同态基本定理与同构定理

合集下载

离散数学-同态和同构

离散数学-同态和同构

离散算法设计
同态和同构可以用于设计高效的离散算法, 如通过同态映射将问题转化为易于处理的数
学形式,从而降低计算复杂度。
05
同态和同构的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
二次方程的同态和同构分析
要点一
总结词
要点二
详细描述
在二次方程中,同态和同构的概念主要应用于方程的变形 和等价分类。
拓扑同构映射保持了原拓扑空间中的拓扑性质,即如果映射$f: X rightarrow Y$是 拓扑空间$X, Y$之间的同构映射,那么对于任意子集$U subseteq X$,有$f(U)$是 $Y$中的开集当且仅当$U$是$X$中的开集。
保持连通性
拓扑同构映射保持了原拓扑空间中的连通性,即如果映射$f: X rightarrow Y$是拓 扑空间$X, Y$之间的同构映射,那么对于任意子集$A subseteq X, B subseteq Y$, 有$(A subseteq B) Leftrightarrow (f(A) subseteq f(B))$。
逻辑同构的性质
保持逻辑关系
逻辑同构映射保持了原逻辑系统中的逻辑关系,即如果映射$f: L_1 rightarrow L_2$是逻辑系统$L_1, L_2$之间的同构映射,那么对于任意命题$varphi in L_1, psi in L_2$,有$(L_1 models varphi) Leftrightarrow (L_2 models psi)$。
的。
同构的性质
同构是一种更强的相似性关系,它不仅保持了群的基本运算性质,还要求存在一个双射 的映射。这意味着原始群和目标群在某种程度上是完全相同的。

Fuzzy子群同态、同构基本定理

Fuzzy子群同态、同构基本定理
o
(
x
)
O
同理 可证 A
x
e

x
e
A A司 c
y
,
(
x

)
B

(x
c 。
)
,
性质
l ) 2
2
.
6 B
=

B
o
A
c

B门 c
,
则 下 述 命题 成 立
:
A
o
^ 为C的F
u z z
u z z
子群


) A
A
n B是B
的F
^
o
y
正规 子群
z z
3 )

e
B
的Fu
u
x
y
正规 子群
o x

B (
) A
o
证明
( Ao
u Z
F
y 子

群 同 态
z 基本定理 同构
数 学教研 室
凡 徐 以字

a 一


ig
i j 于 L
Fu
: z
9
n n n 1 在其文 1 y 子群 的概 念 1 绍了 u 8 那F 不 变 年 w 章 〔 〕 中介
,
本 文将
F
u
z
把 这 些 概 念作进 一 步 的推广 群的概念
,
引进
F
F
u z z
,

`
口 A
c
,
。 b入 l B ) o b 入一 ( Af 。 b入
1
e

群同态基本定理与同构定理

群同态基本定理与同构定理
证明过程细节
思路拓展
采用归纳法,将问题划分为小规模子问题,通过递归调用,逐步缩小问题规模,最终得出证明结果。
证明过程细节
在归纳过程中,需要建立递归终止条件和归纳转移条件,并利用群的定义和性质,逐步缩小问题规模,最终得出 $f(a)=f(b)$ 的矛盾结果。
群同态基本定理的证明方法二
应用场景一
应用场景二
群的同构定理的表述与证明
应用一
在有限群表示论中,群的同构定理可以用来判断两个群是否具有相同的表示。
应用二
在代数拓扑中,群的同构定理可以用来判断两个拓扑空间是否同胚。
群的同构定理的应用举例
密码学中的许多算法都涉及到了群结构,如对称加密算法中的有限域等。
同构定理可以用来判断两个有限群是否同构。如果两个有限群同构,则它们具有相同的性质和结构,因此可以用来构造相同的密码学算法。但是,如果两个有限群不同构,则它们具有不同的性质和结构,因此不能用来构造相同的密码学算法。因此,同构定理在密码学中具有重要的作用。
2023
群同态基本定理与同构定理
CATALOGUE
目录
群与群同态基本概念群同态基本定理的证明群的同构定理群同态基本定理与同构定理的应用群同态基本定理与同构定理的推广
01
群与群同态基本概念
群是一个非空集合,其中存在一个二元运算符,满足封闭性、结合律、单位元存在性和逆元存在性。
封闭性:对于任意$a,b\in G$,有$a\cdot b\in G$。
操作系统的权限管理
群同态基本定理可以用于将一些数据结构的设计问题转化为群同构问题,从而设计出更有效的算法。
数据结构与算法设计
在计算机科学中的应用
量子计算
在量子计算中,同构定理可以用于量子态的变换和量子测量等问题。

