诉学生这样的项就叫做同类项,否则,不是。
然后让学生举出一些同类项的例子,明确强调要成为同类项必须具备两个条件:一、所含字母要相同;二、相同字母的指数也必须要相同。
所以在举同类项的例子的时候,只要让学生把系数改变,字母部分不变就可以了,这样通过学生的体验,很快的明白了同类项的意义并且能够准确地举出同类项的例子。
第三步:在学生对同类项的概念已经有了初步的体验后,然后提出问题在多项式3x2-2y4-4xy-2+3+5x2-5y4+2xy中。
1、这个多项式中有那些项?2、哪些项可以合并在一起?(特别强调常数项也是同类项,学生往往会不注意)为什么?这样,可以增强学生参与数学活动的意识,并从中体验到数学学习的过程是充满着乐趣的过程,在这个过程中逐步巩固了同类项的概念,从而提高数学课堂教学的实效性。
七年级数学整式的加减
七年级数学整式的加减(原创实用版)目录1.整式的概念和分类2.整式的加减运算法则3.整式的加减运算实例4.整式的加减运算技巧和方法5.整式加减运算的常见错误及避免方法正文一、整式的概念和分类在初中数学中,我们学习了有理数、整数等基本数学概念。
整式是由若干个单项式(数字与字母的乘积)通过加减运算组合而成的代数式,其中单项式的系数可以是任意实数。
整式分为一次整式、二次整式等,根据所含未知数的次数不同进行分类。
二、整式的加减运算法则整式的加减运算分为以下几个步骤:1.找出同类项:所含未知数相同,并且相同未知数的次数也相同。
2.合并同类项:将同类项的系数相加,字母和字母的指数不变。
3.去括号:根据括号的正负号进行运算,正号可以直接去掉,负号需要将括号内各项变号。
4.简化计算:将结果化简为最简整式。
三、整式的加减运算实例例如,计算以下整式的和:3x + 2xy - xy + 5x - 2x。
步骤 1:找出同类项,可以发现 2xy 和-xy 是同类项,5x 和 -2x 也是同类项。
步骤 2:合并同类项,2xy - xy = xy,5x - 2x = 3x。
步骤 3:去括号,原式中没有括号。
步骤 4:简化计算,得到结果为 3x + xy + 3x。
四、整式的加减运算技巧和方法1.熟练掌握整式的概念和分类,了解整式的加减运算法则。
2.在计算过程中,注意找出同类项,合并同类项,简化计算。
3.注意运算顺序,先乘除后加减。
4.运用交换律、结合律等运算定律简化计算。
五、整式加减运算的常见错误及避免方法1.忘记去括号:在计算过程中要注意正负号的变化,不要忘记去括号。
2.合并同类项出错:在找出同类项时,注意字母和字母的指数要保持一致。
3.简化计算出错:在计算过程中,注意化简结果,避免出现不必要的复杂计算。
通过以上方法,我们可以轻松地掌握七年级数学整式的加减运算。
七年级数学上册数学 3.6 整式的加减(四大题型)(解析版)
3.6整式的加减分层练习考察题型一整式的加减运算1.下列各式计算正确的是()A .336x y xy +=B .22451xy xy -=-C .2(3)26x x --=-+D .223a a a +=【详解】解:A .3x ,3y 不是同类项,不能合并,选项错误,不合题意;B .22245xy xy xy -=-,选项错误,不合题意;C .2(3)26x x --=-+,选项正确,符合题意;D .23a a a +=,选项错误,不合题意.故本题选:C .2.一个多项式与2210x x --+的和是32x -,则这个多项式为.【详解】解:由题意得:232(210)x x x ----+232210x x x =-++-2512x x =+-.故本题答案为:2512x x +-.3.已知多项式222A x y =+,2243B x y =-+且0A B C ++=,则C 为.【详解】解:222A x y =+ ,2243B x y =-+,0A B C ++=,C A B ∴=--,2222(2)(43)x y x y =-+--+2222243x y x y =--+-2235x y =-.故本题答案为:2235x y -.4.已知22x xy +=,23xy y -=,则代数式2232x xy y +-=.【详解】解:当22x xy +=,23xy y -=时,222232()2()268x xy y x xy xy y +-=++-=+=.