2020年数学中考模拟试题(含答案)

合集下载

2020年海南省中考数学模拟仿真试卷(三)含答案解析

2020年海南省中考数学模拟仿真试卷(三)含答案解析

2020年海南省中考数学模拟仿真试卷(三)一、选择题(本题有14小题,每小题3分,共42分)1.若|a|=3,则a的值是()A.﹣3 B.3 C.D.±32.下列运算正确的是()A.3a2﹣a2=3 B.(a2)3=a5C.2a3•a=2a4D.(3a)3=9a33.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤24.2020年12月30日,全球首条环岛高铁南海环岛高速通车了,环绕全岛的环岛高铁,犹如一条镶嵌于海南岛上的“珍珠链”、“幸福圈”,覆盖了全省12个市县约7820000人口,数据7820000用科学记数法表示为()A.×108B.×107C.×106D.×1055.如图所示的几何体的主视图是()A.B.C.D.6.数据2,3,﹣4,﹣1,0,3的中位数是()A.﹣1 B.0 C.1 D.37.方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣38.已知双曲线y=经过点(2,1),则k的值等于()A.﹣1 B.1 C.2 D.49.某小区在规划设计时,准备在两栋楼房之间,设置一块面积为800平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=800 B.x(x+10)=800 C.10(x+10)=800 D.2(x+x+10)=800 10.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,则女生当组长的概率是()A.B.C.D.11.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65° B.50° C.45° D.40°12.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°13.如图,在平面直角坐标系中,△ABC的三个顶点均在格点上,将△ABC绕点O旋转180°后得到三角A′B′C′,则点B的对应点B′的坐标为()A.(﹣2,﹣1)B.(﹣3,3)C.(1,3)D.(0,3)14.如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为y,则y与t的大致图象是()A.B.C. D.二、填空题(本大题满分16分,每小题4分)15.分解因式:2a2﹣4a+2= .16.不等式组的解集为.17.如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过点O作OH⊥AC于H.若OH=3,AB=12,BO=13.则弦AC的长为.18.如图,在▱ABCD中,AB=6,AD=10,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AG=,则△CEF的周长为.三、解答题(本大题满分62分)19.(1)计算:(﹣2)×5+÷﹣()﹣1;(2)解方程: +1=.20.“2020年2月1日首届海南国际旅游岛三角梅花展盛大开幕.”三角梅繁花似锦、绚丽满枝,花期长,象征着热情、坚忍不拔、顽强奋进的精神,是我们海南省的省花.海口市某公司在花卉基地购买了6盆紫色三角梅和4盆朱红色三角梅,共花了3080元,已知朱红色三角梅比紫色三角梅每盆贵320元,问紫色三角梅和朱红色三角梅每盆售价各是多少元21.某中学数学老师在做“利用信息技术培养学生自学能力”的课题研究时,就“你最喜欢哪种方式获取知识”对本校八年级部分学生进行了随机抽样问卷调查,其中调查问卷设置以下选项(只选一项):A.通过老师单纯讲解B.通过网络查找资源自主学习C.在老师的指导下,合作学习或自主学习D.其他方式并将调查结果绘制成了两幅不完整的统计图.根据以上信息,解答下列问题:(1)在这次问卷调查中,一共抽查了名学生;在扇形图中,x= ;(2)请将条形图补充完整;在扇形图中,B选项所对应的圆心角是度;(3)如果全校八年级学生有1100名,那么估计选择“B”的学生有名.22.如图,某轮船位于A处,观测到某港口城市C位于轮船的北偏西67°,轮船以21海里/时的速度向正北方向行驶,行驶5小时后该船到达B处,这时观测到城市C位于该船的南偏西37°方向,求此时轮船所处位置B与城市C的距离.(参考数据:sin37°≈,tan37°≈,sin67°≈,tan67°≈)23.如图,已知O为正方形ABCD对角线的交点,CE平分∠ACB交AB于点E,延长CB到点F,使BF=BE,连接AF,交CE的延长线于点G,连接OG.(1)求证:△BCE≌△BAF;(2)求证:OG=OC;(3)若AF=2﹣,求正方形ABCD的面积.24.如图,二次函数y=ax2+bx+c的图象与x轴监狱点A(﹣3,0)和点B,与y轴交于点C,顶点D的坐标为(﹣1,4).点P是第二象限内抛物线上的一动点,过点P做PM⊥x轴于M,交线段AC于点E.(1)求该二次函数的解析式和直线AC的解析式;(2)当△PAC面积为3时,求点P的坐标;(3)过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于N.若点P在点Q左边,当矩形PQMN的周长最大时:①求EM的长;②直接判断△PCE是什么特殊三角形.2020年海南省中考数学模拟仿真试卷(三)参考答案与试题解析一、选择题(本题有14小题,每小题3分,共42分)1.若|a|=3,则a的值是()A.﹣3 B.3 C.D.±3【考点】绝对值.【分析】根据绝对值的定义求解.因为|+3|=3,|﹣3|=3,从而得出a的值.【解答】解:因为|+3|=3,|﹣3|=3,所以若|a|=3,则a的值是±3.故选D.2.下列运算正确的是()A.3a2﹣a2=3 B.(a2)3=a5C.2a3•a=2a4D.(3a)3=9a3【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项、幂的乘方、单项式乘以单项式、积的乘方,即可解答.【解答】解:A、3a2﹣a2=2a2,故本选项错误;B、(a2)3=a6,故本选项错误;C、2a3•a=2a4,故本选项正确;D、(3a)3=27a3,故本本选项错误;故选:C.3.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选D.4.2020年12月30日,全球首条环岛高铁南海环岛高速通车了,环绕全岛的环岛高铁,犹如一条镶嵌于海南岛上的“珍珠链”、“幸福圈”,覆盖了全省12个市县约7820000人口,数据7820000用科学记数法表示为()A.×108B.×107C.×106D.×105【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:7820000=×106.故选:C.5.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【解答】解:如图所示的几何体的主视图是.故选:A.6.数据2,3,﹣4,﹣1,0,3的中位数是()A.﹣1 B.0 C.1 D.3【考点】中位数.【分析】先把题干中的数据按照从小到大的顺序排列,从而可以得到这组数据的中位数,本题得以解决.【解答】解:数据2,3,﹣4,﹣1,0,3按照从小到大的顺序排列是:﹣4,﹣1,0,2,3,3,故这组数据的中位数是:,故选C.7.方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【考点】解一元一次方程.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:方程2x﹣1=3x+2,移项得:2x﹣3x=2+1,合并得:﹣x=3.解得:x=﹣3,故选D.8.已知双曲线y=经过点(2,1),则k的值等于()A.﹣1 B.1 C.2 D.4【考点】反比例函数图象上点的坐标特征.【分析】直接把点(2,1)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(2,1),∴2=k﹣2,解得k=4.故选D.9.某小区在规划设计时,准备在两栋楼房之间,设置一块面积为800平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=800 B.x(x+10)=800 C.10(x+10)=800 D.2(x+x+10)=800【考点】由实际问题抽象出一元二次方程.【分析】首先用x表示出矩形的长,然后根据矩形面积=长×宽列出方程即可.【解答】解:设绿地的宽为x,则长为10+x;根据长方形的面积公式可得:x(x+10)=800.故选B.10.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,则女生当组长的概率是()A.B.C.D.【考点】概率公式.【分析】由一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,直接利用概率公式求解即可求得答案.【解答】解:∵一个学习兴趣小组有4名女生,6名男生,∴女生当组长的概率是: =.故选A.11.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65° B.50° C.45° D.40°【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.故选B.12.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°【考点】圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.13.如图,在平面直角坐标系中,△ABC的三个顶点均在格点上,将△ABC绕点O旋转180°后得到三角A′B′C′,则点B的对应点B′的坐标为()A.(﹣2,﹣1)B.(﹣3,3)C.(1,3)D.(0,3)【考点】坐标与图形变化-旋转.【分析】根据题意可得B与B′关于原点对称,因此根据关于原点对称的点的坐标特点:横纵坐标均互为相反数可得答案.【解答】解:根据平面直角坐标系可得B(0,﹣3),将△ABC绕点O旋转180°后得到三角A′B′C′,因此B与B′关于原点对称,则B′(0,3),故选:D.14.如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为y,则y与t的大致图象是()A.B.C. D.【考点】动点问题的函数图象.