北师大版数学七年级下册尺规作图(绝对经典)汇编

合集下载

最新北师大版数学(七年级下册)章知识点总结及尺规作图

最新北师大版数学(七年级下册)章知识点总结及尺规作图

北师大版《数学》(七年级下册)知识点总结第一章整式的运算一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。

(6)负指数幂:11()(0)pppa aa a-==≠(底倒,指反)六、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:m(a+b+c)=ma+mb+mc 。

法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:(m+n)(a+b)=ma+mb+na+nb 。

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

北师大七年级数学下作图

北师大七年级数学下作图

图 1作图练习一、三角形三条高二、尺规作图1、画一条线段等于已知线段如图1,MN 为已知线段,用直尺和圆规准确地画一条线段AC 与MN 相等。

步骤:1、画 AB ,2、然后用 量出线段 的长,再在 AB 上截取AC =MN , 那么,线段AC 就是所要画的线段. 2、画一个角等于已知角 如图2所示,∠AOB 为已知角,试按下列步骤用圆规和直尺准确地画∠A ′O ′B ′等于∠AOB . 步骤:1、 画射线O ′A ′.2、 以点O 为圆心,以适当长为半径画弧,交OA 于C ,交OB 于D .3、 以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于C ′.4、 以点C ′为圆心,以CD 长为半径画弧,交前一条弧于D ′.5、 经过点D ′画射线O ′B ′.∠A ′O ′B ′就是所要画的角. 3、画已知线段的垂直平分线定义: 于一条线段并且 这条线段的直线,叫做线段的垂直平分线(或叫中垂线。

) 如图所示,已知线段AB ,画出它的垂直平分线. 步骤:1、 以点A 为圆心,以大于AB 一半的长为半径画弧;2、 以点B 为圆心,以同样的长为半径画弧,3、 两弧的交点分别记为C 、D ,连结CD ,则CD 是线段AB 的垂直平分线.4、画角平分线利用直尺和圆规把一个角二等分. 已知:如图3,∠AOB求作:射线OC ,使∠AOC =∠BOC 步骤:1、OA 和OB 上,分别截取OD 、OE ,使OD =OE2、分别以D 、E 为圆心,大于 的长为半径作弧,在∠AOB 内,两弧交于点C3、作射线OC ,OC 就是所求的射线。

5、作已知直线垂线(1)过直线上一点作一条直线与已知直线垂直 如图,点A 在1l 上,过点A 作直线2l ,使得1l ⊥2l 作法:o BA图2Al 1o BA图21、以点A 为圆心,以为适当长为半径画弧交1l 于B 、C2、分别以点B 、C 为圆心,以大于21BC 为半径,在1l 一侧作弧,交点为D 3、连接AD那么,AD 就是所求的直线直线2l(2)过直线上一点作一条直线与已知直线垂直1、以点A 为圆心,以大于点A 到1l 的距离的长度为半径画弧交1l 于B 、C2、分别以点B 、C 为圆心,以大于21BC 为半径,在另一侧作弧,交点为D 3、连接AD那么,AD 就是所求的直线直线2l 练习一1、已知线段AB 和CD ,如下图,求作一线段,使它的长度等于AB +2CD.2、如图,已知∠A 、∠B ,求作一个角,使它等于∠A-∠B.5、如图,已知∠AOB 及M 、N 两点,求作:点P ,使点P 到∠AOB 的两边距离相等,且到M 、N 的两点也距离相等。

北师大版七年级下(新教材)尺规作图(画线段的垂直平分线)

北师大版七年级下(新教材)尺规作图(画线段的垂直平分线)

交于A、B两点; (3)分别以A、B两点为圆心,以大于 1 AB 2 长为半径画弧,两弧相交于D点; (4)过C、D两点作直线CD。 所以,直线CD就是所求作的。