故本题答案为:8.5.已知22x xy +=-,239xy y +=-,则式子222104x xy y --的值是.【详解】解:当22x xy +=-,239xy y +=-时,222221042(52)x xy y x xy y --=--222[()2(3)]x xy xy y =+-+2[22(9)]=⨯--⨯-2(218)=⨯-+216=⨯32=.故本题答案为:32.6.化简:(1)22224823x y xy x y xy --+-;(2)223(32)2(4)a ab a ab ---.【详解】解:(1)原式2222(42)(83)x y x y xy xy =-++--22211x y xy =--;(2)原式229682a ab a ab=--+22(98)(62)a a ab ab =-+-+24a ab =-.7.佳佳做一道题“已知两个多项式A ,B ,计算A B -”.佳佳误将A B -看作A B +,求得结果是2927x x -+.若232B x x =+-,请解决下列问题:(1)求出A ;(2)求A B -的正确答案.【详解】解:(1)2927A B x x +=-+ ,232B x x =+-,22927(32)A x x x x ∴=-+-+-2292732x x x x =-+--+2859x x =-+;(2)22859(32)A B x x x x -=-+-+-2285932x x x x =-+--+27811x x =-+.8.(1)在数轴上有理数a ,b ,c 所对应的点位置如图,化简:|||2|2||a b a c b c +--++;(2)已知多项式22A x xy =-,26B x xy =+-.化简:43A B -.【详解】解:(1)由数轴可得:0a b c <<<,||||||b c a <<,0a b ∴+<,20a c -<,0b c +>,故原式222a b a c b c a b c =--+-++=++;(2)22A x xy =- ,26B x xy =+-,22434(2)3(6)A B x xy x xy ∴-=--+-22843318x xy x xy =---+25718x xy =-+.考察题型二借助整式的加减求参或求代数式的值1.将多项式2222(3)2(2)x xy y x mxy y ---++化简后不含xy 的项,则m 的值是.【详解】解:原式22223224x xy y x mxy y =-----22(32)5x m xy y =--+-,令320m +=,1.5m ∴=-.故本题答案为: 1.5-.2.已知226A x kx x =+-,21B x kx =-+-.若2A B +的值与x 的取值无关,则k =.【详解】解:226A x kx x =+- ,21B x kx =-+-,222262(1)A B x kx x x kx ∴+=+-+-+-2226222x kx x x kx =+--+-(36)2k x =--,2A B + 的值与x 的取值无关,360k ∴-=,解得:2k =.故本题答案为:2.3.如果整式A 与整式B 的和为一个常数a ,我们称A ,B 为常数a 的“和谐整式”,例如:6x -和7x -+为数1的“和谐整式”.若关于x 的整式296x mx -+与23(3)x x m --+为常数k 的“和谐整式”(其中m 为常数),则k 的值为()A .3B .3-C .5D .15【详解】解: 整式296x mx -+与23(3)x x m --+为常数k 的“和谐整式”,223(3)933x x m x x m --+=-+-,3m ∴-=-,解得:3m =,39m ∴-=-,6(9)3∴+-=-,即k 的值为3-.故本题选:B .考察题型三借助整式的加减解决几何问题1.现有1张大长方形和3张相同的小长方形卡片,按如图所示两种方式摆放,则小长方形的长与宽的差是()A .a b -B .2a b -C .3a b -D .3a b +【详解】解:设小长方形的长为x 、宽为y ,大长方形的长为m ,则2a y x m +=+,2x b y m +=+,2x a y m ∴=+-,2y x b m =+-,(2)(2)x y a y m x b m ∴-=+--+-,即33x y a b -=-,3a bx y -∴-=,即小长方形的长与宽的差是3a b-.