【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P 在AB上运动时△ACP的面积为y,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【解答】解:设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为y=hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=h(AB+BC﹣vt)=﹣hvt+h(AB+BC),是关于t的一次函数关系式;故选B.二、填空题(本大题满分16分,每小题4分)15.分解因式:2a2﹣4a+2= 2(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.16.不等式组的解集为x<3 .【考点】解一元一次不等式组.【分析】首先分别计算出两个不等式的解集,再根据小小取小确定不等式组的解集.【解答】解:,由①得:x<4,由②得:x<3,不等式组的解集为:x<3,故答案为:x<3.17.如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过点O作OH⊥AC于H.若OH=3,AB=12,BO=13.则弦AC的长为8 .【考点】切线的性质;勾股定理;垂径定理.【分析】首先根据切线的性质可得∠OAB=90°,利用勾股定理计算出AO的长,再利用勾股定理计算出AH的长,根据垂径定理可得AC=2AH,进而可得答案.【解答】解:∵AB是⊙O的切线,A为切点,∴∠OAB=90°,∵AB=12,BO=13,∴AO===5,∵OH⊥AC,∴AC=2AH,∵OH=3,∴AH==4,∴AC=8,故答案为:8.18.如图,在▱ABCD中,AB=6,AD=10,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AG=,则△CEF的周长为.【考点】平行四边形的性质.【分析】由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,求出CE、CF的长,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,求得AG的长,再证明∴△ABE∽△FCE,求出EF的长,即可求得△CEF的周长.【解答】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=6,BC=AD=10,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,同理;DF=AD=10,∴CE=BC﹣BE=4,CF=DF﹣CD=4,BE:CE=6:4=3:2.∵BG⊥AE,垂足为G,∴AG=EG=,∴AE=5,∵AB∥FC,∴△ABE∽△FCE,∴AE:EF=BE:CE=3:2,∴EF=AE=×5=,∴△CEF的周长=CE+CF+EF=4+4+=;故答案为:.三、解答题(本大题满分62分)19.(1)计算:(﹣2)×5+÷﹣()﹣1;(2)解方程: +1=.【考点】二次根式的混合运算;负整数指数幂;解分式方程.【分析】(1)根据二次根式的除法法则和负整数指数幂的意义计算;(2)先去分母,把分式方程化为整式方程,解整式方程,然后检验确定分式方程的解.【解答】解:(1)原式=﹣10+﹣3=﹣10+2﹣3=﹣11;(2)去分母得x﹣3+x﹣2=3,解得x=4,检验:当x=4时,x﹣2≠0,所以原方程的解为x=4.20.“2020年2月1日首届海南国际旅游岛三角梅花展盛大开幕.”三角梅繁花似锦、绚丽满枝,花期长,象征着热情、坚忍不拔、顽强奋进的精神,是我们海南省的省花.海口市某公司在花卉基地购买了6盆紫色三角梅和4盆朱红色三角梅,共花了3080元,已知朱红色三角梅比紫色三角梅每盆贵320元,问紫色三角梅和朱红色三角梅每盆售价各是多少元【考点】二元一次方程组的应用.【分析】设紫色三角梅每盆售价是x元,朱红色三角梅每盆售价是y元,根据“购买了6盆紫色三角梅和4盆朱红色三角梅共花了3080元,朱红色三角梅比紫色三角梅每盆贵320元”列方程组求解可得.【解答】解:设紫色三角梅每盆售价是x元,朱红色三角梅每盆售价是y元,根据题意,得:,解得:,答:紫色三角梅每盆售价是180元,朱红色三角梅每盆售价是500元.21.某中学数学老师在做“利用信息技术培养学生自学能力”的课题研究时,就“你最喜欢哪种方式获取知识”对本校八年级部分学生进行了随机抽样问卷调查,其中调查问卷设置以下选项(只选一项): AA.通过老师单纯讲解B.通过网络查找资源自主学习C.在老师的指导下,合作学习或自主学习D.其他方式并将调查结果绘制成了两幅不完整的统计图.根据以上信息,解答下列问题:(1)在这次问卷调查中,一共抽查了120 名学生;在扇形图中,x= 15 ;(2)请将条形图补充完整;在扇形图中,B选项所对应的圆心角是108 度;(3)如果全校八年级学生有1100名,那么估计选择“B”的学生有330 名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据题意可以求得本次调查的学生数和在扇形中x的值;(2)根据统计图可以求得D的学生数,从而可以将统计图补充完整,计算出B选项所对应的圆心角的度数;(3)根据统计图中的数据可以估计全校八年级学生选择“B”的学生.【解答】解:(1)本次调查的学生有:48÷40%=120(名),x%=18÷120×100%=15%,故答案为:120,15;(2)选D的学生有:120﹣18﹣36﹣48=18(名),补全的条形统计图如右图1所示,B选项多对的圆心角是:360°×=108°,故答案为:108;(3)全校八年级学生有1100名,选择“B”的学生有:1100×=330(名),故答案为:330.22.如图,某轮船位于A处,观测到某港口城市C位于轮船的北偏西67°,轮船以21海里/时的速度向正北方向行驶,行驶5小时后该船到达B处,这时观测到城市C位于该船的南偏西37°方向,求此时轮船所处位置B与城市C的距离.(参考数据:sin37°≈,tan37°≈,sin67°≈,tan67°≈)【考点】解直角三角形的应用-方向角问题.【分析】首先过点C作CP⊥AB于点P,然后设PC=x海里,分别在Rt△APC中与Rt△PCB中,利用正切函数求得出AP与BP的长,由AB=21×5,即可得方程,解此方程即可求得x的值,继而求得答案.【解答】解:过点C作CP⊥AB于点P,设PC=x海里.在Rt△APC中,∵tan∠A=,∴AP===.在Rt△PCB中,∵tan∠B=,∴BP==,.∵AP+BP=AB=21×5,∴+x=21×5,解得:x=60.∵sin∠B=,∴CB==60×=100(海里).答:轮船所处位置B与城市C的距离为100海里.23.如图,已知O为正方形ABCD对角线的交点,CE平分∠ACB交AB于点E,延长CB到点F,使BF=BE,连接AF,交CE的延长线于点G,连接OG.(1)求证:△BCE≌△BAF;(2)求证:OG=OC;(3)若AF=2﹣,求正方形ABCD的面积.【考点】四边形综合题.【分析】(1)由四边形ABCD是正方形,BF=BE,可利用SAS证得:△BCE≌△BAF;(2)由△BCE≌△BAF,易证得CG⊥AF,又由CE平分∠ACB,可得△ACF是等腰三角形,G 是AF的中点,继而可得OG是△ACF的中位线,则可证得结论;(3)首先设边长为x,由(2)可表示出BF的长,然后由勾股定理得方程:(2﹣)2=[(﹣1)x]2+x2,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABF=∠EBC=90°,在△BCE和△BAF中,,∴△BCE≌△BAF(SAS);(2)∵△BCE≌△BAF,∴∠BCE=∠BAF,∵∠BEC=∠MEG,∴∠AGE=∠EBC=90°,∴CG⊥AF,∵CE平分∠ACB,∴AC=FC,AG=FG,∵OA=OC,∴OG∥BC,∴∠OGC=∠FCG,∵∠OCG=∠FCG,∴∠OGC=∠OCG,∴OG=OC;(3)设AB=x,则AC=FC=x,∴BF=FC﹣BC=(﹣1)x,在Rt△ABF中,AF2=BF2+AB2,∴(2﹣)2=[(﹣1)x]2+x2,解得:x2=.∴正方形ABCD的面积为:.24.如图,二次函数y=ax2+bx+c的图象与x轴监狱点A(﹣3,0)和点B,与y轴交于点C,顶点D的坐标为(﹣1,4).点P是第二象限内抛物线上的一动点,过点P做PM⊥x轴于M,交线段AC于点E.(1)求该二次函数的解析式和直线AC的解析式;(2)当△PAC面积为3时,求点P的坐标;(3)过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于N.若点P在点Q左边,当矩形PQMN的周长最大时:①求EM的长;②直接判断△PCE是什么特殊三角形.【考点】二次函数综合题.【分析】(1)待定系数法可分别求得二次函数与一次函数解析式;(2)作PH⊥y轴,连接PC,设点P(a,﹣a2﹣2a+3),表示出PH、OH、AO、CH的长,由S△PAC=S梯形PHOA ﹣S△PCH﹣S△AOC=3得出关于a的方程,求解即可得a的值,即可知点P的坐标;(3)①设P(m,﹣m2﹣2m+3),矩形PQMN的周长为C,根据矩形周长公式表示出C关于m 的函数解析式,求得其最值情况即可知点P坐标,结合直线AC的解析式即可得知EM的长;②根据①知点P、E、C坐标,求出PE、PC、CE的长即可判断△PCE的形状.【解答】解:(1)由题意可设抛物线解析式为y=a(x+1)2+4,将点A(﹣3,0)代入,得:4a+4=0,解得:a=﹣1,∴抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,则点C坐标为(0,3),设直线AC的解析式为y=kx+b,将点A(﹣3,0)、C(0,3)代入,得:,解得:,∴直线AC的解析式为y=x+3;(2)如图,作PH⊥y轴,连接PC,设点P(a,﹣a2﹣2a+3),则PH=﹣a,OH=﹣a2﹣2a+3,OA=3,∵S△PAC =S梯形PHOA﹣S△PCH﹣S△AOC=3,∴×(﹣a+3)(﹣a2﹣2a+3)﹣×(﹣a)(﹣a2﹣2a+3﹣3)﹣×3×3=3,整理,得:a2+3a+2=0,解得:a=﹣1或a=﹣2,∴点P的坐标为(﹣1,4)或(﹣2,3);(3)①设P(m,﹣m2﹣2m+3),矩形PQMN的周长为C,则PQ=﹣2m﹣2,PM=﹣m2﹣2m+3,∵C=2[(﹣2m﹣2)+(﹣m2﹣2m+3)]=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时,矩形PQMN的周长最大,此时点P(﹣2,3),当x=﹣2时,y=x+3=﹣2+3=1,即EM=1;②由①知点E(﹣2,1),∵点P(﹣2,3)、C(0,3),∴PE=2,PC=2,CE==2,∵PE2+PC2=CE2,且PE=PC,∴△PCE是等腰直角三角形.2020年8月27日。

