人教版数学正数与负数教案及教学设计

合集下载

正数和负数教案人教版优秀6篇

正数和负数教案人教版优秀6篇

正数和负数教案人教版优秀6篇作为一名教职工,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。

那么大家知道正规的教案是怎么写的吗?下面这6篇正数和负数教案人教版是作者为您整理的正数和负数教案范文模板,欢迎查阅参考。

正数和负数教案篇一三维目标一、知识与技能进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。

二、过程与方法经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。

三、情感态度与价值观鼓励学生积极思考,激发学生学习的兴趣。

教学重、难点与关键1.重点:正确理解正、负数的概念,能应用正数、 负数表示生活中具有相反意义的量。

2.难点:正数、负数概念的综合运用。

3.关键:通过对实例的进一步分析, 使学生认识到正负数可以用来表示现实生活中具有相反意义的量。

教具准备投影仪。

教学过程四、复习提问课堂引入1.什么叫正数?什么叫负数?举例说明, 有没有既不是正数也不是负数的数?2.如果用正数表示盈利5万元,那么-8千元表示什么?五、新授例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

2.2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率。

分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。

负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.2.六个国家2001年商品进出口总额的增长率分别为:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利- 2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走- 7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义。

人教版数学七年级上册1.1《正数和负数》教案

人教版数学七年级上册1.1《正数和负数》教案
人教版数学七年级上册1.1《正数和负数》教案
一、教学内容
人教版数学七年级上册1.1《正数和负数》教案:
1.理解正数和负数的概念;
2.掌握正数和负数的表示方法;
3.学会使用数轴表示正数和负数;
4.熟悉正数和负数的加减运算及其规律;
5.解决实际问题,运用正数和负数进行计算。
教学内容包括:
(1)引言:通过生中的应用:学生可能不知道如何将正数和负数应用于解决实际问题。
解决方法:设计丰富多样的实际问题,引导学生运用正数和负数进行计算,提高应用能力。
(5)小组合作交流:学生在小组讨论中可能存在依赖心理,不能积极参与。
解决方法:教师引导讨论方向,确保每个学生都能在小组中发挥自己的作用,促进知识共享。
此外,学生在进行正数和负数的加减运算时,对于同号相加、异号相加等规则的掌握还不够熟练。这可能是因为我在讲解这一部分时,没有提供足够的例题和练习。在今后的教学中,我会增加这方面的讲解和训练,帮助学生更好地掌握运算规则。
在小组讨论环节,我发现学生们对于正数和负数在实际生活中的应用有着很好的见解,这让我很欣慰。但同时,我也注意到有些学生在讨论中参与度不高,可能是因为他们对主题不够感兴趣,或者在小组中缺乏表达的机会。针对这一问题,我计划在未来的教学中,设计更多有趣的讨论主题,并鼓励每个学生都积极参与进来。
三、教学难点与重点
1.教学重点
(1)正数和负数的概念:理解正数和负数的定义,明确它们在数学中的地位和作用。
举例:通过温度、海拔等生活实例,让学生感受正数和负数的实际意义。
(2)数轴的认识:掌握数轴的表示方法,了解数轴上各点与正数、负数的对应关系。
举例:在数轴上标出0、+3、-2等点,让学生理解它们的位置关系。

正数与负数教案

正数与负数教案

正数与负数教案篇一:1.1正数和负数教学设计(第一课时)1.1正数和负数〔一〕一、教学目标1借助生活中的实例理解相反意义的量。

2能用符号表示生活中具有相反意义的量。

3培养学生会独立思考、合作交流的意识。

二、教学设计通过电脑动画出示某班举行知识竞赛的得分情况,让学生从计算比赛得分的动态情境中,接触负数的概念,引出“不够减——得出负数”,再通过“议一议”进一步负数的意义,鼓励学生自己寻找生活中的例子,并在寻求实例的过程中体会负数引人的必要性.教师选择学生熟悉的场景开展讨论,通过实例的讨论分析使学生认识到用正、负数可以表示具有相反意义的量.三、教学重点与难点1.理解“相反意义的量”是重点。

2.能灵活运用正负数表示生活中具有相反意义的量是难点。

四、课时安排1课时五、教学方法讨论法、探究法、讲授法、观察法.六、教学思路〔一〕情景导学、提出问题:通过电脑动画情节的观看,让学生了解新数.动画内容:评分标准是:答对一题加10分、答错一题扣10分,不答复得0分;每个队的根本分均为0分.四个代表队答题情况如下表:这样,我们就可以用带有“+”号与“-”号的数表示各队的得分情况.〔二〕自主学习、尝试解决:〔1〕学生阅读课本2页观察与思考局部,学生独立完成导学卡的自主学习问题.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进货物8吨,今天运出货物3吨,“运进”和“运出”,其意义是相反的.〔2〕一写出与以下各量具有相反意义的量:1气温为零下11度.2向南走200米。