第三章 正规子群和群的同态与同构

第三章 正规子群和群的同态与同构
第三章 正规子群和群的同态与同构
§1群同态与同构的简单性质
(Basic Properties of Homomorphism and Isomorphism of the groups)
一 定义
定义1 设 ( G, ) 和 G, 是两个群,如果存在映射ϕ:G → G满足
( )
ϕ (a b) = ϕ (a) ϕ (b)(∀a, b ∈ G(即ϕ 保运算) )
G ⇒ ϕ ( N ) G;
( 2) N
G ⇒ ϕ −1 ( N ) G
5.子群之积
定理3 若群G的一个正规子群和一个子群之积仍是G的子群, 两个正规子群之积仍是正规子群,也就是说,若H ≤ G , N ≤ G, 则
(1) 若N ( 2 ) 若H
G ⇒ NH ≤ G且N G且N G ⇒ HN
NH , H ∩ N
H
G,进一步,若还有H ∩ N = {e},
则∀h ∈ H , ∀n ∈ N 都有hn = nh
例4 若H ≤ G,那么N ( H ) = {x ∈ G | xH = Hx}叫做H 在G中 的正规化子,试证H N ( H ) ≤ G。

1. 商群的定义
设N 即


G,任取2个陪集aN , bN。则 (aN )(bN ) = a ( Nb) N = abNN = (ab) N, (aN )(bN ) = (ab) N
ϕ
三 循环群的同态象
定理3 设G和G为两个群,且G ∼ G,若G为循环群, 则G也为循环群。
推论2 循环群的商群仍为循环群. 推广 交换群的满同态象仍为交换群;交换群的商群 也是交换群.
ϕ
四 同态映射下两个群的子群之间的关系
引理 设σ :G → G是群同态映射,又H ≤ G,如果H ⊇ Kerϕ, 则

群论中的同态与同构理论

群论中的同态与同构理论

群论中的同态与同构理论群论是数学中的一个重要分支,研究群的性质和结构。

在群论中,同态和同构是两个基本概念,它们对于理解群的性质和群之间的关系非常重要。

一、同态的定义和性质在群论中,同态是指两个群之间的映射,它保持了群运算的结构。

具体来说,设有两个群G和H,如果存在一个映射φ:G→H,对于任意的x、y∈G,有φ(xy)=φ(x)φ(y),那么φ就是一个从G到H的同态。

同态具有以下性质:1. 同态保持群运算:对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。

2. 同态保持单位元:对于任意的eG∈G,有φ(eG)=eH。

3. 同态保持逆元:对于任意的x∈G,有φ(x^(-1))=[φ(x)]^(-1)。

二、同构的定义和性质同构是指两个群之间的一种特殊的同态映射,它是一种双射,并且保持了群运算和群结构。

具体来说,设有两个群G和H,如果存在一个映射φ:G→H,满足以下条件:1. φ是一个双射,即φ是一个一一对应的映射。

2. φ保持群运算,即对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。

那么φ就是一个从G到H的同构。

同构具有以下性质:1. 同构保持群运算:对于任意的x、y∈G,有φ(xy)=φ(x)φ(y)。

2. 同构保持单位元:对于任意的eG∈G,有φ(eG)=eH。

3. 同构保持逆元:对于任意的x∈G,有φ(x^(-1))=[φ(x)]^(-1)。

三、同态和同构的应用同态和同构在群论中有着广泛的应用。

它们可以帮助我们研究群的性质和结构,以及群之间的关系。

1. 同态的应用:同态可以用来研究群之间的映射关系。

通过同态,我们可以将一个复杂的群映射到一个简单的群,从而简化问题的研究。

同态还可以用来刻画群的性质,例如同态核和同态像等。

2. 同构的应用:同构可以将一个群与另一个群进行一一对应,从而帮助我们找到两个群之间的相似之处。

同构还可以用来研究群的结构,例如分类群的同构分类问题。

四、同态与同构的例子为了更好地理解同态和同构的概念,我们来看几个具体的例子。

同态和同构的关系

同态和同构的关系

同态和同构的关系
在数学中,同态和同构是两个重要的概念,它们描述了两个代数结构之间的关系。

1.同态(Homomorphism):同态是指将一个代数结构映射到另一个代数结构的映射,保持运算结构的性质。

如果存在两个代数结构A 和B,以及一个映射f:A→B,对于A中的任意元素a和b,满足f(a*b)=f(a)*f(b),其中"*"表示A和B上的运算,而"="表示两个代数结构中的相等关系。

简而言之,同态保持了代数结构中的运算规则。

2.同构(Isomorphism):同构是指两个代数结构之间存在一种双射关系,使得双射保持了运算结构和元素之间的关系。

如果存在两个代数结构A和B,以及一个映射f:A→B,满足以下条件:-f是一个双射,即对于A中的每个元素a,都存在唯一的元素b 在B中与之对应;
-对于A中的任意两个元素a1和a2,满足a1*a2=a3,则f(a1)*f(a2)=f(a3);
-对于B中的任意元素b1和b2,满足b1*b2=b3,则存在A中的元素a1和a2,使得f(a1)=b1,f(a2)=b2,f(a1*a2)=b3。

简而言之,同构保持了代数结构中的运算规则和元素之间的一一对应关系。

因此,可以将同构看作是一种更严格的同态关系。

如果两个代数结构之间存在一个同构映射,那么它们在结构和性质上是完全相同的,只是元素的表示不同而已。

需要注意的是,在数学中,同态和同构的概念不仅仅适用于代数结构,还可以应用于其他领域,如拓扑学、图论等。

1/ 1。

抽象代数知识点总结

抽象代数知识点总结

抽象代数知识点总结一、群的基本概念与性质1、集合及其基本概念集合是研究对象的所有对象的总体,且每个对象都是它的一个成员。

集合的基本概念有空集、全集等。

2、二元运算及其基本性质设M是一个非空的集合,如果对于M中的每一对元素(a,b),都有一个元素:c与之对应,那么就称c在二元运算下,是a和b的像,记作:c=a*b or c=ab 或c=a×b。