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。

即1x y x+=-的自变量取值范围是0x ≠。

故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。

【2020年】贵州省中考数学模拟试卷(含解析)

【2020年】贵州省中考数学模拟试卷(含解析)

2020年贵州省中考数学模拟试卷含答案一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是()A.2 B.﹣2 C.±2 D.162.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×1063.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C.a6÷a3=a3D. +=4.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C. D.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.56.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.58.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.9.如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A.80 B.60 C.50 D.4010.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE 的面积是9,则k=()A.B.9 C.D.3二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2x2﹣8分解因式得:.12.在函数y=中,自变量x的取值范围是.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为.14.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.15.不等式组的解集是.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.三、解答题(本题共8小题,共86分)17.计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.18.先化简﹣÷,再求代数式的值,其中a=﹣3.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?23.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2,∠CAD=30°时,求劣弧AD的长.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.参考答案与试题解析一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是()A.2 B.﹣2 C.±2 D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.2.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将105000000用科学记数法表示为1.05×108.故选C3.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C.a6÷a3=a3D. +=【考点】二次根式的加减法;同底数幂的除法;分式的加减法.【分析】直接利用合并同类项法则以及二次根式加减运算法则和同底数幂的除法运算法则、分式加减运算法则分别化简求出答案.【解答】解:A、5ab﹣ab=4ab,故此选项错误,不合题意;B、3﹣=2,故此选项错误,不合题意;C、a6÷a3=a3,正确,符合题意;D、+=+=,故此选项错误,不合题意;故选:C.4.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:B.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【考点】三角形中位线定理;平行四边形的性质.【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选C.6.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.8.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.9.如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A.80 B.60 C.50 D.40【考点】三角形的外接圆与外心.【分析】根据圆周角定理计算即可.【解答】解:由圆周角定理得,∠A=∠BOC=40°,故选:D.10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE 的面积是9,则k=()A.B.9 C.D.3【考点】反比例函数系数k的几何意义.【分析】设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m,),由此即可得出BD=3m、BE=n,再利用分割图形求面积法结合反比例函数系数k的几何意义即可得出S△ODE=k=9,解之即可得出k值.【解答】解:设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m,),∴BD=AB﹣AD=3m,BE=BC﹣CE=n.∵点D在反比例函数y=的图象上,∴k=mn,∴S△ODE=S矩形OABC﹣S△OAD﹣S△OCE﹣S△BDE=4k﹣k﹣k﹣k=k=9,∴k=.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2x2﹣8分解因式得:2(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式分解.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案是:2(x+2)(x﹣2).12.在函数y=中,自变量x的取值范围是x≠﹣2 .【考点】函数自变量的取值范围.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为10% .【考点】一元二次方程的应用.【分析】等量关系为:原售价×(1﹣降低率)2=降低后的售价,依此列出方程求解即可.【解答】解:设平均每月降价的百分率为x,依题意得:1000(1﹣x)2=810,化简得:(1﹣x)2=0.81,解得x1=0.1,x2=﹣1.9(舍).所以平均每月降价的百分率为10%.故答案为10%.14.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1 .【考点】根的判别式.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.【解答】解:∵关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.15.不等式组的解集是<x<2 .【考点】解一元一次不等式组.【分析】分别解两个不等式得到x>和x<2,然后根据大小小大中间找确定不等式组的解集.【解答】解:,解①得x>,解②得x<2,所以不等式组的解集为<x<2.故答案为<x<2.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.【考点】翻折变换(折叠问题).【分析】要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE.【解答】解:设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF=,∴S△AEF=×AF×AB=××3=.故答案为:.三、解答题(本题共8小题,共86分)17.计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣+1+2×+1=2﹣+1++1=4.18.先化简﹣÷,再求代数式的值,其中a=﹣3.【考点】分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷===,当a=﹣3时,原式=.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.【考点】作图﹣旋转变换;作图﹣轴对称变换.【分析】(1)根据网格特点,找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)分别找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,观察可知点B所经过的路线是半径为,圆心角是90°的扇形,然后根据弧长公式进行计算即可求解.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.点B旋转到点B2所经过的路径长为: =π.故点B旋转到点B2所经过的路径长是π.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC中,利用三角函数即可求解.【解答】解:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜爱电视剧的人数是69人,占总人数的23%,即可求得总人数;(2)根据总人数和喜欢娱乐节目的百分数可求的其人数,补全即可;利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设B树苗的单价为x元,则A树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式解答即可.【解答】解:设B树苗的单价为x元,则A树苗的单价为y元,可得:,解得:,答:B树苗的单价为300元,A树苗的单价为200元;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.23.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2,∠CAD=30°时,求劣弧AD的长.【考点】圆的综合题.【分析】(1)作AD的垂直平分线交AC于O,以AO为半径画圆O分别交AB、AC于点E、F,则⊙O即为所求;(2)连结OD,得到OD=OA,根据等腰三角形的性质得到∠OAD=∠ODA,等量代换得到∠ODA=∠CAD,根据平行线的判定定理得到OD∥AC,根据平行线的性质即可得到结论;(3)连接DE,根据圆周角定理得到∠ADE=90°,根据三角形的内角和得到∠AOD=120°,根据三角函数的定义得到AE==4,根据弧长个公式即可得到结论.【解答】(1)解:如图所示,(2)证明:连结OD,则OD=OA,∴∠OAD=∠ODA,∵∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,即BC⊥OD,∴BC与⊙O相切;(3)解:连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠ODA=30°,∴∠AOD=120°,在Rt△ADE中,AE===4,∴⊙O的半径=2,∴劣弧AD的长==π.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时, =,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时, =,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).。

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。

人教版2020年中考数学模拟试题及答案(含详解) (4)

人教版2020年中考数学模拟试题及答案(含详解) (4)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。

2020年天津市中考数学模拟试题(含答案) (6)

2020年天津市中考数学模拟试题(含答案)  (6)

2020年天津市中考数学模拟试卷(典型考点整理)一.选择题(共8小题)1.已知,那么下列等式中,不成立的是()A.B.C.D.4x=3y2.下列交通标志是中心对称图形的为()A.B.C.D.3.二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.35.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±26.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上7.A,B是⊙O上的两点,OA=1,劣弧的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°8.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC 向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数图象大致是()A.B.C.D.二.填空题(共8小题)9.写出一个经过点(1,﹣2)的函数的表达式,所写的函数的表达式为.10.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是°.11.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为.12.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.13.如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D处,并绕点D旋转,两直角三角板的两直角边分别交于点E,F,下列结论:①DE=DF;②S四边形AEDF =S△BED+S△CFD;③S△ABC=EF2;④EF2=BE2+CF2,其中正确的序号是.14.一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是m.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.16.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明).三.解答题(共12小题)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣118.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.19.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.20.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?21.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.22.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.23.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O 相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.25.如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.(1)按照上述定义判断下列函数中,是偶函数.A.y=3x B.y=x+1 C.D.y=x2(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P.求△ABP的面积.26.抛物线y=﹣x2与直线y=kx﹣2k+3交于A,B两点,若∠AOB =90°,求k的值.27.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.28.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.参考答案与试题解析一.选择题(共8小题)1.已知,那么下列等式中,不成立的是()A.B.C.D.4x=3y【分析】直接利用比例的性质将原式变形进而得出答案.【解答】解:A、∵,∴=,此选项正确,不合题意;B、∵,∴=﹣,此选项错误,符合题意;C、∵,∴=,此选项正确,不合题意;D、∵,∴4x=3y,此选项正确,不合题意;故选:B.2.下列交通标志是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义即可解答.【解答】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选:C.3.二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,据此解答可得.【解答】解:二次函数y=x2的对称轴是直线x=0,即y轴,故选:C.4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sin A===,∴tan A==,故选:B.5.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±2【分析】将点M坐标代入反比例函数解析式得出关于a的方程,解之可得.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.6.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上【分析】由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.【解答】解:由图知:∠BAC是钝角,又△ABC∽△PBD,则∠BPD一定是钝角,∠BPD=∠BAC,又BA=2,AC=2,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P2符合这样的要求,故P点应该在P2.故选:B.7.A,B是⊙O上的两点,OA=1,劣弧的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°【分析】直接利用已知条件通过弧长公式求出圆心角的度数即可.【解答】解:∵OA=1,的长是,∴,解得:n=60,∴∠AOB=60°,故选:B.8.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC 向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数图象大致是二次函数图象,开口向下.故选:C.二.填空题(共8小题)9.写出一个经过点(1,﹣2)的函数的表达式,所写的函数的表达式为.【分析】此题只需根据一次函数的形式或反比例函数的形式或二次函数的形式等写出适合(1,﹣2)的解析式即可.【解答】解:将点(1,﹣2)代入一次函数或反比例函数的形式或二次函数得:y=﹣2x,,y=﹣2x2等.故答案为:(答案不唯一).10.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是90 °.【分析】根据网格结构,先找出对应点连线的垂直平分线的交点为旋转中心,那么一对对应点与旋转中心连线的夹角即为旋转角.【解答】解:由图可知,A与D、B与E分别是对应点,作出线段AD、BE的垂直平分线,得到旋转中心P的坐标为(﹣1,0),则∠BPE=90°.故答案为90.11.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为 1 .【分析】根据直角三角形30度角的性质即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=1,故答案为1.12.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),13.如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D处,并绕点D旋转,两直角三角板的两直角边分别交于点E,F,下列结论:①DE=DF;②S四边形AEDF =S△BED+S△CFD;③S△ABC=EF2;④EF2=BE2+CF2,其中正确的序号是①②④.【分析】连接AD,如图,利用等腰直角三角形的性质得AB=AC,∠B=∠C=45°,AD⊥BC,BD=CD=AD,∠1=45°,再证明△DBE ≌△DAF得到DE=DF,则可对①进行判断;同理可得△DCF≌△DAE,则可对②进行判断;利用三角形面积公式得到S△ABC=AD2,由于当DE⊥AB时,四边形AEDF为矩形,此时AD=EF,于是可对③进行判断;利用勾股定理得到EF2=AE2+AF2,由于△DBE≌△DAF,△DCF ≌△DAE,则BE=AF,CF=AE,从而可对④进行判断.【解答】解:连接AD,如图,∵△ABC为等腰直角三角形,∴AB=AC,∠B=∠C=45°,∵点D为等腰直角△ABC的斜边的中点,∴AD⊥BC,BD=CD=AD,AD平分∠BAC,∴∠2+∠3=90°,∠1=45°,∵∠EDF=90°,即∠4+∠3=90°,∴∠2=∠4,在△DBE和△DAF中,∴△DBE≌△DAF(ASA),∴DE=DF,所以①正确;同理可得△DCF≌△DAE,∴S四边形AEDF=S△BED+S△CFD,所以②正确;∵S△ABC=•AD•BC=•AD•2AD=AD2,而只有当DE⊥AB时,四边形AEDF为矩形,此时AD=EF,∴S△ABC不一定等于EF2,所以③错误;在Rt△AEF中,EF2=AE2+AF2,∵△DBE≌△DAF,△DCF≌△DAE,∴BE=AF,CF=AE,∴EF2=BE2+CF2,所以④正确.故答案为①②④.14.一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是12 m.【分析】利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.【解答】解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=12.即旗杆的高是12米.故答案为:12.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有15 个.【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.16.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明)点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,故答案为:点M是长方形AFBE是对角线交点,点N是正方形ABCD 的对角线的交点,直线MN就是所求的线段AB的垂直平分线.三.解答题(共12小题)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣1【分析】先代入三角函数值、计算绝对值、零指数幂和负整数指数幂,再进一步计算可得.【解答】解:原式=×﹣3+1+2=1﹣3+1+2=1.18.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠A+∠F=90°,∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.19.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.【分析】(1)根据画位似图形的一般步骤和相似比找出图形;(2)根据相似比和相似三角形的性质求出点B′及点C′的坐标;(3)运用待定系数法求出一次函数解析式.【解答】解:(1)如图△A′B′C′即为所求;(2)∵△ABC与△A′B′C′的相似比为1:3,∴B′(0,6),C′(3,0);(3)设B′C′所在直线的解析式为y=kx+b,,解得,∴B′C′所在直线的解析式y=﹣2x+6.20.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?【分析】过O作OD⊥AB,交AB于点C,交于点D,如图所示,利用垂径定理得到C为AB的中点,由AB长求出AC长,在直角三角形AOC中,利用锐角三角函数定义求出sin∠AOC的值,利用特殊角的三角函数值求出∠AOC度数,进而求出∠AOB度数,利用弧长公式即可求出拱形的弧长.【解答】解:过O作OD⊥AB,交AB于点C,交于点D,如图所示,∴C为AB的中点,即AC=BC=AB=15m,在Rt△AOC中,sin∠AOC===,∴∠AOC=60°,∴∠AOB=2∠AOC=120°,则拱形的弧长l==20π.21.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.【分析】根据同一时刻物高与影长成正比,因而作DE⊥AB于点E,则AE与DE的比值,即同一时刻物高与影长的比值,即可求解.【解答】解:作DE⊥AB于点E,根据题意得:=,=,解得:AE=8米.则AB=AE+BE=8+2=10米.即旗杆的高度为10米.22.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.(3)分三种情形分别讨论求解即可解决问题;【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).23.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【分析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为4,所以两次抽取的牌上的数字都是偶数的概率=.24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O 相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.【分析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且=.【解答】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故为60°,∴F在直径BC下方的圆弧上,且=.25.如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.(1)按照上述定义判断下列函数中,D是偶函数.A.y=3x B.y=x+1 C.D.y=x2(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P.求△ABP的面积.【分析】(1)根据对称性进行判断;(2)根据偶函数的定义,知二次函数的对称轴是y轴,则其中的b=0,从而进一步求得点A、B、P的坐标,根据三角形的面积公式即可求出该三角形的面积.【解答】解:(1)A、y=3x是经过一、三象限的直线,其对称轴不是y轴,则不是偶函数;B、y=x+1是经过一、二、三象限的直线,其对称轴不是y轴,则不是偶函数;C、是在一、三象限的双曲线,其对称轴不是y轴,则不是偶函数;D、y=x2是关于y轴对称的抛物线,则是偶函数.故答案为D.(2)∵二次函数y=x2+bx﹣4是偶函数,∴其对称轴是y轴,则b=0.即二次函数y=x2﹣4.则A(﹣2,0),B(2,0),P(0,﹣4),则△ABP的面积=×4×4=8.26.抛物线y=﹣x2与直线y=kx﹣2k+3交于A,B两点,若∠AOB =90°,求k的值.【分析】将y=kx﹣2k+3代入y=x2,得x2﹣kx+2k﹣3=0,根据二次函数图象上点的坐标特征以及根与系数的关系得出y1=x12,y2=x22,x1•x2=4k﹣6,那么y1•y2=k2﹣3k+当∠AOB=90°时,如图1,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.证明△AOM∽△OBN,根据相似三角形对应边成比例得出y1•y2=﹣x1•x2,依此列出关于k的方程,求出k的值即可.【解答】解:将y=kx﹣2k+3代入y=x2,得x2﹣kx+2k﹣3=0,设抛物线y=﹣x2与直线y=kx﹣2k+3交于A(x1,y1),B(x2,y2)两点,∴y1=x12,y2=x22,x1•x2=4k﹣6,∴y1•y2=(x12)•(x22)=(x1•x2)2=(4k﹣6)2=4k2﹣6k+9 当∠AOB=90°时,如图:,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.在△AOM与△OBN中,,∴△AOM∽△OBN,∴=,即=,∴y1•y2=﹣x1•x2,∴4k2﹣6k+9=﹣4k+6,∵k>0,∴k=,27.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.【分析】(1)直接利用旋转的性质结合全等三角形的判定与性质得出答案;(2)直接利用等边三角形的性质结合勾股定理即可得出答案.【解答】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=150°,∴∠PQC=150°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===5.28.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD 是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.。