3甲地低于海平面300米4股票第一天涨0.66元.〔三〕讨论交流、合作解决:1如何用符号表示具有相反意义的量?2.再议一议.3做—做:用正数和负数表示一些意义相反的量.出例如1:〔1〕在竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?〔2〕某人转动转盘,如果用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈怎样表示?〔3〕在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?(四)展示评研、归纳提升:1.先想一想具有相反意义的量,然后教师提出:怎样区别相反意义的量才好呢(五)稳固达标、扩展延伸:1用符号表示以下意义相反的量.〔1〕在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?〔2〕某人转动转盘,如果用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈怎样表示?〔3〕在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?2课堂作业练习第2小题篇二:1.1《正数和负数》(新版)新人教版单元要点分析教学内容〔1〕数轴能反映出数形之间的对应关系.〔2〕数轴能反映数的性质.〔3〕数轴能解释数的某些概念,如相反数、绝对值、近似数.〔4〕数轴可使有理数大小的比较形象化.3.对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一局部.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,一种是几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;另一种是代数意义.绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义那么是给出了求绝对值的法a那么,由绝对值的两种意义可知,有理数a的绝对值可表示为:│a│=0a(a0)(a0)(a0)根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:〔1〕任何有理数都有唯一的绝对值.〔2〕有理数的绝对值是一个非负数,即最小的绝对值是零.〔3〕两个互为相反数的绝对值相等,即│a│=│-a│.〔4〕任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.〔5〕假设│a│=│b│,那么a=b,或a=-b或a=b=0.三维目标1.知识与技能〔1〕了解正数、负数的实际意义,会判断一个数是正数还是负数.〔2〕掌握数轴的画法,能将数在数轴上表示出来,能说出数轴上点所表示的解.〔3〕理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.〔4〕会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法那么和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1正数和负数2课时1.2有理数5课时1.3有理数的加减法4课时1.4有理数的乘除法5课时1.5有理数的乘方4课时数学活动1课时回忆与思考1课时1.1正数和负数第一课时正数和负数〔一〕课本第2页至第4页.教学目标1.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.2.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数的广泛性.3.情感态度与价值观培养学生积极思考,合作交流的意识和能力.重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.教具准备投影仪.教学过程一、负数的引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.像-3,-2,-2.7%这样的数〔即在以前学过的0以外的数前面加上负号“-”的数〕叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数〔即以前学过的0以外的数〕叫做正数,有时在正数前面也加上“+”〔正〕号,例如,+3,+2,+0.5,+11,就是3,2,0.5,,一个33数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.中国古代用算筹〔表示数的工具〕进行计算,红色算筹表示正数,黑色算筹表示负数.数0既不是正数,也不是负数,但0是正数与负数的分界数.0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.三、用正负数表示具有相反意义的量把0以外的数分为正数和负数,起源于表示两种相反意义的量.正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.你能再举一些用正负数表示数量的实际例子吗?例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.四、稳固练习课本第3页,练习1、2、3、4题.五、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数〔除0外〕,在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.六、作业布置1.课本第5页习题1.1复习稳固第1、2、3题.2.选用课时作业.第一课时作业设计一、填空题.1.如果向北走5米记作+5,那么向南走10米记作________.2.如果节约30千瓦·时电记作+30千瓦·时,那么浪费10千瓦·时电记作_____.3.如果-26.80表示亏损26.80元,那么+100元表示________.4.如果体重增加1.5千克记作+1.5千克,那么-0.5千克表示________.二、选择题.5.以下说法正确的选项是〔〕.A.0是正数B.0是负数C.0是整数D.0不是自然数6.有六个数:-5,0,3111,-0.3,+,-,,其中正数的个数是〔〕.234A.1B.2C.3D.411,0,-6.3,,-,以下说法完全正确的选项是〔〕.2811A.-7,-是负整数B.5,0,是正数287.有六个数:-7,5C.-7,-6.3,-是负数D.只有-6.3是负分数三、解答题.9.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”,你对此怎样理解?10.假设把公元1997年记作+1997,那么-97表示什么?:篇三:1.1正数与负数讲义、教案例5假设规定上升为正,那么水位上升-0.5m的意义是〔〕A.水位上升0.5mB.水位下降0.5mC.水位没有变化D.水位下降-0.5m对点练习1.如果+30m表示向东走30m,那么向西走40m表示为〔〕A.+40mB.-40mC.+30mD.-30m2.假设超出标准质量0.05g记作+0.05g,那么低于标准质量0.03g记作〔〕3.某奶粉每袋标准质量为454g,在质量检测中,假设超过标准质量2g记作+2g,假设质量低于标准质量3g以上,那么这袋奶粉那么视为不合格产品,先抽取10袋样品进行质量检测,结果如下:袋号12345678910记作-203-4-3-5+4+4-5-3⑴这10袋奶粉中,有哪几袋不合格?⑵质量最多的是哪袋?实际质量是多少?⑶质量最小的是哪袋,实际质量是多少?课后练习一、根底训练1.如果气温上升3度记作+3度,下降5度记作-5度,那么以下各量分别表示什么?〔1〕+5度;〔2〕-6度;〔3〕0度.2.向东走-8米的意义是〔〕A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.以下语句:〔1〕所有整数都是正数;〔2〕分数是有理数;〔3〕所有的正数都是整数;〔4〕在有理数中,除了负数就是正数,其中正确的语句个数有〔〕A.1个B.2个C.3个D.4个4.以下说法中,正确的选项是〔〕A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数D.所有的分数都是有理数5.以下各数中,哪些属于正数集、负数集、非负数集、整数集、分数集?-1,-3.14156,-6.某水库的平均水位为80米,在此根底上,假设水位变化时,把水位上升记为正数;水库管理员记录了3月~8月水位变化的情况〔单位:米〕:-5,-4,0,+3,+6,+8.试问这几个月的实际水位是多少米?二、递进演练1.〔05年宜昌市·课改卷〕如果收入15元记作+15元,那么支出20元记作________元.2.〔05年吉林省中考·课改卷〕某食品包装袋上标有“净含量385±5”,这包食品的合格净含量范围是______克~______克.3.以下说法正确的选项是〔〕A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.以下不是具有相反意义的量是〔〕A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和缺乏2克5.以下说法正确的选项是〔〕A.有理数是指整数、分数、零、正有理数、负有理数这五类B.一个有理数不是正数就是负数C.一个有理数不是整数就是分数D.以上说法都正确6.把以下各数:-3,4,-0.5,-1,-5%,-6.3,2006,-0.1,30000,200%,0,-0.01001315,0.86,0.8,8.7,0,-,-7,分别填在相应的大括号里.36正有理数集合:{};非负有理数集合:{};整数集合:{};负分数集合:{}.7.孔子出生于公元前551年,如果用-551年表示,那么李白出生于公元701年可表示为___________.。

人教版初一数学上册正数、负数(教学设计)

人教版初一数学上册正数、负数(教学设计)

1.1 正数和负数教学设计【教学目标】1、使学生了解正数与负数是从实际需要中产生的;2、使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3、初步会用正负数表示具有相反意义的量;4、在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。

【教学重难点】重点:正负数的概念难点:负数的概念及意义【教学用具】班班通多媒体【教学过程】一、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问。

现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。

为了表示一个人、两只手、……,我们用到整数1,2,…。

为了表示半小时、四元八角七分、……,我们需用到分数和小数4.87、…。

为了表示“没有人”、“没有羊”、……,我们要用到0。

但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。

二、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃。

要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。

它们是具有相反意义的两个量。

现实生活中,像这样的相反意义的量还有很多。

例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。

又如,某仓库昨天运进货物2 吨,今天运出货物 2吨,“运进”和“运出”,其意义是相反的。

同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充。

教师小结:同学们成了发明家。

甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。

其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。

1.1 正数和负数(第一课时)教学设计 2024—2025学年人教版数学七年级上册

1.1 正数和负数(第一课时)教学设计 2024—2025学年人教版数学七年级上册

一、导入新课
1.情景引入 1
2.情景引入 2
3. 思考:根据实际生活的需要,人们引进了另一种数,你知道是什么数吗?
学生:(1) 预计明天白天某地的温度为- 3℃~3℃。