3、群的基本概念设G是一个非空集合,*是G上的一个二元运算,如果满足下列4条性质:1)封闭性:对于G中的任意两个元素a、b,有a*b=c,则c也是G中的一个元素。

2)结合律:对于G中的任意三个元素a、b、c,有(a*b)*c=a*(b*c)。

3)存在单位元:存在G中的一个元素e,对于G中的任意一个元素a,都有e*a=a*e=a。

4)存在逆元:对于G中的任意一个元素a,存在G中的一个元素b,使得a*b=b*a=e。

则称(G,*)为一个群,*e*为群的单位元,b为a的逆元。

4、群的基本性质群具有唯一性、反号的相等性、等式的一般性质以及二次方向等性质。

5、群的记号与群的表示法群记号一般由两部分组成,它们的含义可以简单分别叫做群名和运算名,前者表示群的所有元素的种类,后者表示群的元素相互之间的运算。

这是群的基本概念与性质的介绍,群是代数结构中的一种基本结构,具有很强的普适性,因此在很多数学分支中都有广泛的应用。

二、群的子群与陪集1、子群的定义设(G,*)是一个群,对于G的一个非空子集H来说,如果在G的运算*下,H构成一个群,则称H是G的一个子群。

2、子群的判定定理判定定理是指定群的一个非空子集是否为子群的方法,使得许多确定子群是否存在的问题可以迅速得到解决。

3、陪集的基本概念给定群G,a是G的一个元素,在G中a的左陪集和右陪集分别定义。

4、陪集的划分与陪集的等价关系陪集的划分是一个重要概念,若H是G的一个子群,a是G的一个元素,G可被H分成无穷个不相交的子集(陪集):aH={(ah|h∈H)}及Ha={(ha|h∈H)}三、同态与同态定理1、同态的定义设(G,*)和(G’,*’)是两个群,如果G、G’之间的映射f满足一定条件,即对于任意的a.b∈G,有f(a*b)=f(a)*’f(b),则称映射f为从(G,*)到(G’,*’)的同态映射。

近世代数课件-2-9同态基本定理与同构定理

近世代数课件-2-9同态基本定理与同构定理
近世代数
第二章 群
近世代数的主要研究对象是各种各样的代数系, 即具有一些代数运算的集合。
群是具有一种代数运算的代数系,它是近世代数 中一个比较古老,而且内容丰富的重要分支,在数学、 物理、化学、计算机等自然科学的许多领域都有广泛 应用。
2020/4/27
§2.9 同态基本定理与同构定理
本节教学目的与要求: 熟练掌握群同态基本定理和同构定理,并能简单应用,特
2020/4/27
18:18
63页第7题
2020/4/27
18:18
66页第8题
2020/4/27
18:18
18:18
三、群同构定理及其应用Fra bibliotek2020/4/27
18:18
四、满同态的特殊性
2020/4/27
18:18
作业:P65第1,2题。
2020/4/27
18:18
38页第2、8题
2020/4/27
18:18
43页第3题
2020/4/27
18:18
49页第4题
2020/4/27
18:18
54页第6题
别地,要熟练掌握群同态基本定理的证明。 掌握同态基本定理的证明方法是难点。
一、群与商群的同态性质 二、群同态基本定理及其应用 三、群同构基本定理及其应用 四、满同态的特殊性
2020/4/27
一、 群与商群的同态性质
注:定理2.42中规定的同态称为自然同态。
2020/4/27
18:18
二、 群同态基本定理及其应用
2020/4/27
18:18
二、 群同态基本定理及其应用 要证明
2020/4/27
18:18

群同态基本定理与同构定理

群同态基本定理与同构定理
应用2
在代数学中,同构定理是研究群论的重要工具。例如,可以利用同构定理来研究群的性质、结构以及 群之间的关系。
03
群同态基本定理与同构定 理的关系
两者之间的联系
01
群同态基本定理是同构定理的基础,它为同构定理提供了基本 的理论支持。
02
同构定理是群同态基本定理的推广,它把群同态基本定理中的
群推广到更一般的代数结构。
深入,人们发现非交换群在许多领域中也有着广泛的应用。因此,对非
交换群的同态基本定理的研究也变得十分重要。
定理的深化
精细的同态基本定理
在群同态基本定理的证明过程中,有一些关 键的步骤需要用到一些特殊的技巧和方法。 这些技巧和方法可以被称为精细的同态基本 定理。它们对于理解群的结构和性质具有重 要的意义。
THANKS
感谢观看
限群。无限群是指包含无限个元素的群,其运算并不一定满足封闭性,
因此需要更精细的处理方法。
02