2020年河南省中考数学模拟考试试卷(经典一) (解析版)

2020年河南省中考数学模拟考试试卷(经典一) (解析版)

2020年河南省中考数学模拟试卷(经典一)一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013 3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=45.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.58.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.129.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)二.填空题(共5小题)11.﹣3﹣1=.12.不等式组的解集是.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5150亿=515000000000=5.15×1011.故选:B.3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:A.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=4【分析】分别根据积的乘方运算法则,同底数幂的除法法则,完全平方公式以及负整数指数幂的定义逐一判断即可.【解答】解:A.(﹣a3)2=a6,故本选项不合题意;B.a8÷a2=a6,故本选项不合题意;C.(a+b)2=a2+2ab+b2,故本选项不合题意;D.(﹣)﹣2=,符合题意.故选:D.5.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大【分析】根据三视图可得主视图,左视图,俯视图都是4个正方形,因此面积一样大.【解答】解:正视图(主视图),左视图,俯视图都是4个正方形,因此面积一样大,故选项A、B、C错误,D正确;故选:D.6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先把方程化为一般式,再计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:方程化为x2﹣2x﹣4=0,∵△=(﹣2)2﹣4×(﹣4)=20>0,∴方程有两个不相等的实数根.故选:A.7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.5【分析】直接利用每部分分数所占百分比进而计算得出答案.【解答】解:由题意可得,小桐这学期的体育成绩是:95×20%+90×30%+85×50%=19+27+42.5=88.5(分).故选:A.8.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.12【分析】设菱形的两条对角线相交于点D,如图,根据菱形的性质得OB⊥AC,BD=OD =2,CD=AD=3,再由菱形ABCD的对角线OB在y轴上得到AC∥x轴,则可确定C (﹣3,2),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:设菱形的两条对角线相交于点D,如图,∵四边形ABCD为菱形,∴OB⊥AC,BD=OD=2,CD=AD=3,∵菱形ABCO的对角线OB在y轴上,∴AC∥x轴,∴C(﹣3,2),∴k=﹣3×2=﹣6.故选:B.9.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S=CD•OE,四边形OCED但不能得出∠OCD=∠ECD,故选:C.10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)【分析】根据题意得出B点坐标变化规律,进而得出点B2020的坐标位置,进而得出答案.【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).故选:D.二.填空题(共5小题)11.﹣3﹣1=.【分析】首先计算乘方、开方,然后计算减法,求出算式的值是多少即可.【解答】解:﹣3﹣1=3﹣=故答案为:.12.不等式组的解集是x<5.【分析】此题可通过对不等式组里的两个一元一次不等式求解,再写出两个不等式的公共解集.【解答】解:解不等式①得:x<5,解不等式②得:x≤9,∴不等式组的解集为x<5,故答案为:x<5.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.【分析】列举出所有情况,看出现数字之积为奇数的情况数占所有情况数的多少即可.【解答】解:根据题意列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种等情况数,其中数字之积为奇数的有9种情况,所以“出现数字之积为奇数”的概率是=;故答案为:.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是9π.【分析】根据旋转变换的性质可得△ABC与△A′BC′全等,从而得到阴影部分的面积=扇形ABA′的面积﹣小扇形CBC′的面积.【解答】解:根据旋转变换的性质,△ABC≌△A′BC′,∵∠BCA=90°,∠BAC=30°,AB=6,∴BC=AB=3,∴阴影面积=﹣=9π.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.【分析】(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)解:∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面积公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)6000×=1800(人),答:在试卷评讲课中,“独立思考”的初三学生约有1800人.19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W=﹣2×37+350=276,最小此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.【分析】(1)先把A(1,a)代入y=2x中求出a得到A(1,2);再把A点坐标代入y=中可确定k的值,然后利用反比例函数和正比例函数图象的性质确定B点坐标;(2)设C(1,t),根据两点间的距离公式和勾股定理得到(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,求出t得到C(1,﹣3),从而得到AC的长,然后关键三角形面积公式求得即可.【解答】解:(1)把A(1,a)代入y=2x得a=2,则A(1,2);把A(1,2)代入y=得k=1×2=2,∵点A与点B关于原点对称,∴B(﹣1,﹣2);(2)∵CA∥y轴,∴C点的横坐标为1,设C(1,t),∵∠ABC=90°.∴BC2+AC2=AB2,即(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,解得t=﹣3,∴C(1,﹣3),∴AC=5,=AC(x A﹣x B)==5.∴S△ABC22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE ∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.【分析】(1)点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c 经过B,C两点,则3c=12,将点C的坐标代入抛物线表达式,即可求解;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=﹣2x2+12x,即可求解;(3)分AM是边、AM是对角线两种情况,分别求解即可.【解答】解:(1)直线y=﹣2x+12与x轴交于点C,与y轴交于点B,则点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c经过B,C两点,则3c=12,故抛物线的表达式为:y=3ax2+10x+12,将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣2x2+10x+12;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=(﹣2x2+10x+12)﹣(﹣2x+12)=﹣2x2+12x,∵﹣2<0,故EM有最大值,最大值为18,此时x=3;(3)y=﹣2x2+10x+12,令y=0,则x=﹣1或6,故点A(﹣1,0),由(2)知,x=3,则点M(3,6),设点P的横坐标为:m,点Q的坐标为:(,s),①当AM是边时,当点A向右平移4个单位向上平移6个单位得到点M,同样,点P(Q)向右平移4个单位向上平移6个单位得到点得到点Q(P),即m±4=,解得:m=﹣或,故点P(﹣,﹣)或(,﹣);②当AM是对角线时,由中点公式得:﹣1+2=m+,解得:m=﹣,故点P(﹣,);综上,点P的坐标为:(﹣,﹣)或(,﹣)或(﹣,).。

