(完整)高中数学必修三练习题
北师大版高中数学必修3第1章《平均数、中位数、众数、极差、方差、标准差》练习
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 【解析】 平均值的大小与方差的大小无任何联系,故A 错,由方差的公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]知C 错.对于D ,方差大的表示其射击环数比较分散,而非射击水平高,故D 错.【答案】 B2.一个样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x 为 ( )A .21B .22C .20D .23【解析】 由中位数的概念知x +232=22,所以x =21. 【答案】 A3.(2016·长沙四校联考)为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图1-4-3所示,则下列关于该同学数学成绩的说法正确的是( )图1-4-3A .中位数为83B .众数为85C .平均数为85D .方差为19【解析】易知该同学的6次数学测试成绩的中位数为84,众数为83,平均数为85.【答案】 C4.为了了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高为1.60 m;从南方抽取了200个男孩,平均身高为1.50 m.由此可推断我国13岁男孩的平均身高为()A.1.54 m B.1.55 mC.1.56 m D.1.57 m【解析】x=300×1.60+200×1.50300+200=1.56(m).【答案】 C5.为了普及环保知识,增强环境意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)如图1-4-4所示,假设得分值的中位数为m e,众数为m0,平均值为x,则()图1-4-4A.m e=m0=xB.m e=m0<xC.m e<m0<xD.m0<m e<x【解析】由图知30名学生的得分情况依次为2个人得3分,3个人得4分、10个人得5分、6个人得6分、3个人得7分,2个人得8分、2个人得9分、2个人得10分,中位数为第15、16个数的平均数,即m e=5+62=5.5,5出现次数最多,故m0=5.x=130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97.于是m 0<m e <x . 【答案】 D 二、填空题6.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数的茎叶图如右图1-4-5所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为________.图1-4-5【解析】 由茎叶图可知,学生甲的演唱分数分别为79,83,84,86,84,88,93,去掉一个最高分和一个最低分后,得分如下:83,84,84,86,88,则平均数为85,方差为s 2=15×[(-2)2+(-1)2+(-1)2+12+32]=3.2.【答案】 85,3.27.一组数据的方差为s 2,将这一组数据中的每个数都乘2,所得到的一组新数据的方差为________.【解析】 每个数都乘以2,则x =2x , S =1n [(2x 1-2x )2+…+(2x n -2x )2] =4n [(x 1-x )2+…+(x n -x )2]=4s 2. 【答案】 4s 28.由正整数组成的一组数据x 1,x 2,x 3,x 4其平均数和中位数都是2,且标准差等于1,则这组数据为________(从小到大排列).【解析】 不妨设x 1≤x 2≤x 3≤x 4且x 1,x 2,x 3,x 4为正整数. 由条件知⎩⎪⎨⎪⎧x 1+x 2+x 3+x 44=2,x 2+x 32=2,即⎩⎨⎧x 1+x 2+x 3+x 4=8,x 2+x 3=4,又x1、x2、x3、x4为正整数,∴x1=x2=x3=x4=2或x1=1,x2=x3=2,x4=3或x1=x2=1,x3=x4=3. ∵s=1 4[](x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2=1,∴x1=x2=1,x3=x4=3.由此可得4个数分别为1,1,3,3.【答案】1,1,3,3三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50(2)求这50户居民每天丢弃旧塑料袋的标准差.【解】(1)平均数x=150×(2×6+3×16+4×15+5×13)=18550=3.7.众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97.所以标准差s≈0.985.10.(2014·广东高考)某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.【解】 (1)这20名工人年龄的众数为:30;这20名工人年龄的极差为:40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:(3)这20名工人年龄的平均数为:(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;所以这20名工人年龄的方差为:120(30-19)2+320(30-28)2+320(30-29)2+520(30-30)2+420(30-31)2+320(30-32)2+120(30-40)2=12.6.[能力提升]1.(2015·山东高考)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图1-4-5所示的茎叶图.考虑以下结论:图1-4-5①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的序号为()A.①③B.①④C.②③D.②④【解析】甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.【答案】 B2.对“小康县”的经济评价标准:①年人均收入不小于7 000元;②年人均食品支出不大于收入的35%.某县有40万人口,年人均收入如下表所示,年人均食品支出如图1-4-6所示.则该县()图1-4-6A.是小康县B.达到标准①,未达到标准②,不是小康县C.达到标准②,未达到标准①,不是小康县D.两个标准都未达到,不是小康县【解析】 由图表可知年人均收入为(2 000×3+4 000×5+6 000×5+8 000×6+10 000×7+12 000×5+16 000×3)÷40=7 050(元)>7 000元,达到了标准①;年人均食品支出为(1 400×3+2 000×5+2 400×13+3 000×10+3 600×9)÷40=2 695(元),则年人均食品支出占收入的2 6957 050×100%≈38.2%>35%,未达到标准②.所以不是小康县.【答案】 B3.已知样本9,10,11,x ,y 的平均数为10,方差为4,则xy =________. 【解析】 由题意得⎩⎪⎨⎪⎧9+10+11+x +y5=10,15[(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2]=4.化简得x +y =20, ① (x -10)2+(y -10)2=18, ② 由①得x 2+y 2+2xy =400, ③ 代入②化简得xy =91. 【答案】 914.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)甲班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.【解】 (1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以名次来判断学习成绩的好坏,小刚得了85分,说明他对本阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。
高中数学必修三习题带答案
第一章1. 家中配电盒至电视机的线路断了,检测故障的算法中,为了使检测的次数尽可能少,第一步检测的是 B(A)靠近电视的一小段,开始检查 (B)电路中点处检查 (C)靠近配电盒的一小段开始检查 (D)随机挑一段检查2. 早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法 C (A)S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 (B)S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 (C)S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播 (D)S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3. 给出以下四个问题:①输入一个数x ,输出它的相反数;②求面积为6的正方形的周长;③求三个数a ,b ,c ,中的最大数;④求函数⎩⎨⎧<+≥-=)0(2)0(1)(x x x x x f 的函数值;⑤求两个正整数a ,b 相除的商及余数.其中不需要用条件语句来描述其算法的有_____125_______. 4. 下面的问题中必须用条件分支结构才能实现的是__23__________.①求面积为1的正三角形的周长; ②求方程0ax b +=(,a b 为常数)的根; ③求两个实数,a b 中的最大者; ④求1+2+3+…+100的值 5. 840和1764的最大公约数是84.6. 用秦九韶算法计算多项式23456()1235879653f x x x x x x x =+-++++,在4x =-时的值时,3V 的值为 C(A)-845 (B)220 (C)-57 (D)34 9.___28_____.12.(08-广东-9)阅读下图的程序框图,若输入4m =,3n =,则输出a =12,i =3;13.按如图所示的框图运算:若输入x =8,则输出k =5;(基本算法语句)1.下列给出的赋值语句中正确的是 B(A)M =4 (B)M M -= (C)3==A B (D)0=+y x 2.下列给变量赋值的语句正确的是 D(A)3a =(B)1a a +=(C)3a b c ===(D)8a a =+ 3.下列赋值语句中错误的是 C(A)1N N =+ (B)*K K K = (C)()C A B D =+ (D)M=M/5第二章一、选择题:1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( D ).A.简单随机抽样 B.系统抽样C.分层抽样 D.先从老年人中剔除一人,然后分层抽样2.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会( C )A. 不全相等B. 均不相等C. 都相等D. 无法确定3.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( A )k=5A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,144.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。
高中数学必修三练习题
高中数学必修三练习题在高中数学必修三中,我们将学习许多重要的数学概念和技巧。
为了巩固所学知识并提高解题能力,我们需要进行大量的练习。
本文将提供一些高中数学必修三的练习题,帮助你加深对数学知识的理解和掌握。
1. 函数与方程(1) 求解方程组:⎧ 2x + y = 5⎪⎪ 3x - y = 7(2) 已知函数 f(x) = 2x^2 - 3x + 1,求 f(3) 的值。
(3) 求方程 2x^2 - 5x + 3 = 0 的根。
2. 三角函数(1) 计算sin(π/6) - cos(π/4) + tan(π/3) 的值。
(2) 求解方程sin(x) = √3/2 在区间[0, 2π] 内的解。
(3) 已知sinα = 1/2,sinβ = -1/2,求sin(α + β) 的值。
3. 概率与统计(1) 有六个小球,其中两个是红色的,四个是蓝色的。
从中随机选择两个,求选出的两个小球都是红色的概率。
(2) 一次考试的及格率为80%,某班级有35人参加考试,求至少有33人及格的概率。
(3) 某班级的学生身高如下:150cm、155cm、160cm、165cm、170cm。
求身高的中位数和众数。
4. 平面向量(1) 已知向量 a = (3, 4),向量 b = (-1, 2),求 a + b 和 a - b。
(2) 已知向量 a = (2, -3),向量 b = (4, 1),求向量 a·b 的值(即点乘)。
(3) 已知向量 a = (1, 2),向量 b = (3, 4),求向量 a 与向量 b 的夹角的余弦值。
5. 解析几何(1) 求过点 A(2, 3) 且与直线 y = -2x + 1 平行的直线的方程。
(2) 已知三角形 ABC 的顶点分别是 A(1, 2),B(4, -1),C(-2, -3),求三角形 ABC 的周长和面积。
(3) 已知直线 L1 的方程为 2x + y - 4 = 0,直线 L2 的方程为 3x - 2y + 7 = 0,求 L1 和 L2 的交点坐标。
高中数学必修三练习题
高中数学必修三练习题一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)2. 已知函数f(x) = 3x - 2,当x = 2时,f(x)的值是:A. 4B. 6C. 8D. 103. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -34. 已知等差数列的首项a1 = 3,公差d = 2,第5项a5的值是:A. 13B. 15C. 17D. 195. 圆的标准方程为(x - 2)^2 + (y - 3)^2 = 9,圆心坐标是:A. (2, 3)C. (0, 0)D. (3, 2)6. 已知直线l1的方程为y = 2x + 1,直线l2的方程为y = -3x + 5,这两条直线的交点坐标是:A. (1, 3)B. (-1, 1)C. (1, 1)D. (-1, 3)7. 函数y = x^3 - 6x^2 + 9x + 2的导数是:A. 3x^2 - 12x + 9B. 3x^2 - 6x + 9C. x^3 - 6x^2 + 9D. 3x^2 - 12x8. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,这个三角形的面积是:A. 6B. 9C. 10D. 129. 函数y = sin(x) + cos(x)的周期是:A. πB. 2πC. π/2D. 4π10. 已知抛物线y = x^2 - 4x + 4,其顶点坐标是:B. (2, 4)C. (-2, 0)D. (-2, 4)二、填空题(每题3分,共15分)11. 已知等比数列的首项a1 = 2,公比q = 3,第4项a4 = ______。
12. 函数f(x) = x^2 - 4x + 4的最小值是 ______。
13. 已知直线l的方程为2x - 3y + 6 = 0,直线l与x轴的交点坐标是 ______。
高中高一数学必修三练习试题.docx
高一数学必修三练习题一、选择题1. 下面一段程序执行后输出结果是( )程序:A=2A=A*2A=A+6PRINT AA. 2B. 8C. 10D. 182. 从学号为0~ 50的高一某班 50 名学生中随机选取5 名同学参加数学测试, 采用系统抽样的方法 ,则所选 5名学生的学号可能是()A. 1,2,3,4,5B.5,16,27,38,49 C.2,4,6,8,10D.4,13,22,31,403. 给出下列四个命题: ①“三个球全部放入两个盒子 , 其中必有一个盒子有一个以上的球”是必然事件②“当 x 为某一实数时可使x 20 ”是不可能事件③“明天福安要下雨”是必然事件④“从 100个灯泡中取出 5 个 ,5 个都是次品”是随机事件 . 其中正确命题的个数是( )A. 0B. 1C.2D.34. 下列各组事 件 中 , 不 是 互 斥 事 件 的 是( )A. 一个射手进行一次射击, 命中环数大于 8 与命中环数小于6B. 统计一个班数学期中考试成绩 , 平均分数低于 90分与平均分数不高于80 分C.播种菜籽100 粒 , 发芽 90 粒与发芽80 粒D. 检查某种产品, 合格率高于 70% 与合格率为 70%5. 某住宅小区有居民 2 万户 , 从中随机抽取200户, 调查是否安装电话, 调查的结果如表所示 ,则该小区已安装电话的户数估计有()电话动迁户原住户A. 6500 户B. 300户C. 19000户D. 9500已安装6530户4065未安装6.在样本的频率分布直方图中, 共有 11 个小长方形 , 若中间一个小长立形的面积等于其他110 个小长方形的面积的和的, 且样本容量为160, 则中间一组有频数为4( )A. 32B. 0.2C. 40D. 0.257. 袋中装有 6 个白球 ,5只黄球,4个红球,从中任取 1 球 , 抽到的不是白球的概率为()第 1 页共 12 页A.2B.4C.3D.非以上答案51558. x1, x2,..., x n的平均数是x, 方差是s 2, 则另一组数3x12, 3x 22,..., 3x n2的平均数和方差分别是()A.3x, s 2B.3x 2, s2C.3x2,3 s2D.3x2,3 s 2 2 6s 29.如下图所示 ,程序执行后的输出结果为了( )开始n 5s 0n n1nos 15?s s nyes输出 n第 9 题图结束A. -1B. 0C. 1D. 210.从 1,2,3,4,5中任取两个不同的数字, 构成一个两位数, 则这个数字大于40 的概率是()2413A. B. C. D.555511. 小强和小华两位同学约定下午在福安二中门口见面, 约定谁先到后必须等10 分钟 , 这时若另一人还没有来就可以离开. 如果小强是1: 40 分到达的 , 假设小华在 1 点到 2 点内到达, 且小华在1点到 2 点之间何时到达是等可能的, 则他们会面的概率是( )1B.1C.11A. D.624312.在两个袋内, 分别写着装有1,2,3,4,5,6六个数字的 6张卡片 , 今从每个袋中各取一张卡片,则两数之和等于9的概率为第 2 页共 12 页1111 ()A. B. C. D.36912二、填空题:13. 口袋内装有100 个大小相同的红球、白球和黑球, 其中有45 个红球 , 从中摸出 1 个球 , 摸出白球的概率为0.23, 则摸出黑球的概率为_______.14.用辗转相除法求出153 和 119 的最大公约数是______________.15.设有以下两个程序:程序 (1) A=-6程序 (2) x=1/3B=2i=1If A<0 then while i<3A=-A x=1/(1+x)END if i=i+1B=B^2wendA=A+B print xC=A-2*B endA=A/CB=B*C+1Print A,B,C程序( 1 )的输出结果是______,________,_________.程序( 2 )的输出结果是__________.16. 有 5 条长度分别为1,3,5,7,9的线段, 从中任意取出 3 条 , 则所取 3 条线段可构成三角形的概率是 ___________.三、解答题17.从一箱产品中随机地抽取一件产品 , 设事件 A= “抽到的一等品” , 事件 B= “抽到的二等品” ,事件 C= “抽到的三等品”, 且已知P A 0.7 , P B0.1, P C 0.05 ,求下列事件的概率:⑴事件 D= “抽到的是一等品或二等品”;⑵事件E=“抽到的是二等品或三等品”第 3 页共 12 页18. 一组数据按从小到大顺序排列, 得到 -1,0,4,x,7,14中位数为5, 求这组数据的平均数和方差 .19. 五个学生的数学与物理成绩如下表:⑴作出散点图;⑵求出回归方程 .学生A B C D E数学8075706560物理706668646220.铁路部门托运行李的收费方法如下: y 是收费额 ( 单位:元 ),x 是行李重量 ( 单位:㎏ ),当 0 x 20 时,按0.35/㎏收费,当 x20 ㎏时,20㎏的部分按0.35元/㎏,超出20㎏的部分 , 则按 0.65 元 / ㎏收费 . ⑴请根据上述收费方法求出Y 关于 X 的函数式;⑵画出流程图 .第 4 页共 12 页21. 某次数学考试中, 其中一个小组的成绩是:55, 89, 69, 73, 81, 56, 90, 74, 82.试画一个程序框图:程序中用S(i) 表示第i 个学生的成绩, 先逐个输入S(i)( i=1,2,,), 然后从这些成绩中搜索出小于75 的成绩 .( 注意:要求程序中必须含有循环结构)第 5 页共 12 页22 对某种电子元件的使用寿命进行调查, 抽样 200个检验结果如表:⑴列出频率分布表;⑵ 画出频率分布直方图以及频率分布折线图;⑶估计电子元件寿命在100h ~ 400h 以内的频率;⑷估计电子元件寿命在400h以上的频率 .寿命 (h)100,200200,300300,400400,500500,600个数20308040301. 下面一段程序执行后输出结果是( C )程序:A=2第 6 页共 12 页A=A*2A=A+6PRINT AA.2B.8C.10D.182. 从学号为0~ 50 的高一某班 50 名学生中随机选取5 名同学参加数学测试, 采用系统抽样的方 法 ,则所选5名学生的 学号可 能 是( B )A.1,2,3,4,5 B.5,16,27,38,49 C.2,4,6,8,10D.4,13,22,31,403. 给出下列四个命题: ①“三个球全部放入两个盒子 , 其中必有一个盒子有一个以上的球”是必然事件②“当 x 为某一实数时可使x 20 ”是不可能事件③“明天福安要下雨”是必然事件④“从 100个灯泡中取出 5 个 ,5 个都是次品”是随机事件 . 其中正确命题的个数是( D )A. 0B. 1C.2D.34.下列各组事 件 中 , 不 是 互 斥 事 件 的 是( B)A.一个射手进行一次射击, 命中环数大于 8 与命中环数小于6B.统计一个班数学期中考试成绩 , 平均分数低于 90分与平均分数不高于80 分C.播种菜籽100 粒 , 发芽 90 粒与发芽80 粒D. 检查某种产品, 合格率高于 70% 与合格率为 70%5. 某住宅小区有居民2 万户 , 从中随机抽取200 户 , 调查是否安装电话, 调查的结果如表所电话 动迁户示 , 则该小已安装 65区已安装电话的户数估计有( D )未安装40A. 6500 户B. 300户C. 19000户 D. 9500 户6.在样本的频率分布直方图中, 共有 11 个小长方形 , 若中间一个小长立形的面积等于其他110 个小长方形的面积的和的, 且样本容量为 160, 则中间一组有频数为4( A )A. 32B. 0.2C. 40D. 0.257.袋中装有 6 个白球 ,5只黄球 ,4 个红球 , 从中任取 1 球 , 抽到的不是白球的概率为( C )243A. B. C. D.非以上答案51558.x1 , x2 ,..., x n的平均数是x, 方差是s 2, 则另一组数3x12, 3x 22,..., 3x n2第7 页共 12 页的平均数和方差分别是( C )A.3x, s 2B.3x2, s2C.3x2,3 s2D.3x2,3 s 2 2 6s29.如下图所示,程序执行后的输出结果为了( B)开始n 5s 0n n1nos 15?s s nyes输出 n第 9 题图结束A.-1B.0C.1D.210.从 1,2,3,4,5中任取两个不同的数字, 构成一个两位数, 则这个数字大于40的概率是( A)A.2B.4C.1D.3555511. 小强和小华两位同学约定下午在福安二中门口见面, 约定谁先到后必须等10分钟 ,这时若另一人还没有来就可以离开. 如果小强是1:40分到达的 , 假设小华在 1 点到 2 点内到达,且小华在 1点到 2点之间何时到达是等可能的 , 则他们会面的概率是( D)A.1B.1C.1D.1 624312.在两个袋内 , 分别写着装有1,2,3,4,5,6六个数字的 6 张卡片 , 今从每个袋中各取一张卡片,则两数之和等于9的概率为1111(C) A. B. C. D.36912二、填空题:0.32第8 页共 12 页13. 口袋内装有100 个大小相同的红球、白球和黑球, 其中有45 个红球 , 从中摸出 1 个球 , 摸出白球的概率为0.23,则摸出黑球的概率为_______.14.用辗转相除法求出 153 和 119 的最大公约数是 ______________. 1715.设有以下两个程序:程序 (1) A=-6程序 (2)x=1/3B=2i=1If A<0 then while i<3A=-A x=1/(1+x)END if i=i+1B=B^2wendA=A+B print xC=A-2*B endA=A/CB=B*C+1Print A,B,C程序( 1)的输出结果是______,________,_________.程序( 2 )的输出结果是4__________.( 1) 5、9、 2;( 2 )716. 有 5 条长度分别为1,3,5,7,9的线段,从中任意取出 3 条 , 则所取 3 条线段可构成三角形的概率是 ___________.310三、解答题17.从一箱产品中随机地抽取一件产品 , 设事件 A= “抽到的一等品” , 事件 B= “抽到的二等品” ,事件 C= “抽到的三等品”, 且已知P A0.7 , P B0.1 , P C0.05 ,求下列事件的概率:⑴事件 D= “抽到的是一等品或二等品”;⑵事件 E= “抽到的是二等品或三等品”解:⑴ P D P A B P A P B =0.7+0.1=0.8⑵P E = P B C P B P C=0.1+0.05=0.1518. 一组数据按从小到大顺序排列, 得到 -1,0,4,x,7,14中位数为5, 求这组数据的平均数和方差 .解:排列式:-1,0,4,x,7,14第9 页共 12 页∵中位数是5, 且有偶数个数∴4 x5∴ x6 2∴这组数为-1,0,4,6,7,14∴x 519.五个学生的数学与物理成绩如下表:学生A B C D E数学8075706560物理7066686462⑴ 作出散点图;⑵求出回归方程 .解:1物理2()70()y0.36 x 40.8?60607080数学20.铁路部门托运行李的收费方法如下: y 是收费额 ( 单位:元 ),x 是行李重量 ( 单位:㎏ ),当 0 x 20 时,按0.35/㎏收费,当 x20 ㎏时,20㎏的部分按0.35元/㎏,超出20㎏的部分 , 则按 0.65 元 / ㎏收费 . ⑴请根据上述收费方法求出Y 关于 X 的函数式;⑵画出流程图 .0.35x0 x 20解: y0.35*20 0.65 x20x 20程序如下 :INPUT “请输入行李的重量”;xIF x>20 THENy= 0.35*20 0.65* x20ELSEy= 0.35* xEND IFPRINT “金额为”;yEND21. 某次数学考试中, 其中一个小组的成绩是:55, 89, 69, 73, 81, 56, 90, 74, 82.试画一个程序框图:程序中用S(i)表示第i 个学生的成绩, 先逐个输入S(i)( i=1,2,, ), 然第 10 页共 12 页后从这些成绩中搜索出小于75 的成绩 .( 注意:要求程序中必须含有循环结构)开始i 1Y i 9N输入 S ii i1i 1i9NS i75Y输出 S ii i1结束22 对某种电子元件的使用寿命进行调查, 抽样 200 个检验结果如表:寿命 (h)100,200200,300300,400400,500500,600个数2030804030⑴列出频率分布表;⑵画出频率分布直方图以及频率分布折线图;⑶估计电子元件寿命在 100h ~400h 以内的频率;⑷估计电子元件寿命在 400h以上的频率 .解 : (1)( 2)略第 11 页共 12 页区间频数频率频率 / 组距100,200200.10.001 200,300300.150.0015 300,400800.40.004 400,500400.20.002 500,600300.150.0015(3)P100 h ,400h=0.65( 4)P400 h ,600h=0.35第 12 页共 12 页。