(2) 电梯楼层标数-1、-2
(2) 某年下列国家的商品进出口总额比上年的变化情况是:
美国减少 6.4%,德国增长 1.3%,法国减少 2.4%,英国减少 3.5%,
意大利增长 0.2%,中国增长 7.5%。

写出这些国家这一年商品进出口总额的增长率。

练习 1.
2010 年我国全年平均降水量比上年增加 108.7mm,2009 年比上年减少81.5mm,2008 年比上年增加 53.5mm,用正数和负数表示这三年我国全年平均降水量比上年的增长量。

练习 2.
如果把一个物体向右移动 1 m 记作移动+1m,那么这个物体又移动了-1m 是什么意思?如何描述这时物体的位置?
1.正数和负数的定义。

2.正数和负数的意义。

正数和负数教学设计(共13篇)

正数和负数教学设计(共13篇)

正数和负数教学设计〔共13篇〕第1篇:正数和负数教学设计一、课题引入为了让学生更好地理解正数与负数的概念,作为老师有必要理解数系的开展.从数系的开展历程来看,微积分的根底是实数理论,实数的根底是有理数,而有理数的根底那么是自然数.自然数为数学构造提供了坚实的根底.对于数的开展(也即数的扩大),有着两种不同的认知体系.一是数的自然扩大过程,如图1所示,即数系开展的自然的、历史的体系,它反映了人类对数的认识的历史开展进程;另一是数的逻辑扩大过程,如图2所示,即数系开展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.二、课题研究在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种详细的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.假如把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是意义相反的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数负数.我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个+号,比方在5的前面添加一个+号就成了+5,把 +5称为一个正数,读作正5.在正数的前面添加一个-号,比方在5的前面添加一个-号,就成了-5,所有按这种形式构成的数统称为负数.-5读作负5,-5000读作负5000.于是收入5000元可以记作5000元,也可以记作+5000元,同时支出5000元就可以记作-5000元了.这样具有相反意义的两个数量就有了不同的表达方式.利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些具有相反意义的量.再如,某个机器零件的实际尺寸比设计尺寸大0.5 mm就可以表示成0.5mm,或+0.5mm;假如另一个机器零件的实际尺寸比设计尺寸小0.5 mm,那么就可以表示成-0.5 mm了.在一次足球比赛中,假如甲队赢了乙队2个球,那么可以把甲队的净胜球数记作+2,把乙队的净胜球数记作-2.借助实际例子可以让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地硬造出来的一种新数.三、稳固练习例1 博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?思路分析^p :收入与支出是一对具有相反意义的量,可以用正数或负数来表示.一般来说,把收入4800元记作+4800元,而把与之具有相反意义的量支出1600元记作-1600元.特别提醒:通常具有增加、上升、零上、海平面以上、盈余、上涨、超出等意义的数量,都用正数来表示;而与之相对的、具有减少、下降、零下、海平面以下、亏损、下跌、缺乏等意义的数量那么用负数来表示.再如,假设游泳池的水位比正常水位高5cm,那么可以将这时游泳池的水位记作+5cm;假设游泳池的水位比正常的水位低3cm,那么可以将这时游泳池的水位记作-3cm;假设游泳池的水位正好处于正常水位的位置,那么将其水位记作0cm.例2 周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元日期周二周三周四周五开盘+0.16 +0.25 +0.78 +2.12收盘-0.23 -1.32 -0.67-0.65当日收盘价试在表中填写周二到周五该股票的收盘价.思路分析^p :以周二为例,表中数据+0.16所表示的实际意义是周二该股票的开盘价比周一的收盘价高出了0.16元;而表中数据-0.23那么表示周二该股票收盘时的收盘价比当天的开盘价降低了0.23元.因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进展计算:周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.例3 甲、乙、丙三支球队以主客场的形式进展双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.甲乙丙甲3∶2 2∶2乙2∶33∶1丙3∶10∶1试计算甲、乙、丙三个队各自的总净胜球数.思路分析^p :由表中数据可知:甲队主场以3∶2赢乙队,甲队有1个净胜球;甲队客场又以3∶2赢乙队,又增加了1个净胜球.甲队与乙队的两场比赛中甲队净胜球的总数为2.甲队与丙队的两场球,甲主场以2∶2与丙队握手言和,甲队净胜球数为0;甲客场以1∶3负给了丙队,这场球甲队的净胜球数为-2.甲队与丙队的两场比赛中甲队净胜球数为-2.总之,甲队与乙队两场比赛的净胜球数为2,与丙队的两场比赛净胜球数为-2;这样甲队总净胜球数为零.相信同学们根据上面的分析^p ,自己也能说出乙队总净胜球数为1,丙队总净胜球数为-1.老师可以让学生来试试说说看.特别提醒:股票的涨跌、球赛的胜负都是当今日常生活中经常遇到的实际问题,作为当代中学生应该主动去接触或理解一些与之相关的实际问题,以丰富学生的生活阅历.同时也充分说明数学本身就是生活的一局部,要尽可能地调动学生的积极性,把我们所学的数学用到实际生活中去.例4 春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用适宜的方法来表示这条河流河水的变化情况.思路分析^p :从上面的表达可见河水的水位是先上涨了,随后又下降了,水位最终又回到了原来的位置.也就是说最终水位的改变量是零,或者说水位的总变化量是零.与最初的水位相比先上涨的15cm,可以记作+15cm,而随后又下降了15cm,可以记作-15cm,这样水位又回到了原来最初的位置,水位的总变化量是零,即这个变化量为(+15cm)+(-15cm)= 0cm.特别提醒:在表示具有相反意义的量时,假如某个量经两次或屡次变化后又回到了最初状态,就可以用0来表示总变化量;或者说这个量的最终变化量是零.对于初一的学生来说,零的内涵极其丰富,因此需要特别关注,在以后讨论有理数的相反数、绝对值、有理数的运算时,需要提醒学生重视零的一些性质,并关注零在这些概念或运算中所扮演的角色.四、考虑问题培养良好的阅读习惯和进步阅读才能,是数学教学过程中需要引起重视的一个重要方面.教学中,我们发现学生绝对不会做的题目很少,但由于没有把问题看懂而造成的不会做的题目却相对较多.一旦老师帮助学生把问题弄明白是怎么一回事之后,学生往往都会说这题其实不难,我也会做,只是没有认真读题罢了.怎样才能在尽可能短的时间内让学生有效获取题目呈现给我们的信息,做高效的阅读者?这是需要老师认真考虑的问题。