陕西省2020年中考数学模拟试卷(三)及解析

陕西省2020年中考数学模拟试卷(三)及解析

2020年陕西省中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)9的倒数是()A.9B.C.﹣9D.2.(3分)如图所示,该几何体的俯视图是()A.B.C.D.3.(3分)下列计算正确的是()A.2x+3y=5xy B.(﹣2x2)3=﹣6x6C.3y2•(﹣y)=﹣3y2D.6y2÷2y=3y4.(3分)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则∠1的度数为()A.75°B.65°C.45°D.30°5.(3分)已知:点A(a,b),B(a+1,b﹣2)均在正比例函数y=kx(k≠0)的图象上,则k值为()A.﹣1B.﹣2C.﹣3D.﹣46.(3分)如图,在Rt△ABC中,∠C=30°,AB=4,D,F分别是AC,BC的中点,等腰直角三角形DEH的边DE经过点F,EH交BC于点G,且DF=2EF,则CG的长为()A.2B.2﹣1C.D.+17.(3分)直线y=﹣x+1与y=2x+a的交点在第一象限,则a的取值不可能是()A.B.﹣C.﹣D.﹣8.(3分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()A.3B.C.D.49.(3分)如图,在半径为6的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=6,垂足为E,则tan∠OEA的值是()A.B.C.D.10.(3分)在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣7二、填空题(共4小题,每小题3分,计12分)11.(3分)在﹣2,,,,这5个数中,无理数有个.12.(3分)在正六边形中,其较短对角线与较长对角线的比值为.13.(3分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(8,4),反比例函数y=(k >0)的图象分别交边BC、AB于点D、E,连结DE,△DEF与△DEB关于直线DE对称,当点F恰好落在线段OA上时,则k的值是.14.(3分)如图,在正方形ABCD中,AB=4,E,F分别为BC,AD上的点,过点E,F的直线将正方形ABCD 的面积分为相等的两部分,过点A作AG⊥EF于点G,连接DG,则线段DG的最小值为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)计算:(π﹣2020)0+|1﹣|+2﹣1﹣2sin60°.16.(5分)化简:(x)17.(5分)赵凯想利用一块三角形纸片ABC裁剪一个菱形ADEF,要求一个顶点为A,顶点D在三角形的AC边上,点E在三角形的BC边上,点F在三角形的AB边上,请你利用尺规作图把这个菱形作出来.(不写作法,保留作图痕迹)18.(5分)如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.19.(7分)为了给顾客提供更好的服务,某商场随机对部分顾客进行了关于“商场服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度人数所占百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值为;(2)请补全条形统计图;(3)根据统计,该商场平均每天接待顾客约3600名,若将“非常满意”和“满意”作为顾客对商场服务工作的肯定,请你估计该商场服务工作平均每天得到多少名顾客的肯定.20.(7分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度约为多少米(精确到0.1米).21.(7分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.22.(7分)小明最喜欢吃芝麻馅的汤圆了,一天早晨小明妈妈给小明下了四个大汤圆,一个花生馅,一个水果馅,两个芝麻馅,四个汤圆除内部馅料不同外,其他一切均相同.(1)求小明吃第一个汤圆恰好是芝麻馅的概率;(2)请利用树状图或列表法,求小明吃前两个汤圆恰好是芝麻馅的概率.23.(8分)如图,已知⊙O经过平行四边形ABCD的顶点A,B及对角线的交点M,交AD于点E且圆心〇在AD 边上,∠BCD=45°.(1)求证:BC为⊙O的切线;(2)连接ME,若ME=﹣1,求⊙O的半径.24.(10分)综合与探究:如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣3,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线解析式;(2)抛物线对称轴上存在一点H,连接AH、CH,当|AH﹣CH|值最大时,求点H坐标;(3)若抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,求点P坐标;(4)若点M是∠BAC平分线上的一点,点N是平面内一点,若以A、B、M、N为顶点的四边形是矩形,请直接写出点N坐标.25.(12分)问题提出(1)如图1,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.问题探究(2)如图2,在△ABC中,内角∠ABC的平分线BE和外角∠ACF的平分线CE,相交于点E,连接AE,若∠BEC=40°,请求出∠EAC的度数.问题解决(3)如图3,某地在市政工程施工中需要对一直角区域(∠AOB=90°)内部进行围挡,直角区域∠AOB内部有一棵大树(点P),工作人员经过测量得到点P到OA的距离PC为10米,点P到OB的距离PD为20米,为了保护大树及节约材料,设计要求围挡牌要经过大树位置(点P)并且所用材料最少,即围挡区域△EOF周长最小,请你根据以上信息求出符合设计的△EOF周长的最小值,并说明理由.参考答案与试题解析1.B.2.C.3.D.4.A.5.B.6.B.7.D.8.C.9.D.10.D.11.3.12.:2.13.12.14.2﹣2.15.解:原式=1+﹣1+﹣2×=.16.解:原式=•=•=x(x﹣1)=x2﹣x.17.解:如图所示:先作∠BAC的平分线交BC边于点E,再作线段AE的垂直平分线交AC于点D,交AB于点F 连接DE、EF,易证△EAD≌△EAF(SAS),则F A=DA而由线段的垂直平分线的性质可得DA=DE、F A=FE∴F A=DA=DE=FE∴四边形ADEF为菱形则菱形ADEF即为所求作的菱形.18.证明:∵DE∥BF∴∠DEF=∠BFE∵AE=CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD19.解:(1)本次调查的总人数为:12÷10%=120,m=54÷120×100%=45%,故答案为:120,45%;(2)比较满意的人数为:120×40%=48,补全的条形统计图如右图所示;(3)3600×(10%+45%)=3600×55%=1980(名),答:该商场服务工作平均每天得到1980名顾客的肯定.20.解:∵∠CED=∠AEB,CD⊥DB,AB⊥BD,∴△CED∽△AEB,∴=,∵CD=1.6米,DE=2.4米,BE=8.4米,∴=,∴AB==5.6米.故答案为:5.6米.21.解:(1)设甲、乙两种商品每件的进价分别是x元、y元,,解得,,即甲、乙两种商品每件的进价分别是30元、70元;(2)设购买甲种商品a件,获利为w元,w=(40﹣30)a+(90﹣70)(100﹣a)=﹣10a+2000,∵a≥4(100﹣a),解得,a≥80,∴当a=80时,w取得最大值,此时w=1200,即获利最大的进货方案是购买甲种商品80件,乙种商品20件,最大利润是1200元.22.解:(1)小明吃第一个汤圆,可能的结果有4种,其中是芝麻馅的结果有2种,∴小明吃第一个汤圆恰好是芝麻馅的概率==;(2)分别用A,B,C表示花生馅,水果馅,芝麻馅的大汤圆,画树状图得:∵共有12种等可能的结果,小明吃前两个汤圆恰好是芝麻馅的有2种情况,∴小明吃前两个汤圆恰好是芝麻馅的概率为=.23.(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM=BM,∵OB=OM,∴OB=OM=BM,∴∠OBM=60°,∴∠ADB=30°,连接EM,过M作MF⊥AE于F,∵OM=DM,∴∠MOF=∠MDF=30°,设OM=OE=r,∴FM=r,OF=r,∴EF=r﹣r,∵EF2+FM2=EM2,∴(r﹣r)2+(r)2=(﹣1)2,解得:r=(负值舍去),∴⊙O的半径为.24.解:(1)∵抛物线与y轴交于点C,∴点C坐标为(0,﹣4),把A(﹣3,0)、B(4,0)坐标代入y=ax2+bx﹣4得解得∴抛物线解析式为:.(2)抛物线的对称轴为:x=,由三角形任意两边之差小于第三边,可知抛物线对称轴上存在一点H,连接AH、CH,当|AH﹣CH|值最大时,点H为AC直线与对称轴的交点,由A(﹣3,0)、C(0,﹣4)易得直线AC解析式为:,当x=时,y=,故点H的坐标为:(,﹣).(3)∵抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,∴点P(m,n)只能位于第一象限,C(0,﹣4)∴n=4∴由4=﹣4解得x=或x=(舍)故点P坐标为(,4).(4)若以A、B、M、N为顶点的四边形是矩形,则点M和点N的位置有两种如图所示点M和点M’点N和点N’易得OA=3,OC=4,AC=5,点M是∠BAC平分线上的一点,作QF⊥AC,则OQ=QF,∴OQ=QF=1.5,∴在直角三角形AOQ和直角三角形ABM中,,∴,∴BM=3.5,∴点N(﹣3,﹣3.5)同理在直角三角形AEN’和直角三角形ABN’中,可解得点N’(﹣,).故点N的坐标为(﹣3,﹣3.5)或(﹣,).25.解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故答案为:4;(2)解:∵∠ABC与∠ACD的角平分线相交于点E,∴∠CBE=∠ABC,∠ECD=∠ACD,由三角形的外角性质得,∠ACD=∠ABC+∠BAC,∠ECD=∠BEC+∠CBE,∴∠ACD=∠BEC+∠ABC,∴(∠ABC+∠BAC)=∠BEC+∠ABC,整理得,∠BAC=2∠BEC,∵∠BEC=40°,∴∠BAC=2×40°=80°,过点E作EH⊥BA交延长线于H,作EG⊥AC于G,作EF⊥BC于F,∵BE平分∠ABC,∴EF=EH,∵CE平分∠ACD,∴EG=EF,∴EH=EG,∴AE是∠CAF的平分线,∴∠CAE=(180°﹣∠BAC)=(180°﹣80°)=50°;(3)如图,设∠AOB、∠AEF、∠BFE的角平分线交于点Q,作QN⊥OB于N,QM⊥OA于M,QH⊥EF于H.连接QP.则QN=QH=QM=y,FH=FN,EH=EM,∴△OEF的周长:OE+OF+EF=OF+FN+OE+EM=ON+OM=QN+QM=2QN=2y,∵PDOC是矩形,且PD=20,PC=10,∴ND=y﹣10,CM=y﹣20,∴QP2=(y﹣10)2+(y﹣20)2∵PQ≥QH,∴(y﹣10)2+(y﹣20)2≥y2∴y2﹣60y+500≥0,∴(y﹣30)2≥400,∴y≥50或y≤10(舍),∴2y≥100,当且仅当P、H重合时取等号.即△OEF的周长的最小值为100.。

2020年天津市中考数学模拟试题(含答案) (4)

2020年天津市中考数学模拟试题(含答案)  (4)