高中数学必修三《事件与概率》课后练习(含答案)
事件与概率课后练习题一:袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是(球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球.摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球.摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球.摸出的三个球中至少有两个球是白球题二:下列事件中,必然事件是题二:下列事件中,必然事件是 ,不可能事件是,不可能事件是 ,随机事件是,随机事件是 .(1)某射击运动员射击1次,命中靶心;次,命中靶心;(2)从一只装着白球和黑球的袋中摸球,摸出红球;)从一只装着白球和黑球的袋中摸球,摸出红球;(3)13人中至少2个人的生日是同一个月;个人的生日是同一个月;(4)任意摸1张体育彩票会中奖;张体育彩票会中奖;(5)天上下雨,马路潮湿;)天上下雨,马路潮湿;(6)随意翻开一本有400页的书,正好翻到第100页;页;(7)你能长高到4m ;(8)抛掷1枚骰子得到的点数小于8.题三:一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是(的对立事件是( )A .命中环数为7、8、9、10环B .命中环数为1、2、3、4、5、6环C .命中环数至少为6环D .命中环数至多为6环题四:某人连续投篮投3次,那么下列各组事件中是互斥且不对立的事件的组数为(次,那么下列各组事件中是互斥且不对立的事件的组数为( ) (1)事件A :至少有一个命中,事件B :都命中;:都命中;(2)事件A :至少有一次命中,事件B :至多有一次命中;:至多有一次命中;(3)事件A :恰有一次命中,事件B :恰有2次命中;次命中;(4)事件A :至少有一次命中,事件B :都没命中.:都没命中.A .0 B .1 C .2 D .3 题五:为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是人组成,则甲一定抽调到防控小组的概率是 .题六:小明将1枚质地均匀的硬币连续抛掷3次.次.(1)按3次抛掷结果出现的先后顺序,下列三种情况:次抛掷结果出现的先后顺序,下列三种情况:①正面朝上、正面朝上、正面朝上;①正面朝上、正面朝上、正面朝上;②正面朝上、反面朝上、反面朝上;②正面朝上、反面朝上、反面朝上;③正面朝上、反面朝上、正面朝上,③正面朝上、反面朝上、正面朝上,其中出现的概率(其中出现的概率( )A .①最小.①最小B .②最小.②最小C .③最小.③最小D .①②③均相同.①②③均相同(2)请用树状图说明:小明在3次抛掷中,硬币出现1次正面向上、2次反面向上的概率是多少多少题七:掷两个面上分别记有数字1至6的正方体玩具,设事件A 为“点数之和恰好为6”,则A 所有基本事件个数为(有基本事件个数为( )A .2个B .3个C .4个D .5个题八:从1,2,3,5中任取2个数字作为直线Ax +By =0中的A 、B .(1)求这个试验的基本事件总数;)求这个试验的基本事件总数;(2)写出“这条直线的斜率大于-1”这一事件所包含的基本事件.这一事件所包含的基本事件.题九:袋内装有红、白、黑球分别为3、2、1个,从中任取两个,则互斥而不对立的事件是( )A .至少一个白球;都是白球.至少一个白球;都是白球B .至少一个白球;至少一个黑球.至少一个白球;至少一个黑球C .至少一个白球;一个白球一个黑球.至少一个白球;一个白球一个黑球D .至少一个白球;红球、黑球各一个.至少一个白球;红球、黑球各一个题十:掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是(那么互斥而不对立的两个事件是( )A .“至少有一个奇数”与“都是奇数”B .“至少有一个奇数”与“至少有一个偶数”C .“至少有一个奇数”与“都是偶数”D .“恰好有一个奇数”与“恰好有两个奇数”题十一:下列说法中正确的是题十一:下列说法中正确的是 ..(1)事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大;中恰有一个发生的概率大; (2)事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小;中恰有一个发生的概率小;(3)互斥事件一定是对立事件,对立事件不一定是互斥事件;)互斥事件一定是对立事件,对立事件不一定是互斥事件;(4)互斥事件不一定是对立事件,对立事件一定是互斥事件.)互斥事件不一定是对立事件,对立事件一定是互斥事件.题十二:从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰好有1件次品和恰好有2件次品;件次品;(2)至少有1件次品和全是次品;件次品和全是次品;(3)至少有1件正品和至少有1件次品.件次品.题十三:经临床验证,一种新药对某种疾病的治愈率为49%,显效率28%,有效率12%,其余为无效.则某人患该病使用此药后无效的概率是余为无效.则某人患该病使用此药后无效的概率是 .题十四:我国西部一个地区的年降水量(题十四:我国西部一个地区的年降水量( 单位:mm )在下列区间内的概率如下表:)在下列区间内的概率如下表:年降水量水量[600,800) [800,1000) [1000,1200) [1200,1400) [1400,1600) 概率 0.12 0.26 0.38 0.16 0.08 (1)求年降水量在)求年降水量在事件与概率课后练习参考答案题一:题一: A .详解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件.A 、是必然事件;B 、是随机事件,选项错误;C 、是随机事件,选项错误;、是随机事件,选项错误;D 、是随机事件,选项错误.故选A .题二:题二: (3)、(5)、(8);(2)、(7);(1)、(4)、(6). 详解:在一定条件下,可能发生也可能不发生的事件,称为随机事件.一定发生的事件称为必然事件;一定不发生的事件称为不可能事件.(1)某射击运动员射击1次,命中靶心;(随机事件)(随机事件)(2)从一只装着白球和黑球的袋中摸球,摸出红球;(不可能事件)(不可能事件)(3)13人中至少2个人的生日是同一个月;(必然事件)(必然事件)(4)任意摸1张体育彩票会中奖;(随机事件);(5)天上下雨,马路潮湿;(必然事件)(必然事件)(6)随意翻开一本有400页的书,正好翻到第100页;(随机事件);(7)你能长高到4m ;(不可能事件)(不可能事件)(8)抛掷1枚骰子得到的点数小于8.(必然事件).题三:题三: C .详解:根据对立事件的定义可得,一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是:“命中环数至少为6环”,故选C .题四:题四: B .详解:利用互斥事件、对立事件的定义,即可得到结论.互斥事件:事件A 与事件B 不可能同时发生,强调的是“不同时发生”.对立事件:事件A 、B 中必定而且只有一个发生。
高中数学必修三练习题(含解析)
五一作业1.tan(﹣345°)=()A.2+B.﹣2+C.﹣2﹣D.2﹣【解答】解:∵tan30°=tan(2×15°)==,∴可得tan215°+6tan15°﹣=0,∴解得tan15°=2﹣,负值舍去,∴tan(﹣345°)=﹣tan(360°﹣15°)=tan15°=2﹣.故选:D.2.已知tan(π﹣α)=2,则=()A.±B.C.﹣D.﹣【解答】解:∵tan(π﹣α)=﹣tanα=2,∴tanα=﹣2,∴==4sinαcosα====﹣.故选:C.【点评】本题主要考查了二倍角公式,诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.3.将函数y=sin x cos x﹣cos2x+的图象向右平移个单位长度得到函数g(x)的图象,下列结论正确的是()A.g(x)是最小正周期为2π的偶函数B.g(x)是最小正周期为4π的奇函数C.g(x)在(π,2π)上单调递减D.g(x)在[0,]上的最大值为【解答】解:令f(x)=sin x cos x﹣cos2x+=sin2x﹣cos2x﹣=sin(2x﹣)﹣;∵f(x)向右平移个单位∴g(x)=sin[2(x﹣﹣)]﹣=sin(2x﹣)﹣=﹣cos2x﹣,A答案:T===π,所以A错.B答案:此函数为偶函数,所以B错误.C答案:增区间为kπ≤x≤kπ+,所以C错误.D答案:正确.故选:D.4.设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则sinθ=()A.B.C.D.【解答】解:函数f(x)=sin x﹣2cos x=(sin x﹣cos x)=sin(x﹣φ),其中cosφ=,sinφ=.当x﹣φ=2kπ+(k∈Z)时,取的最大值.∴θ=φ+2kπ+(k∈Z)时,取得最大值,则sinθ=sin(φ+2kπ+)=cosφ=,故选:D.5.下列关于函数f(x)=sin|x|和函数g(x)=|sin x|的结论,正确的是()A.g(x)值域是[﹣1,1]B.f(x)≥0C.f(x+2π)=f(x)D.g(x+π)=g(x)【分析】结合f(x)和g(x)的解析式,分别进行判断即可.【解答】解:f(x)=sin|x|=,函数f(x)∈[﹣1,1],f(x)是偶函数,不具备周期性,故C,B错误,g(x)=|sin x|≥0,即函数g(x)的值域是[0,1],故A错误,g(x+π)=|sin(x+π)|=|﹣sin x|=|sin x|=g(x),故D正确,故选:D.【点评】本题主要考查命题的真假判断,涉及三角函数的周期性,值域的判断,结合绝对值的意义是解决本题的关键.6.函数f(x)=cosωx(ω>0)在区间上是单调函数,且f(x)的图象关于点对称,则ω=()A.或B.或2C.或2D.或【解答】解:f(x)的图象关于点对称,则ω=,整理得:ω=(k∈Z),当k=0时,ω=,所以函数f(x)=,函数的最小正周期为3π,所以函数f (x)在区间上是单调递减函数.当k=1时,ω=2,所以函数f(x)=cos2x,函数的最小正周期为π,所以函数f(x)在区间上是单调递减函数.当k=2时,ω=,所以函数f(x)=cos x,函数的最小正周期为,所以函数f(x)在区间上是不是单调递减函数,函数的单调性先减后增,故错误.故选:B.【点评】本题考查的知识要点:三角函数关系式的恒等变换,余弦型函数性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.7.设函数f(x)=cos(ωx+φ)(x∈R)(ω>0,﹣π<φ<0)的部分图象如图所示,如果,x1≠x2,且f(x1)=f(x2),则f(x1+x2)=()A.B.C.D.【解答】解:根据函数f(x)=cos(ωx+φ)(x∈R)(ω>0,﹣π<φ<0)的部分图象,可得=﹣,∴ω=2.再根据五点法作图可得2•+φ=﹣,∴φ=﹣,∴f(x)=cos(2x﹣).如果,x1≠x2,则2x1﹣∈(﹣,),2x2﹣∈(﹣,),∵f(x1)=f(x2),∴2x1﹣+(2x2﹣)=0,∴x1+x2=,则f(x1+x2)=cos(﹣)=cos=﹣cos=﹣,故选:B.8.已知tanα+=4(α∈(π,π)),则sinα+cosα=()A.B.﹣C.D.﹣【解答】解:∵tanα+=4,∴tan2α﹣4tanα+1=0,解得,又∵α∈(π,π),∴tan,sinα<0,cosα<0,∴sinαcosα=,∴,∴sinα+cosα=﹣,故选:B.【点评】本题主要考查了同角三角函数间的基本关系,是中档题.9.已知函数f(x)=2cos(ωx+φ)﹣1(ω>0,|φ|<π)的一个零点是,当时函数f(x)取最大值,则当ω取最小值时,函数f(x)在上的最大值为()A.﹣2B.C.D.0【解答】解:∵f()=2cos(+φ)﹣1=0,∴cos(+φ)=,∴+φ=2kπ±,k∈Z,①∵f()=2cos(+φ)﹣1=1,∴cos(+φ)=1,∴+φ=2mπ,m∈Z,②由①②可得φ=8kπ﹣6mπ±,由于|φ|<π,可取k=1,m=1,解得φ=(舍去),则ω=6m﹣2,m∈Z,可得正数ω的最小值为4,即有f(x)=2cos(4x+)﹣1,由x∈,可得4x+∈[,π],可得f(x)在上递减,则f(x)的最大值为f(﹣)=2cos﹣1=2×﹣1=0,故选:D.10.在锐角△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S,若sin(A+C)=,则tan C+的最小值为()A.B.2C.1D.【分析】利用正弦定理和余弦定理化简,求出sin(B﹣C)=sin C,可得tan(B﹣C)=tan C,利用基本不等式的性质即可得出.【解答】解:由sin(A+C)=,得sin B==,所以b2=c2+ac,由b2=a2+c2﹣2ac cos B,得a﹣2c cos B=c,利用正弦定理sin A﹣2sin C cos B=sin C,sin B cos C+cos B sin C﹣2sin C cos B=sin B cos C﹣cos B sin C=sin C,即sin(B﹣C)=sin C,∵锐角△ABC中,∴tan(B﹣C)=tan C,∴tan C+=tan C+≥2=,当且仅当tan C=时取等号.故选:A.【点评】本题考查了三角形面积的计算公式、正弦定理、和差公式、基本不等式的性质.,考查了推理能力与计算能力,属于中档题.11.已知A(x A,y A)是圆心为坐标原点O,半径为1的圆上的任意一点,将射线OA绕点O逆时针旋转到OB交圆于点B(x B,y B),则2y A+y B的最大值为()A.3B.2C.D.【解答】解:设A(cosθ,sinθ),则B(,),∴2y A+y B=2sinθ+=2sinθ+sinθcos+cosθsin===,∴2y A+y B的最大值为,故选:C.【点评】本题主要考查了任意角的三角函数的定义,考查了两角和与差的三角函数,是中档题.12.已知函数,过点,当的最大值为9,则m的值为()A.2B.C.2和D.±2【解答】解:由题意T=,故ω=2,将A的坐标代入f(x)得φ)=0,故φ=2kπ,k∈Z,∵|φ|<,∴φ=﹣.故,∴+[1﹣2]令t=∈[0,1],故g(x)可化为:y=﹣2t2+4mt+1,t∈[0,1]对称轴为:t=m,开口向下.①当m≤0时,t=0时,y max=1≠9②当m≥1时,t=1时,y max=4m﹣1=9,∴符合题意;③当0<m<1时,t=m时,y max=2m2+1=9,∴m=±2(舍)综上,当m的值为时,原函数取得最大值9.故选:B.【点评】本题考查了倍角公式、三角函数的图象与性质以及利用换元法求函数的最值等问题.本题的难点一是难以发现角之间的倍数关系,二是换元之后的分类讨论忽视了讨论的范围.13.已知α,β∈(,π),sinα=,cos(α+β)=,则β=【分析】利用两角和差的三角公式进行转化,先求出cosβ的值即可.【解答】解:由于α,β∈(,π),∴α+β∈(π,2π),∵cos(α+β)=,∴sin(α+β)=﹣,cosα=﹣,∴cosβ=cos[(α+β﹣α)]=cos(α+β)cosα)+sin(α+β)sinα=×(﹣)+(﹣)×==﹣,∴β=.【点评】本题主要考查三角函数值的计算,结合两角和差的余弦公式进行转化是解决本题的关键,难度不大.14.设,若f(x)在上为增函数,则ω的取值范围是【解答】解:设,在上,ωx﹣∈[﹣﹣,﹣],由于f(x)为增函数,∴,即,求得0<ω≤,【点评】本题主要考查正弦函数的单调增区间,属于基础题.15.如图,在平行四边形ABCD中,∠BAD=,AB=2,AD=1,若M,N分别是边AD,CD上的点,且满足,其中λ∈[0,1],则•的取值范围是[﹣3,﹣1].【解答】解:由题意=2,=1,•=••cos∠BAD=2×1×cos=1.∵=λ,=λ=λ.∴=(1﹣λ),=(1﹣λ)=(1﹣λ).结合图形,有=+=+(1﹣λ),=(1﹣λ)﹣.∴•=[+(1﹣λ)]•[(1﹣λ)﹣]=(1﹣λ)2﹣•+(1﹣λ)2•﹣(1﹣λ)2=1﹣λ﹣1+(1﹣λ)2﹣4(1﹣λ)=λ2+λ﹣3,∵λ∈[0,1],∴由二次函数知识,可知λ2+λ﹣3=(λ+)2﹣∈[﹣3,﹣1].∴•的取值范围为[﹣3,﹣1].故答案为:[﹣3,﹣1].16.如图,在等腰直角三角形ABC中,∠CAB=90°,AB=2,以AB为直径在△ABC外作半圆O,P为半圆弧AB上的动点,点Q在斜边BC上,若=,则的最小值为.【解答】解:如图,以O为原点建立直角坐标系,可得A(﹣1,0),B(1,0),C(﹣1,﹣2),即有直线BC的方程为y=x﹣1,可设Q(m,m﹣1),=,即为(2,0)•(m+1,m﹣1)=2(m+1)=,解得m=,即Q(,﹣),设P(cosα,sinα),0≤α≤π,可得=(,﹣)•(cosα+1,sinα+2)=cosα+﹣sinα﹣=(2cosα﹣sinα)=cos(α+θ),θ∈(0,),当cos(α+θ)=﹣1即α+θ=π,可得的最小值为﹣.故答案为:﹣.17.已知α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣.(1)求tan2α的值;(2)求cosβ的值.【分析】(1)利用同角三角函数基本关系式可求cosα,tanα的值,进而根据二倍角的正切函数公式可求tan2α的值.(2)利用同角三角函数基本关系式可求sin(α+β)的值,根据两角差的余弦函数公式可求cosβ的值.【解答】解:(1)∵α∈(0,),sinα=,∴cosα==,tanα==4,∴tan2α===﹣.(2)∵α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣,∴α+β∈(0,π),sin(α+β)==,∴cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=(﹣)×+×=.【点评】本题主要考查了同角三角函数基本关系式,二倍角的正切函数公式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.18.设函数,其中0<ω<3.若.(1)求ω;(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在上的最小值.【分析】(1)将代入,结合0<ω<3构造一个关于ω的不等式、方程的混合组,解出ω即可.(2)先根据图象的平移变换与伸缩变换的规律,求出y=g(x)的解析式,再利用“整体思想”结合正弦函数的性质求解即可.【解答】解:(1)因为f(x)=sin,且=0,所以﹣=kπ,k∈Z.故ω=6k+2,k∈Z.又0<ω<3,所以ω=2.(2)由(1)得f(x)=sin.所以g(x)=sin(),因为x∈,所以x﹣,所以,当x﹣=﹣,即x=﹣时,g(x)取得最小值﹣.【点评】本题通过对三角函数的图象和性质以及图象变换知识与方法的考查,考查了学生的数学运算、直观想象以及逻辑推理等数学核心素养,本题属于一道中档题.19.已知a,b,c分别是△ABC三个内角A,B,C的对边,a cos C+c sin A=b+c.(1)求A;(2)若a=,b+c=3,求b,c.【分析】(1)由已知结合正弦定理及和差角公式进行化简,然后结合辅助角公式即可求解;(2)由已知结合余弦定理即可求解.【解答】解:(1)因为a cos C+c sin A=b+c.由正弦定理可得,sin A cos C+sin C sin A=sin B+sin C=sin(A+C)+sin C,展开可得,sin A cos C+sin C sin A=sin A cos C+sin C cos A+sin C,因为sin C≠0,所以,即sin(A﹣)=,∴A﹣=或A﹣=(舍),故A=;(2)因为a=,b+c=3,由余弦定理可得,===,解可得,bc=2,所以或.【点评】本题主要考查了正弦定理、余弦定理和差角公式在求解三角形中的应用,属于中档试题.20.已知函数.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)若,求cos2x0的值.【分析】(Ⅰ)先由二倍角公式及辅助角公式化简可得,然后根据正弦函数的性质令,解出即可得到增区间;(Ⅱ)先根据题意化简得,由x0的范围结合平方关系计算可得,再通过配角,利用余弦的和角公式计算得答案.【解答】解:(Ⅰ)=,令,解得,∴f(x)的单调递增区间为;(Ⅱ),则,由于,则,故,∴==.【点评】本题考查三角恒等变换以及三角函数的图象及性质,考查化简计算能力,属于基础题.21.在三角形ABC中,AB=2,AC=1,∠ACB=,D是线段BC上一点,且=,F为线段AB上一点.(1)设=,=,设=x+y,求x﹣y;(2)求•的取值范围;(3)若F为线段AB的中点,直线CF与AD相交于点M,求•.【解答】解:(1)∵=+=+=+(﹣)=+=+,∴x=,y=,∴x﹣y=(2)设=λ,(0≤λ≤1)因为在三角形ABC中,AB=2,AC=1,∠ACB=,∴∠CAB=60°,∴•=(﹣)•(﹣)=(λ﹣)(﹣λ)=﹣4λ2+λ•1×2×=﹣4λ2+λ=﹣4(λ﹣)2+∈[﹣3,](3)∵A,M,D三点共线,∴可设=x+(1﹣x)=x+(1﹣x)•,∵F为AB的中点,∴=+,又C,M,F三点共线,∴存在t∈R使得=t,∴x+(1﹣x)=+,∴,解得,•=(+)•=(++)•=•+2=×1×2×(﹣)+×4=22.已知,2sin x),=(sin,,函数.(1)求函数f(x)的零点;(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2,△ABC的外接圆半径为,求△ABC周长的最大值.【分析】(1)根据向量数量积的定义求出f(x),结合零点的定义进行求解即可.(2)根据条件先求出A和a的大小,结合余弦定理,以及基本不等式的性质进行转化求解即可.【解答】解:(1)f(x)==2cos x sin(x﹣)+2sin x cos(x﹣)=2sin(2x﹣),由f(x)=0得2x﹣=kπ,k∈Z,得x=+,即函数的零点为x=+,k∈Z.(2)∵f(A)=2,∴f(A)=2sin(2A﹣)=2,得sin(2A﹣)=1,即2A﹣=2kπ+,即A=kπ+,在三角形中,当k=0时,A=,满足条件,∵△ABC的外接圆半径为,∴=2,即a=2×=3,由余弦定理得a2=b2+c2﹣2bc cos A=b2+c2﹣bc=(b+c)2﹣3bc≥=(b+c)2﹣(b+c)2=(b+c)2,即(b+c)2≤4×9=36,即b+c≤6当且仅当b=c时取等号,则a+b+c≤9,即三角形周长的最大值为9.。