人教版七年级数学上册:1.1《正数和负数》教学设计

人教版七年级数学上册:1.1《正数和负数》教学设计

人教版七年级数学上册:1.1《正数和负数》教学设计一. 教材分析《正数和负数》是人教版七年级数学上册的第一章第一节内容。

本节课主要介绍了正数和负数的定义,以及它们的性质。

学生通过本节课的学习,能够理解正数和负数的含义,掌握它们的运算规则,并能运用到实际问题中。

二. 学情分析七年级的学生已经具备了初步的数学基础,但对于正数和负数的概念可能还比较陌生。

因此,在教学过程中,教师需要引导学生从实际情境出发,理解正数和负数的含义,并通过大量的练习让学生熟练掌握它们的运算规则。

三. 教学目标1.知识与技能:理解正数和负数的定义,掌握它们的性质和运算规则。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的数学思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:正数和负数的定义,它们的性质和运算规则。

2.难点:正数和负数的运算规则,以及如何在实际问题中运用。

五. 教学方法1.情境教学法:通过实际情境引导学生理解正数和负数的含义。

2.动手操作法:让学生通过实际操作,加深对正数和负数概念的理解。

3.小组合作学习:培养学生团队合作意识,提高学生的数学思维能力。

六. 教学准备1.教学课件:制作精美的课件,帮助学生直观地理解正数和负数的概念。

2.教学素材:准备一些实际问题,让学生运用正数和负数进行解决。

3.练习题:准备一些练习题,用于巩固学生对正数和负数的掌握程度。

七. 教学过程1.导入(5分钟)利用课件展示一些实际情境,如温度计、体重秤等,引导学生思考正数和负数的含义。

2.呈现(10分钟)讲解正数和负数的定义,通过实例让学生理解正数和负数的概念。

3.操练(10分钟)让学生进行一些简单的正数和负数运算,如加减乘除等,巩固学生对正数和负数的掌握。

4.巩固(10分钟)出示一些实际问题,让学生运用正数和负数进行解决,加深学生对正数和负数的理解。

5.拓展(10分钟)引导学生思考正数和负数在实际生活中的应用,如购物、理财等,培养学生的数学应用能力。

人教版初一数学教案正数和负数(精选9篇)

人教版初一数学教案正数和负数(精选9篇)

初一数学教案正数和负数人教版初一数学教案正数和负数(精选9篇)作为一名专为他人授业解惑的人民教师,有必要进行细致的教案准备工作,借助教案可以让教学工作更科学化。

如何把教案做到重点突出呢?以下是小编为大家收集的初一数学教案正数和负数,希望能够帮助到大家。

初一数学教案正数和负数篇1教学目的:(一)知识点目标:1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:1.自然数的产生、分数的产生。

2.章头图。

问题见教材。

让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。

根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

人教版数学七年级上册1.1《正数和负数》教学设计

人教版数学七年级上册1.1《正数和负数》教学设计

人教版数学七年级上册1.1《正数和负数》教学设计一. 教材分析《正数和负数》是人教版数学七年级上册的第一节内容,为学生以后学习更高级的数学知识打下基础。

这一节主要介绍正数和负数的概念,以及它们的性质。

教材通过简单的例子引入正数和负数,使学生能够直观地理解和掌握。

二. 学情分析七年级的学生刚从小学升入初中,对数学的知识体系还不够了解。

他们对正数和负数可能有一定的了解,但对其性质和运算可能还不够熟悉。

因此,在教学过程中,需要注重引导学生从实际情境中发现问题,通过自主探究和合作交流来理解和掌握正数和负数的概念和性质。

三. 教学目标1.理解正数和负数的概念,掌握它们的性质。

2.能够运用正数和负数解决实际问题。

3.培养学生的抽象思维能力和团队合作能力。

四. 教学重难点1.重难点:正数和负数的概念及其性质。

2.难点:理解正数和负数的运算规律。

五. 教学方法1.情境教学法:通过实际情境引导学生理解和掌握正数和负数的概念和性质。

2.自主探究法:鼓励学生自主探究,发现问题,解决问题。

3.合作交流法:引导学生与他人合作,共同解决问题,提高团队协作能力。

六. 教学准备1.教学PPT:制作精美的PPT,展示正数和负数的例子和性质。

2.教学素材:准备一些实际问题,用于引导学生运用正数和负数解决。

3.学生活动材料:准备一些练习题,用于学生在课堂上进行自主学习和巩固。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际情境,如购物、温度等,引导学生发现正数和负数的存在。

让学生分享他们对正数和负数的理解,为新课的展开做好铺垫。

2.呈现(10分钟)通过PPT呈现正数和负数的概念和性质,用简洁的语言进行讲解。

同时,给出一些例子,让学生跟随老师一起分析和总结正数和负数的性质。

3.操练(10分钟)让学生分成小组,共同解决一些与正数和负数相关的问题。

教师巡回指导,解答学生遇到的问题。

4.巩固(5分钟)挑选几名学生上黑板进行正数和负数的运算练习,让其他学生进行评价和补充。

精选《正数和负数教案》四篇

精选《正数和负数教案》四篇

精选《正数和负数教案》四篇《正数和负数教案》篇1教学目标:1、在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题和现象。

2、在具体的情境中,认、读、写负数,同时渗透“对应”和“集合”的数学思想。

3、培养学生获取信息,并进行分析的意识和能力。

4、进行德育渗透,培养学生科学精神和民族自豪感。

教学重点:了解负数的意义和负数在生活中的应用。

教学难点:理解负数的意义。

教学用具:电脑课件、实物投影仪、温度计。

教学过程:一、创设情境,导入新知。

同学们,这节课老师和你们一起上数学,数学和什么打交道最多?数学课离不开数,数与我们的日常生活联系得也非常密切。

(边说边板书:数数)下面老师要说些数据,请你们认真听,当一名小记录员,看谁能经过思考,将老师所说的数据信息,用你喜欢的方式准确地记录下来。

能开始吗?1、中国队参加足球比赛,上半场进了2个球,下半场输了2个球。

2、寒假开学,我校四年级转进学生7人,五年级转出学生3人。

3、小刚的妈妈卖服装,今年三月份赚了900元,四月份赔了100元。

二、探讨交流,感知新知。

(一)交流记录的数据信息,初步感受正数和负数是表示相反意义的两个量。

1、展示同学们的记录单(随机进行)根据同学们的记录情况,启发同学进行分析,相互之间交流看法。

谁写完了,举起来让我看看(教师桌间巡视,收集相关信息。

)足球比赛转学情况账目结算上半场 2 四年级 7 三月份 900 下半场2五年级 3 四月份 100刚才老师收集了几个同学的记录单,请你们看看,有什么想法?(不能准确地表达老师所说的意思)看来用我们已有的知识,来记录一些数据,有时候是说明不了问题的。