从群到环和域
群同态基本定理的推广并不仅限于群,还可以将其推广到环和域等数学
对象。这些对象在代数学中被广泛研究,因此,对它们的同态基本定理
的研究也具有重要意义。
03
从交换群到非交换群
在最初的研究中,群同态基本定理主要关注的是交换群,但随着研究的
两者都是研究群的结构和性质的重要工具。
03
两者之间的区别
群同态基本定理主要关注的是有限群与其子群之间的映射关系,而同构定理则更注重不同代数结构之 间的映射关系。
群同态基本定理的证明方法相对简单,主要基于群的定义和性质,而同构定理的证明则更加复杂,需要 引入更多的代数工具。
在应用上,群同态基本定理主要用于解决有限群的问题,而同构定理则可以应用于更广泛的代数结构, 包括环、域、模等。

群同态三大基本定理

群同态三大基本定理

群同态三大基本定理群同态三大基本定理是群论中的重要结果,包括同态基本定理、同构基本定理和同态映射定理。

这些定理对于研究群及其结构和性质具有重要意义。

本文将分别介绍和阐述这三大基本定理。

一、同态基本定理同态基本定理是群同态理论的基石,它表明了群同态的基本性质。

该定理断言,对于任意群G和H,如果存在一个由G到H的群同态φ,则G的核Ker(φ)是G的一个正规子群,且G/ Ker(φ)与φ(G)同构。

其中,核是指同态映射φ的零空间,即使得φ(g) = e_H的所有元素g构成的子集。

同态基本定理的证明思路是,首先证明Ker(φ)是G的一个正规子群,然后构造一个映射ψ: G/Ker(φ) → φ(G),通过ψ(gKer(φ)) = φ(g)将G/Ker(φ)的元素映射到φ(G)的元素,证明ψ是一个双射,并且保持群运算。

因此,G/Ker(φ)与φ(G)同构。

二、同构基本定理同构基本定理是群论中的一个重要结果,它给出了同构的判定条件。

该定理指出,如果存在一个双射φ: G → H,且满足φ(xy) = φ(x)φ(y),那么G与H是同构的。

换句话说,如果两个群之间存在一个双射,且保持群运算,那么这两个群是同构的。

同构基本定理的证明思路是,首先证明φ是一个同态映射,即φ(xy)= φ(x)φ(y)成立。

然后证明φ的逆映射存在,即存在一个映射ψ: H → G,使得ψ(φ(x)) = x和φ(ψ(y)) = y对于所有的x∈G和y∈H 成立。

最后,证明ψ也是一个同态映射,即ψ(xy) = ψ(x)ψ(y)成立。

因此,φ和ψ构成了G和H之间的同构关系。

三、同态映射定理同态映射定理是群同态理论中的一个重要结果,它给出了同态映射的性质。

该定理指出,如果φ: G → H是一个群同态,那么φ(G)是H的一个子群,且φ(G)的阶是G的核Ker(φ)的阶的整数倍。

同态映射定理的证明思路是,首先证明φ(G)是H的一个子群。

然后证明φ(G)的阶是G的核Ker(φ)的阶的整数倍。

第三章 正规子群和群的同态与同构

第三章 正规子群和群的同态与同构
⇒ G / N = (G : N ),
由 Lagrange定理,对有限群 G有 G = N (G : N ),
G . 从而有 G / N = N
定理5 (A.L.Cauchy) 设G是一个pn阶有限交换群, 其中p是一个素数,则G有p阶元素,从而有p阶子群. 推论
pq(p,q为互异素数)阶交换群必为循环群.
为素数.
∴ a = n,
从而 G =< a > 为循环群,
由G为单群知n为素数. 练习 设G = Z , N = mZ < G , (1)写出商群的全部元素;(2)商群是否为循环群?
作 业
习题3.2 第91页 2,3,4,5
3.3
群同态基本定理
一、复习 二、 群同态基本定理 三、应用
一、复习
1、正规子群:
结论: 如果 G与G 为各有一个代数运算的 代数系统,
_
且 G ≅ G,则当 G与G 有一个是群时,另一个 一定是群.
_
_
定理2 设ϕ为群G到群G的一个同态映射(不一 定为满射),
_

1) 当 H ≤ G时,有 ϕ ( H ) ≤ G 2)当 H ≤ G 时,有 ϕ −1 ( H ) ≤ G .
_ _ _
乘法)的集合,如果 G ~ G ,则 G 也是一个群 .
_ _ __
注意:定理中的同态映射ϕ 必须是满射. 推论 设ϕ为群 G到群G的一个同态映射,
则群 G的单位元的象是群 G 的单位元; G的元素 a的逆元的象 是 a的象的逆元 ,即a
_ −1 _
_
= (a)−1 或 ϕ (a −1 ) = ϕ (a)−1 .
当ϕ是双射时,称 ϕ为群 G到 G 的一个 同构映射.