故本题选:C .2.如图,把两个边长不等的正方形放置在周长为m 的长方形ABCD 内,两个正方形的周长和为n ,则这两个正方形的重叠部分(图中阴影部分所示)的周长可用代数式表示为()A .2n m -B .n m -C .2m n -D .42n m-【详解】解:设较小的正方形边长为x ,较大的正方形边长为y ,阴影部分的长和宽分别为a 、b , 两个正方形的周长和为n ,44x y n ∴+=,14x y n ∴+=,BC x y b ∴=+-14n b =-,AB x y a =+-14n a =-,长方形ABCD 的周长为m ,12BC AB m ∴+=,11114422n b n a n a b m ∴-+-=--=,1()2a b n m ∴+=-,2()a b n m ∴+=-,∴阴影部分的周长为()n m -.故本题选:B .3.图1是长为a ,宽为()b a b >的小长方形纸片将6张如图1的纸片按图2的方式不重叠地放在长方形ABCD 内,已知CD 的长度固定不变,BC 的长度可以变化,图中阴影部分(即两个长方形)的面积分别表示为1S ,2S ,若12S S S =-,且S 为定值,则a ,b 满足的关系是()A .2a b =B .3a b =C .4a b =D .5a b=【详解】解:设BC n =,则1(4)S a n b =-,22()S b n a =-,12(4)2()(2)2S S S a n b b n a a b n ab ∴=-=---=--, 当BC 的长度变化时,S 的值不变,S ∴的取值与n 无关,20a b ∴-=,即2a b =.故本题选:A .考察题型四整式的加减——化简求值1.化简求值:2233[22()]2x y xy xy x y xy ---+,其中3x =,13y =-.【详解】解:2233[22()]2x y xy xy x y xy ---+223(223)x y xy xy x y xy =--++2.已知多项231A x x =-+,22(22)B kx x x =-+-.(1)当1x =-时,求A 的值;(2)小华认为无论k 取何值,A B -的值都无法确定.小明认为k 可以找到适当的数,使代数式A B -的值是常数.你认为谁的说法正确?请说明理由.【详解】解:(1)231A x x =-+ ,当1x =-时,∴原式23(1)(1)1=⨯---+3111=⨯++5=;(2)小明说法对;22231(22)A B x x kx x x -=-+-++-2223122x x kx x x =-+-++-2(5)1k x =--,当50k -=,即5k =时,1A B -=-.3.已知含字母x ,y 的多项式是:22223[2(2)]3(2)4(1)x y xy x y xy x ++--+---.(1)化简此多项式;(2)若x ,y 互为倒数,且恰好计算得多项式的值等于0,求x 的值.【详解】解:(1)原式222236(2)36444x y xy x y xy x =++----++22223661236444x y xy x y xy x =++----++248xy x =+-;(2)x ,y 互为倒数,1xy ∴=,则24824846xy x x x +-=+-=-,4.已知单项式123a x y -与312b xy ---是同类项.(1)填空:a =,b =;(2)在(1)的条件下,先化简,再求值:225()2(2)2a b b a b +-++.【详解】解:(1)由题意可得:11a -=,231b =--,解得:2a =,1b =-,故本题答案为:2,1-;(2)原式2255242a b b a b =+--+25a b =+,将2a =,1b =-代入,原式225(1)=+⨯-1=-.5.已知多项式222A x xy x =+++,2233B x xy y =-+-.(1)若2(2)|5|0x y -++=,求2A B -的值.(2)若2A B -的值与y 的值无关,求x 的值.6.已知关于x 的代数式221262x bx y --+和1751ax x y +--的值都与字母x 的取值无关.