刚才老师说的这些信息进球和输球;转进和转出;赚和赔都是相对应的。

(渗透对应的数学思想)表示相反意义的两个量。

这张记录单,只把数据记了下来,没有说明情况。

请看这张记录单,你觉得怎样?(请学生们交流看法)足球比赛转学情况账目结算上半场进2个四年级进7人三月份 900 下半场输2个五年级出3人四月份 100这位同学能把前两条信息准确的记录下来,用的是什么方法?(汉字)这种方法怎么样?(麻烦)还有不同的记录方法吗?(请同学进一步交流自己的想法,教师分别展示学生不同的记录方法。

《正数和负数教案》教学设计

《正数和负数教案》教学设计

《正数和负数教案》教学设计第一章:正数和负数的引入1.1 教学目标让学生理解正数和负数的概念。

让学生能够区分正数和负数。

让学生能够用数轴表示正数和负数。

1.2 教学内容引入正数和负数的概念。

讲解正数和负数的定义。

用数轴展示正数和负数的位置。

1.3 教学方法使用图片和实例引导学生理解正数和负数的概念。

利用数轴直观地展示正数和负数的位置。

1.4 教学评估通过小组讨论,让学生分享对正数和负数的理解。

让学生在数轴上标出正数和负数,以评估他们对概念的理解。

第二章:正数和负数的加法2.1 教学目标让学生掌握正数和负数的加法运算规则。

让学生能够正确计算正数和负数的和。

2.2 教学内容讲解正数和负数加法的运算规则。

举例说明正数和负数加法的计算方法。

2.3 教学方法使用实际例题和练习题,让学生通过计算来理解和掌握正数和负数的加法。

提供计算器,让学生实际操作计算正数和负数的和。

2.4 教学评估让学生完成一系列正数和负数的加法练习题。

评估学生对正数和负数加法运算规则的理解和应用能力。

第三章:正数和负数的减法3.1 教学目标让学生掌握正数和负数的减法运算规则。

让学生能够正确计算正数和负数的差。

3.2 教学内容讲解正数和负数减法的运算规则。

举例说明正数和负数减法的计算方法。

3.3 教学方法使用实际例题和练习题,让学生通过计算来理解和掌握正数和负数的减法。

提供计算器,让学生实际操作计算正数和负数的差。

3.4 教学评估让学生完成一系列正数和负数的减法练习题。

评估学生对正数和负数减法运算规则的理解和应用能力。

第四章:正数和负数的乘法4.1 教学目标让学生掌握正数和负数的乘法运算规则。

让学生能够正确计算正数和负数的积。

4.2 教学内容讲解正数和负数乘法的运算规则。

举例说明正数和负数乘法的计算方法。

4.3 教学方法使用实际例题和练习题,让学生通过计算来理解和掌握正数和负数的乘法。

提供计算器,让学生实际操作计算正数和负数的积。

4.4 教学评估让学生完成一系列正数和负数的乘法练习题。

人教版七年级数学上册1.1《正数与负数》教学设计

人教版七年级数学上册1.1《正数与负数》教学设计

人教版七年级数学上册1.1《正数与负数》教学设计一. 教材分析《正数与负数》是人教版七年级数学上册第一单元的第一节内容,本节内容主要介绍正数与负数的概念,以及它们的性质。

学生通过学习本节内容,可以为后续的代数学习打下基础。

本节内容在教材中占据重要的位置,起着承前启后的作用。

二. 学情分析七年级的学生已经具备了一定的数学基础,他们已经学习了有理数、整数等概念。

但是,对于正数与负数的概念,以及它们的性质,可能还比较陌生。

因此,在教学过程中,需要引导学生从实际问题中抽象出正数与负数的概念,并通过实例让学生感受正数与负数的性质。

三. 教学目标1.知识与技能:使学生掌握正数与负数的概念,了解它们的性质。

2.过程与方法:通过实际问题,引导学生从具体情境中抽象出正数与负数的概念,培养学生的抽象思维能力。

3.情感态度与价值观:让学生体验数学与生活的紧密联系,激发学生学习数学的兴趣。

四. 教学重难点1.重点:正数与负数的概念,以及它们的性质。

2.难点:正数与负数的性质的理解和应用。

五. 教学方法1.情境教学法:通过实际问题,引导学生从具体情境中抽象出正数与负数的概念。

2.实例教学法:通过具体的实例,让学生感受正数与负数的性质。

3.小组合作学习:引导学生进行小组讨论,共同探讨正数与负数的性质。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.学具:练习本、尺子、圆规。

七. 教学过程1.导入(5分钟)教师通过向学生借一本数学书,然后又还给学生的实际例子,引导学生思考:如何用数学符号来表示这个借还的过程?从而引出正数与负数的概念。

2.呈现(10分钟)教师通过多媒体展示正数与负数的定义,以及它们的性质。

同时,教师可以结合具体的实例,如温度计、海拔等,让学生感受正数与负数的性质。

3.操练(10分钟)教师布置一些练习题,让学生独立完成。

题目可以包括判断题、选择题和填空题等,以巩固学生对正数与负数的理解和掌握。

4.巩固(10分钟)教师学生进行小组讨论,共同探讨正数与负数的性质。

人教版七年级数学上册:1.1《正数和负数》教学设计3

人教版七年级数学上册:1.1《正数和负数》教学设计3

人教版七年级数学上册:1.1《正数和负数》教学设计3一. 教材分析《正数和负数》是人教版七年级数学上册第一章的第一节内容,本节内容主要介绍正数和负数的定义,以及它们的性质。

通过本节内容的学习,学生能够理解正数和负数的概念,掌握它们的性质,并能够运用正数和负数解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的认识已经有了一定的了解。