1、如图,过点P画∠O两边的 垂线.
(第 1 题)
2、如图,画△ABC边
BC上的高.
(第 2 题)
如图,已知线段a,h,
尺规作图(3)
(画垂线)
复习 1、什么叫做尺规作图? (限定用直尺和圆规来画图,称 为尺规作图) 2、用尺规作图 (1)作线段,使它等于已知线 段的长; (2)作角,使它等于已知角;
什么垂直平分线?
(过线段的中点,垂直这条线段的 直线) 线段垂直平分线有哪些特征? (线段的垂直平分线上的点到线段 两端点的距离相等;反过来,到线 段两端点距离相等的点在线段的垂 直平分线上)
求作:△ABC,使AB=AC,
且BC=a,高为h
h
a

AB、AC分别是菱形ABCD 的一条边和对角线,请你 用尺规把这个菱形补充完 整。CAFra bibliotekB
A、B是两个村庄,要从灌 溉总渠引两条水渠便于灌溉, 请你选择最佳方案。
B A
灌 溉 总 渠
教学反思
本节课你掌握了哪些知识? 还有哪些疑惑?
已知线段AB,画出它的垂直平分线.
说出你的 作图思路
议一议;能否说出这 种画法的依据,小组 讨论交流一下。
1、如图,点C在直线上,试过 点C画出直线的垂线。
2、如图,如果点C不在直线上,试和同学 讨论,应采取怎样的步骤,过点C画出直 线的垂线?
(1)任取一点M,使点M和点C在的两侧;
(2)以C点为圆心,以CM长为半径画弧,

最新北师大版数学(七年级下册)章知识点总结及尺规作图_

最新北师大版数学(七年级下册)章知识点总结及尺规作图_

北师大版《数学》(七年级下册)知识点总结第一章整式的运算一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

精典例题分析:基础例题:例1、下列整式哪些是单项式,哪些是多项式?它们的次数分别是多少? 2223312,,21,,7,1,26,35a x y x x xy y h xy ab x by --++++- 单项式:多项式:次数: 例2、下列多项式分别有几项?每一项的系数和次数分别是多少?(1)2123x x y π--+ (2) 322223x x y y -+例3、多项式232312522a b ab b -+-是单项式___________、___________、___________、________的和,所以它是_______项式,次数最高的项的次数是___________,所以这个多项式的次数是__________,于是这个多项式称为______次_______项式例4、代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有( )个.A.1个B.2个C.3个D.4个例5、若y b a 25.0与b a x 34的和仍是单项式,则正确的是( )A.x=2,y=0B.x=-2,y=0C.x=-2,y=1D.x=2,y=1 例6、当k = 时,多项式8313322+---xy y kxy x 中不含xy 项.例7、()()212-+-x mx x 的积中x 的二次项系数为零,则m 的值是:A .1B .–1C .–2D .2三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;去括号法则(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。

(完整版)北师大版数学七年级下册尺规作图(绝对经典)

(完整版)北师大版数学七年级下册尺规作图(绝对经典)

第一环节:知识梳理(要点)1、尺规作图的定义: 尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、 作一条线段等于已知线段;2、 作一个角等于已知角;3、 作已知线段的垂直平分线;4、 作已知角的角平分线;5、 过一点作已知直线的垂线(1) 题目一:作一条线段等于已知线段。

已知:如图,线段 a .求作:线段AB 使AB = a .作法:(1)作射线AP ; (2) 在射线AP 上截取AB=a .则线段AB 就是所求作的图形。

(2) 题目二:作已知线段的中点。

已知:如图,线段 MN. 求作:点 0,使M0=N Q 即0是MN 的中点) 作法: (1) 分别以M N 为圆心,大于 占1门 的相同线段为半径画弧, 两弧相交于P , Q(2) 连接 PQ 交 MN 于 0.则点0就是所求作的MN 的中点。