离散数学 ch5.3同态与同构

离散数学 ch5.3同态与同构

下面看看同构的两个代数系统运算表的相同性:
+4
0 1
2
3

S R A L
0 1 2 3
0 1 2 3 1 2 3 0 2 3 0 1 3 0 1 2
S S R R R A A A L L L S
A L S R
L S R A
+4
f N4 X 0 S 1 R 2 A 3 L
f是双射
下面是含有两个运算的代数系统的同构的性质的保持问 题。
定义:令(X,+,×)和(Y, ,)是含有两个运算的代数 系统,其中+、×、 、都是二元运算,如果存在双射 f:XY, 使得对任何x1 , x2∈X,满足 f(x1+x2) = f(x1) f(x2)。 (注意:+与对应) f(x1×x2) = f(x1) f(x2)。 (注意:×与对应) 则称这两个代数系统同构。 6. (保持分配律)如果运算+对×可分配, 则对也可分配。 证明:任取y1 ,y2 , y3 ∈Y 因 f :XY是满射,x1 ,x2 , x3∈X, 使得 y1=f(x1) , y2=f(x2) , y3=f(x3) y1 ( y2 y3 )=f(x1)(f(x2)f(x3)) = f(x1) f(x2×x3) = f(x1+(x2×x3)) = f((x1+ x2)×(x1+ x3)) (因+对×可分配) = f(x1+x2) f(x1+x3) = (f(x1)f(x2)) (f(x1)f(x3)) = (y1y2) (y1y3) 所以对 也可分配。
例2:设有两个代数({0,1}, ∨ ),({a,b}, ) 其运算表如下: 表1 代数系统 表2 代数系统

5.8同态与同构

5.8同态与同构

=f(x*(y*z))
=f((x*y)*z)=f(x*y)*’f(z) =(f(x)*’f(y))*’f(z)=(a*’b)*’c 。
<f(A),*’>是半群。
同态像的性质
2)若<A,*>是独异点,则<f(A),*’>也是独异点. 证:af(A),则x,有a=f(x),eA,f(e)f(A), a*’f(e)=f(x)*’f(e)=f(x*e)=f(x)=a, f(e)*’a=f(e)*’f(x)=f(e*x)=f(x)=a。 f(e)是<f(A),*’>的幺元, <f(A),*’>是独异点。 3)若<A,*>是一个群,则<f(A),*’>也是一个群.
<R+,>同构于<R,+>。
同态与同构
例2.证明<R-{0},×>和<R,+>不同构。
证:(反证法)设h是<R,+>到<R-{0},×>的一个同构映射, b∈R-{0},必存在a∈R,使得h(a)=b,
则:b=h(a)=h(0+a)=h(0)×h(a)=h(0)×b
b=h(a)=h(a+0)=h(a)×h(0)=b×h(0),所以h(0)=1。 对于-1∈R-{0},必存在c∈R,使得h(c)=-1, 且h(c+c)=h(c)×h(c)=-1×-1=1,故有c+c=0,即c=0, h(0)=-1, 这与h(0)=1是矛盾,所以h不是双射。 <R-{0},×>和<R,+> 不同构。
同态核
1.定义5-8.4:设f是由群<G,*>到群<G’,*>的同态,e’是

群同态基本定理与同构定理

群同态基本定理与同构定理
在物理学中,同构定理被广泛应用于量子力学和统计力学等领域。
物理
构造法
反证法
伴随映射法
同构定理的证明方法
群同态基本定理与同构定理的关系
03
群同态基本定理与同构定理的联系
群同态基本定理提供了群与群之间映射的代数性质,为研究群的同构关系提供了基础。同构定理则是在群同态基本定理的基础上,进一步探究群的结构和性质。
同构定理
对群同态基本定理与同构定理的总结
群同态基本定理和同构定理的应用广泛,不仅在数学领域,还在物理、化学、计算机科学等领域发挥了重要作用。未来随着不同学科的发展,这些定理的应用前景将更加广阔。
随着数学学科的发展,对群同态基本定理和同构定理的深入研究将有助于揭示更多的数学规律和现象。通过对这些定理的深入研究和探索,将推动数学学科的进一步发展。
群同态基本定理关注映射的代数性质
同构定理则更关注群的内部结构,即群中元素的性质和相互关系。通过研究群的同构关系,我们可以了解不同群之间的相似之处,从而更好地理解群的性质和行为。
同构定理关注群的内部结构
群同态基本定理与同构定理的差异
群同态基本定理的应用范围广泛
由于群同态基本定理是代数系统的一般性质,因此其应用范围非常广泛。无论是在数学、物理还是工程领域,群同态基本定理都是研究代数结构的重要工具。
04
群同态基本定理是代数中的一个重要定理,它表明任何有限群都可以分解成单群和可解群的直和。这个定理在解决一些实际问题中非常有用,比如在编码理论和密码学中,通过研究有限群的性质可以设计出更加安全和可靠的加密算法。
举例说明群同态基本定理的应用
举例说明同构定理的应用
同构定理是代数中的一个基本定理,它表明任何两个可交换的群在同构意义下是相同的。这个定理在解决一些实际问题中非常有用,比如在物理学中,通过研究不同物体的同构性质可以发现它们之间的相似之处,从而更好地理解和描述这些物体的性质。