(典型题)高中数学必修三第三章《概率》测试题(包含答案解析)(1)
一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A .15B .13C .35D .233.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .344.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-5.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4136.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( )A .916B .58C .181288D .5127.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线下方的概率为( ) A .25B .35 C .34D .128.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .239.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为 A .25B .35C .38D .5810.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+11.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为26,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为20,现从1、2、3、4、5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .310B .15C .110D .32012.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()3323π- B ()323π-C ()323π+ D ()23323ππ-+二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.15.一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为______.16.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.17.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.18.在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为 .19.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.20.在边长为2的正△ABC 所在平面内,以A 3AB ,AC 于D ,E.若在△ABC 内任丢一粒豆子,则豆子落在扇形ADE 内的概率是________.三、解答题21.某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为[)0,10,[)10,20,[)20,30,[)30,40,[]40,50.(1)求频率分布直方图中a的值;(2)从统计学的角度说明学校是否需要推迟5分钟上课;(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求这两个学生的单程时30,40上的概率.间均落在[)22.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?23.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.一次购物量1至5件6至10件11至15件16至20件21件及以上顾客数(人)x3025y5结算时间(分钟/人)12345(1)确定,x y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率)24.安庆市某中学教研室从高二年级随机抽取了50名学生的十月份语文成绩(满分100分,成绩均为不低于40分的整数),得到如图所示的频率分布直方图.(1)若该校高二年级共有学生1000人,试估计十月份月考语文成绩不低于60分的人数; (2)为提高学生学习语文的兴趣,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[]90,100中选两位同学,共同帮助[)40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲乙恰好被安排在同一小组的概率.25.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a 的值,并由频率分布直方图估计该单位职工一天步行数的中位数; (2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数; (3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间150,(170]的概率.26.已知集合{(,)|[0,2],[1,1]}M x y x y =∈∈-. (1)若,x y Z ∈,求0x y +≥的概率; (2)若,x y R ∈,求0x y +≥的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭,可以求得sin()1θϕ+=,tan 2ϕ=,求出小正方形的边长和直角三角形两直角边的长,进而得到大正方形的边长,然后根据几何概型概率公式求解即可. 【详解】 由πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭可得sin 2cos 5θθ+=, 即5sin()5θϕ+=,即sin()1θϕ+=,且tan 2ϕ=,所以2πθϕ+=,所以直角三角形较大的锐角为ϕ,较小的锐角为θ,如图,设小正方形的边长为a ,直角三角形较大的锐角为θ、较大的锐角为为ϕ, 较小的直角的边长b ,则直角三角形较大的直角边长为+a b ,∵tan 2a bbϕ+==, ∴a b =,∴22(2)5a a a +=, 由几何概型概率公式可得,所求概率为2215(5)P a ==. 故选:B . 【点睛】解答几何概型概率的关键是分清概率是属于长度型的、面积型的、还是体积型的,然后再根据题意求出表示基本事件的点构成的线段的长度(或区域的面积、空间几何体的体积),最后根据公式计算即可.2.A解析:A 【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可. 【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1), 而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A. 【点睛】本题主要考查了古典概型,基本事件,属于容易题.3.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.4.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-.故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.5.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.6.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=, 这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.7.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.8.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.9.D解析:D 【分析】直接列举出所有的抽取情况,再列举出符合题意的事件数,即可计算出概率。
数学必修三习题答案
数学必修三习题答案【篇一:高一数学必修3全册各章节课堂同步习题(详解答案)】概念班次姓名[自我认知]:1.下面的结论正确的是( ).a. 一个程序的算法步骤是可逆的b. 一个算法可以无止境地运算下去的 c. 完成一件事情的算法有且只有一种 d. 设计算法要本着简单方便的原则 2.下面对算法描述正确的一项是 ( ). a.算法只能用自然语言来描述 b.算法只能用图形方式来表示 c.同一问题可以有不同的算法d.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( ) a.抽象性 b.精确性 c.有穷性 d.唯一性4.算法的有穷性是指( )a.算法必须包含输出b.算法中每个操作步骤都是可执行的c.算法的步骤必须有限d.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法() a.s1洗脸刷牙、s2刷水壶、s3烧水、s4泡面、s5吃饭、s6听广播 b.s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c. s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d.s1吃饭同时听广播、s2泡面;s3烧水同时洗脸刷牙;s4刷水壶6.看下面的四段话,其中不是解决问题的算法是( )a.从济南到北京旅游,先坐火车,再坐飞机抵达b.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1c.方程x2?1?0有两个实根d.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是 ( ) a.①②③ b.②③①c.①③②d.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??0,则f?x?在区间?a,b?内( )a.至多有一个根 b.至少有一个根c.恰好有一个根 d.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取a=89 ,b=96 ,c=99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+?+100的一个算法.可运用公式1+2+3+?+n= 第一步______①_______;第二步_______②________;第三步输出计算的结果.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法.n(n?1)直接计算. 21.1.2程序框图[自我认知]: 1.算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是()A.矩形框B.菱形框 d.圆形框 d.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为( )⑴333⑵3a.⑴n≥1000 ? ⑵n<1000 ?b. ⑴n≤1000 ?⑵n≥1000 ?c. ⑴n<1000 ? ⑵n≥1000 ?d. ⑴n<1000 ?⑵n<1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( ) a.一个算法只能含有一种逻辑结构 b.一个算法最多可以包含两种逻辑结构 c.一个算法必须含有上述三种逻辑结构d.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是( ) a.求输出a,b,c三数的最大数 b.求输出a,b,c三数的最小数3333c.将a,b,c按从小到大排列d.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x的奇偶性:其中判断框内的条件是( )a.m?0?b.x?0 ?c.x?1 ?d.m?1?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) a.顺序结构 b.条件结构和循环结构 c.顺序结构和条件结构 d.没有任何结构?x2?1(x?0)8.已知函数f?x??? ,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?11.1.2程序框图(第二课时)[课后练习]:班次姓名1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____.2.如图⑵程序框图箭头a指向①处时,输出 s=__________. 箭头a指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填a、i≥10?b、i≥11?c、i≤11? d、i≥12?4.如图(3)程序框图箭头b指向①处时,输出 s=__________. 箭头b指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)
一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .182.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为( )A .110B .310C .12D .353.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8πB .16π C .18π-D .116π-4.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5165.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31456.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .357.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .348.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .389.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .3511.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29212.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A .()23323ππ-- B .()323π-C .()323π+ D .()23323ππ-+二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.15.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.16.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.17.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.18.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.19.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++23.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 24.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.25.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数; (2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表); (3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.26.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.B解析:B 【解析】设3名女志愿者为,,A B C ,2名男志愿者为,a b ,任取2人共有,,,,,,,,,Aa Ab Ba Bb Ca Cb AB AC BC ab ,共10种情况,都是女性的情况有,,AB AC BC三种情况,故选到的都是女性志愿者的概率为310,故选B. 3.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.4.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =.故选:D.【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.5.A解析:A【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:139 25P=⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:237 59P=⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率.【详解】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:1329 515 2P=⨯=,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:2377 5915P=⨯=,∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P=+=+=,故选:A.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.6.B解析:B【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果.【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C AAA A A⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C CC A C C AA A⋅=种分法,∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.7.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.8.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.9.C解析:C 【分析】 由题意求出7AB BD =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即7AB BD =,所以7AB FD =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.12.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 323π⨯⨯=,其中一个弓形的面积为233π-, 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222322333πππ⎛⎫+⨯-=- ⎪⎝⎭, ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.15.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.16.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.17.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.18.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案 23【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径, 即32R =,即3R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为34(3)433ππ⨯=, 则该点取自四棱锥P ABCD -的内部的概率823343P π==, 故答案为239π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.19.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:5 6【解析】【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解.【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法,所以取出的2个数之差的绝对值小于或等于2的概率为15166 P=-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.20.78【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24=16种解析:【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故答案为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318.【解析】试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为17 18.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为13 18.试题(Ⅰ)设至少回答对一个问题为事件A,则()11117 133218P A=-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.根据题意,()11111033218P X=-=⨯⨯=, ()2112023329P X==⨯⨯⨯=,()2212103329P X==⨯⨯=,()11112033218P X==⨯⨯=,()21123023329P X==⨯⨯⨯=,()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B ,则()2122139189918P B =+++=. 22.(1)有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)13203. 【分析】(1)先求出,x y ,再根据独立性检验可得结论; (2)由组合的应用和古典概率公式可求得其概率. 【详解】 (1)由题知2056012y +=,即5y =,∴25x =,35A =,25B =, ∴2260(1052520)10815.42910.828352530307K ⨯⨯-⨯==≈>⨯⨯⨯,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,则213525533013203C C C P C +==. 【点睛】本题考查补全列联表,独立性检验,以及组合的应用和古典概率公式,求解时注意“至少”,“至多”等,属于中档题. 23.(1)4m =,8n =(2)4255【分析】(1)设该盒子里有红球m 个,白球n 个,利用古典概型、对立事件概率计算公式列出方程组,能求出m ,n .(2) “一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率. 【详解】解:(1)设该盒子里有红球m 个,白球n 个.根据题意得221310111m m n m m n C C +⎧=⎪+⎪⎨⎪-=⎪⎩, 解方程组得4m =,8n =, 故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件A .设“一次从盒子里任取3个球,取到的白球个数为3个”为事件B ,则3831214()55C P B C ==设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件C ,则。