(1)求a ,b 的值.(2)若2244A a ab b =-+,2233B a ab b =-+,求4[(2)3()]A A B A B +--+的值.7.阅读材料:对于任何数,我们规定符号a b cd的意义是a b ad bc c d=-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算5628-的值;(2)按照这个规定,请你计算当2|3|(1)0m n ++-=时,223212m nm n+--的值.∴原式18927=--=.1.一个四位数100010010m a b c d =+++(其中1a ,b ,c ,9d ,且均为整数),若()a b k c d +=-,且k 为整数,则称m 为“k 型数”.例如:7241m =,因为()72341+=⨯-,则7241为“3型数”;4635m =,因为465(35)+=-⨯-,则4635为“5-型数”.若四位数m 是“3型数”,3m -是“1-型数”,将m 的百位数字与十位数字交换位置,得到一个新的四位数n ,n 也是“3型数”,则满足条件的最小四位数m 的值为.6a b ∴+=,又b c = ,666(2)4a b c d d ∴=-=-=-+=-,3d < ,∴当d 最大2=时,a 最小2=,此时24c d =+=,4b c ==,∴最小2442m =.故本题答案为:2442.2.材料:对于一个四位正整数m ,如果满足百位上数字的2倍等于千位与十位的数字之和,十位上数字的2倍等于百位与个位的数字之和,那么称这个数为“相邻数”.例如:3579 中,253710⨯=+=,725914⨯=+=,3579∴是“相邻数”.(1)判断7653,3210是否为“相邻数”,并说明理由;(2)若四位正整数100010010n a b c d =+++为“相邻数”,其中a ,b ,c ,d 为整数,且19a ,09b ,09c ,09d ,设()2F n c =,()2G n d a =-,若3()()2317F nG n -+为整数,求所有满足条件的n 值.综上,所有满足条件的n的值为1234,8642,9999.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.4 课题:整式的加减教学目标:知识与技能:1.知道整式加减的意义;2.会用去括号、合并同类项进行整式加减运算;3.能用整式加减解决一些简单的实际问题。
过程与方法:经历从具体情境中用代数式表示数量关系的过程.体会整式加减的必要性,进一步发展符号感情感态度与价值观:1.进一步发展符号感;2.培养学生认真细致的作风和解决问题的能力。
教学重点;整式加减的运算步骤。
教学难点:应用整式加减解决实际问题。
教材分析:本节是本章的重点内容。
也是以后学习整式乘除、分式运算、一次方程和函数等知识的基础,同时也为其他学科的学习奠定基础。
故在学习过程中重视对学生基础知识和基本技能的训练,关注学生对知识发生发展过程的体验和应用能力的培养。
环节教师活动学生活动设计意图创设情境活动1请解答下面问题:七年级㈠班分成三个小组,利用星期日参加公益活动。
第一组有学生m名;第二组的学生数比第一组学生人数的2倍少10人;第三组的学生数是第二组学生人数的一半.七年级㈠班共有多少名学生?学生解答,教师巡视指导。
从情境中感受整式加减。
引导自学m,210m-,()12102m-都是整式,整式之间可以进行加减运算,这就是整式的加减。
由于进行加减运算的整式是一个整体,所以每一个整式都要用括号括起来。
进行整式加减的一般步骤是:去括号、教师讲解,并板书:整式加减的一般步骤:去括号;合并同类项。
认识整式加减,并了解整式加减的一般步骤。
合并同类项。
合作交流活动2例 1 求整式2223a ab b++与222a ab b-+的差。
解:()()2222232a ab b a ab b++--+=2222232a ab b a ab b++-+-=2232a ab b++师生讨论每个整式都要带括号的作用,认识每个整式都要带括号意义。
整式之间进行减法运算,体会整式的加减每个整式要带括号的意义。