但是,对于正数和负数的概念和性质,学生可能还比较陌生。

因此,在教学过程中,教师需要引导学生通过观察、思考、操作等活动,理解和掌握正数和负数的概念和性质。

三. 教学目标1.知识与技能目标:学生能够理解正数和负数的概念,掌握它们的性质,并能够运用正数和负数解决实际问题。

2.过程与方法目标:通过观察、思考、操作等活动,学生能够培养观察能力、思考能力和操作能力。

3.情感态度与价值观目标:学生能够体验数学学习的乐趣,培养对数学的兴趣。

四. 教学重难点1.教学重点:正数和负数的概念,它们的性质。

2.教学难点:正数和负数的性质,如何运用正数和负数解决实际问题。

五. 教学方法1.情境教学法:通过生活情境,引导学生理解和掌握正数和负数的概念和性质。

2.启发式教学法:通过提问、讨论等方式,引导学生主动思考和探索正数和负数的性质。

3.操作教学法:通过实际操作,让学生感受和体验正数和负数的性质。

六. 教学准备1.教学课件:制作教学课件,包括正数和负数的定义、性质等内容。

2.教学素材:准备一些实际问题,用于引导学生运用正数和负数解决实际问题。

3.学具:准备一些小卡片,上面写有正数和负数,用于课堂操练。

七. 教学过程1.导入(5分钟)教师通过创设生活情境,如购物、温度等,引导学生理解和掌握正数和负数的概念。

2.呈现(10分钟)教师通过课件呈现正数和负数的定义和性质,引导学生观察和思考,理解正数和负数的性质。

3.操练(10分钟)教师学生进行课堂操练,让学生通过实际操作,感受和体验正数和负数的性质。

人教版七年级数学教案正数与负数的教学设计

人教版七年级数学教案正数与负数的教学设计

正数与负数的教学设计以下是人教版正数和负数的教学方案,供您参考:一、教学目标1.学生能够理解和区分正数和负数,并能够正确使用正负数表示具有相反意义的量。

2.学生能够理解数轴,能够用数轴上的点表示正数和负数。

3.学生能够通过观察、思考和交流,提高抽象思维和数学交流的能力。

二、教学内容1.正数和负数的概念和表示方法。

2.数轴的概念和用法。

3.正数、负数和零的大小比较。

三、教学过程1.导入新课通过展示一些日常生活中的例子,如温度、方向、高度等,让学生感受正数和负数在现实生活中的应用,并引入本课的学习内容。

2.正数和负数的概念和表示方法通过举例子的方式,让学生理解正数和负数的概念,并掌握用正负数表示具有相反意义的量。

例如,可以用正数表示收入,负数表示支出;用正数表示上升,负数表示下降等。

3.数轴的概念和用法通过讲解数轴的概念和用法,让学生能够用数轴上的点表示正数和负数,并能比较大小。

例如,在数轴上标出1、-1、0、-2、2等数字,让学生观察它们在数轴上的位置关系,从而理解正数和负数的大小比较。

4.课堂练习通过做一些课堂练习,让学生巩固所学知识,并能够灵活运用。

例如,让学生进行一些正数和负数的加减法运算,用数轴表示一些数字,并进行大小比较等。

5.总结与拓展通过总结本课的学习内容,让学生进一步理解和掌握正数和负数的概念和用法,同时引导学生拓展正数和负数在日常生活中的应用。

四、教学评价1.通过课堂练习和随堂测验,检查学生对正数和负数的理解程度和运用能力。

2.让学生举例说明正数和负数在日常生活中的应用,评价学生对知识的理解和应用能力。

3.通过学生的课堂表现和作业完成情况,评价学生的学习态度和学习效果。

以上是人教版正数和负数的教学方案,希望对您的教学有所帮助。

最新-七年级数学教案正数与负数(优秀15篇)

最新-七年级数学教案正数与负数(优秀15篇)

七年级数学教案正数与负数(优秀15篇)作为一名教师,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。

来参考自己需要的教案吧!以下是勤劳的小编给大家收集整理的15篇正数与负数教案的相关文章,仅供借鉴,希望对大家有所启发。

七年级数学正数和负数教案篇一1.1《正数和负数》教学设计方案(第1课时)教材分析:一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册第一章第一节的内容,本节内容主要是学习正数、负数和零的定义、联系。

是本章有理数学习的基础。

二、教学目标知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。

过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。

2.能结合具体情境出现并提出数学问题,并解释结果的合理性。

情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。

三、教学重、难点重点:体会负数引入的必要性和有理数应用的广泛性,能应用正负数表示生活中的具有相反的意义的量。

难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。

教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念教学过程教师演示第一节首图片为主体的多媒体课件。

环节教师活动学生活动设计意图创设情境导入新课自主学习师生互动合作探究达标检测学习总结教师出示图片说明自然数的产生、分数的产生。

接着出示问题问题1 天气预报:北京市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温差是多少?问题2 有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0),如何确定三个队的净胜球数与排名顺序?问题3 某机器零件的长度设计为100mm,加工图纸标注的尺寸为100 0.5(mm),这里的0.5代表什么意思?合格产品的长度范围是多少?三个问题中的-3、0.5是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。

人教版七年级数学上册:1.1《正数和负数》教案4

人教版七年级数学上册:1.1《正数和负数》教案4

人教版七年级数学上册:1.1《正数和负数》教案4一. 教材分析《正数和负数》是人教版七年级数学上册的第一单元,主要介绍正数和负数的概念,以及它们的性质。

这一单元为学生以后学习代数、几何等数学知识打下基础。

在教材中,通过丰富的实例和生活中的问题,引导学生认识正数和负数,理解它们的相对性,以及掌握它们的运算规则。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数的概念有了一定的了解。

但正数和负数作为新的数学概念,对学生来说还比较抽象,需要通过具体的生活实例来帮助他们理解和接受。

此外,学生可能对负数在实际生活中的意义和应用还不够明确,需要在教学中加以引导和拓展。

三. 教学目标1.知识与技能:使学生掌握正数和负数的概念,理解它们的性质和运算规则;2.过程与方法:通过实例和问题,培养学生的观察、分析和解决问题的能力;3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:正数和负数的概念,性质和运算规则;2.难点:负数在实际生活中的意义和应用。