高中人教版数学必修3课本练习_习题参考答案
高中数学必修③课本练习,习题参考答案新心希望教育:RenYongSheng 第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)A 组解;题目:在国内寄平信(外埠),每封信的质量x(克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。
算法如下:第一步,输入质量数x。
第二步,判断是否成立,若是,则输出y=120,否则执行第三步。
第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。
程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。
第三步,,i=i+1,返回第二步。
第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。
第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)BB 组1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。
高中必修三数学习题带答案
高中必修三数学习题带答案
高中必修三数学学习题带答案
数学作为一门重要的学科,对于学生来说是必修的课程之一。
在高中阶段,数
学的学习变得更加深入和复杂,需要学生付出更多的努力和时间。
为了帮助学
生更好地掌握高中必修三数学知识,我们整理了一些常见的数学学习题,并提
供了详细的答案,希望能够帮助学生更好地理解和掌握数学知识。
1. 请用代数方法解方程:2x+3=7
解答:首先将方程化简为2x=4,然后将方程两边都除以2,得到x=2。
2. 求下列方程的解:5x-7=18
解答:首先将方程化简为5x=25,然后将方程两边都除以5,得到x=5。
3. 求下列方程的解:3(x-4)=15
解答:首先将方程化简为3x-12=15,然后将方程两边都加上12,得到3x=27,最后将方程两边都除以3,得到x=9。
4. 求下列方程的解:2(x+3)=10
解答:首先将方程化简为2x+6=10,然后将方程两边都减去6,得到2x=4,最
后将方程两边都除以2,得到x=2。
5. 求下列方程的解:4(x-2)=16
解答:首先将方程化简为4x-8=16,然后将方程两边都加上8,得到4x=24,
最后将方程两边都除以4,得到x=6。
通过以上的练习题,相信学生们对于高中必修三数学知识有了更深入的理解和
掌握。
希望学生们能够在课余时间多多练习,提高自己的数学水平,为将来的
学习和考试打下坚实的基础。
【人教A版】2019学年高中数学必修三练习全集(Word版,含答案)
分层训练·进阶冲关A组基础练(建议用时20分钟)1.下列关于算法的说法中正确的个数有 ( B )①求解某一类问题的算法是唯一的;②算法必须在有限步骤操作之后停止;③x2-x>2 019是一个算法;④算法执行后一定产生确定的结果.A.1B.2C.3D.42.下列所给问题中,不能设计一个算法求解的是 ( D )A.用“二分法”求方程x2-3=0的近似解(精确度0.01)B.解方程组C.求半径为2的球的体积D.求S=1+2+3+…的值3.( B )A.输出a=10B.赋值a=10C.判断a=10D.输入a=14.如图所示的程序框图,已知a1=3,输出的结果为7,则a2的值是( C )A.9B.10C.11D.125.如图所示的流程图,当输入的值为-5时,输出的结果是 ( D )A.-3B.-2C.-1D.26.根据如图所示的程序框图,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则 ( A )A.框1中填“是”,框2中填“否”B.框1中填“否”,框2中填“是”C.框1中填“是”,框2中可填可不填D.框2中填“否”,框1中可填可不填7.下面是某人出家门先打车去火车站,再坐火车去北京的一个算法,请补充完整.第一步,出家门.第二步, 打车去火车站.第三步,坐火车去北京.8.使用配方法解方程x2-4x+3=0的算法的步骤是②①④③(填序号).①配方得(x-2)2=1;②移项得x2-4x=-3;③解得x=1或x=3;④开方得x-2=±1.9.执行如图所示的程序框图,则输出的S= 0.99.10.执行如图所示的程序框图,如果输入的x,t均为2,则输出的S= 7.11.设计求1+3+5+7+…+31的算法,并画出相应的程序框图.【解析】第一步:S=0;第二步:i=1;第三步:S=S+i;第四步:i=i+2;第五步:若i不大于31,返回执行第三步,否则执行第六步;第六步:输出S值.程序框图如图.12.设计一个算法求满足10<x2<1 000的所有正整数,并画出程序框图.【解析】算法步骤如下:第一步,x=1.第二步,如果x2>10,那么执行第三步;否则执行第四步.第三步,如果x2<1 000,那么输出x;否则结束程序.第四步,x=x+1,转到第二步.程序框图如图:13.执行如图所示的程序框图,若输入n=8,则输出的k= ( B )14.如图所示的程序框图所表示的算法的功能是 ( C )A.计算1+++…+的值B.计算1+++…+的值C.计算1+++…+的值D.计算1+++…+的值15.执行如图所示的程序框图,运行相应的程序,最后输出的结果为16.若框图所示程序运行的输出结果为S=132,那么判断框中应填入的关于k的判断条件是k≤10?或k<11?.17.已知直线l1:3x-y+12=0和直线l2:3x+2y-6=0,设计一个算法,求l1和l2及y轴所围成的三角形的面积.【解析】算法如下:第一步,解方程组得l1,l2的交点为P(-2,6).第二步,在方程3x-y+12=0中,令x=0,得y=12,从而得到l1与y轴的交点为A(0,12).第三步,在方程3x+2y-6=0中,令x=0,得y=3,从而得到l2与y轴的交点为B(0,3).第四步,求出△ABP的边长AB=12-3=9.第五步,求出△ABP的边AB上的高h=2.第六步,根据三角形的面积公式计算S=·AB·h=×9×2=9.第七步,输出S.18.利用梯形的面积公式计算上底为4,下底为6,面积为15的梯形的高.请设计出该问题的算法及程序框图.【解析】根据梯形的面积公式S=(a+b)h,得h=,其中a是上底,b是下底,h是高,S是面积,只要令a=4,b=6,S=15,代入公式即可.算法如下:第一步,输入梯形的两底a,b与面积S的值.第二步,计算h=.第三步,输出h.该算法的程序框图如图所示:C组培优练(建议用时15分钟)19.执行如图所示的程序框图所表达的算法,如果最后输出的S值为,那么判断框中实数a的取值范围是[2 015,2 016).20.运行如图所示的程序框图.(1)若输入x的值为2,根据该程序的运行过程完成下面的表格,并求输出的i与x的值.(2)若输出i的值为2,求输入x的取值范围.【解析】(1)因为162<168,486>168,所以输出的i的值为5,x的值为486.(2)由输出i的值为2,则程序执行了循环体2次,即解得<x≤56.所以输入x的取值范围是.分层训练·进阶冲关A组基础练(建议用时20分钟)1.下列给出的输入、输出语句正确的是 ( D )①INPUT a;b;c ②INPUT x=3③PRINT A=4 ④PRINT20,3A.①②B.②③C.③④D.④2.下列所给的运算结果正确的有 ( B )①ABS(-5)=5; ②SQR(4)=±2;③5/2=2.5;④5/2=2;⑤5MOD2=2.5;⑥3^ 2=9.A.2个B.3个C.4个D.5个3.条件语句的一般形式为:IF A THEN B ELSE C,其中B表示的是( A )A.满足条件时执行的内容B.条件语句C.条件D.不满足条件时,执行的内容4.阅读下面程序:若输入x=5,则输出结果x为 ( B )A.-5B.5C.0D.不确定5.给出如图所示的程序:执行该程序时,若输入的x为3,则输出的y值是 ( B )A.3B.6C.9D.276.下列语句执行完后,A,B的值各为6,10.7.下列程序执行后结果为3,则输入的x值为±1.8.如图所示的程序运行后,输出的值为44.9.运行程序:在两次运行中分别输入8,4和2,4,则两次运行程序的输出结果分别为4,2.10.读如图所示的判断输入的任意整数x的奇偶性的程序,并填空.11.下面程序的算法功能是:判断任意输入的数x,若是正数,则输出它的平方值;若不是正数,则输出它的相反数.12.下面两个程序最后输出的“S”分别等于21,17.13.阅读下列程序:如果输入的t∈[-1,3],则输出的S∈ ( A )A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]14.如图所示,如果下面程序中输入的r=,f(r)是用来求圆内接正方形边长a的一个函数,则输出的结果为 ( C )A.4B.6.28C.2.28D.3.1415.读程序,写出程序的意义:16.执行下面的程序,如果输入N=4,那么输出的S=17.某代销点出售《无线电》《计算机》《看世界》三种杂志,它们的定价分别为1.20元、1.55元、2.00元,编写一个程序,求输入杂志的订购数后,立即输出所付金额.【解析】程序如下:18.某城市出租车公司规定在城区内搭乘出租车的收费标准为:不超过3公里收7元,超过3公里的里程每公里收1.5元,另每车次超过3公里收燃油附加费1元(不考虑其他因素).请画出计算出租车费用的程序框图,并写出程序.【解析】设x为出租车行驶的公里数,y为收取的费用,则y=即y=程序框图如图所示:y=1.5C组培优练(建议用时15分钟) 19.用UNTIL语句写出计算12+22+32+…+n2的值的程序.【解析】20.如图所示,在边长为16的正方形ABCD的边上有一动点P,点P沿边线由B→C→D→A(B为起点,A为终点)运动.若设P运动的路程为x,△APB的面积为y,试写出程序,根据输入的x值,输出相应的y值.【解析】由题意可得函数关系式为:y=显然需利用条件语句的嵌套或叠加编写程序.程序如下:分层训练·进阶冲关A组基础练(建议用时20分钟)1.在对16和12求最大公约数时,整个操作如下:16-12=4,12-4=8,8-4=4.由此可以看出12和16的最大公约数是( A )A.4B.12C.16D.82.在m=nq+r(0≤r<n)中,若k是n,r的公约数,则k m,n的公约数.( A )A.—定是B.不一定是C.一定不是D.不能确定3.有关辗转相除法下列说法正确的是 ( C )A.它和更相减损术一样是求多项式值的一种方法B.基本步骤是用较大的数m除以较小的数n得到除式m=nq+r,直至r<n为止C.基本步骤是用较大的数m除以较小的数n得到除式m=nq+r(0≤r<n),反复进行,直到r=0为止D.以上说法皆错4.已知7 163=209×34+57,209=57×3+38,57=38×1+19,38=19×2.根据上述一系列等式,可确定7 163和209的最大公约数是( C )A.57B.3C.19D.345.把389化为四进制数,则该数的末位是 ( A )A.1B.2C.3D.46.用秦九韶算法求n次多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的值,当x=x0时,求f(x0)需要算乘方、乘法、加法的次数分别为( C )A.,n,nB.n,2n,nC.0,n,nD.0,2n,n7.用更相减损术求36与134的最大公约数时,第一步应为先除以2,得到18与67.8.用辗转相除法求294和84的最大公约数时,需要做除法的次数是2.9.三位七进制数表示的最大的十进制数是342.10.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,3,则输出v的值为48.11.将1234(5)转化为八进制数.【解析】先将1234(5)转化为十进制数:1234(5)=1×53+2×52+3×51+4×50=194.再将十进制数194转化为八进制数:所以1234(5)=302(8).12.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64,当x=2时的值.【解析】将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64, v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v4=-80×2+240=80,v5=80×2-192=-32,v6=-32×2+64=0.所以f(2)=0,即x=2时,原多项式的值为0.B组提升练(建议用时20分钟)13.下列各数中最小的数为 ( A )A.101011(2)B.1210(3)C.110(8)D.68(12)14.《九章算术》是中国古代的数学专著,其中的一段话“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”用程序框图表示如图,那么这个程序的作用是( B )A.求两个正数a,b的最小公倍数B.求两个正数a,b的最大公约数C.判断其中一个正数是否能被另一个正数整除D.判断两个正数a,b是否相等15.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是 ( D )A.-4B.-1C.5D.616.396与270的最大公约数与最小公倍数分别为18,5 940.17.已知一个k进制的数123(k)与十进制的数38相等,求k的值. 【解析】由123(k)=1×k2+2×k1+3×k0=k2+2k+3,得k2+2k+3=38,所以k2+2k-35=0,所以k=5或k=-7(舍),所以k=5.18.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6,当x=-4时,v4的值.【解析】依据秦九韶算法有v0=a6=3,v1=v0x+a5=3×(-4)+5=-7,v2=v1x+a4=-7×(-4)+6=34,v3=v2x+a3=34×(-4)+79=-57,v4=v3x+a2=-57×(-4)+(-8)=220.C组培优练(建议用时15分钟)19.阅读程序框图,利用秦九韶算法计算多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的值,当x=x0时,框图中A处应填入a n-k.20.三个数168,54,264的最大公约数为6.单元质量评估(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( B )A.算法就是某个问题的解题过程B.算法执行后可以产生不同的结果C.解决某一个具体问题算法不同,则结果不同D.算法执行步骤的次数不可以很大,否则无法实施2.在程序框图中,算法中间要处理数据或计算,可以分别写在不同的( A )A.处理框内B.判断框内C.输入、输出框内D.起、止框内3.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个过程.从下列选项中选出最好的一种算法 ( C )A.第一步,洗脸刷牙.第二步,刷水壶.第三步,烧水.第四步,泡面.第五步,吃饭.第六步,听广播B.第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭.第五步,听广播C.第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭同时听广播D.第一步,吃饭同时听广播.第二步,泡面.第三步,烧水同时洗脸刷牙.第四步,刷水壶4.将51化为二进制数得( C )A.11001(2)B.101001(2)C.110011(2)D.10111(2)5.下列是流程图中的一部分,表示恰当的是( A )6.如图所示的程序框图,下列说法正确的是( D )A.该框图只含有顺序结构、条件结构B.该框图只含有顺序结构、循环结构C.该框图只含有条件结构、循环结构D.该框图包含顺序结构、条件结构、循环结构7.如图所示的程序框图,其功能是 ( C )A.输入a,b的值,按从小到大的顺序输出它们的值B.输入a,b的值,按从大到小的顺序输出它们的值C.求a,b的最大值D.求a,b的最小值8.(2018·哈尔滨高二检测)程序框图如图所示,若输入p=200,则输出结果是 ( B )A.9B.8C.7D.69.如图所示的程序框图的算法思路源于世界数学名题“3x+1问题”.执行该程序框图,若输入的N=3,则输出的i= ( C )A.6B.7C.8D.910.下面的程序运行后的输出结果为( C )A.17B.19C.21D.2311.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n= ( A )A.4B.5C.2D.312.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是 ( A )A.z≤42?B.z≤20?C.z≤50?D.z≤52?二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.程序框图如图所示.若输出结果为15,则①处的执行框内应填的是x=3.14.如图所示的程序框图所表示的算法,输出的结果是2.15.如图程序执行后输出的结果是990.16.用秦九韶算法求多项式f(x)=x6+2x5+3x4+4x3+5x2+6x,当x=2时f(x)的值为240.三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(10分)10x1(2)=y02(3),求数字x,y的值.【解析】因为10x1(2)=1×20+x×21+0×22+1×23=9+2x,y02(3)=2×30+y ×32=9y+2,所以9+2x=9y+2且x∈{0,1},y∈{0,1,2},所以x=1,y=1.18.(12分)分别用辗转相除法和更相减损术求779与209的最大公约数.【解析】(1)辗转相除法:779=209×3+152,209=152×1+57,152=57×2+38,57=38×1+19,38=19×2.所以779与209的最大公约数为19.(2)更相减损术:779-209=570,570-209=361,361-209=152,209-152=57,152-57=95,95-57=38,57-38=19,38-19=19.所以779和209的最大公约数为19.19.(12分)有一堆桃子不知数目,猴子第一天吃掉一半,觉得不过瘾,又多吃了一个.第二天照此办法,吃掉剩下桃子的一半另加一个.天天如此,到第十天早上,猴子发现只剩一个桃子了.问这堆桃子原来有多少个?请写出算法步骤、程序框图和程序.【解析】算法如下:第一步,a1=1.第二步,i=9.第三步,a0=2×(a1+1).第四步,a1=a0.第五步,i=i-1.第六步,若i=0,执行第七步,否则执行第三步.第七步,输出a0的值.程序框图和程序如图所示:20.(12分)设计程序框图,求出××××…×的值.【解析】程序框图如图所示:21.(12分)给出30个数:1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3……以此类推,要计算这30个数的和,现在已知该问题的算法的程序框图如图所示.(1)请在图中判断框和处理框内填上合适的语句,使之能实现该题的算法功能.(2)根据程序框图写出程序.【解析】(1)该算法使用了当型循环结构,因为是求30个数的和,所以循环体应执行30次,其中i是计数变量,因此判断框内的条件就是限制计数变量i的,故应为“i≤30?”.算法中的变量p实质是表示参与求和的数,由于它也是变化的,且满足第i个数比其前一个数大i-1,第i+1个数比其前一个数大i,故处理框内应为p=p+i.故①处应填i≤30?;②处应填p=p+i.(2)根据程序框图,可设计如下程序:22.(12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.【解析】(1)由程序框图知,当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 017时,输出最后一对,共输出(x,y)的组数为1 009.(3)程序框图的程序语句如下:分层训练·进阶冲关A组基础练(建议用时20分钟)1.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是( C )A.40B.50C.120D.1502.为了解600名学生的视力情况,采用系统抽样的方法,从中抽取容量为20的样本,则需要分成几个小组进行抽取( A )A.20B.30C.40D.503.某客运公司有200辆客车,为了解客车的耗油情况,现采用系统抽样的方法按1∶10的比例抽取一个样本进行检测,将客车依次编号为1,2,…,200,则其中抽取的4辆客车的编号可能是( C )A.3,23,63,102B.31,61,87,127C.103,133,153,193D.57,68,98,1084.下列抽样中,适合用抽签法的是 ( B )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验5.某大学数学系共有本科生1 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为 ( B )A.80B.40C.60D.206.高三某班有学生56人, 现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为( C )A.13B.17C.19D.217.为了了解1 203名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,现采用选取的号码间隔一样的系统抽样方法来确定所选取的样本,则抽样间隔k= 30.8.一个总体分为A,B两层,用分层抽样的方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为120.9.某校高三年级共有30个班,学校心理咨询师为了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取6个班进行调查,若抽到的编号之和为87,则抽到的最小编号为2. 10.某学校三个兴趣小组的学生人数分布如下表(每名学生只参加一个小组)(单位:人).学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为30.11.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样的方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?【解析】(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众×5=×5=3(名).12.某批产品共有1 564件,产品按出厂顺序编号,号码从1到1 564,检测员要从中抽取15件产品做检测,请你给出一个系统抽样方案. 【解析】(1)先从1 564件产品中,用简单随机抽样的方法抽出4件产品,将其剔除.(2)将余下的1 560件产品编号:1,2,3,…,1 560.(3)取k==104,将总体平均分为15组,每组含104个个体.(4)从第一组,即1号到104号利用简单随机抽样法抽取一个编号s.(5)按编号把s,104+s,208+s,…,1 456+s共15个编号选出,这15个编号所对应的产品组成样本.B组提升练(建议用时20分钟)13.将参加夏令营的600名学生编号为001,002,…,600,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300住在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600住在第Ⅲ营区,三个营区被抽中的人数依次为 ( B )A.26,16,8B.25,17,8C.25,16,9D.24,17,914.某服装加工厂某月生产A,B,C三种产品共4 000件,为了保证产品质量,进行抽样检验,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A,C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是( B )A.80B.800C.90D.90015.