群同态基本定理与同构定理

群同态基本定理与同构定理

同构定理的推广
群同态基本定理和同构定理在密码学中有着广泛的应用,如公钥密码体制的设计和安全性证明。
密码学中的应用
群同态基本定理和同构定理在算法设计中有一定的应用,如在图算法中判断图的性质和结构。
算法设计中的应用
群同态基本定理与同构定理在理论计算机科学中的应用
THANKS
谢谢您的观看
xx年xx月xx日
群同态基本定理与同构定理
群同态基本定理同构定理群同态基本定理与同构定理的关系群同态基本定理与同构定理的扩展形式
contents
目录
01
群同态基本定理
群的定义
定义映射f
第一步,证明f是单射
第二步,证明f是满射
第三步,证明f是同态
群同态基本定理的证明方法
01
02
03
04
通过研究群的同态,可以确定群的结构。
例子
整数环、多项式环、矩阵环等。
环的定义
方法一
利用定义证明。证明两个环的加法和乘法运算相同,即可证明两个环同构。
方法二
利用同态基本定理证明。证明存在一个满同态映射,即可证明两个环同构。
同构定理的证明方法
在代数几何中,同构定理可以用来将一个代数簇的方程转化为另一个代数簇的方程,从而研究原代数簇的性质。
在更一般的条件下,群同态基本定理的结论仍然成立。例如,当群的阶数不固定时,定理仍然适用。
非阿贝尔群的情况
对于非阿贝尔群,群同态基本定理同样适用,但证明方法需要更为复杂的代数技巧。
群同态基本定理的推广
同构定理的推广形式
同构定理可以推广到更一般的群结构,如群的扩张、群的直和等。
无限群的情况
对于无限群,同构定理同样适用,但证明方法需要引入新的分析工具和技术。