五. 教学方法采用情境教学法、实例教学法和小组合作学习法。

通过生活实例引入正数和负数的概念,引导学生观察、分析和解决问题,培养学生的动手操作能力和合作意识。

六. 教学准备1.教具:黑板、粉笔、多媒体教学设备;2.学具:练习本、铅笔、橡皮;3.教学素材:正数和负数的实例、问题。

七. 教学过程1.导入(5分钟)通过展示生活中的一些实例,如温度、海拔、贷款等,引导学生认识正数和负数。

向学生解释,正数表示一种量,而负数表示与这种量相反的另一种量。

2.呈现(10分钟)向学生介绍正数和负数的概念,以及它们的性质。

举例说明,正数是大于0的数,负数是小于0的数。

引导学生观察和分析正数和负数的性质,如它们的相对性、运算规则等。

3.操练(10分钟)让学生进行一些简单的正数和负数的运算练习,如加减乘除、比较大小的。

在练习过程中,引导学生掌握正数和负数的运算规则,并能够灵活运用。

正数和负数人教版数学初一上册教案

正数和负数人教版数学初一上册教案

正数和负数人教版数学初一上册教案教学目标:1. 知道正数和负数的定义,并能够用符号表示正数和负数。

2. 能够在数轴上表示正数和负数。

3. 能够进行正数和负数的加减法运算。

教学重点:1. 正数和负数的定义及表示方法。

2. 在数轴上表示正数和负数。

教学难点:1. 正数和负数的加减法运算。

教学准备:1. 数轴。

2. 黑板和粉笔/白板和马克笔。

教学过程:Step 1 导入新知通过简单的问题导入正数和负数的概念,比如:小明向东走了3步,小红向西走了5步,请问小明向哪个方向走了多少步?Step 2 引入正数和负数的定义及表示方法通过展示数轴,在数轴上标注正数和负数,并给出符号表示的方法。

让学生观察数轴,找出数轴上的规律。

Step 3 正数和负数的加减法运算1. 让学生观察数轴上的正数和负数,找出相加和相减规律。

2. 引导学生通过实际问题进行加减法运算,比如:小明向东走了3步,再向西走了5步,问最终他向哪个方向走了多少步?让学生用正数和负数表示并计算。

3. 提供更多类似的实际问题,让学生练习正数和负数的加减法运算。

Step 4 巩固练习安排练习题,让学生独立完成并检查答案。

可以根据学生的学习情况适当调整题目的难易程度。

Step 5 小结通过让学生回答问题或总结,对本节课所学的内容进行小结,并强调正数和负数的加减法运算要点。

Step 6 拓展延伸提供更复杂的问题,让学生进一步拓展和巩固所学内容。

例如:小明每天向东走10步,小红每天向西走5步,问他们多少天能够相遇?Step 7 课堂作业布置课堂作业,要求学生练习正数和负数的加减法运算,并解答与实际情境相关的问题。

Step 8 教学反思对本节课教学效果进行反思,总结教学过程中的成功经验和不足之处,并对以后的教学进行调整和改进。

人教版数学正数与负数教案及教学设计

人教版数学正数与负数教案及教学设计

人教版数学正数与负数教案及教学设计导语:通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点.通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词.以下是品才网小编整理的人教版数学正数与负数教案及教学设计,欢迎阅读参考!人教版数学正数与负数教案及教学设计一、内容和内容解析1.内容正数和负数的意义.2.内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要.本课内容是本章后续的有理数的相关概念及运算的基础.通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量.在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负.基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量.二、目标和目标解析1.教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量.2.目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义.在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量.三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限.在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难.这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致.突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量.本节课的教学难点为:用正数、负数表示指定方向变化的量.四、教学过程设计1.创设情境,引入新知教师展示教科书图,并提出问题1 哪位同学知道这些图片介绍的是什么内容?学生回答.教师补充说明数的产生产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性.【设计意图】使学生感受数的产生和发展离不开生活和生产的需要.问题 2 请同学们阅读本章的引言.你能尝试着回答一下其中的问题吗?学生思考并尝试解释.对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述.【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答.让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲.2.观察感知,理解概念问题3 根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?学生回答,给出正确答案后,教师给出正数、负数的描述性定义:大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数.问题4 阅读课本第2页倒数第二段.你能举例说明什么叫一个数的符号吗?学生阅读,举例.只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话.教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”.0既不是正数,也不是负数.【设计意图】让学生阅读课文,以培养他们的读书习惯.通过学生举例,可以检验他们对这段课文的理解情况.因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了.3.例题示范,学会应用例:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少%,德国增长%,法国减少%,英国减少%,意大利增长%,中国增加%.写出这些国家这一年商品进出口总额的增长率.提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少1kg,你认为应该怎样表示他的体重“增长值”?师生合作回答上述问题.估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的.体重增长值为负数,相当于体重减少.再提问:你能仿照第(1)题的解答,自己解决(2)吗?【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点.通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词.问题5 你能从例题的解答过程中,总结一下如何用正数、负数表示实际问题中具有相反意义的量吗?学生总结,师生共同补充、完善.要总结出:(1)先找出表示具有相反意义的量的词,如“增加”和“减少”、“零上”和“零下”、“收入”和“支出”、“上升”和“下降”等;(2)选定一方用正数表示,那么另一方就用负数表示;(3)实际问题中,有时需要描述指定方向变化的量,如本例中,进出口总额“减少%”要表示为“增长-%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”;(4)当数据没有变化时,增长率是0.【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论.一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负.问题6 请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案.【设计意图】让学生用刚刚总结出的结论解决问题.4.巩固概念,学以致用练习:教科书第3页练习1,2.【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能举例说明引入负数的必要性吗?(2)你能用例子说明负数的意义吗?(3)有人说,增长一个负数就是减少一个正数,减少一个负数就是增加一个正数.你能举例说明吗?6.布置作业:教科书习题第1,2,4,8题.五、目标检测设计1.以下各数中,正数有 ;负数有 .【设计意图】考查对正数、负数概念的理解.2.向东行进-50 m表示的实际意义是 .【设计意图】会用正数、负数表示具有相反意义的量.3.下列结论中正确的是( )既是正数,又是负数是最小的正数是最大的负数既不是正数,也不是负数【设计意图】感受数0的特殊身份,并为学习有理数的分类做铺垫.4.举一个能用正数、负数表示其中的量的生活实例,并解释其中相关数量的含义.【设计意图】能用正数与负数表示生活中的数量.人教版数学正数与负数教案及教学设计课型新授课1、了解正数和负数是怎样产生的;2、知道什么是正数和负数;3、理解数 0 表示的量的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学正数与负数教案及教学设计导语:通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点.通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词.以下是品才网小编整理的人教版数学正数与负数教案及教学设计,欢迎阅读参考!人教版数学正数与负数教案及教学设计一、内容和内容解析1.内容正数和负数的意义.2.内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要.本课内容是本章后续的有理数的相关概念及运算的基础.通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量.在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负.基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量.二、目标和目标解析1.教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量.2.目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义.在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量.三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限.在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难.这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致.突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量.本节课的教学难点为:用正数、负数表示指定方向变化的量.四、教学过程设计1.创设情境,引入新知教师展示教科书图,并提出问题1 哪位同学知道这些图片介绍的是什么内容?学生回答.教师补充说明数的产生产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性.【设计意图】使学生感受数的产生和发展离不开生活和生产的需要.问题 2 请同学们阅读本章的引言.你能尝试着回答一下其中的问题吗?学生思考并尝试解释.对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述.【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答.让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲.2.观察感知,理解概念问题3 根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?学生回答,给出正确答案后,教师给出正数、负数的描述性定义:大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数.问题4 阅读课本第2页倒数第二段.你能举例说明什么叫一个数的符号吗?学生阅读,举例.只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话.教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”.0既不是正数,也不是负数.【设计意图】让学生阅读课文,以培养他们的读书习惯.通过学生举例,可以检验他们对这段课文的理解情况.因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了.3.例题示范,学会应用例:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少%,德国增长%,法国减少%,英国减少%,意大利增长%,中国增加%.写出这些国家这一年商品进出口总额的增长率.提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少1kg,你认为应该怎样表示他的体重“增长值”?师生合作回答上述问题.估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的.体重增长值为负数,相当于体重减少.再提问:你能仿照第(1)题的解答,自己解决(2)吗?【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点.通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词.问题5 你能从例题的解答过程中,总结一下如何用正数、负数表示实际问题中具有相反意义的量吗?学生总结,师生共同补充、完善.要总结出:(1)先找出表示具有相反意义的量的词,如“增加”和“减少”、“零上”和“零下”、“收入”和“支出”、“上升”和“下降”等;(2)选定一方用正数表示,那么另一方就用负数表示;(3)实际问题中,有时需要描述指定方向变化的量,如本例中,进出口总额“减少%”要表示为“增长-%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”;(4)当数据没有变化时,增长率是0.【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论.一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负.问题6 请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案.【设计意图】让学生用刚刚总结出的结论解决问题.4.巩固概念,学以致用练习:教科书第3页练习1,2.【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能举例说明引入负数的必要性吗?(2)你能用例子说明负数的意义吗?(3)有人说,增长一个负数就是减少一个正数,减少一个负数就是增加一个正数.你能举例说明吗?6.布置作业:教科书习题第1,2,4,8题.五、目标检测设计1.以下各数中,正数有 ;负数有 .【设计意图】考查对正数、负数概念的理解.2.向东行进-50 m表示的实际意义是 .【设计意图】会用正数、负数表示具有相反意义的量.3.下列结论中正确的是( )既是正数,又是负数是最小的正数是最大的负数既不是正数,也不是负数【设计意图】感受数0的特殊身份,并为学习有理数的分类做铺垫.4.举一个能用正数、负数表示其中的量的生活实例,并解释其中相关数量的含义.【设计意图】能用正数与负数表示生活中的数量.人教版数学正数与负数教案及教学设计课型新授课1、了解正数和负数是怎样产生的;2、知道什么是正数和负数;3、理解数 0 表示的量的意义。