(3) 题目三:作已知角的角平分线。

已知:如图,/ A0B求作:射线 0P,使/ A0P=Z B0P(即0P 平分/ A0B 。

作法:(1) 以0为圆心,任意长度为半径画弧, 分别交0A 0B于 M, N;(2) 分别以M N 为圆心,大于的线段长为半径画(3) 作射线0P 。

则射线0P 就是/ A0B 的角平分线。

(4) 题目四:作一个角等于已知角。

已知:如图,/ A0B求作:/ A ' 0 B',使 A ' 0' B' =/ A0B教学过程(1) 作射线O' A ;(2) 以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;(3)以O'为圆心,以OM勺长为半径画弧,交O A'于M ;(4)以M为圆心,以MN的长为半径画弧,交前弧于N';(5)连接O' N'并延长到B'。

则/ A'OB'就是所求作的角。

北师大版七年级数学下册用尺规作角(共15张)

北师大版七年级数学下册用尺规作角(共15张)
第二章 相交线与平行线
4 用尺规作角
用尺规作一个角等于已知角 利用尺规作一个角等于已知角,是一个尺规基本作图,因为一个角 的大小只与角的两边___张__开___的大小有关,而与两边的___长__短___无关, 因此可利用尺规作图作一个角等于已知角.
1.在上学期我们已经学习了一个尺规基本作图,你还记得那个尺 规基本作图的内容吗?
解:方法一:把∠A移到∠B上,如图1,得∠A<∠B; 方法二:把∠B移到∠A上,如图2,得∠A<∠B.
5 cm.其中,属于尺规作图的有
(A )
A.1个
B.2个
C.3个
D.4个
2.下列关于尺规功能的说法不正确的是
(B )
A.直尺的功能:在两点间连接一条线段或将线段向两方向延长
B.直尺的功能:可作平角和直角
C.圆规的功能:以任意长为半径,以任意点为圆心作一个圆
D.圆规的功能:以任意长为半径,以任意点为圆心作一段弧
答:那个尺规基本作图内容是:“作一条线段等于已知线段.”
知识点 用尺规作一个角等于已知角 例 如图,已知直线m与直线m外一点M,请你利用尺规过点M作 一条直线与直线m平行.说出作图方法,保留作图痕迹.
解:作法如下: (1)过点M任意画一条直线OM与直线m交于点O; (2)以点O为圆心,任意长为半径画弧交直线OM于点A,交直线m于 点B; (3) 以 点 M 为 圆 心 , OA 为 半 径 画 弧 交 直 线 OM 于 点 C , 以 点 C 为 圆 心,AB为半径画弧交前弧于点D;
(4)过点M,D画直线,则直线MD即为所求,如图.
2.本题利用尺规作直线MD与直线m平行,平行的根据是 ( B ) A.平行公理 B.同位角相等,两直线平行 C.内错角相等,两直线平行 D.同旁内角互补,两直线平行 3.本题中,弧OA的半径产生变化时,作出的∠CMD的度数一定 ___不__会___变化.(填“会”或“不会”)

数学七年级下北师大版4-4用尺规作三角形课件(13张)