例2 计算()()32223232b ab a b ab b+--+解:原式=322232322b ab a b ab b+---=22ab a b-师生共同完成第⑵题,加深认识:整式的加减就是先去括号再合并同类项。
认识整式加减运算的实质。
拔高创新活动3例3一个长方形的宽为a,长比宽的2倍少1。
⑴写出这个长方形的周长;⑵当a=2时,这个长方形的周长是多少?⑶当a为何值时,这个长方形的周长是16?解:(略)师生共同完成,教师边板书,边讲解解题要点、步骤。
体会整式加减的在实际问题中的应用。
沙场练请同学们做课后练习(P186)第1、2题。
学生解答,教师巡视。
及时巩固整式加减运算。
请同学们做课后练习(P186)第3题。
学生解答,教师巡视。
巩固整式加减的步骤。
兵可找学生板演。
请同学们做课后练习(P186)第4题。
学生解答以前,师生讨论解题的步骤。
课后巩固练习课堂小结活动4整式加减与实际问题有着密切的联系,通过今天的学习,你是怎样认识整式加减的?又怎样进行整式的加减?学生讨论后回答,教师点评并给予鼓励。
系统认识整式加减。
布置作业课后作业(P186)第1、2、3、4、5题.板书设计:整式的加减一、整式加减的运算法则二、例1 例2三、例3四、回顾与反思教学反思:本节从实际情境导入,让学生体会整式加减的必要性,让学生在具体问题中感知去括号,合并同类项的过程就是整式的加减运算。
课堂以学生活动为主,教师适时提出问题引导和点拨,收到效果较好,但在教学中还应注重提高学生能力的培养,给学生以充足的时间考虑问题较好回顾与反思教学目标:知识与技能:从整体回顾所学内容,找出知识间的内在联系,形成知识网络。
过程与方法:反思知识形成过程中所蕴涵的数学思想方法和思维策略。
情感态度与价值观:灵活运用所学知识解决实际问题,发挥符号感。
为学生的自我评价提供机会。
教学重点:有单项式、多项式、整式的有关概念、合并同类项、去括号法则以及整式的加减运算,其核心内容是整式的加减,本章的一切知识都是围绕整式的加减这一目的展开的。
教学难点:合并同类项与去括号法则,因为去括号、合并同类项的过程实质就是整式的加减运算,因此熟练的进行去括号与合并同类项是学好整式加减的关键。
教材分析:整式的加减是整式运算的重要组成部分,它既是对前面所学的代数式内容的进一步深化,同时又是后继学习整式的乘除、因式分解等知识的基础。
因此,学好整式的加减对同学们来说至关重要。
环节教师活动学生活动设计意图创设情境整式是最基本的代数式,它的应用是极为广泛的。
在本章中我们学习了整式的有关概念以及整式的加减运算,为今后进一步学习奠定了基础。
(课件出示)请同学们回顾本章知识回答下列问题:1、请举例说明单项式的系数、次数?2、请举例说明多项式的项、次数、同类项?3、举例说明如何去括号,怎样合并同类项?4、能说出整式加减的实质吗?学生回顾本章所学知识,建立知识体系。
通过问题展现出知识系统。
引导自学(课件出示)本章要点梳理1.整式是代数式的一种,它最显著的特点是分母中不含有字母。
整式包括单项式和多项式。
2.单项式由数字因式和字母因式两部分组成。
数字因式就是单项式的系数,单项式的系数应包括前面的符号,如单项式2323x y-的系数是23-,而不是23,当单项式的系数是1或-1时,“1”通常省略不写,但“-”不能省略。
3.多项式是几个单项式的和,多项式的项及项的系数应包括它前面的系数,在变更多项式的项的位置时,要带着符号一起移动。
4.判断同类项的标准有两点:一是所含字母相师生共同讨论得出结论,教师指出注意的问题。
回顾本章知识,使知识系统化。
不仅要注同,二是相同字母的指数相同,二者缺一不可。
同类项与系数无关,与字母的排列顺序也无关,几个常数项也是同类项。
合并同类项的法则也有两个要点:一是字母和字母的指数不变,二是系数相加。
合并同类项时,要先判断,再合并,不是同类项的绝对不能合并。
5.去括号是整式加减的基础。
去括号时,要把括号和它前面的符号(“+”或“-”)看作一个整体一起去掉,特别是括号前面是“-”时,去掉括号后,括号内各项都要改变符号。
6.求多项式的值时,一般情况是先化简(去括号和合并同类项),再把字母的值代入化简后的式子中求值,化简的过程就是整式加减运算的过程,因此,整式的加减运算使多项式的求值过程变得简单了。
师生共同讨论得出结论,教师指出注意的问题。