已知某种型号的产品共有N件,且40<N<50,现需要利用系统抽样抽取样本进行质量检测,若样本容量为7,则不需要剔除;若样本容量为8,则需要剔除1个个体,则N= 49.16.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为50;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为 1 015小时.17.某中学共有学生2 000名,各年级男、女生人数如下表:已知高二女生占全校学生总数的19%.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应从高三抽取多少名?【解析】(1)因为=0.19,所以x=380.(2)高三学生人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,则应从高三抽取×48=12(名).18.为了适应新高考改革,尽快推行不分文理科教学,对比目前文理科学生考试情况进行分析,决定从80名文科同学中抽取10人,从300名理科同学中抽取50人进行分析.由于本题涉及文科生和理科生的混合抽取,你能选择合适的方法设计抽样方案吗?试一试.【解析】文科生抽样用抽签法,理科生抽样用随机数表法,抽样过程如下:(1)先抽取10名文科同学:①将80名文科同学依次编号为1,2,3, (80)②将号码分别写在形状、大小均相同的纸片上,制成号签;③把80个号签放入一个不透明的容器中,搅拌均匀,每次从中不放回地抽取一个号签,连续抽取10次;④与号签上号码相对应的10名同学的考试情况就构成一个容量为10的样本.(2)再抽取50名理科同学:①将300名理科同学依次编号为001,002, (300)②从随机数表中任选一数字作为开始数字,任选一方向作为读数方向,比如从随机数表的第4行第1列的数字1开始向右读(如图所示).每次读取三位,凡不在001~300范围内以及重复的数都跳过去,得到号码125,210,142,188,264,…;③这50个号码所对应的同学的考试情况就构成一个容量为50的样本.C组培优练(建议用时15分钟)19.我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过( B )A.6粒B.7粒C.8粒D.9粒20.某合资企业有150名职工,要从中随机抽出20人去参观学习.请用抽签法和随机数法进行抽取,并写出过程.(随机数表见课本附表) 【解析】方法一(抽签法):先把150名职工编号:1,2,3,…,150,把编号分别写在相同的小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取20个小球,这样就抽出了去参观学习的20名职工.方法二(随机数法):第一步,先把150名职工编号:001,002,003, (150)第二步,从随机数表中任选一个数,如第10行第4列数0.第三步,从数字0开始向右连续读数,每3个数字为一组,在读取的过程中,把大于150的数和与前面重复的数去掉,这样就得到20个号码如下:086,027,079,050,074,146,148,093,077,119,022,025,042,045,12 8,121,038,130,125,033.(答案不唯一)分层训练·进阶冲关A组基础练(建议用时20分钟)1.画样本频率分布直方图时,决定组数的正确方法是( C )A.任意确定B.一般分为5~12组C.由决定D.根据经验法则,灵活掌握2.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为 ( B )A.4B.8C.12D.163.一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5;[10,15),12;[15,20),7;[20,25),5;[25,30),4;[30,35),2.则样本在区间[20,+∞)上的频率约为 ( C )A.20%B.69%C.31%D.27%4.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( B )A.0.2B.0.4C.0.5D.0.65.为了解学生“阳光体育”活动的情况,随机统计了n名学生的“阳光体育”活动时间(单位:分钟),所得数据都在区间[10,110]内,其频率分布直方图如图所示.已知活动时间在[10,35)内的频数为80,则n 的值( B )A.700B.800C.850D.9006.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试,现随机调查了24名笔试者的成绩,如下表所示:据此估计允许参加面试的分数线大约是( B )A.75B.80C.85D.907.如图是100位居民月平均用水量的频率分布直方图,则月平均用水量为[2,2.5)范围内的居民数有25人.8.为了普及环保知识,增强环保意识,某大学有300名员工参加环保知识测试,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.现在要从第1,3,4组中用分层抽样的方法抽取16人,则在第4组中抽取的人数为6.9.已知样本:7 10 14 8 7 12 11 10 8 1013 10 8 11 8 9 12 9 13 12那么这组样本数据落在范围8.5~11.5内的频率为0.4.10.空气质量指数(Air Quality Ind,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.一环保人士从当地某年的AQI记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI大于100的天数约为146.(该年为365天)11.某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;【解析】(1)这20名工人年龄的众数为30;这20名工人年龄的极差为40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:12.张掖市旅游局为了了解大佛寺景点在大众中的熟知度,随机对15~65岁的人群抽取n 人,问题是“大佛寺是几A 级旅游景点?”统计结果如下图表.(1)分别求出a,b,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人.【解析】(1)由频率表中第4组数据可知,第4组总人数为=25,结合频率分布直方图可知n==100,所以a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,x==0.9,y==0.2.(2)因为第2,3,4组回答正确的共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为第2组:×6=2(人);第3组:×6=3(人);第4组:×6=1(人).B组提升练(建议用时20分钟)13.AQI是表示空气质量的指数,AQI越小,表明空气质量越好,当AQI 不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI的统计数据,图中点A表示4月1日的AQI为201.则下列叙述不正确的是 ( C )A.这12天中有6天空气质量为“优良”B.这12天中空气质量最好的是4月9日C.这12天的AQI的中位数是90D.从4日到9日,空气质量越来越好14.某公司10个销售店某月销售某产品数量(单位:台)的茎叶图如下:分组成[10,20),[20,30),[30,39]时,所作的频率分布直方图是( B )。
高中数学必修三概率训练题(1)
高中数学《必修3》训练题(1)一.选择题1.下列说法正确的是( )A.概率为0的事件一定是不可能事件B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定2.掷一枚骰子,则掷得奇数点的概率是( ) A. 61 B. 21 C. `31 D. 41 3.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( ) A.9991 B.10001 C.1000999 D.21 4.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A.A 与C 互斥B.B 与C 互斥C.任何两个均互斥D.任何两个均不互斥5.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85]( g )范围内的概率是( )A.0.62B.0.38C.0.02 .0.686.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是------( ) A.21 B.41 C.31 D.81 7.下列说法正确的是( ).A .如果一事件发生的概率为十万分之一,说明此事件不可能发生B .如果一事件不是不可能事件,说明此事件是必然事件C .概率的大小与不确定事件有关D .如果一事件发生的概率为99.999%,说明此事件必然发生8.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有球的个数为( ). A.5个 B.8个 C.10个 D.15个9.下列事件为确定事件的有( ).(1)在一标准大气压下,20℃的纯水结冰 (2)平时的百分制考试中,小白的考试成绩为105分 (3)抛一枚硬币,落下后正面朝上 (4)边长为a ,b 的长方形面积为ab. A .1个 B .2个 C .3个 D .4个10.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ).A .至少有1个白球,都是白球B .至少有1个白球,至少有1个红球C .恰有1个白球,恰有2个白球D .至少有1个白球,都是红球11.从一副扑克牌(54张)中抽取一张牌,抽到牌“K ”的概率是( ).A .1/54B .1/27C .1/18D .2/2712.同时掷两枚骰子,所得点数之和为5的概率为( ).A .1/4B .1/9C .1/6D .1/1213.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( ).A .60%B .30%C .10%D .50%14.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为( ).A .0.65B .0.55C .0.35D .0.7515.袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率为( ) A.21 B.31 C.41 D.52 16.00mL 的水中有一个草履虫,现从中随机取出2mL 水样放到显微镜下观察,则发现草履虫的概率是( )A. 0.5B. 0.4C. 0.004D. 不能确定17.事件中,随机事件的个数是( )①如果a 、b 是实数,那么b+a=a+b ;②某地1月1日刮西北风;③当x 是实数时,20x ≥;④一个电影院栽天的上座率超过50%。
高中数学必修三各章节同步练习题(附答案解析)
高中数学必修三 1.1.1算法的概念练习新人教A版基础巩固一、选择题1.以下关于算法的说法正确的是( )A.描述算法可以有不同的方式,可用形式语言也可用其它语言B.算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果D.算法要求按部就班地做,每一步可以有不同的结果[答案] A[解析] 算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题.算法过程要求一步一步执行,每一步执行的操作,必须确切,只能有唯一结果,而且经过有限步后,必须有结果输出后终止,描述算法可以有不同的语言形式,如自然语言、框图语言及形式语言等.2.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当有效地执行,并得到确定的结果D.一个问题只能设计出一种算法[答案] D[解析] 依据算法的概念及特征逐项排除验证.解:算法的有限性是指包含的步骤是有限的,故A正确;算法的确定性是指每一步都是确定的,故B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故C正确;对于同一个问题可以有不同的算法,故D错误.[点评] 解决有关算法的概念判断题应根据算法的特征进行判断,特别注意能在有限步内求解某类问题,其中的每条规则必须是明确可行的,不能是模棱两可的,对同一个问题可设计不同的算法.3.下列语句中是算法的有( )①从广州到北京旅游,先坐火车,再坐飞机抵达;②解一元一次方程的步骤是去分母、去括号、移项、合并同类顼、系数化为1;③方程x2-1=0有两个实根;④求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果是10.A.1个B.2个C.3个D.4个[答案] C[解析] ①中说明了从广州到北京的行程安排,完成任务;②中给出了一元一次方程这一类问题的解决方式;④中给出了求1+2+3+4的一个过程,最终得出结果;对于③,并没有说明如何去算,故①②④是算法,③不是算法.4.计算下列各式中S的值,能设计算法求解的是( )①S=1+2+3+ (100)②S=1+2+3+…+100+…;③S=1+2+3+…+n(n∈N+).A.①②B.①③C.②③D.①②③[答案] B5.阅读下面的算法:第一步,输入两个实数a,b.第二步:若a<b,则交换a,b的值,否则执行第三步.第三步,输出a.这个算法输出的是( )A.a,b中的较大数B.a,b中的较小数C.原来的a的值D.原来的b的值[答案] A[解析] 第二步中,若a<b,则交换a,b的值,那么a是a,b中的较大数;否则a<b不成立,即a≥b,那么a也是a,b中的较大数.6.阅读下面的四段话,其中不是解决问题的算法的是( )A.求1×2×3的值,先计算1×2=2,再计算2×3=6,最终结果为6B.解一元一次不等的步骤是化标准式、移项、合并同类项、系数化为1C.今天,我上了8节课,真累D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15[答案] C[解析] A,B,D项中,都是解决问题的步骤,则A,B,D项中所叙述的是算法,C项中是说明一个事实,不是算法.二、填空题7.给出下列表述:①利用△ABC 的面积公式S =12ab sin C 计算a =2、b =1、C =60°时三角形的面积;②从江苏昆山到九寨沟旅游可以先乘汽车到上海,再乘飞机到成都,再乘汽车抵达; ③求过M (1,2)与N (-3,5)两点的连线所在的直线方程,可先求直线MN 的斜率,再利用点斜式方程求得;④求三点A (2,2)、B (2,6)、C (4,4)所确定的△ABC 的面积,可先算AB 的长a ,再求AB 的直线方程及点C 到直线AB 的距离h ,最后利用S =12ah 来进行计算.其中是算法的是________.[答案] ②③④[解析] 由算法的含义及特性知②③④是算法,①没有说明计算的步骤,所以①不是算法.8.完成解不等式2x +2<4x -1的算法: 第一步,移项并合并同类项,得________.第二步,在不等式的两边同时除以x 的系数,得________. [答案] -2x <-3 x >32三、解答题9.(2015·江西南昌期末)已知一个等边三角形的周长为a ,求这个三角形的面积.设计一个算法解决这个问题.[探究] 利用正三角形面积公式S =34l 2(l 为正三角形边长)求值设计. [解析] 第一步,输入a 的值. 第二步,计算l =a3的值.第三步,计算S =34×l 2的值. 第四步,输出S 的值. 10.下面给出一个问题的算法: 第一步,输入x ;第二步,若x ≥4,则执行第三步,否则执行第四步; 第三步,输出2x -1结束; 第四步,输出x 2-2x +3结束. 问:(1)这个算法解决的问题是什么?(2)当输入的x 的值为多少时,输出的数值最小?[解析] (1)这个算法解决的问题是求分段函数y =⎩⎪⎨⎪⎧2x -1x ≥4x 2-2x +3 x <4的函数值的问题.(2)本问的实质是求分段函数最小值的问题. 当x ≥4时,y =2x -1≥7;当x <4时,y =x 2-2x +3=(x -1)2+2≥2. ∴函数最小值为2,当x =1时取到最小值. ∴当输入x 的值为1时,输出的数值最小.能力提升一、选择题1.结合下面的算法: 第一步,输入x .第二步,判断x 是否小于0,若是,则输出x +2,否则执行第三步. 第三步,输出x -1.当输入的x 的值为-1,0,1时,输出的结果分别为( ) A .-1,0,1 B .-1,1,0 C .1,-1,0 D .0,-1,1[答案] C[解析] 根据x 值与0的关系,选择执行不同的步骤,当x 的值为-1,0,1时,输出的结果应分别为1,-1,0,故选C.2.给出下列算法:第一步,输入正整数n (n >1).第二步,判断n 是否等于2,若n =2,则输出n ;若n >2,则执行第三步.第三步,依次从2到n -1检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n . 则输出的n 的值是( ) A .奇数 B .偶数 C .质数 D .合数[答案] C[解析] 根据算法可知n =2时,输出n 的值2;若n =3,输出n 的值3;若n =4,2能整除4,则重新输入n 的值……,故输出的n 的值为质数.3.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用的分钟数为( )A .13B .14C .15D .23[答案] C[解析] ①洗锅盛水2分钟、②用锅把水烧开10分钟(同时②洗菜6分钟、③准备面条及佐料2分钟)、⑤煮面条3分钟,共为15分钟.4.已知两个单元分别存放了变量x 和y ,下面描述交换这两个变量的值的算法中正确的为( )A .第一步 把x 的值给y ;第二步 把y 的值给x .B .第一步 把x 的值给t ;第二步 把t 的值给y ;第三步 把y 的值给x .C .第一步 把x 的值给t ;第二步 把y 的值给x ;第三步 把t 的值给y .D .第一步 把y 的值给x ;第二步 把x 的值给t ;第三步 把t 的值给y . [答案] C[解析] 为了达到交换的目的,需要一个中间变量t ,通过t 使两个变量来交换. 第一步 先将x 的值赋给t (这时存放x 的单元可以再利用); 第二步 再将y 的值赋给x (这时存放y 的单元可以再利用); 第三步 最后把t 的值赋给y ,两个变量x 和y 的值便完成了交换.[点评] 这好比有一碗酱油和一碗醋.我们要把这两碗盛装的物品交换过来,需要一个空碗(即t );先把醋(或酱油)倒入空碗,再把酱油(或醋)倒入原来盛醋(或酱油)的碗,最后把倒入空碗中的醋(或酱油)倒入原来盛酱油(或醋)的碗,就完成了交换.二、填空题 5.给出下列算法: 第一步,输入x 的值.第二步,当x >4时,计算y =x +2;否则执行下一步. 第三步,计算y =4-x . 第四步,输出y .当输入x =0时,输出y =________. [答案] 2[解析] 由于x =0>4不成立,故计算y =4-x =2,输出y =2.6.已知点P (x 0,y 0)和直线l :Ax +By +C =0,写出求点到直线距离的一个算法. 有如下步骤:①输入点的坐标x 0,y 0.②计算z 1=Ax 0+By 0+C .③计算z 2=A 2+B 2.④输入直线方程的系数A ,B 和常数C .⑤计算d =|z 1|z 2.⑥输出d 的值.其中正确的顺序为__________________.[答案] ①④②③⑤⑥[解析] (1)算法步骤应先输入相关信息最后输出结果;(2)d =|Ax 0+By 0+C |A 2+B 2,应先将分子、分母求出,再代入公式.三、解答题7.设计一个算法,找出闭区间[20,25]上所有能被3整除的整数. [解析] 第一步,用20除以3,余数不为0,故20不能被3整除; 第二步,用21除以3,余数为0,故21能被3整除; 第三步,用22除以3,余数不为0,故22不能被3整除; 第四步,用23除以3,余数不为0,故23不能被3整除; 第五步,用24除以3,余数为0,故24能被3整除; 第六步,用25除以3,余数不为0,故25不能被3整除; 第七步,指出在闭区间[20,25]上能被3整除的整数为21和24.8.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜.设计安全过河的算法.[解析] 第一步,人带羊过河. 第二步,人自己返回. 第三步,人带青菜过河. 第四步,人带羊反回. 第五步,人带狼过河. 第六步,人自己返回. 第七步,人带羊过河.高中数学必修三 1.1.2第1课时程序框图、顺序结构练习 新人教A 版基础巩固一、选择题1.程序框图是算法思想的重要表现形式,程序框图中不含( ) A .流程线 B .判断框 C .循环框 D .执行框[答案] C[解析] 程序框图是由程序框和流程线组成.其中程序框包括起止框、、输入输出框、执行框、判断框.这里并没有循环框.2.在程序框图中,算法中间要处理数据或计算,可分别写在不同的( )A.处理框内B.判断框内C.输入、输出框内D.终端框内[答案] A[解析] 由处理框的意义可知,对变量进行赋值,执行计算语句,处理数据,结果的传送都可以放在处理框内,∴选A.3.下列关于程序框的功能描述正确的是( )A.(1)是处理框;(2)是判断框;(3)是终端框;(4)是输入、输出框B.(1)是终端框;(2)是输入、输出框;(3)是处理框;(4)是判断框C.(1)和(3)都是处理框;(2)是判断框;(4)是输入、输出框D.(1)和(3)的功能相同;(2)和(4)的功能相同[答案] B[解析] 根据程序框图的规定,(1)是终端框,(2)是输入、输出框,(3)是处理框,(4)是判断框.4.如图所示程序框图中,其中不含有的程序框是( )A.终端框B.输入、输出框C.判断框D.处理框[答案] C[解析] 含有终端框,输入、输出框和处理框,不含有判断框.5.如图,若输入a=10,则输出a=________( )A.2 B.8C.10 D.6[答案] 8[解析] b=10-8=2,a=10-2=8.6.如图所示的程序框图中,要想使输入的值与输出的值相等,输入的a值应为( )A.1 B.3C.1或3 D.0或3[答案] D[解析] 本题实质是解方程a=-a2+4a,解得a=0或a=3.二、填空题7.下面程序框图执行的功能是输入矩形的边长求它的面积,其中执行框中应填的是________.[答案] S=a×b8.如图所示的程序框图,若输出的结果是2,则输入的m=________.[答案] 100[解析] 由于输出的结果是2,则x=2,则lg m=2,故m=100.三、解答题9.如图,是解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:(1)图框①中x=2的含义是什么?(2)图框②中y1=ax+b的含义是什么?(3)图框④中y2=ax+b的含义是什么?(4)该程序框图解决的是怎样的问题?(5)当最终输出的结果是y1=3,y2=-2时,求y=f(x)的解析式.[解析] (1)图框①中x=2表示把2赋值给变量x.(2)图框②中y1=ax+b的含义是:该图框在执行①的前提下,即当x=2时,计算ax+b的值,并把这个值赋给y1.(3)图框④中y2=ax+b的含义是:该图框在执行③的前提下,即当x=-3时,计算ax +b的值,并把这个值赋给y2.(4)该程序框图解决的是求函数y=ax+b的函数值的问题,其中输入的是自变量x的值,输出的是对应x的函数值.(5)y1=3,即2a+b=3.⑤y2=-2,即-3a+b=-2.⑥由⑤⑥,得a=1,b=1,所以f(x)=x+1.10.已知一个圆柱的底面半径为R,高为h,求圆柱的体积.设计解决该问题的一个算法,并画出相应的程序框图.[分析] 此题只要将半径R、高h代入圆柱的体积公式V=πR2h,最后输出结果即可,所以只用顺序结构就能表达出来.[解析]算法如下:第一步,输入R,h,第二步,计算V=πR2h.第三步,输出V.程序框图如图所示.能力提升一、选择题1.对终端框叙述正确的是( )A.表示一个算法的起始和结束,程序框是B.表示一个算法输入和输出的信息,程序框是C.表示一个算法的起始和结束,程序框是D.表示一个算法输入和输出的信息,程序框是[答案] C2.阅读右图所示程序框图.若输入的x=3,则输出的y的值为( )A.24 B.25C.30 D.40[答案] D3.如图所示的程序框图是已知直角三角形两直角边a,b求斜边c的算法,其中正确的是( )[答案] C[解析] A项中,没有终端框,所以A项不正确;B项中,输入a,b和c=a2+b2顺序颠倒,且程序框错误,所以B项不正确;D项中,赋值框中a2+b2=c错误,应为c=a2+b2,左右两边不能互换,所以D项不正确;很明显C项正确.4.阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c分别是( )A.75,21,32 B.21,32,75C.32,21,75 D.75,32,21[答案] A[解析] 输入21,32,75后,该程序框图的执行过程是:输入21,32,75.x=21.a=75.c=32.b=21.输出75,21,32.二、填空题5.如下图是求长方体的体积和表面积的一个程序框图,补充完整,横线处应填________.[答案][解析] 变量在计算时应先赋值,这里的a、b,c的值是通过输入语句得到.根据题意,长方体的长、宽、高应从键盘输入,故横线处应填写输入框.6.图1是计算图2中阴影部分面积的一个程序框图,则图1中①处应填________.[答案] S =4-π4a 2[解析] 图2中,正方形的面积为S 1=a 2,扇形的面积为S 2=14πa 2,则阴影部分的面积为S =S 1-S 2=a 2-π4a 2=4-π4a 2.因此图1中①处应填入S =4-π4a 2.三、解答题7.已知x =10,y =2,画出计算w =5x +8y 值的程序框图.[解析] 算法如下: 第一步,令x =10,y =2. 第二步,计算w =5x +8y . 第三步,输出w 的值. 其程序框图如图所示.[特别提醒] (1)程序框图中的每一种图形符号都有特定的含义,在画程序框图时不能混用.(2)流程线上不要忘记加方向箭头.如果不画,就难以判断各程序框间的执行次序. 8.已知一个直角三角形的两条直角边长为a 、b ,斜边长为c ,写出它的外接圆和内切圆面积的算法,并画出程序框图.[解析] 算法步骤如下: 第一步,输入a ,b .第二步,计算c =a 2+b 2.第三步,计算r =12(a +b -c ),R =c2.第四步,计算内切圆面积S 1=πr 2,外接圆面积S 2=πR 2. 第五步,输出S 1、S 2,结束. 程序框图如图.高中数学必修三 1.1.2第2课时条件结构练习 新人教A 版基础巩固一、选择题1.下列关于条件结构的描述,正确的是( )A .条件结构的出口有两个,这两个出口有时可以同时执行B .条件结构的判断框内的条件是惟一的C .条件结构根据条件是否成立选择不同的分支执行D .在条件结构的任何一个分支中,只能执行一个语句,而不能是多个 [答案] C2.给出以下四个问题:①输入一个数x ,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a ,b ,c 中的最大数;④求函数f (x )=⎩⎪⎨⎪⎧3x -1,x ≤0,x 2+1,x >0的函数值.其中需要用条件结构来描述算法的有( )A .1个B .2个C .3个D .4个[答案] C[解析] 其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可. 3.如图所示的程序框图中,输入x =2,则输出的结果是( )A .1B .2C .3D .4[答案] B[解析] 输入x =2后,该程序框图的执行过程是: 输入x =2,x =2>1成立, y =2+2=2,输出y =2.4.已知a =212 ,b =log33,运算原理如图所示,则输出的值为( )A.22B. 2C.2-12D.2+12[答案] D[解析] 由a =2<b =log33=lg3lg3=2,知a >b 不成立,故输出a +1b =2+12. 5.如下图所示的程序框图,其功能是( ) A .输入a ,b 的值,按从小到大的顺序输出它们的值 B .输入a ,b 的值,按从大到小的顺序输出它们的值 C .求a ,b 的最大值 D .求a ,b 的最小值 [答案] C[解析] 输入a=1,b=2,运行程序框图可得输出2.根据执行过程可知该程序框图的功能是输入a,b的值,输出它们的最大值,即求a,b的最大值.第5题图第6题图6.在佛山市禅城区和南海区打的士收费办法如下:不超过2千米收7元,超过2千米的里程每千米收2.6元,另每车次超过2千米收燃油附加费1元(其他因素不考虑).相应收费系统的程序框图如图所示,则①处应填( )A.y=7+2.6x B.y=8+2.6xC.y=7+2.6(x-2) D.y=8+2.6(x-2)[答案] D[解析] 当行车里程x>2时,费用y=[7+2.6(x-2)]+1=8+2.6(x-2).二、填空题7.读下列流程图填空:(1)流程图(1)的算法功能是________________.(2)流程图(2)的算法功能是________________. (3)流程图(3)的算法功能是________________. (4)流程图(4)的算法功能是________________. [答案] (1)求输入的两个实数a 与b 的和(2)求以输入的两个正数a ,b 为直角边长的直角三角形斜边的长 (3)求输入两数a ,b 的差的绝对值 (4)求函数f (x )=|x -3|+1,即分段函数f (x )=⎩⎪⎨⎪⎧x -2x >34-xx ≤3的函数值8.(2015·广州市)某算法的程序框图如图所示,若输出结果为12,则输入的实数x 的值是________.[答案]2[解析] 当x ≤1时,y =x -1≤0,∵输出结果为12,∴x >1,∴log 2x =12,∴x = 2.三、解答题9.“特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式,某快递公司规定甲、乙两地之间物品的托运费用根据下列方法运算:y =⎩⎪⎨⎪⎧0.53x ,x ≤50,50×0.53+x -50×0.85,x >50,其中y (单位:元)为托运费用,x (单位:千克)为托运物品的重量,试画出计算托运费用y 的程序框图.[解析] 算法程序框图如图所示:10.(2015·聊城高一检测)已知函数y =⎩⎪⎨⎪⎧1+x ,x >0,0,x =0,-x -3,x <0,设计一个算法,输入自变量x 的值,输出对应的函数值.请写出算法步骤,并画出程序框图.[探究] 该函数是分段函数,当x 取不同范围内的值时,函数表达式不同,因此当给出一个自变量x 的值时,也必须先判断x 的范围,然后确定利用哪一段的解析式求函数值,因此函数解析式分为三段,所以判断框需要两个,即进行两次判断.[解析] 算法如下: 第一步,输入自变量x 的值.第二步,判断x >0是否成立,若成立,计算y =1+x ,否则,执行下一步. 第三步,判断x =0是否成立,若成立,令y =0,否则,计算y =-x -3. 第四步,输入y . 程序框图如下图所示.能力提升一、选择题1.(2011·陕西高考)如图中,x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分.当x 1=6,x 2=9,p =8.5时,x 3等于( )A .10B .7C .8D .11[答案] C[解析] ∵x 1=6,x 2=9, ∴|x 2-x 1|=3>2,输入x 3, 假设|x 3-x 1|<|x 3-x 2|成立, 即|x 3-6|<|x 3-9|, 解得x 3<7.5, 把x 3赋值给x 2,p =x 1+x 22=x 1+x 32=8.5,解得x 3=11,与x 3<7.5矛盾,舍去; 假设|x 3-x 1|≥|x 3-x 2|成立, 即|x 3-6|≥|x 3-9|, 解得x 3≥7.5, 把x 3赋值给x 1,p =x 1+x 22=x 2+x 32=8.5,解得x 3=8,符合要求.2.(2013·新课标全国Ⅰ)执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5][答案] A[解析] 由程序框图得分段函数s =⎩⎪⎨⎪⎧3t ,t <14t -t 2,t ≥1.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上,函数的值域为[-3,4],即输出的s 属于[-3,4].3.(2015·中山高一检测)执行如图所示的程序框图,若输出的结果是8,则输入的数是( )A .2或-2 2B .22或-2 2C .-2或-2 2D .2或2 2[答案] A[解析] 当x 3=8时x =2,a =4,b =8,b >a ,输出8 当x 2=8时,x =±22,a =8,b =±62,又a >b ,输出8, 所以x =-22,故选A.4.2008年3月1日开始实施的《个人所得税法》规定:全月总收入不超过2000元的免征个人工资、薪金所得税,超过2000元部分需征税.设全月总收入金额为x 元,前三级税率如下表所示:级数全月应纳税金额x-2000税率1不超过500元的部分5%2超过500至2000元部分10%3超过2000至5000元部分15%………当工资薪金所得不超过4000元,计算个人所得税的一个算法框图如图,则输出①、输出②分别为( )A.0.05x;0.1xB.0.05x;0.15x-250C.0.05x-100;0.1x-200D.0.05x-100;0.1x-225[答案] D[解析] 当2000<x≤2500时,税收y=(x-2000)×5%=0.05x-100,当2500<x≤4000时,税收y=500×5%+(x-2500)×10%=0.1x-225.二、填空题5.(2015·北京东城二模)已知某程序的框图如图,若分别输入的x的值为0,1,2,执行该程序后,输出的y的值分别为a,b,c,则a+b+c=________.[答案] 6[解析] 该程序框图的功能是输入自变量x 的值,输出函数y =⎩⎪⎨⎪⎧x 2,x >1,1,x =1,4x ,x <1对应的函数值,记y =f (x ),则a =f (0)=40=1,b =f (1)=1,c =f (2)=22=4,则a +b +c =6.6.阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是________.[答案] {x ∈R |0≤x ≤log 23,或x =2}[解析] 由题意及框图,得⎩⎪⎨⎪⎧-2<x <2,1≤2x≤3或⎩⎪⎨⎪⎧|x |≥2,1≤x +1≤3.解之,得0≤x ≤log 23或x =2.三、解答题7.下面给出了一个算法框图,如图所示.根据该算法框图回答以下问题:(1)该算法框图是为什么问题而设计的?(2)若输入的四个数为5,2,7,22,则最后输出的结果是什么?[解析] (1)“a <b 且a <c 且a <d ”是判断a 是否为最小的数,若成立,则输出a ,此时输出了a ,b ,c ,d 中最小的数;如果不成立,也就是a 不是最小数,从而进入“b <c 且b <d ”,它是判断当a 不是最小数时,b 是否为最小数,若成立,则输出b ,说明此时也是输出了a ,b ,c ,d 中最小的数;如果 不成立,就说明a 与b 都不是最小的数,从而进行“c <d ”,它是判断当a ,b 都不是最小数时,c 是否为最小数,若成立,则输出c ,说明此时输出的是a ,b ,c ,d 中最小的数;若不成立,则输出d ,此时d 是a ,b ,c ,d 中最小的数.故算法的流程图是为“求a ,b ,c ,d 四个数中的最小数并进行输出”而设计的.(2)当输入的四个数分别为5,2,7,22时,最后输出的结果是2.8.(2015·福建厦门模拟)某专家称,中国的通货膨胀率保持在3%左右对中国经济的稳定有利无害,所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情形下,某种品牌的钢琴2010年的价格是10000元,请用程序框图描述这种钢琴今后4年的价格变化情况,并输出4年后钢琴的价格.[解析] 程序框图如下图所示.高中数学必修三 1.1.2第3课时循环结构、程序框图的画法练习新人教A版基础巩固一、选择题1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是( )A.分支型循环B.直到型循环C.条件型循环D.当型循环[答案] D2.下面关于当型循环结构和直到型循环结构的说法,不正确的是( )A.当型循环结构是先判断后循环,条件成立时执行循环体,条件不成立时结束循环B.直到型循环结构要先执行循环体再判断条件,条件成立时结束循环,条件不成立时执行循环体C.设计程序框图时,两种循环结构可以任选其中的一个,两种结构也可以相互转化D.设计循环结构的程序框图时只能选择这两种结构中的一种,除这两种结构外,再无其他循环结构[答案] D3.阅读如图所示的程序框图,运行相应的程序,输出的s值等于( )A.-3 B.-10C.0 D.-2[解析] 开始:k =1,s =1;1<4,是,s =2×1-1=1;k =2,2<4,是,s =2×1-2=0;k =3,3<4,是,s =2×0-3=-3;k =4,4<4,否,输出s =-3,故选 A.4.执行如图所示的程序框图,则输出的S 值是( ) A .4 B.32 C.23 D .-1[答案] D[解析] S =22-4=-1,i =2;S =22+1=23;i =3;S =22-23=32,i =4,S =22-32=4,i =5;S =22-4=-1,i =6. 5.(2015·北京卷)执行如图所示的程序框图,输出的结果为( ) A .(-2,2) B .(-4,0) C .(-4,-4)D .(0,-8)[解析] 运行程序:x =1,y =1,k =0;s =1-1=0,t =1+1=2,x =0,y =2,k =0+1=1,因为1≥3不满足,s =-2,t =2,x =-2,y =2,k =2,因为2≥3不满足,s =-4,t =0,x =-4,y =0,k =3,因为3≥3满足,输出(-4,0).6.(2014·重庆,理5)执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >45[答案] C[解析] 该程序框图为循环结构.k =9,s =1时,经判断执行“是”,计算1×99+1=910赋值给s ,然后k 减少1变为8;k =8,s =910时,经判断执行“是”,计算910×88+1=810赋值给s ,然后k 减少1变为7;k =7,s =810时,经判断执行“是”,计算810×77+1=710赋值给s ,然后k 减少1变为6;k =6,s =710,根据输出k 为6,此时应执行“否”.结合选项可知,判断框内应填s >710,故选C.二、填空题7.(2013·湖南高考)执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为________.[答案] 98.(2015·温州高一检测)若如图所示的程序框图运行结果为S =90,那么判断框中应填入的关于k的条件是________.[答案] k>8?三、解答题9.画出求满足12+22+32+…+n2>20152的最小正整数n的程序框图.[分析] 题中要求满足条件的不等式的最小正整数n,不等式左侧是连续自然数的平方和,故可采用循环结构完成.[解析]10.运行如图所示的程序框图.(1)若输入x的值为2,根据该程序的运行过程完成下面的表格,并求输出的i与x的值.第i次i=1i=2i=3i=4i=5x=2×3i(2)若输出i的值为2,求输入x的取值范围.[解析] (1)第i次i=1i=2i=3i=4i=5x=2×3i61854162486因为162<(2)由输出i的值为2,则程序执行了循环体2次,即⎩⎪⎨⎪⎧3x ≤168,9x >168,解得563<x ≤56,所以输入x 的取值范围是563<x ≤56.能力提升一、选择题1.(2014·福建,理5)阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( )A .18B .20C .21D .40[答案] B[解析] 该程序框图为循环结构,由S =0,n =1得S =0+21+1=3,n =1+1=2,判断S =3≥15不成立,执行第二次循环,S =3+22+2=9,n =2+1=3,判断S =9≥15不成立,执行第三次循环,S =9+23+3=20,n =3+1=4,判断S =20≥15成立,输出S =20.故选B.2.(2013·浙江)某程序框图如图所示,若该程序运行后输出的值是95,则( )A .a =4B .a =5C .a =6D .a =7[答案] A[解析] k =1,S =1+1-12=32;k =2,S =1+1-13=53;k =3,S =1+1-14=74;k =4,S =1+1-15=95.输出结果是95,这时k =5>a ,故a =4.3.以下给出的是计算12+14+16+…+120的值的一个程序框图,其中判断框内应填入的条件是( )A .i <20?B .i >10?C .i <10?D .i ≤10?[答案] D[解析] i =1,S =12;i =2,S =12+14;i =3,S =12+14+16;依次下去:i =10,S =12+14+…+120,故选D. 4.(2015·陕西卷)根据下边的图,当输入x 为2006时,输出的y =( ) A .28 B .10 C .4D .2[答案] B[解析] 初始条件:x =2006;第1次运行:x =2004;第2次运行:x =2002;第3次运行:x =2000;……;第1003次运行:x =0;第1004次运行:x =-2,不满足条件x ≥0?,停止运行,所以输出的y =32+1=10,故选B.二、填空题5.(2014·辽宁,理13)执行下面的程序框图,若输入x =9,则输出y =________.[答案]299[解析] 输入x =9,则y =5,|y -x |=4>1,执行否,x =5,y =113,|y -x |=43>1,执行否,x =113,y =299,|y -x |=49<1,执行是,输出y =299.6.(2014·湖北,理13)设a 是一个各位数都不是0且没有重复数字的三位数,将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =815,则I (a )=158,D (a )=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.[答案] 495[解析] 不妨取a =815,则I (a )=158,D (a )=851,b =693; 则取a =693,则I (a )=369,D (a )=963,b =594; 则取a =594,则I (a )=459,D (a )=954,b =495; 则取a =495,则I (a )=459,D (a )=954,b =495. 故输出结果b =495. 三、解答题7.以下是某次考试中某班15名同学的数学必修三成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来并画出程序框图.[分析] 用条件分支结构来判断成绩是否高于80分,用循环结构控制输入的次数,同。
(必考题)高中数学必修三第一章《统计》测试(包含答案解析)(1)
一、选择题1.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元2.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,下表为某小型工厂2-5月份生产的口罩数(单位:万) 月份x 2 3 4 5 口罩数y4.5432.5口罩数y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 的值为( ) A .6.1B .5.8C .5.95D .6.753.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.54.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .815. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日6.网上大型汽车销售某品牌A 型汽车,在2017年“双十一”期间,进行了降价促销,该型汽车的价格与月销量之间有如下关系 价格(万元) 25 23.5 22 20.5 销售量(辆)30333639已知A 型汽车的购买量y 与价格x 符合如下线性回归方程:8ˆ0ˆybx =+,若A 型汽车价格降到19万元,预测月销量大约是( ) A .39 B .42C .45D .507.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和928.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64 B .96C .144D .1609.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .9110.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变11.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表: 温度℃ -5 0 4 7 12 15 19 23 27 31 36 热饮杯数15615013212813011610489937654根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =)满足4115ii x==∑,4112i i y ==∑,若广告费用x 和销售额y 之间具有线性相关关系,且回归直线方程为^y bx a =+,0.6b =,那么广告费用为5千元时,可预测的销售额为___万元. 14.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为_________15.某次测试共有100名考生参加,测试成绩的频率分布直方图如下图所示,则成绩在80分以上的人数为__________.16.已知一组数据为2,3,4,5,6,则这组数据的方差为______.17.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________. 18.变量X 与Y 相对应的5组数据和变量U 与V 相对应的5组数据统计如表:X 1011.3 11.8 12.5 13 U 10 11.3 11.8 12.5 13 Y12345V54321用b 1表示变量Y 与X 之间的回归系数,b 2表示变量V 与U 之间的回归系数,则b 1与b 2的大小关系是___.19.某中学调查了400名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这400名学生中每周的自习时间不少于22.5小时的人数是__________人.20.某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则19a b+的最小值为__________.三、解答题21.某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号x 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9x (2)预测该地区2015年农村居民家庭人均纯收入. 附:77211134.4,140i ii i i x yx ====∑∑.回归直线的斜率和截距的最小二乘法估计公式分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-22.随着人民生活水平的日益提高,某小区拥有私家车的数量与日俱增,物业公司统计了近六年小区私家车的数量,数据如下: 年份 2014 2015 20162017 2018 2019 编号x 1 2 3 4 5 6 数量y (辆)4196116190218275(1)若该小区私家车的数量y 与年份编号x 的关系可用线性回归模型来拟合,请求出y 关于x 的线性回归方程,并用相关指数2R 分析其拟合效果(2R 精确到0.01);(2)由于该小区没有配套停车位,车辆无序停放易造成交通拥堵,因此物业公司预在小区内划定一定数量的停车位,若要求在2022年小区停车位数量仍可满足需要,则至少需要规划多少个停车位. 参考数据:61936ii y==∑,614081i i i x y ==∑,62191ii x ==∑,()62137586i i y y=-=∑.附:回归方程中斜率和截距的最小二乘估计公式分别为:1221ni ii nii x y nx yb xnx==-⋅=-∑∑,a y bx =-,相关指数()()221211ni ii n ii y y R yy==-=--∑∑,残差e y y =-.23.2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP 抽样调查了非一线城市M 和一线城市N 各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.(1)请填写以下22⨯列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?活跃用户 不活跃用户 合计城市M 城市N 合计(2)以频率估计概率,从城市M 中任选2名用户,从城市N 中任选1名用户,设这3名用户中活跃用户的人数为ξ,求ξ的分布列和数学期望.