学习目标过程方法 1、体会数学符号与对应的思想,用正、负数表示具体相反意义的量的符号化方法。

2、会用正、负数表示具有相反意义的量。

情感态度通过师生合作,联系实际,激发学生学好数学的热情。

教学重点教学难点教学方法课前准备知道什么是正数和负数,理解数 0 表示的意义。

理解负数、0 表示的量的意义。

七步教学法课件教师活动学生活动二次备课教学过程1、提问:我们已经学过哪些数?他们是怎么产生和发展起来的? ▲“数”的产生是为了表示物体的个数或事物的顺序,如“结绳计先让学生举例,数”和后来的 1、2、3??; 再让学生理解▲为了表示“没有”,引入了“0” ; 数的产生离不创设▲在分配和测量中,经常出现结果学生举例学过的开生活,体会数情境不是整数,从而产生了“分数(小数。

学与生活的密导入数); ”切联系,数学来▲总之,“数”是为了满足生产和生源于生活又应活需要而产生、发展起来的。

用于生活。

生活在进步,社会在发展,“数”也在随着人类步伐的前进而向前发展、繁衍。

展示学习目标出示提纲学生自学见上学生明确任务1. 什么叫正数和负数?2. “0”表示什么?3. 怎样用正数和负数表示相反意义的量,你能举例说明吗? 1、表示相反意义的量在小聪的周记中,遇到这样的一些词语:(1) 温度是零上 2°C 和零下 5°C; 学生找出相反意义(2)存入 1000 元和支出 600 元; 的量 (3)上车 2 人和下车 2 人; (4)向东走 300 米和向西走 1000 米。

问题 1:这里出现的每一对量,虽然都有不同的具体内容,但都有哪些共同特征? (它们都表示具有相反意义的量:,零上与零下,收入与支出,上车和下车,向东与向西。

) 问题2:你能再举出生活中具有几个相反意义的量的例子吗? 2、正数和负数①能用我们学过的数来很好的表示这些相反意义的量吗?例如:零上 2℃用 2 来表示,零下 5℃呢,也用用以前的知识无法表示,寻求新的知 5 表示,行吗? 0 说明:在预报天气图中,零下 5 C 识。

是用-5C 来表示的,为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进,收入,上升,高出海平面等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降,低于海平面规定为负的。

正的量用算术里学过的数表示,负的量用算术里学过的数前面放上“一”(读作负)号来表示. 如:零上 2℃记作 2℃,(读作正 5 摄氏度)零下 5℃记作一 50C(读作负 5 摄氏度)学生自学找出疑难点让学生体会生活中经常会遇到相反意义的量。

教学过程师生互动合作探究 (讲评课、训练课:自我纠错、合作合作探究)如何用数学来表示这些相反意义的量②怎样表示具有相反意义的量? 同样, (2)中如果规定向东为正,那么向西为负,汽车向东行驶 3 千米,记作 3 千米,向西 3 千米则用一 3 千米。

现在请同学们把以上各例子中的两个量表示出来。

如果买进 100 辆白行车记为 100 辆,那么一 20 辆自行车表示什么? 如果向南走 50 米记作一 50 米,那么一 20 米、30 米分别表示什么? 为了表示具有相反意义的量,上面我们引进了一 5,2, 237,一一一,一 20 等,像这样的数是一种新数,叫做负数。

过去学过的那些数(零除外),如 3,10,500,,等,叫做正数。

正数前面也可以放上一个“+”(读作“正”) 号。

如 3 可以写成+3。

一般情况下,正数前面的“+”号省略不写。

先引出正数和负数的定义。

再让学生用正数和负数来表示相反意义的量,体会负数在生活中的应用。

相关文档
最新文档