2020年天津市中考数学模拟试卷(典型考点整理)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为美元.9.(3分)已知k为整数,且满足<k<,则k的值是.10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是°.12.(3分)已知二元一次方程组,则2a+3b=.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.14.(3分)已知不等式组无解,则a的取值范围是.15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣3的相反数是3.故选:A.【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB【分析】如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即ABAC=ACBC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.【解答】解:∵P为线段AB的黄金分割点,且AP<PB,∴PB2=AP•AB.故选:C.【点评】本题考查了黄金分割的概念,熟记定义是解题的关键.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据方差和平均数的定义即可得到结论.【解答】解:原数据的平方数为=165;原数据的方差为[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2+(165﹣165)2=;去掉最后一个数165后的数据的平均数为=165,去掉最后一个数165后的数据的方差为×[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2]=,故平均数不变,方差变大,故选:A.【点评】本题考查了方差和平均数,数据定义是解题的关键.6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5【分析】根据题意A、B的横坐标化为相反数,所以设A(﹣m,﹣)则B(m,),根据题意中位线等于上下底和的一半,求得表示出OC,然后根据S△ABO=S△AOC+S△BOC 即可求得.【解答】解:∵C是AB的中点,∴设A(﹣m,﹣)则B(m,),∴OC=(+)=,∴S△ABO=S△AOC+S△BOC=××2m=.故选:B.【点评】本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为 1.3×1012美元.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:13000 0000 0000=1.3×1012.故答案为:1.3×1012.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)已知k为整数,且满足<k<,则k的值是3.【分析】先估算出和的范围,再得出答案即可.【解答】解:∵2<<3,3<<4,∴整数k=3,故答案为:3.【点评】本题考查了估算无理数的大小和实数的大小比较,能估算出和的范围是解此题的关键10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可得出答案.【解答】解:共(正,正)、(反,反)、(正,反)、(反、正)4种情况,则出现一正一反的概率是=;故答案为:.【点评】此题考查了列举法求概率,解题的关键是找到所有的情况,用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是105°.【分析】利用三角形内角和定理计算即可.【解答】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故答案为:105.【点评】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.12.(3分)已知二元一次方程组,则2a+3b=9.【分析】将两方程相减即可得.【解答】解:,①﹣②,得:2a+3b=9,故答案为:9.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14.(3分)已知不等式组无解,则a的取值范围是a≤1.【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【解答】解:∵不等式组无解,∴a的取值范围是a≤1.故答案为:a≤1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于﹣1.【分析】由已知得出a﹣c=2,求出a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc ﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,即可得出所求的值.【解答】解:∵a﹣b=b﹣c=1,∴a﹣c=2,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,∴ab+bc+ac=a2+b2+c2﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了完全平方式以及配方法;能够运用完全平方式熟练推导与记忆a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]是解题的关键.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.【分析】设⊙O与CD相切于F,连接OF,得到∠OFE=90°,根据勾股定理得到AB =5,根据直角三角形的性质得到AD=CD,由相似三角形的性质即可得到结论.【解答】解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.【点评】本题考查了切线的性质,直角三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣6×+9=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有80人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.【分析】(1)32÷40%=80(人),课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人),据此补图;(2),所以a=20;(3)根据题意得:1800×=360(人),所以该校全体学生中喜爱“实验实践”的人数约为360人.【解答】解:(1)32÷40%=80(人),故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2),所以a=20;(3)根据题意得:1800×=360(人),答:该校全体学生中喜爱“实验实践”的人数约为360人.【点评】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=,由平行四边形的面积公式可求AD的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=AE=3,BO=FO=BF=4,AE⊥BF,∴BE==5,∵S菱形ABEF=AE•BF=×6×8=24,∴BE•AH=24,∴AH=,∴S平行四边形ABCD=AD×AH=36,∴AD=.【点评】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4×2m=(m﹣2)2≥0,∴不论m为何值,该方程总有两个实数根;(2)解:∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB•AC=2m,∵△ABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2﹣2AB•AC=BC2,即(m+2)2﹣2×2m=32,解得:m=±,∴m的值是±.又∵AB•AC=2m,m为正数,∴m的值是.【点评】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【解答】解:(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定位25元【点评】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)【分析】(1)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=20,∴∠EAC=∠AEG﹣∠ACG=45°,∵EF=CE×Sin∠FCE=10,∴AE==10,∴AE的长度为10m;(2)∵CF=CE×cos∠FCE=10,AF=EF=10,∴AC=CF+AF=10+10,∴AG=AC×Sin∠ACG=5+5,∴AO=AG+GO=5+5+1.6=5+6.6≈15,∴高度AO约为15m.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.【分析】(1)过点E作AE的垂线即可;(2)如图,过点E作EM⊥AB、EN⊥BC,先证明矩形MBNE是正方形,则∠AEM=∠FEN,再证明△AEM≌△FEN,从而得到AE=EF;(3)利用△AEM≌△FEN得到S△AEM=S△FEN,则S四边形ABFE=S正方形MBNE,利用正方形面积公式得到BM=2,则AM=AB﹣BM=1,然后利用勾股定理计算AE的长.【解答】解:(1)如图,(2)如图,过点E作EM⊥AB、EN⊥BC,∴∠EMB=∠MBN=∠ENB=90°,∴四边形MBNE是矩形,又∵四边形ABCD为正方形,∴BD平分∠ABC,∴EM=EN,∴矩形MBNE是正方形,∵∠AEM+∠MEF=∠MEF+∠FEN=90°,∴∠AEM=∠FEN,又∵∠AME=∠FNE=90°,EM=EN,∴△AEM≌△FEN(ASA),∴AE=EF;(3)∵△AEM≌△FEN,∴S△AEM=S△FEN,∴S四边形ABFE=S正方形MBNE,∵四边形ABFE的面积为4,∴BM2=4,∴BM=2(取正舍负),∴AM=AB﹣BM=1,∴AE==.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了正方形的性质.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.【分析】(1)先求出二次函数y=ax2﹣2ax=a(x﹣1)2﹣a顶点C(1,﹣a),当x=1时,一次函数值y=﹣a所以点C在一次函数y=﹣ax的图象上;(2)存在.将点(k,y1)、(k+2,y2)(k≠0,±2)代入二次函数解析式,y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),因为满足=,,整理,得,,解得k=±4,经检验:k=±4是原方程的根,所以整数k的值为±4;(3)分两种情况讨论:①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a.【解答】解:(1)∵二次函数y=ax2﹣2ax=a(x﹣1)2﹣a,∴顶点C(1,﹣a),∵当x=1时,一次函数值y=﹣a∴点C在一次函数y=﹣ax的图象上;(2)存在.∵点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,∴y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),∵满足=,∴,整理,得,∴,∴,解得k=±4,经检验:k=±4是原方程的根,∴整数k的值为±4.(3)∵点E是二次函数图象上一动点,∴E(n,an2﹣2an),∵EF∥y轴,F在一次函数图象上,∴F(n,﹣an).①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,∵a>0,∴当n=﹣1时,EF有最大值,且最大值是2a,又∵0<a≤2,∴0<2a≤4,即EF的最大值是4;②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a,此时EF的最大值是,又∵0<a≤2,∴0<≤,即EF的最大值是;综上所述,EF的最大值是4.【点评】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。

(完整word版)2020年河南省中考数学模拟试卷解析版

(完整word版)2020年河南省中考数学模拟试卷解析版

2020年河南省中考数学模拟试卷解析版一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A.1。

3×106B.130×104C.13×105D.1。

3×1053.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级(1)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( )A.40,41 B.42,41 C.41,42 D.41,406.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD 的长度为()A.6B.6 C.3D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D 是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE 的长为x,y关于x的函数图象如图2,则△EFG的最小面积为( )A.B.C.2 D.二.填空题(共5小题,满分15分,每小题3分)11.计算:(﹣π)0﹣=.12.如图,在⊙O中,直径EF⊥CD,垂足为M,EM•MF=12,则CD的长度为.13.如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB 上点D处时,点A的对应点为E,则阴影部分面积为.15.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(9分)某超市对今年“元旦"期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(9分)如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB 为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)济南大明湖畔的“超然楼"被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)20.(9分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.(10分)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.(11分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1。

2020年中考数学模拟试卷(含答案解析) (2)

2020年中考数学模拟试卷(含答案解析) (2)

中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。

2020年河北省石家庄市中考数学模拟试题及参考答案

2020年河北省石家庄市中考数学模拟试题及参考答案

2020年河北省石家庄市中考数学模拟试题及参考答案(考试时间120分钟,总分120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种零件的直径尺寸在图纸上是(单位:mm),它表示这种零件的标准尺寸是20mm,则加工要求尺寸最大不超过()A.0.03mm B.0.02nn C.20.03mm D.19.98mm2.将一副三角板按如图所示位置摆放,其中∠α=∠β的是()A.①②B.②③C.①④D.②④3.在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>84.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB与正北方向所成角的度数为()A.20°B.70°C.110°D.160°5.在下列图形中是轴对称图形的是()A.B.C.D.6.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.任意一个五边形的外角和等于540°C.某个数的相反数等于它本身D.长分别为3,4,6的三条线段能围成一个三角形7.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.8.已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC上,且这组对应边所对的顶点重合于点M,点M一定在()A.∠A的平分线上B.AC边的高上C.BC边的垂直平分线上D.AB边的中线上9.如图,在菱形ABCD中,E是AB的中点,F点是AC的中点,连接EF.如果EF=4,那么菱形ABCD的周长为()A.9 B.12 C.24 D.3210.若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,已知∠MON及其边上一点A.以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C.再以点C为圆心,AC长为半径画弧,恰好经过点B.错误的是()A.S△AOC=S△ABC B.∠OCB=90°C.∠MON=30°D.OC=2BC12.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部需x个月,则根据题意可列方程中错误的是()A.+=1 B.++=1 C.+=1 D.+2(+)=1 13.如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.则四边形ADCE的周长为()A.10 B.20 C.12 D.2414.下图中反比例函数y=与一次函数y=kx﹣k在同一直角坐标系中的大致图象是()A.B.C.D.15.有编号为Ⅰ,Ⅱ,Ⅲ的3个信封,现将编号为Ⅰ,Ⅱ的两封信,随机地放入其中两个信封里,则信封与信编号都相同的概率为()A. B.C.D.16.如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF 上,斜边AB与⊙O交于点P,点B与点O重合,且AC大于OE,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x,则x的取值范围是()A.30≤x≤60 B.30≤x≤90 C.30≤x≤120 D.60≤x≤120二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17如图,边长为1的正方形网格中,AB3.(填“>”,“=”或“<”)18.若,则x2+2x+1=.19.已知:如图,在平面直角坐标系xOy中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x 轴于点C,以AC为对角线作正方形ABCD。

江苏省淮安市2020年中考数学模拟卷02(含解析)

江苏省淮安市2020年中考数学模拟卷02(含解析)

江苏省淮安市2020年中考数学模拟卷021. 试卷分为第I 卷和第II 卷两部分,共6页,全卷满分150分,考试时间120分钟。

2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3. 答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置,答案写在试卷上或答题卡上规定的区域以外无效. 4. 作图要用2B 铅笔,加黑加粗,描写清楚. 5. 考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共有8小题,每小题3分,共24分。