数学七年级下北师大版4-4用尺规作三角形课件(13张)
还有没有其他 的作法?
3.已知三角形的三边,求作这个三角形.
已知:线段a,b,c.
a
b
c
求作:△ABC,使AB=c,AC=b,BC=a.
(1)请写出作法并作出相应的图形.
(2)将你所作的三角形与同伴作出的三角形 进行比较,它们全等吗?为什么?
已知:线段m.
m
求作:以m为边长的等边三角形. 试根据下面的作图语言完成作图:
3.以下列线段为边能作三角形的是 ( ) A.2厘米、3厘米、5厘米 B.4厘米、4厘米、9厘米 C.1厘米、2厘米、 3厘米 D.2厘米、3厘米、4厘米
尺规作三角形进一步验证了全等三角形的条件.
P88 习题3.9
(3)在射线BD上截取线 段BA=c;
(4)连接AC.△ABC就 是所求作的三角形.
示范
B
C
B
C
B
C
A
B
C
将你所作的三角形与同伴作出的三角形进行比 较,它们全等吗?为什么?
还有没有其他 的作法?
2.已知三角形的两角及其夹边,求作这个三角形.
已知: , ,线段c.
c
求作:△ABC,使∠A= ,∠B= ,AB=c.
3.4 用尺规作三角形
如何利用尺规作出一个三角形与已知三角形全等? A
B
C
直尺
1.已知三角形的两边及其夹角,求作这个三角形.
已知:线段a, c, .
a
c
求作:△ABC,使BC=a AB=c, ∠ABC= .
作法 (1)作一条线段BC=a;
(2)以B为顶点,以BC为 一边,作 DBC .
(1)作线段AB=m,
(2)分别以A、B为圆心,m长为半径画弧,两 弧在射线AX 同侧相交于C;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
P
A
a
O
Q
P
N
M O
N M
B
P
A 老师
姓名
学生姓名 教材版本 北师大版
学科名称 数学
年级
初一
上课时间
课题名称
尺规作图
教学重点
1. 掌握几种尺规作图的作法
2. 能利用尺规作图解决实际问题
教 学 过 程
第一环节:知识梳理(要点)
1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线 (1)题目一:作一条线段等于已知线段。

已知:如图,线段a .
求作:线段AB ,使AB = a . 作法:
(1) 作射线AP ;
(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN.
求作:点O ,使MO=NO (即O 是MN 的中点). 作法:
(1)分别以M 、N 为圆心,大于
的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .
则点O 就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,
求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:
(1)以O 为圆心,任意长度为半径画弧,
分别交OA ,OB 于M ,N ;
N M
B O
A

②①A'
A'
N'O'
B'M'O'
A'
N'M'
M'
O'
Q N
D
C P P M B
A B A P
A B
B
A
P Q N D C
M (2)分别以M 、N为圆心,大于 的线段长为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB
作法:
(1)作射线O ’A ’;
(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。

则∠A ’O ’B ’就是所求作的角。

(5)题目五:经过直线上一点做已知直线的垂线。

已知:如图,P 是直线AB 上一点。

求作:直线CD ,是CD 经过点P ,且CD ⊥AB 。

作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
(2)分别以M 、N 为圆心,大于
MN 2
1
的长为半径画弧,两弧交于点Q ; (3)过D 、Q 作直线CD 。

则直线CD 是求作的直线。

(6)题目六:经过直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P 。

求作:直线CD ,使CD 经过点P ,
且CD ⊥AB 。

作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
(2)分别以M 、N 圆心,大于
MN 2
1
长度的一半为半径画弧,两弧交于点Q ; (3)过P 、Q 作直线CD 。

则直线CD 就是所求作的直线。

第二环节:典型例题
例1.如图,A 、B 两村在一条小河的的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.
.B
A .
例2.如图(3),∠AOB 内有一点P ,在OA 和OB 边上分别找出M 、N ,使ΔPMN 的周长最小。

B O A ·P 图(3) B
O A ·P ·P 1
·P 2 M N
320国道
107国道
O D C
B
A
O
A
B C B A 第三环节:巩固练习
1、如图:107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论)
2、三条公路两两相交,交点分别为A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况?用尺规作图作出所有可能的加油站地址。

3、如图,已知方格纸中的每个小方格都是全等的正方形,∠AOB 画在方格纸上,请用利用格点和直尺(无刻度)作出∠AOB 的平分线。

4.如图(1)所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A ,B 到它的距离之和最短?
5、如图,A 为∠MON 内一点,试在OM 、ON 边上分别作出一点B 、C ,使△ABC 的周长最小.
6、如图,已知∠A 、∠B ,求作一个角,使它等于∠A-∠B.
N A O M
·A
·B
街道l ·A ·B 街道l ·A ' P 图(1) 图(2)① 图(2)②
·A ·B 街道l ·A '
P
课后小结上课情况:
课后需再巩固的内容:教研组长签名。

相关文档
最新文档