利用群同态基本定理证明群的第一同构定理

利用群同态基本定理证明群的第一同构定理

利用群同态基本定理证明群的第一同构定理
群的第一同构定理(2-isomorphism theorem):任何有限阶的群总是等价于其正规
子群的积。

证明:
首先,我们假设G是一组可交换的元素,表示有限阶的群。

根据群同构基本定理,所
有同构(isomorphic)群之间都是等价的,也就是说它们都可以用一组完全相等的字母表示。

其次,我们定义G的正规子群H为G中元素满足自身和其他元素的乘法结果也在G中。

按照群同态基本定理,G和H之间存在一种同构,这意味着他们之间也具有等价性,也就
是说他们可以用相同的字母表示。

最后,假设G的特定元素具有唯一的表示形式。

基于群同构基本定理可知,G和H之
间存在一种同构,因此G的每一元素都可以唯一表示为H的元素的乘积。

它暗示了群的第
一同构定理:任何有限阶的群总是等价于其正规子群的积。

同态基本定理与同构定理

同态基本定理与同构定理

第九节 同态基本定理与同构定理重点、难点:同态基本定理,满同态与子群的关系.一 同态基本定理前几节是研究一些定量的东西,下面我们来研究一些定性的东西.本节中的同态基本定理是群论中的研究基础.定理2.9.1 一个群G 与它的每一个商群N G /同态.证 令G a aN a N G G ∈∀→,;/: π显然π是G 到N G /的满射.G b a ∈∀,,)()())(()()(b a bN aN N ab ab πππ=== 故π是一个满同态.注1 定理2.9.1中的π称为自然同态;注2 自然同态π一定是满同态.利用子群来研究群本身,任意给定一个不变子群N ,有两个可以供我们参考的群: N 和N G /,由于0/→→→N G G N ,故更容易推测G 的性质.自然会问:定理2.9.1的逆命题是否成立?即0→'→G G ,G '是否与G 的某个商群是同构的呢?我们说是对的.首先有一个概念.定义2.9.1 设G G '→Φ:为一个群同态.e '为G '的单位元,集合})(|{e a G a Ker '=Φ∈=Φ称为同态映射Φ的核.注1 未必要求Φ为满射,但本书中同态均为满同态;注2 一个同态是单同态⇔G e Ker ⊆=}{φ.推论2.9.2 设π是N G G /→的自然同态,则N Ker =π.证 由于N G /的单位元是N ,则N N a G a N aN G a N a G a Ker =∈∈==∈==∈=}|{}|{})(|{ππ.定理2.9.3 (同态基本定理)设ϕ是群G 到群G '的一个同态满射,则(1)G Ker ϕ;(2)G Ker G '≅ϕ/.证 (1)由于φϕϕ≠⇒∈Ker Ker e .,,,G x Ker b a ∈∀∈∀ϕ则e b a '==)()(ϕϕ为G '的单位元.则e e e e e b a b a ab e e bb b b '='⋅'='⋅'===--'===----11)()()()(11)()()()()()(11ϕϕϕϕϕϕϕϕϕ 即G Ker Ker ab ≤⇒∈-ϕϕ1.又由于e x x x e x x a x xax '=='==----1111)()()()()()()()(ϕϕϕϕϕϕϕϕ,即G Ker Ker xax ϕϕ⇒∈-1.(2)令G a a aKer G Ker G ∈∀'→),(;/:ϕϕϕψ .下证ψ为一个同构映射:(ⅰ)ψ为映射:).()()()()(111b a e a b e a b Ker a b bKer aKer ϕϕϕϕϕϕϕϕ=⇒'=⇒'=⇒∈⇒=--- (ⅱ) ψ为满射:,,G a G a ∈∃'∈'∀使得a a aKer a a '==⇒'=)()()(ϕϕψϕ(ⅲ) ψ为单射:ϕϕϕKer G bKer aKer /,∈∀,则ϕϕϕϕϕϕϕψϕψbKer aKer Ker a b e a b b a bKer aKer =⇒∈⇒'=⇒⇒=--11)()()()()((ⅳ) ψ为一个同态:ϕϕϕKer G bKer aKer /,∈∀,则)()()()()()()(ϕψϕψϕϕϕϕψϕϕψbKer aKer b a ab abKer bKer aKer ====⋅.综上所述,G Ker G '≅ψϕ/. 注 一般地,设G G '→:ϕ为一个群同态,则⎩⎨⎧≅'≤ϕϕϕIm /Im Ker G G我们知道,群在一个群的满同态映射之下,一个群的若干性质会发生改变的,下面讨论哪些性质不发生变化.定义2.9.2 设A A →Φ:为集合之间的一个满射.(1) 设A S ⊆,记A S a a S ⊆∈Φ=Φ}|)({)(称为子集S 在Φ之下的像;(2)设A S '⊆',记})(|{)(1S a A a S '∈Φ∈='Φ-称为子集S '在Φ之下的逆像(或后像).注 一个不能多且一个不能少!定理2.9.4 设G G '→:ϕ是一个群之间的同态满射,(ⅰ),G H ≤∀ 则G H ≤)(ϕ;(ⅱ),G N ∀ 则G N )(ϕ;(ⅲ),G H ≤∀ 则G H ≤-)(1ϕ;(ⅳ),G N ∀ 则G N )(1-ϕ.证 (ⅰ)φϕφ≠⇒≠)(H H .b b a a t s H b a H b a ==∈∃⇒∈∀)(,)(..,,)(,ϕϕϕ, )()()()()()()(11111H b a b a b a b a Hb a ϕϕϕϕϕ∈⇒==-∈----,故G H ≤)(ϕ. (ⅱ).),(G x N a ∈∀∈∀ϕ 则⎩⎨⎧==∈∈∃a a x x t s G x N a )()(..,,ϕϕ .从而 )()()()()(111N xax x a x x a x ϕϕϕϕϕ∈==---,故G N )(ϕ.(ⅲ)由φϕ≠⇒≤-)(1H G H .()(1H e H e -∈⇒∈ϕ) )()()()()(),()(,11111H b a H b a H b a H b a H b a -----∈⇒∈⇒∈⇒∈⇒∈∀ϕϕϕϕϕϕϕ即G H ≤-)(1ϕ.(ⅳ),),(1G x N a ∈∀∈∀-ϕ则 )()()()()()(,)(1111N xax N xax N x a x G x N a G N ----∈⇒∈⇒∈⇒∈∈ϕϕϕϕϕϕϕ 故G N )(1-ϕ.注第(ⅰ)条不需要用道ϕ为满射.由(ⅳ)可知G e Ker )(1'=-ϕϕ.二 同构定理第一同构定理 设G G f '→:为群同态,则f G f Kerf G fIm )(/=≅ 第二同构定理(方块定理)H K H G HK G K G H ⋂≤⇒≤,,且有K H K H HK ⋂≅//.第三同构定理(分式定理) 设G K G H K ,≤≤,则①GH G H ⇔(K G G K H H /,/==) ② H G K H K G ≅.第四同构定理(对应定理) 设G G f '→:为群的满同态,则}{}|{11的子群G H Kerf G H −→←⊆≤- ;Kerf K K f K ≅)(且正规子群对应与正规子群.有兴趣的读者可以参考相关文献书籍.作业:Page 79 第2题,第3题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九节 同态基本定理与同构定理