在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.2019-的相反数等于( ) A .2019-B .12019C .12019- D .20192.下列各式中,正确的有( ) A .325a a a +=B .32622a a a =gC .326(2)4a a -=D .824a a a ÷=3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为( ) A .947.2410⨯B .94.72410⨯C .54.72410⨯D .5472.410⨯4.如图所示几何体的左视图正确的是( )A .B .C .D .5.已知ABC ∆的三边长分别为a 、b 、c ,且()()()M a b c a b c a b c =+++---,那么( ) A .0M >B .0M …C .0M =D .0M <6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是( ) A .20分,22.5分B .20分,18分C .20分,22分D .20分,20分7.下列关于x 的一元二次方程中,有两个相等的实数根的方程是( ) A .2230x x +-=B .210x +=C .24410x x ++=D .230x x ++=8.如图,矩形ABCD 的边5AB cm =,4BC cm =动点P 从A 点出发,在折线AD DC CB --上以1/cm s 的速度向B 点作匀速运动,则表示ABP ∆的面积()S cm 与运动时间()t s 之间的函数系的图象是( )A .B .C .D .第II 卷 (非选择题 共126分)二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.) 9.分解因式:29y x y -= .10.某区10名学生参加实际汉字听写大赛,他们得分情况如下表:那么10名学生所得分数的中位数是 . 11.分式方程3104x x+=+的解为 . 12.若n 边形的外角和为(2)180n -⨯︒,则n = . 13.不等式组52124x x -⎧⎨-<⎩…的解集是 .14.圆锥的侧面展开图的圆心角是120︒,其底面圆的半径为2cm ,则其侧面积为 . 15.如图,ABC ∆中,//DE BC ,5AB =,3AC =,若BD AE =,则AD 的长为 .(第15题)(第16题)16.如图,在矩形ABCD 中,3AB =,2BC =,H 是AB 的中点,将CBH ∆沿CH 折叠,点B 落在矩形内点P 处,连接AP ,则tan HAP ∠= .三、解答题(本大题共有11小题,共102分。

浙江省杭州市萧山区2020年中考数学模拟试卷(含答案解析)

浙江省杭州市萧山区2020年中考数学模拟试卷(含答案解析)

2020年浙江省杭州市萧山区中学中考数学模拟试卷选择题(共10小题,满分30分,每小题3分)一.1.函数y=(x+1)°-2的最小值是()A.1B.-1C.2D.-22.从1978年12月18日党的^一届三中全会决定改革开放到如今已经40周年了,我国GDP(国内生产总值)从1978年的1495亿美元到2017年已经达到了122400亿美元,全球排名第二,将122400用科学记数法表示为(A.12.24X104B. 1.224X105C.0.1224X106D. 1.224X1063.若2'〃=5,4"=3,则4in m的值是()A•会C.2D.44.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表7K了寓言中的龟、兔的路程S和时间,的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟5.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、-1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2006.如图,己知直线AB、CD被直线AC所截,AB//CD,E是平面内任意一点(点E不在直线AB、CD、AC_b),设/BAE=a,ZDCE=^.下列各式:①a+8,②a",③&-a,④360。

-a-p, ZAEC 的度数可能是( )A.①②③B.①②④C.①③④D.①②③④7.把抛物线y= - 2x 向上平移1个单位,再向右平移1个单位,得到的抛物线是()A. y= - 2 (x+1) ?+1B. y= -2 (x- 1) 2+1C. y= - 2 (x- 1) 2 - 1D. y= - 2 (x+1) 2 - 18.现在把一张正方形纸片按如图方式剪去一个半径为40柄厘米的圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米.(不计损耗、重叠,结果精确到1厘米,插F.41,寸*1.73)A. 6470 D. 739.如图,^ABCD 的对角线AC 、BD 交于点O, DE 平分ZAD C 交AB 于点E, ZBCD=60° , AD =*43,连接 OE.下列结论:①S°abcd =AD・BD ;②DB 平分ZCDE ; @AO=DE ; @S a ADE =5S m )fe ,其中正确的个数有()A. 9AB. 10 人C. 3个D. 4个如果一共碰杯55次,则参加酒会的人数为(c. II A D. 12 A二.填空题(共6小题,满分24分,每小题4分)11.若二次函数y=2 (x+1) 2+3的图象上有三个不同的点A (xi ,4)、B (羽+电,n )、C (电,4),则〃的值为.12,某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是13.如图,已知函数y=x+2的图象与函数尸直•(切0)的图象交于A、B两点,连接80并延长交X函数y=—Ck^O)的图象于点C,连接AC,若△ABC的面积为8.则k的值为.x14.如图1为两个边长为1的正方形组成的2X1格点图,点A,B,C,£>都在格点上,AB,CD交于点P,则tanZBPD=,如果是"个边长为1的正方形组成的“X1格点图,如图2,那15.如图,动点。

连云港2020中考数学综合模拟测试卷(含答案)

连云港2020中考数学综合模拟测试卷(含答案)