重对知识的总结,更要注重对知识形成过程的反思归纳。
合作交流例1.已知31323mx y-与52114nx y+-是同类项,求53m n+的值。
解:因为31323mx y-与52114nx y+-是同类项,所以315m-=,213n+=.解得2,1m n==所以53523113m n+=⨯+⨯=.例2.计算:3()8()7()4()a b c a b c a b c a b c+-+---+----解:原式4()4()a b c a b c=-+-+--8b=-例3.已知3a b-=-,2c d+=,则()()b c a d+--的值为()(A)1-(B)5-(C)5(D)11、分析:因为已知的两个单项式是同类项,所以根据同类项的定义可知已知的两个单项式中,x的指数相同,y的指数也相同,于是可求得m与n的值,问题获解。
2、分析:本题的常规解法是先去括号,然后保证学生掌握基本的运算功能,使学生会进行整式的加减运算,并明白每一步的算理。
分析:此题所给的代数式中含有四个字母,只有两个条件,因而不能求出四个字母的具体值,这就需要将带求值的式子()()b c a d +--进行变形,化为含有a b -和c d +的形式。
解:()()b c a d +--b c a d=+-+()()a b c d =--++(3)2=--+5=例4.已知232A x x =-+,1B x =+,21449C x =-,求3236A B C +-的值,其中6x =-. 解:3236A B C+-22143(32)2(1)36()49x x x x =-+++--2293622916x x x x =-+++-+24x =-+.当6x =-时,原式(6)2462430=--+=+=.再合并同类项,显然这种方法繁琐易错,通过观察其结构特点,可将()a b c +-与 ()a b c --分别视为一个整体。
分析:如果把x 的值直接代入,分别求出A 、B 、C 的值,进而求3236A B C+-的值,显然会很烦琐,不如先把原式化简,然后再把x 的值代入计算。
例5.邻居李叔叔下岗在家,他准备再就业。
现有A 、B 两家公司向社会招聘人才,两家公司招聘条师生共同分析、将实际问题中的数拔高创新件基本相同,只有工资待遇稍有不同:A公司年薪10000元,每年加工龄工资200元;B公司半年的薪水是5000元,每半年加工龄工资50元。
从经济角度考虑的话,请问他选择哪家公司有利?析解:假设李叔叔在公司干n年,第n年他的收入情况如下:在A公司:10000200(1)2009800n n+-=+(元);在B公司:[5000100(1)][5000100(1)50]2009850n n n+-++-+=+(元).从上面可以看出,在A公司工作年收入比在B公司工作年收入少50元,所以他选择B公司有利。
交流、讨论,得出结论。
教师给出规范的解答过程。
量关系数学化,促进了学生分析问题和解决问题的能力的提高。
沙场练兵一、比一比看谁最快、最棒:1、-0.4ab3的系数是次数是。
2、多项式3xy2+2xy-3xy-4的最高次项是,同类项是,常数项是。
3、去括号3a-(2ab-3b2 +4)=4、与2a-1的和为7a2-4a+1的多项式是二、应用知识,提高能力,你一定行:已知小明的年龄是m岁,小红的年龄比小明的2倍少4岁,小华的年龄比小红的年龄的一半多一岁,求三个人的年龄和。
学生抢答学生独立思考,然后在本上做,找一名同学板书。
培养学生运算能力和分析问题解决问题的能力。
回顾本节课的学习你有哪些收获?应注意什么问题?(课件出示本章的知识结构图:)师生互动梳理知识。
弄清本章所学的概念、法则和有关的知识内容以与反思及它们之间的联系与区别,并写出知识结构图。
布置作业P192 6、8、11板书设计:回顾与反思一、知识结构二、1、整式有关概念注:单次三、整式加减(注:同类项的确定,去括号的应注意问题)教学反思:本节课在学生充分思考的基础上,开展小组交流和全班交流。
使学生在反思交流的过程中,师生共同建立知识体系得出本章知识结构图,在整个过程中不仅注重对知识的总结,更注重对知识形成过程的反思归纳。
留给了学生充足的时间和空间,反思知识的发生发展过程。
但由于留给学生时间较长,课时感到很紧张,今后要注意改进。