重点、难点:同态基本定理,满同态与子群的关系.
一 同态基本定理
前几节是研究一些定量的东西,下面我们来研究一些定性的东西.本节中的同态基本定理是群论中的研究基础.
定理2.9.1 一个群G 与它的每一个商群N G /同态.
证 令G a aN a N G G ∈∀→,;/: π
显然π是G 到N G /的满射.G b a ∈∀,,)()())(()()(b a bN aN N ab ab πππ=== 故π是一个满同态.
注1 定理2.9.1中的π称为自然同态;
注2 自然同态π一定是满同态.
利用子群来研究群本身,任意给定一个不变子群N ,有两个可以供我们参考的群: N 和N G /,由于0/→→→N G G N ,故更容易推测G 的性质.
自然会问:定理2.9.1的逆命题是否成立?即0→'→G G ,G '是否与G 的某个商群是同构的呢?我们说是对的.首先有一个概念.
定义2.9.1 设G G '→Φ:为一个群同态.e '为G '的单位元,集合
})(|{e a G a Ker '=Φ∈=Φ称为同态映射Φ的核.
注1 未必要求Φ为满射,但本书中同态均为满同态;
注2 一个同态是单同态⇔G e Ker ⊆=}{φ.
推论2.9.2 设π是N G G /→的自然同态,则N Ker =π.
证 由于N G /的单位元是N ,则
N N a G a N aN G a N a G a Ker =∈∈==∈==∈=}|{}|{})(|{ππ.
定理2.9.3 (同态基本定理)设ϕ是群G 到群G '的一个同态满射,则
(1)G Ker ϕ;
(2)G Ker G '≅ϕ/.
证 (1)由于φϕϕ≠⇒∈Ker Ker e .,,,G x Ker b a ∈∀∈∀ϕ则e b a '==)()(ϕϕ为G '的单位元.则
e e e e e b a b a ab e e bb b b '='⋅'='⋅'===--'
===----11)()()()(11)()()()()()(11ϕϕϕϕϕϕϕϕϕ
即G Ker Ker ab ≤⇒∈-ϕϕ1.又由于
e x x x e x x a x xax '=='==----1111)()()()()()()()(ϕϕϕϕϕϕϕϕ,即
G Ker Ker xax ϕϕ⇒∈-1.
(2)令G a a aKer G Ker G ∈∀'→),(;/:ϕϕϕψ .下证ψ为一个同构映射:
(ⅰ)ψ为映射:
).()()()()(111b a e a b e a b Ker a b bKer aKer ϕϕϕϕϕϕϕϕ=⇒'=⇒'=⇒∈⇒=--- (ⅱ) ψ为满射:,,G a G a ∈∃'∈'∀使得a a aKer a a '==⇒'=)()()(ϕϕψϕ
(ⅲ) ψ为单射:ϕϕϕKer G bKer aKer /,∈∀,则
ϕϕϕϕϕϕϕψϕψbKer aKer Ker a b e a b b a bKer aKer =⇒∈⇒'=⇒⇒=--11)()()()()((ⅳ) ψ为一个同态:ϕϕϕKer G bKer aKer /,∈∀,则
)()()()()()()(ϕψϕψϕϕϕϕψϕϕψbKer aKer b a ab abKer bKer aKer ====⋅.
综上所述,G Ker G '≅ψ
ϕ/. 注 一般地,设G G '→:ϕ为一个群同态,则⎩
⎨⎧≅'≤ϕϕϕIm /Im Ker G G
我们知道,群在一个群的满同态映射之下,一个群的若干性质会发生改变的,下面讨论哪些性质不发生变化.
定义2.9.2 设A A →Φ:为集合之间的一个满射.
(1) 设A S ⊆,记A S a a S ⊆∈Φ=Φ}|)({)(称为子集S 在Φ之下的像;
(2)设A S '⊆',记})(|{)(1S a A a S '∈Φ∈='Φ-称为子集S '在Φ之下的逆像(或后
像).
注 一个不能多且一个不能少!
定理2.9.4 设G G '→:ϕ是一个群之间的同态满射,
(ⅰ),G H ≤∀ 则G H ≤)(ϕ;
(ⅱ),G N ∀ 则G N )(ϕ;
(ⅲ),G H ≤∀ 则G H ≤-)(1ϕ;
(ⅳ),G N ∀ 则G N )(1-ϕ.
证 (ⅰ)φϕφ≠⇒≠)(H H .b b a a t s H b a H b a ==∈∃⇒∈∀)(,)(..,,)(,ϕϕϕ, )()()()()()()(11111H b a b a b a b a H
b a ϕϕϕϕϕ∈⇒==-∈----,故G H ≤)(ϕ. (ⅱ).),(G x N a ∈∀∈∀ϕ 则⎩
⎨⎧==∈∈∃a a x x t s G x N a )()(..,,ϕϕ .从而 )()()()()(111N xax x a x x a x ϕϕϕϕϕ∈==---,故G N )(ϕ.
(ⅲ)由φϕ≠⇒≤-)(1H G H .()(1H e H e -∈⇒∈ϕ)
)()()()()(),()(,11111H b a H b a H b a H b a H b a -----∈⇒∈⇒∈⇒∈⇒∈∀ϕϕϕϕϕϕϕ即G H ≤-)(1ϕ.
(ⅳ),),(1
G x N a ∈∀∈∀-ϕ则 )()()()()()(,)(1111N xax N xax N x a x G x N a N ----∈⇒∈⇒∈⇒∈∈ϕϕϕϕϕϕϕ 故G N )(1-ϕ.
注第(ⅰ)条不需要用道ϕ为满射.由(ⅳ)可知G e Ker )(1'=-ϕϕ.
二 同构定理
第一同构定理 设G G f '→:为群同态,则f G f Kerf G f
Im )(/=≅ 第二同构定理(方块定理)
H K H G HK G K G H ⋂≤⇒≤,,且有K H K H HK ⋂≅//.
第三同构定理(分式定理) 设G K G H K ,≤≤,则①G
H G H ⇔(K G G K H H /,/==) ② H G K H K G ≅.
第四同构定理(对应定理) 设G G f '→:为群的满同态,则
}{}|{11的子群G H Kerf G H −→←⊆≤- ;Kerf K K f K ≅)(
且正规子群对应与正规子群.
有兴趣的读者可以参考相关文献书籍.
作业:
Page 79 第2题,第3题。

相关文档
最新文档