(3)该读书APP 还统计了2018年4个季度的用户使用时长y (单位:百万小时),发现y 与季度(x )线性相关,得到回归直线为ˆ4ˆyx a =+,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度(5x =)该读书APP 用户使用时长约为多少百万小时. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥ 0.025 0.010 0.005 0.001 0k5.0246.6357.87910.82824.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:x 1 2 3 4 5 y23445(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆybx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑) 25.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:s =(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)26.某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如22⨯下列联表:(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数X ,试求随机变量X 的分布列和数学期望;(2)若在犯错误的概率不超过P 的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的P 的值应为多少?请说明理由.附:独立性检验统计量22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b cd =+++.独立性检验临界值表:【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误;当月工资为210元时,210=50+80x ,解得x=2, 此时劳动生产率约为2000元,D 正确. 故选C .考点:线性回归方程.2.C解析:C 【分析】求得 3.5x y ==,得到样本中心点(3.5,3.5),再把样本中心点代入回归直线方程得解. 【详解】由表可得 3.5x y ==,带入线性回归方程中有 3.50.7 3.5 5.95=+⨯=a , 故选:C . 【点睛】本题考查利用线性相关关系求回归直线方程,属于基础题.3.A解析:A 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.4.A解析:A 【解析】利用茎叶图、平均数的性质直接求解. 【详解】由一组数据的茎叶图得: 该组数据的平均数为:1(7581858995)855++++=. 故选:A . 【点睛】本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.5.C解析:C 【分析】认真观察题中所给的折线图,对照选项逐一分析,求得结果. 【详解】这10天中第一天,第三天和第四天共3天空气质量为一级,所以A 正确; 从图可知从6日到9日 2.5PM 日均值逐渐降低,所以B 正确; 从图可知,这10天中 2.5PM 日均值最高的是12月6日,所以D 正确; 由图可知,这10天中 2.5PM 日均值的中位数是4145432+=,所以C 不正确; 故选C. 【点睛】该题考查的是有关利用题中所给的折线图,描述对应变量所满足的特征,在解题的过程中,需要逐一对选项进行分析,正确理解题意是解题的关键.6.B解析:B 【解析】分析:先求均值,确定ˆb,再求自变量为19对应函数值得结果. 详解:因为2523.52220.5330333639122,344442x y ++++++====,所以1348022,3224ˆb-==- 所以19(2)8042y =⨯-+=选B.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .7.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.58.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题9.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.10.A解析:A 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,,所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.12.A解析:A 【解析】分析:先观察表中数据的规律,确定回归系数b 的符号,再计算x 和y ,代入选项确定正确答案.详解:由表中数据规律发现:热饮杯数y 随当天气温x 升高而减少,则0b <,排除C 、D. 计算1169=(504712151923273136)1111x -++++++++++= 11228=(15615013212813011610489937654)111.641111y ++++++++++=≈ 将x 代入选项A ,得1692.352147.767111.6311ˆy=-⨯+= 将x 代入选项B ,得1692.352127.76591.6311ˆy=-⨯+= 所以选项A 正确. 故选A.点睛:本题考查线性回归方程的求法与应用,一次项系数b 符号的判断和回归直线过样本中心点(,)x y 是解题关键.二、填空题13.75【解析】【分析】计算然后将代入回归直线得从而得回归方程然后令x=5解得y 即为所求【详解】∵∴∵∴∴样本中心点为(3)又回归直线过(3)即3=06×+解得=所以回归直线方程为y =06x+令x =5时解析:75 【解析】 【分析】计算x ,y ,然后将x ,y 代入回归直线得a ,从而得回归方程,然后令x =5解得y 即为所求. 【详解】 ∵4115i i x ==∑,∴154x =, ∵4112i i y ==∑,∴1234y ==, ∴样本中心点为(154,3), 又回归直线0.6ˆyx a =+过(154,3),即3=0.6×154+a ,解得a =34, 所以回归直线方程为y =0.6x +34, 令x =5时,y =0.6×5+34=3.75万元 故答案为:3.75. 【点睛】本题考查线性回归方程的应用,以及利用线性回归方程进行预测,要注意回归直线必过样本中心点.14.18【解析】【分析】由题意知抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为即可解得【详解】因为抽样方法为系统抽样因此若第一组抽取号码为x 则第18组抽取的号码为解得【点睛】本题主要考解析:18 【解析】 【分析】由题意知,抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,即可解得. 【详解】因为抽样方法为系统抽样,因此,若第一组抽取号码为x ,则第18组抽取的号码为1725443x +⨯=,解得18x =. 【点睛】本题主要考查了系统抽样,属于中档题.15.25【解析】分析:先求成绩在80分以上的概率再根据频数等于总数与对应概率乘积求结果详解:因为成绩在80分以下的概率为所以成绩在80分以上的概率为因此成绩在80分以上的人数为点睛:频率分布直方图中小长解析:25 【解析】分析:先求成绩在80分以上的概率,再根据频数等于总数与对应概率乘积求结果.详解:因为成绩在80分以下的概率为(0.0050.03+0.0410=0.75+⨯),所以成绩在80分以上的概率为10.750.25-=,因此成绩在80分以上的人数为0.25100=25.⨯点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1; 频率分布直方图中组中值与对应区间概率乘积的和为平均数; 频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.16.2【解析】分析:根据方差的计算公式先算出数据的平均数然后代入公式计算即可得到结果详解:平均数为:即答案为2点睛:本题考查了方差的计算解题的关键是方差的计算公式的识记它反映了一组数据的波动大小方差越大解析:2 【解析】分析:根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果. 详解:平均数为:2345645+++++=,()22222211[2434445464]4114255s =⨯-+-+-+-+-=⨯+++=()()()()().即答案为2.点睛:本题考查了方差的计算,解题的关键是方差的计算公式的识记.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.1【解析】分析:先利用平均数公式求出平均数再利用方差公式即可得结果详解:的平均数为的方差为故答案为点睛:本题考查主要考查平均数公式与方差公式属于基础题样本数据的算术平均数公式;样本方差公式标准差解析:1 【解析】分析:先利用平均数公式求出平均数,再利用方差公式即可得结果. 详解:5.7,5.8,6.1,6.4,6.5的平均数为5.7+5.8+6.1+6.4+6.56.15=,5.7,5.8,6.1,6.4,6.5∴的方差为()()()()()222225.76.1+5.8 6.1+6.1 6.1+6.4 6.1+6.5 6.10.15-----=,故答案为0.1.点睛:本题考查主要考查平均数公式与方差公式,属于基础题. 样本数据的算术平均数公式12n 1(x +x +...+x )x n =;样本方差公式2222121[()()...()]n s x x x x x x n =-+-++-,标准差s =18.【解析】分析:根据回归系数几何意义得详解:因为Y 与X 之间正增长所以因为V 与U 之间负增长所以因此点睛:函数关系是一种确定的关系相关关系是一种非确定的关系事实上函数关系是两个非随机变量的关系而相关关系是解析:12b b >. 【解析】分析:根据回归系数几何意义得120b b >> 详解:因为Y 与X 之间正增长,所以10b > 因为V 与U 之间负增长,所以20b < 因此120b b >>,点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .b 的正负,决定正相关与负相关.19.280【解析】由频率分布直方图得这名大学生中每周的自习时间不少于小时的频率为这名大学生中每周的自习时间不少于小时的人数为故答案为解析:280 【解析】由频率分布直方图得这400名大学生中每周的自习时间不少于22.5小时的频率为()0.16+0.080.04 2.50.7,+⨯=∴这400名大学生中每周的自习时间不少于22.5小时的人数为4000.7280⨯=,故答案为280.20.2【解析】由茎叶图及10个班级的得分的平均数是90可得∴当且仅当即时取等号故答案为2解析:2 【解析】由茎叶图及10个班级的得分的平均数是90可得8a b += ∴1911919191()()(19)(10)(1023)28888b a b a a b a b a b a b a b +=⨯++=+++=++≥+⨯=,当且仅当9b aa b=,即36b a ==时,取等号 故答案为2三、解答题21.(1)0.5 2.3y x =+;(2)6800元. 【分析】(1)根据表中数据计算出4x =, 4.3y =,再结合参考数据利用公式即可计算出,b a ,进而得出线性回归方程; (2)将9x =代入即可预测. 【详解】解:(1)由表可得:123456747++++++==x ,2.93.3 3.64.4 4.85.2 5.9 4.37y ++++++==,又77211134.4,140i ii i i x yx ====∑∑,71722217134.474 4.30.5140747i ii i i x y x yb x x==--⨯⨯∴===-⨯-∑∑ 4.30.54 2.3a y bx ∴=-=-⨯=y ∴关于x 的线性回归方程为0.5 2.3y x =+;(2)由(1)可得:0.5 2.3y x =+,∴当9x =时,0.59 2.3 6.8y =⨯+=,即该地区2015年农村居民家庭人均纯收入约为6800元. 【点睛】本题考查线性回归方程的求法,考查由线性回归方程进行预测,属于基础题. 22.(1)ˆ465yx =-;拟合效果较好;(2)至少需要规划409个停车位 【分析】(1)由已知数据求得ˆb与ˆa 的值,则线性回归方程可求,再求出残差平方和,代入相关指数公式求得2R ,根据与1的接近程度分析拟合效果;(2)在(1)中求得的线性回归方程中,取9x =求得y 值即可. 【详解】 解:(1)1(123456) 3.56x =+++++=,19361566y =⨯=.6162221640816 3.5156ˆ46916356i ii ii x yxy bxx ==--⨯⨯===-⨯-∑∑,ˆˆ15646 3.55ay bx =-=-⨯=-. y ∴关于x 的线性回归方程为ˆ465y x =-.1x =时,ˆ41y=,2x =时,ˆ87y =,3x =时,ˆ133y =, 4x =时,ˆ179y=,5x =时,ˆ225y =,6x =时,ˆ271y =. 621()556ii i yy =-=∑.6221621()556110.9737586()ii i ii yy R yy ==-=-=-≈-∑∑, 相关指数2R 近似为0.97,接近1,说明拟合效果较好; (2)在(1)中求得的线性回归方程中,取9x =, 可得ˆ4695409y=⨯-=. 故若要求在2022年小区停车位数量仍可满足需要,则至少需要规划409个停车位. 【点睛】本题考查线性回归方程与相关指数的求法,考查运算求解能力,属于中档题. 23.(1)见解析;(2)见解析;(3) 22.3百万小时 【分析】(1)根据频率分布直方图求数据填入对应表格,再根据卡方公式求2K ,最后对照数据作判断,(2)先确定随机变量取法,再判断从M 城市中任选的2名用户中活跃用户数服从二项分布,从N 城市中任选的1名用户中活跃用户数服从两点分布,进而求得对应概率,列表得分布列,最后根据数学期望公式得期望,(3)先求均值,解得ˆa,再估计5x =对应函数值. 【详解】(1)由已知可得以下22⨯列联表:计算()2220060208040200K 9.5247.8791001001406021⨯⨯-⨯==≈>⨯⨯⨯ , 所以有99.5%的把握认为用户是否活跃与所在城市有关. (2)由统计数据可知,城市M 中活跃用户占35,城市N 中活跃用户占45, 设从M 城市中任选的2名用户中活跃用户数为X ,则3~2,5X B ⎛⎫ ⎪⎝⎭设从N 城市中任选的1名用户中活跃用户数为Y ,则Y 服从两点分布,其中()415P Y ==. 故0,1,2,3ξ=,()()()20221400055125P P X P Y C ξ⎛⎫===⋅==⋅=⎪⎝⎭; ()()()()()2012224321*********555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅+⋅⋅⋅=⎪⎝⎭;()()()()()2122223431572112055555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅⋅+⋅⋅=⎪⎝⎭;()()()222343632155125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭. 故所求ξ的分布列为()428573601232125125125125E ξ=⨯+⨯+⨯+⨯=. (3)由已知可得 2.5x =,又12.3y =,可得12.34ˆ2.5a=⨯+,所以ˆ 2.3a =,所以4 2.3ˆy x =+. 以5x =代入可得ˆ22.3y=(百万小时), 即2019年第一季度该读书APP 用户使用时长约为22.3百万小时. 【点睛】本题考查频率分布直方图、回归直线方程以及分布列和数学期望,考查基本分析求解能力,属中档题.24.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5yx =+,当15x =时细菌个数为12个. 【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果; (Ⅱ)利用公式代入数据计算即可. 【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x =⨯++++=,()123445 3.65y =⨯++++=,1122334445561ni ii x y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555n i i x ==++++=∑122216153 3.67ˆ0.7555310ni ii ni i x y nx yxbx n ==-⨯⨯====-⨯--∑∑,ˆˆ 3.60.73 1.5a y bx =-=-⨯=, 所以ˆ0.7 1.5yx =+, 当0.7 1.512x +=时,解得15x =. 所以当15x =时细菌个数为12个. 【点睛】本题考查了散点图、线性回归方程及其应用,属于基础题.25.(1)中位数为71.4;平均数为71;(2)平均数为90;标准差为53)3700元.【分析】(1)利用频率分布直方图能求出中位数、平均分;(2)由题意,求出剩余8个分数的平均值,由10个分数的标准差,能求出剩余8个分数的标准差;(3)求出将3座教学楼完全包裹的球的最小直径、将一座教学楼完全包裹的球的最小直径和将1号教学楼与2号教学楼完全包裹的球的最小直径,由此能求出让各教学楼均被屏蔽仪信号完全覆盖的最小花费. 【详解】(1)因为0.050.150.250.450.5++=<0.050.150.250.350.80.5+++=> 所以中位数为x 满足7080x <<由80()0.350.10.10.510x -⨯++=,解得608071.47x =-≈ 设平均分为y ,则0.05450.15550.25650.35750.1850.19571y =⨯+⨯+⨯+⨯+⨯+⨯=(2)由题意,剩余8个分数的平均值为01010080908x x --==因为10个分数的标准差6s ==所以2222110...10(6)10(90)81360x x ++=⨯+⨯=所以剩余8个分数的标准差为0s ===(3)将3座教学楼完全包裹的球的最小直径为:210=<=因此若用一个覆盖半径为105米的屏蔽仪则总费用为4100元;70<= 因此若用3个覆盖半径为35米的屏蔽仪则总费用为4800元; 将1号教学楼与2号教学楼完全包裹的球的最小直径为:110=<=70>=因此若用1个覆盖半径为55米和1个覆盖半径为35米的屏蔽仪则总费用为3700元; 所以,让各教学楼均被屏蔽仪信号完全覆盖的最小花费为3700元. 【点睛】本题考查中位数、平均数、标准差、最小费用的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是中档题.26.(1)分布列见解析,1;(2)0.10=P ,理由见解析. 【分析】(1)按照分层抽样计算“科学用眼”和“不科学用眼”的抽取人数,随机变量X 的取值可能为0,1,2,然后计算概率得出分布列及其数学期望; (2)按照公式计算2K 的值,然后由临界值表得出结果即可. 【详解】(1)“科学用眼”抽156245⨯=人,“不科学用眼”抽306445⨯=人,则随机变量X0=,1,2,∴343641(0)205====CP XC,122436123(1)205C CP XC====,21243641(2)205C CP XC====,分布列为:0120121555EX=⨯+⨯+⨯=;(2)22100(45153010)3.03075255545⨯-⨯=≈⨯⨯⨯K,由表可知2.706 3.030 3.840<<,∴0.10=P.【点睛】本题考查随机变量的分布列和数学期望,考查独立性检验,考查逻辑思维能力和计算能力,考查学生分析解决问题的能力,属于常考题.。
(经典)高中数学必修三单元测试题附答案解析
(数学3必修)第二章:统计 [基础训练A 组] 一、选择题1.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A . c b a >>B .a c b >>C .b a c >>D .a b c >>2.下列说法错误的是 ( )A .在统计里,把所需考察对象的全体叫作总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( ) A .3.5 B .3- C .3 D .5.0- 4. 要了解全市高一学生身高在某一范围的学生所占比例的大小,需知道相应样本的( )A . 平均数B . 方差C . 众数D . 频率分布5.要从已编号(160)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,48 6.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号 1 2 3 4 5 6 7 8 频数 10 13 x 14 15 13 12 9第三组的频数和频率分别是 ( )A .14和0.14B .0.14和14C .141和0.14 D . 31和141二、填空题1.为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有 ;① 2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等。
高中数学必修三练习题(精编)
高中数学必修三练习题(精编)必修三第三章测试卷一、选择题:1.从甲、乙、丙三人中任选两名代表,甲被选中的概率是( 1/3 )。
2.将骰子向桌面上先后抛掷2次,其中向上的数之积为12的结果有( 2 )种。
3.在面积为S的△ABC的内部任取一点P,则△PBC的面积小于△ABC面积的概率为( 1/3 )。
4.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( A )A与C互斥。
5.如图,是由一个圆、一个三角形和一个长方形构成的组合图形,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( 3/8 )。
6.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( 1/3 )。
7.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( 1/2 )。
8.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( 27/49 )。
9.节日前夕,XXX在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒内间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( 1/3 )。
10.一个数学兴趣小组有女同学2名,男同学3名,现从这个数学兴趣小组中任选2名同学参加数学竞赛,则参加数学竞赛的2名同学中,女同学人数不少于男同学人数的概率为( 3/10 )。
11.掷一枚均匀的正六面体骰子,设A表示事件“出现2点”,B表示“出现奇数点”,则P(A∪B)等于( 1/2 )。
12.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,在扇形OAB内随机取一点,则此点取自阴影部分的概率是(1/2π )。
高中数学必修三全册练习题
本册综合素能检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各项中最小的数是( ) A .111111(2) B .20106 C .1000(4) D .101(8)[答案] A[解析] 111111(2)=1×25+1×24+1×23+1×22+1×21+1×20=63,210(6)=2×62+1×61+0×60=78,1000(4)=1×43+0×42+0×41+0×40=64,101(8)=1×82+0×81+1×80=65,故最小的数为111111(2).2.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样和分层抽样抽取,则不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中先剔除1个个体,则n 的值为( )A .6B .12C .18D .3 [答案] A[解析] 由于要用分层抽样三层之比为123,因此,凡为6的整倍数,又样本容量增加1时需要删除1人,所以35n +1为整数,因此n =6,故选A.3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色’’与“乙分得红色”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件[答案] C[解析] 甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.4.在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概( )A.16B.13C.23D.45[答案] C[解析] 设AC =x cm ,则BC =(12-x )cm(0<x <12).面积S =x ·(12-x )>20,解得2<x <10,∴矩形面积大于20 cm 2的概率为10-212=23.故选C.5.某程序框图如图所示,现输入选项中的四个函数,则可以输出的是( )A .f (x )=|x |xB .f (x )=ln(x 2+1-x )C .f (x )=e x +e -xe x -e -xD .f (x )=x 21+x 4[答案] B[解析] 由框图知f (x )应满足:奇函数,有零点.A 中的函数不能输出,因为此函数没班级:_________姓名:_________学号:______-----------------------------密--------------------------------------封-----------------------------------线-------------------------------有零点;B 中函数可以输出;C 中函数不存在零点,故不能输出;D 中函数为偶函数,也不能输出,故选B.6.如图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个).去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别a 1,a 2,则一定有( )A .a 1>a 2B .a 1<a 2C .a 1=a 2D .a 1,a 2的大小与m 的值有关 [答案] B[解析] 去掉一个最高分和一个最低分后,甲选手得分是81,85,85,84,85,则平均数是a 1=15(81+85+85+84+85)=84;乙选后得分是84,84,86,84,87,则平均数是a 2=15(84+84+86+84+87)=85>84,所以a 1<a 2.7.(2014·浙江)在3张奖卷中有一、二等奖各1张,另一张无奖,甲、乙两人各抽取1张,两人都中奖的概率是( )A.16B.13C.12D.23[答案] B[解析] 设三张卷分别用A ,B ,C 代替,A 一等奖;B 二等奖;C 无奖,甲、乙各抽一张共包括(A ,B ),(A ,C ),(B ,A ),(B ,C ),(C ,A ),(C ,B )6种基本事件,其中甲、乙都中奖包括两种,P =26=13,故选B.8.(2015·江苏卷)根据如图所示的伪代码,可知输出的结果S 为( )A .7B .5C .9D .11[答案] A[解析] 第一次循环:S =3,I =4;第二次循环:S =5,I =7;第三次循环:S =7,I=10;结束循环,输出S =7.9.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A.x ,s 2 B .5x +2,s 2 C .5x +2,25s 2 D.x ,25s 2[答案] C[解析] 本题考查平均数与方差的计算公式.由平均数与方差的计算公式分析可得5x 1+2,5x 2+2,…,5x n +2的平均数为5x +2,方差为25s 2,故选C.10.(2015·广东佛山高三教学质量检测(一))某程序框图如下图所示,该程序运行后输出的S 的值是( )A .-3B .-12C.13 D .2[答案] A[解析] 该程序框图的运行过程是: S =2,i =1,i =1≤2 010成立, S =1+21-2=-3; i =1+1=2,i =2≤2 010成立, S =1+(-3)1-(-3)=-12;i =2+1=3,i =3≤2010成立, S =1+(-12)1-(-12)=13;i =3+1=4, i =4≤2 010成立; S =1+131-13=2;i =4+1=5, …….对于判断框内i 的值,n ∈N ,当i =4n +1时,S =2;当i =4n +2时,S =-3;当i =4n +3时,S =-12;当i =4n +4时,S =13.由于2 010=4×502+2,则S =-3.该程序框图中含有当型循环结构,判断框内的条件不成立时循环终止,即i =2 011时开始不成立,输出S =-3.11.(2015·石家庄模拟)从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高 x (cm) 160 165 170 175 180 体重y (kg)6366707274根据上表可得回归直线方程y ^=0.56x +a ^,据此模型预报身高为172 cm 的高三男生的体重为( )A .70.09B .70.12C .70.55D .71.05[答案] B[解析] 由表中数据得x =160+165+170+175+1805=170,y =63+66+70+72+745=69.将(x ,y )代入y ^=0.56x +a ^,∴69=0.56×170+a ^,∴a ^=-26.2,∴y ^=0.56x -26.2. ∴当x =172时,y =70.12,故选B.12.(2015·全国卷)根据下面给出的2004年至2003年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 [答案] D[解析] 由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2012·江苏高考卷)某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[答案]15[解析]由已知,高二人数占总人数的310,所以抽取人数为310×50=15.14.102,238的最大公约数是________.[答案]34[解析]利用辗转相除法或更相减损术可得最大公约数是34.15.(2014·福建高考)如右图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.[答案]0.18[解析]由题意知,这是个几何概型问题,S阴影S正方形=1801000=0.18.∵S正方形=1,∴S阴影=0.18.16.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员12345 6三分球个数a1a2a3a4a5a6下图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填________,输出的s=________.[答案]i≤6?(i<7?)a1+a2+a3+a4+a5+a6[解析]由题意可知,程序框图是要统计6名队员投进的三分球的总数,由程序框图的循环逻辑知识可知,判断框应填i≤6?,输出的结果就是6名队员投进的三分球的总数,而6名队员投进的三分球数分别为a1,a2,a3,a4,a5,a6,故输出的s=a1+a2+…+a6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2014·山东)海关对同时从A、B、C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50150100(1)求这6件样品中来自A、B、C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.[解析](1)因为工作人员是按分层抽样抽取样品,所以各地区抽取样品的比例为:AB C=50150100=13 2各地区抽取的商品数分别别为A:6×16=1;B:6×36=3;C:6×26=2.(2)设各地商品分别为A、B1、B2、B3、C1、C2所以所含基本事件共有(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2)15种不同情况,样本事件包括(B1,B2),(B1,B3),(B2,B3),(C1,C2)4种情况.所以,这两件商品来自同一地区的概率为P =415.18.(本小题满分12分)高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.[解析](1)因为分数在[50,60)之间的频数为2,频率为0.008×10=0.08,所以高一(1)班参加校生物竞赛的人数为20.08=25.分数在[80,90)之间的频数为25-2-7-10-2=4,频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(2)设“至少有1人分数在[90,100]之间”为事件A,将[80,90)之间的4人编号为1、2、3、4,[90,100]之间的2人编号为5、6.在[80,100]之间任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有1人分数在[90,100]之间的基本事件有9个,根据古典概型概率的计算公式,得P(A)=915=35.[易错点拨]在茎叶图的基础上,计算频率分布直方图中某个小矩形的高是较新颖的命题方式,计算时,要注意理解小矩形的高的意义.对于古典概型的概率的求解很重要的一步是列举基本事件,此时,要注意避免重复与迹漏.19.(本小题满分12分)某城市理论预测2014年到2018年人口总数(单位:十万)与年份的关系如下表所示:年份2014+x 0123 4人口总数y 5781119(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的回归方程y^=b^x+a^;(3)据此估计2019年该城市人口总数.(参考数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)[解析](1)概据题中数表画出数据的散点图如下图所示.(2)由题中数表,知x=15(0+1+2+3+4)=2,y=15(5+7+8+11+19)=10.所以b=5i=1x i y i-5x-y5i=1x2i-5x-2=3.2,a ^=y -b ^x =3.6.所以回归方程为y ^=3.2x +3.6.(3)当x =5时,y ^=3.2×5+3.6=19.6(十万)=196(万). 答:估计2019年该城市人口总数约为196万.20.(本小题满分12分)(2014·福建)根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035~4085元为中等偏下收入国家;人均GDP 为4085~12616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:行政区 区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000 E20%10000(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.[解析] (1)设城市人口总数为a ,该城市人均GDP 为:8000×0.25a +4000×0.30a +6000×0.15a +3000×0.10a +10000×0.20aa =6400因为6400∈[4085,12616)所以该城市人均GDP 达到了中等偏上国家标准.(2)从“5个行政区中随机抽取2个”所有的基本事件是:{A ,B },{A ,C },{A ,D },{A ,E },{B ,C },{B ,D },{B ,E },{C ,D },{C ,E },{D ,E },共10种情况,其中2个行政区都达到中等以上国家标准的有{A ,C },{A ,E },{C ,E },共3种情况因此P =310. 21.(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.[探究] (1)茎叶图中的数据越集中在上部,则说明该班的平均身高较高;(2)先求出平均数,再代入方差公式即可;(3)写出所有基本事件,再统计基本事件的总数和所求事件包含的基本事件的个数,利用古典概型计算概率.[解析] (1)由题中茎叶图可知:甲班身高集中于160~179 cm 之间,而乙班身高集中于170~180 cm 之间,因此乙班平均身高高于甲班.(2)甲班的平均身高为x =110(158+162+163+168+168+170+171+179+179+182)=170,甲班的样本方差为 s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(3)设“身高为176 cm 的同学被抽中”的事件为A ,用(x ,y )表示从乙班10名同学中抽中两名身高不低于173 cm 的同学的身高,则所有的基本事件有(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有(181,176),(179,176),(178,176),(176,173),共4个基本事件,故P (A )=410=25.22.(本小题满分12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计 1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分别为a 、b 、c ,其中a >0,a +b +c =600.当数据a 、b 、c 的方差s 2最大时,写出a 、b 、c 的值(结论不要求证明),并求出此时s 2的值.[解析] (1)厨余垃圾投放正确的概率为P =“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设“生活垃圾投放错误”为事件A ,则事件A 表示“生活垃圾投放正确”.事件A 的概率为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )=400+240+601 000=710,所以P (A )=1-P (A )=1-710=310.(3)当a =600,b =0,c =0时,方差s 2取得最大值. 因为x =13(a +b +c )=200,所以s 2=13[(600-200)2+(0-200)2+(0-200)2]=80 000.[名题点睛] 本题结合一个特殊设计的表格给出各类数据,显然,可用的与不可用的数据均在表中,合理应用表中的数据是求解本题的关键.在求解事件的概率时,可考虑利用对立事件求解题.在限定条件下,可根据条件及方差公式判断何时“方差最大”,抓住这一关键性的条件,问题就容易解决了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 质量评估检测时间:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.从甲、乙、丙三人中任选两名代表,甲被选中的概率( ) A.12 B.13 C.23D .1 2.将骰子向桌面上先后抛掷2次,其中向上的数之积为12的结果有( ) A .2种 B .4种 C .6种 D .8种 3.在面积为S 的△ABC 的内部任取一点P ,则△PBC 的面积小于S2的概率为( )A.14B.12C.34D.234.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A .A 与C 互斥B .B 与C 互斥 C .任何两个均互斥D .任何两个均不互斥5.如图,是由一个圆、一个三角形和一个长方形构成的组合图形,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( )A.34B.38C.14D.186.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( )A.16B.13C.12D.237.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2有零点的概率为( )A.π4 B .1-π4C.4π D.4π-1 8.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是A.25B.710C.45D.9109.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒内间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.7810.一个数学兴趣小组有女同学2名,男同学3名,现从这个数学兴趣小组中任选2名同学参加数学竞赛,则参加数学竞赛的2名同学中,女同学人数不少于男同学人数的概率为( )A.310B.25C.35D.71011.掷一枚均匀的正六面体骰子,设A 表示事件“出现2点”,B 表示“出现奇数点”,则P (A ∪B )等于( )A.12B.23C.13D.25如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A.12-1πB.1πC .1-2π D.2π二、填空题:本大题共4小题,每小题5分,共20分.13.取一根长为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m如图所示,在正方形内有一扇形(见阴影部分),点P 随意等可能落在正方形内,则这点落在扇形外且在正方形内的概率为________.15.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是________.(结果用数值表示)16.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是________,这两个数字之和是偶数的概率是________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)同时抛掷两个骰子(各个面上分别标有数字1,2,3,4,5,6),计算: (1)向上的数相同的概率.(2)向上的数之积为偶数的概率.18.(本小题满分12分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n 个.从袋子中随机取出1个小球,取到白球的概率是12.(1)求n 的值.(2)记从袋中随机取出一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.19.(本小题满分12分)一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.20.(本小题满分12分)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?(2)规定:若x+y≥10,则小王赢;若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.21.(本小题满分12分)为了解社会对学校办学质量的满意程度,某学校决定用分层抽样的方法从高中三个年级的家长委员会中共抽取6人进行问卷调查,已知高一、高二、高三的家长委员会分别有54人,18人,36人.(1)求从三个年级的家长委员会中分别应抽的家长人数;(2)若从抽到的6人中随机抽取2人进行调查结果的对比,求这2人中至少有一人是高三学生家长的概率.22.(本小题满分12分)一个质地均匀的正方体的六个面上分别标有数字0,1,2,3,4,5,一个质地均匀的正四面体的四个顶上分别标有数字1,2,3,4.将这个正方体和正四面体同时抛掷一次,正方体正面向上的数字为a,正四面体的三个侧面上的数字之和为b.(1)求事件b=3a的概率;(2)求事件“点(a,b)满足a2+(b-5)2≤9”的概率.模块综合检测时间:120分钟 满分:150分一、本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列事件中,是随机事件的是( )①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品; ②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标; ③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;④同性电荷,相互排斥;⑤某人购买体育彩票中一等奖.A .②③④B .①③⑤C .①②③⑤D .②③⑤2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A .6B .8C .10D .123.下表是某厂1~4由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^=-0.7x +a ,则a =( )A .10.5B .5.15C .5.2D .5.254.如图所示的算法流程图中,输出的S 表达式为( )A .1+2+…+49B .1+2+…+50C .1+2+…+49D .11+2+…+505.废品率x%与每吨生铁成本y(元)之间的回归直线方程为y ^=234+3x ,表明( ) A .废品率每增加1%,生铁成本增加3x 元 B .废品率每增加1%,生铁成本每吨增加3元C.废品率每增加1%,生铁成本增加234元D.废品率不变,生铁成本为234元6.在线段[0,3]上任取一点,则此点坐标大于1的概率是( )A.34B.23C.12D.137.某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系8.如图所示是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入( )A.P=N1 000B.P=4N1 000C.P=M1 000D.P=4M1 000A.0.13 B.0.39 C.0.52 D.0.6410.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则( )A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B11.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5 B.91.5和92 C.91和91.5 D.92和92如图,边长为2的正方形内有一不规则阴影部分,随机向正方形内投入200粒芝麻,恰有60粒落入阴影部分,则不规则图形的面积为( )A.35B.45C.65D.32二、填空题:本大题共4小题,每小题5分,共20分.13.利用秦九韶算法,求当x=23时,多项式7x3+3x2-5x+11的值的算法.①第一步:x=23,第二步:y=7x3+3x2-5x+11,第三步:输出y;②第一步:x=23,第二步:y=((7x+3)x-5)x+11,第三步:输出y;③算6次乘法,3次加法;④算3次乘法,3次加法.以上描述正确的序号为________.14.有20张卡片,每张卡片上分别标有两个连续的自然数K,K+1,其中K=0,1,2,…,19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)大于14”为A,则P(A)=__________________.15.执行如图所示的程序框图,输出的T=________.16.从参加某知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图所示.观察图形,估计这次知识竞赛的及格率(大于或等于60分为及格)为________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球,从中随机取出1球,求:(1)求取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.18.(本小题满分12分)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如图所示.(1)计算样本的平均成绩及方差;(2)在这10个样本中,现从不低于84分的成绩中随机抽取2个,求93分的成绩被抽中的概率.19.(本小题满分12分)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.20.(本小题满分12分)(2015·福建卷)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.21.(本小题满分12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,(1)(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? 22.(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名中学生(1)(2)3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率.。