连云港市2020高中段学校招生模拟考试数学试题(含答案全解全析)(满分:150分时间:120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中是正数的为()A.3B.-C.-D.02.计算a2·a4的结果是()A.a8B.a6C.2a6D.2a83.将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是()4.为了传承和弘扬港口变化,我市将投入6000万元建设一座港口博物馆.其中“6000万”用科学记数法可表示为()A.0.6×108B.6×108C.6×107D.60×1065.在Rt△ABC中,∠C=90°,若sin A=,则cos A的值为()A. B. C. D.6.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>bB.|a|>|b|C.-a<bD.a+b<07.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…,如此大量摸球试验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.4-2D.3-4第Ⅱ卷(非选择题,共126分)二、填空题(本大题共有8小题,每小题3分,共24分)9.计算:()2=.10.使有意义的x的取值范围是.11.分解因式:4-x2=.12.若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以是.(写出一个即可)13.据市房管局统计,今年某周我市8个县区的普通住宅成交量如下表:则该周普通住宅成交量的中位数为套.14.如图,一束平行太阳光线照射到正五边形上,则∠1=°.15.如图,△ABC内接于☉O,∠ACB=35°,则∠OAB=°.16.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以O为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M到达A101点处所需时间为秒.三、解答题(本大题共11小题,共102分.解答时写出必要的文字说明、证明过程或演算步骤)17.(本题满分6分)计算:-+(-1)0+2×(-3).18.(本题满分6分)解不等式组--19.(本题满分6分)先化简,再求值:-÷-,其中m=-3,n=5.20.(本题满分8分)某校为了解“理化生实验操作”考试的备考情况,随机抽取了一部分九年级学生进行测试,测试结果分为“优秀”“良好”“合格”“不合格”四个等级,分别记为A、B、C、D.根据测试结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了名学生.请根据数据信息补全条形统计图;(2)若该校九年级的600名学生全部参加本次测试,请估计测试成绩等级在合格以上(包括合格)的学生约有多少人?21.(本题满分8分)甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.22.(本题满分10分)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD 于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.23.(本题满分10分)小林准备进行如下操作试验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?等于48cm2.”他的说法对吗?请说明理由.(2)小峰对小林说:“这两个正方形的面积之和不可能...24.(本题满分10分)如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y=(x>0)的图象交于点D(n,-2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一点F,使得△BDF∽△ACE?若存在,求出点F的坐标;若不存在,请说明理由.25.(本题满分12分)我市某海域内有一艘渔船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将其拖回.如图,折线段O—A—B表示救援船在整个航行过程中离港口的距离y(海里)随航行时间x(分钟)的变化规律.抛物线y=ax2+k表示故障渔船在漂移过程中离港口的距离y(海里)随漂移时间x(分钟)的变化规律.已知救援船返程速度是前往速度的.根据图象提供的信息,解答下列问题:(1)救援船行驶了海里与故障渔船会合;(2)求救援船的前往速度;(3)若该故障渔船在发出求救信号后40分钟内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证故障渔船的安全.26.(本题满分12分)如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的☉P与AB、OA 的另一个交点分别为点C、D,连结CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若☉P与线段QC只有一个交点,请直接写出t的取值范围.27.(本题满分14分)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连结AE并延长交BC的延长线于点F.求证:S四边形ABCD=S△ABF.(S表示面积)图1问题迁移:如图2,在已知锐角∠AOB内有一定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值.请问当直线MN在什么位置时,△MON的面积最小,并说明理由.图2实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,≈1.73)图3拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、、(4,2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.图4答案全解全析:1.A -和-是负数,0既不是正数也不是负数,故选A.2.B 同底数幂相乘底数不变,指数相加,故a2·a4=a6.3.D 由立体图形的特征及所放位置可知其俯视图为圆环,故选D.4.C 6 000万=60 000 000,将其写成a×10n的形式,其中1≤|a|<10,n=8-1=7,故用科学记数法可表示为6×107,故选C.5.D 在Rt△ABC中,∠C=90°,sin2A+cos2A=1,又sin A=,所以cos A=.故选D.6.C 由数轴上实数a、b所在的位置,可知a<0<b,|a|<|b|,a+b>0,所以选项A、B、D错,故选C.7.B ①1-20%-50%=30%正确;②50%>30%>20%,故摸出黑球的概率最大;③再摸球100次不一定有20次摸出的是红球,故选B.8.C 在正方形ABCD中,连结AC交BD于点O,则∠BOA=90°,∠BAC=45°,∵∠BAE=22.5°,∴AE平分∠BAC.又∵EF⊥AB,∴EF=EO,设EF=x,则FB=x,∵BD=AD=4,∴BE=BD-EO=2-x.在等腰直角三角形EFB中,BE=x,∴x=2-x,∴x==4-2,即EF=4-2,故选C. 评析本题考查正方形的性质,角平分线的性质,勾股定理等知识,属较难题.9.答案 3解析()2=3.10.答案x≥-1解析当有意义时,x+1≥0,∴x≥-1.11.答案(2+x)(2-x)解析4-x2=(2+x)(2-x).12.答案答案不唯一,如-1(只要k<0即可)解析正比例函数y=kx(k为常数,且k≠0),当k<0时,y随x的增大而减小,所以k可取小于0的任何实数.13.答案80解析将8个数据从小到大排列为50,53,56,72,88,101,105,110,中间两个数为72和88,故中位数是=80(套).14.答案30解析因为正五边形的每个内角为108°,又两直线平行同旁内角互补,则∠1+108°+42°=180°, 所以∠1=30°.15.答案55解析在☉O中,∠AOB=2∠ACB=2×35°=70°,∵OA=OB,∴∠OAB=°-=55°.16.答案 5 050π+101解析由题意得动点到达A101点处时,在直线AB上共经过了101个实线段,其长度为101;在弧上运动时,共经过了100个半圆,每个半圆的半径依次为1,2,3,…,100.所以经过的总弧长为π+2π+3π+…+100π=5 050π,则点M经过的路径长为(5 050π+101),时间为(5 050π+101)秒.评析本题为规律探究题,分清楚点M的运动周期是解题关键,可划分为O→A1→B1,B1→B2→A2,A2→A3→B3,…,B99→B100→A100,A100→A101,进而得出结论.17.解析原式=5+1-6=0.18.解析不等式组-,①-.②解不等式①得x<6,(2分)解不等式②得x≥3.(4分)所以原不等式组的解集为3≤x<6.(6分)19.解析原式=-·(-)=-.(4分)当m=-3,n=5时,原式=-(-)=.(6分) 20.解析(1)60;补全条形统计图如图.(5分)(2)600×=580(人),估计测试成绩等级在合格以上(包括合格)的学生约有580人.(8分)21.解析(1)画树状图如图:可看出三次传球有8种等可能结果,其中传回甲手中的有2种.所以P(传球三次回到甲手中)==.(5分)(2)由(1)可知从甲开始传球,传球三次后,球传到甲手中的概率为,球传到乙、丙手中的概率分别为,所以三次传球后,球回到乙手中的概率最大值为.所以乙会让球开始时在甲手中或丙手中.(8分)22.解析(1)证明:在矩形ABCD中,AB∥DC,ED∥BF,所以∠ABD=∠CDB.由题意可知∠EBD=∠ABD,∠BDF=∠BDC,所以∠EBD=∠BDF.所以BE∥DF.所以四边形BFDE为平行四边形.(6分)(2)连结EF.因为四边形BFDE为菱形,所以EF⊥BD.由题意得EM⊥BD,FN⊥BD,所以M、N两点重合,且M,N两点在EF上,故BD=2BM,又由题知AB=BM=2,所以BD=4.在Rt△BDC中,BC=-=-=2.(10分)评析本题考查平行四边形的判定方法及特殊平行四边形的性质,利用折叠设计试题背景,题目新颖,属容易题.23.解析(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(10-x)cm.由题意得x2+(10-x)2=58,解得x1=3,x2=7.4×3=12,4×7=28.所以小林应把铁丝剪成12 cm和28 cm的两段.(6分)(2)假设能围成.由(1)得,x2+(10-x)2=48,化简得x2-10x+26=0.因为Δ=b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.(10分)24.解析(1)因为点A(1,m)在直线y=2x+2上,所以m=4,即A(1,4).将A点坐标代入y=,得k1=4.(2分)过点A、D分别作y轴的垂线,垂足分别为点M、N.由题可得B(0,2),又D(n,-2),则BN=4,BM=2,AM=1.又因为AB⊥BD,所以易得△ABM∽△BDN.则=,即=,DN=8,所以D(8,-2).将D点坐标代入y=,得k2=-16.(6分)(2)存在符合条件的点F.理由如下:由y=2x+2,得C(-1,0).因为OB=ON=2,DN=8,所以OE=4.易知AE=5,CE=5,AC=2,BD=4,若△BDF∽△ACE,则=,即=.所以BF=10,所以F(0,-8).(10分)评析本题考查反比例函数及一次函数的性质,在直角坐标系中,要求学生根据图形的特征求出某个点的坐标,数形结合思想也是本题考查的重点,属中等难度题.25.解析(1)16.(2分)(2)设救援船的前往速度为每分钟V海里,则返程速度为每分钟海里.由题意得=-16,解得V=0.5.经检验V=0.5是原方程的解.答:救援船的前往速度为每分钟0.5海里(或写成每小时30海里).(7分)(3)由(2)知x=16÷0.5=32,则A(32,16).将A(32,16)和C(0,12)代入y=ax2+k,可求得y=x2+12.当x=40时,y=×402+12=.÷=(海里).所以救援船的前往速度每小时至少是海里.(12分)评析本题考查分式方程和二次函数的应用,正确理解题意,构造数学模型是关键,属中等难度题.26.解析(1)因为CA是☉P的直径,所以CD⊥OA,所以CD∥BO.所以△ACD∽△ABO,所以=.因为OA=8,OB=6,所以AB=10,又CA=2t,所以AD=t,当点Q与点D重合时,OQ+AD=OA,所以t+t=8,t=.(3分)(2)由△ACD∽△ABO,易得CD=t.当0<t<时,S=×t×--=-t2+t.因为-=,0<<,所以当t=时,S有最大值为;当<t≤5时,S=×t×-=t2-t.因为-=,<,所以S随t的增大而增大.所以当t=5时,S有最大值为15>.综上所述,S的最大值为15.(8分)(3)0<t≤或<t≤5.(12分)评析本题以点P、Q地不断运动,引发不同的几何图形变化背景,考查相似形、二次函数的性质,属中等难度题.27.解析问题情境:证明:因为AD∥BC,所以∠ADE=∠FCE.又因为DE=CE,∠AED=∠FEC,所以△ADE≌△FCE,所以S△ADE=S△FCE.所以S四边形ABCD=S四边形ABCE+S△ADE=S四边形ABCE+S△FCE=S△ABF.(2分)问题迁移:当直线旋转到点P是线段MN的中点时,△MON的面积最小.如图,过P点的另外一条直线EF交OA、OB于点E、F.不妨设PF<PE,过点M作MG∥OB交EF于G.由“问题情境”的结论可知,当点P是线段MN的中点时,有S四边形MOFG=S△MON.因为S四边形MOFG<S△EOF,所以S△MON<S△EOF.所以当点P是线段MN的中点时,△MON的面积最小.(5分)实际应用:如图,作PP1⊥OB,MM1⊥OB,垂足分别为P1,M1.在Rt△OPP 1中,PP 1=OPsin 30°=2 km,OP 1=OPcos 30°=2 km. 由“问题迁移”的结论知,当PM=PN 时,△MON 的面积最小. 此时MM 1=2PP 1=4 km,M 1P 1=P 1N.在Rt△OMM 1中,OM 1= °≈ . = km,M 1P 1=OP 1-OM 1= -km, ON=OM 1+M 1P 1+P 1N= -km.所以S △MON =MM 1·ON=8 -≈10.28≈10.3(km 2).(9分)拓展延伸:(1)当过点P 的直线l 与四边形OABC 的一组对边OC 、AB 分别交于点M 、N.延长OC 、AB 交于点D,易知AD=6,S △OAD =18.由“问题迁移”的结论知,当PM=PN 时,△MND 的面积最小,所以此时四边形OANM 的面积最大.如图,过点P,M 分别作PP 1⊥OA,MM 1⊥OA,垂足分别为P 1,M 1.由题意易得M 1P 1=P 1A=2,从而OM 1=MM 1=2.所以MN∥OA.所以S 四边形OANM = △ + 四边形 =×2×2+2×4=10. (2)当过点P 的直线l 与四边形OABC 的另一组对边CB 、OA 分别交于点M 、N. 延长CB 交x 轴于T 点,由B 、C 的坐标可得直线BC 对应的函数关系式为y=-x+9. 则T 点的坐标为(9,0),所以S △OCT =×9× =.由“问题迁移”的结论知:当PM=PN时,△MNT的面积最小,所以四边形OCMN的面积最大. 如图,过P,M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1,从而NP1=P1M1,MM1=2PP1=4.所以点M的横坐标为5,P1M1=NP1=1,TN=6.所以S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT=-12=<10.综上所述,截得四边形面积的最大值为10.(14分)(备注:各题如有其他解法,只要正确,均可参照给分).评析本题是综合实践类试题,要求学生根据图形的不同变化,会灵活计算△MON的面积,并探索△MON和四边形OANM面积的最大值情况,属难题.。

2020年数学中考模拟试题(及答案)

2020年数学中考模拟试题(及答案)

2020年数学中考模拟试题(及答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是()A .9B .8C .7D .6 2.下列计算正确的是( ) A . 2a +3b = 5ab B . (a —b )2=a 2—b 2 C . (2x 2)3=6x 6D . x 8;x 3=x 5 3.若一个凸多边形的内角和为720°,则这个多边形的边数为() A .4 B .5 C .6 D .74.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89 分,则该同学这6次成绩的中位数是( )A . 94B . 95 分C . 95.5 分D . 96 分5.下列图形是轴对称图形的有( )6 .函数y =。

2 % -1中的自变量%的取值范围是()A . % 丰—B . % 之1C . % >—D . % 之一 ^2 ^2 ^27 .如图,矩形纸片ABCD 中,AB = 4 , BC = 6,将VABC 沿AC 折叠,使点B 落在点 E 处,CE 交AD 于点F ,则DF 的长等于()9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价 10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更 合算( )A .甲B .乙C .丙D . 一样 10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种 蔬菜放在一起同时保鲜,适宜的温度是() B . C . D .A .40°B .50°C .60°D .70°A . 2个B . 3个C . 4个D . 5个A . 8.将一个矩形纸片按如图所示折叠,若21=40°,则N2的度数是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃413.如图,在四边形 ABCD 中,NB=ND = 90°, AB = 3, BC=2, tanA= 3,则 CD =14.如图:已知八3=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边4AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.15.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是cm2.16.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次2。

厦门市2020年中考数学模拟试题及答案

厦门市2020年中考数学模拟试题及答案

厦门市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。

①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。

江苏省无锡市宜兴市2020届中考数学模拟试卷(含解析)

江苏省无锡市宜兴市2020届中考数学模拟试卷(含解析)

江苏省无锡市宜兴市2020届中考模拟试卷数学一、选择题(本题共10小题,每小题3分,共30分)1.﹣8的相反数是()A.8 B.﹣8 C.D.﹣2.下列数中不属于有理数的是()A.1 B.C.D.0.1133.若等腰三角形的顶角为80°,则它的一个底角度数为()A.20°B.50°C.80°D.100°4.下列运算正确的是()A.x﹣2x=x B.(xy)2=xy2C.×=D.(﹣)2=4 5.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.﹣>﹣D.3a>3b6.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.平均数是91 B.极差是20 C.中位数是91 D.众数是987.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°8.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2 C.D.9.如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A.m=n B.x=m+n C.x>m+n D.x2=m2+n210.一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1);再折叠一次,使点D与点A重合,得折痕EN,EN交AD 于点M(图2),则EM的长为()A.2 B.C.D.二、填空题(本题共8小题,每2分,共16分)11.(2分)函数y=中自变量x的取值范围是.12.(2分)因式分解:a3﹣4a= .13.(2分)反比例函数y=的图象经过点(1,6)和(m,﹣3),则m= .14.(2分)某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为.15.(2分)如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为.16.(2分)如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,连接AE,将△ABE沿AE 折叠,点B落在点B′处,则sin∠B′EC的值为.17.(2分)如图,OC是∠AOB的平分线,点P在OC上且OP=4,∠AOB=60°,过点P的动直线DE交OA于D,交OB于E,那么= .18.(2分)如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C 作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为.三、解答题(本题共10小题,共84分)19.(8分)计算或化简:(1)+()﹣1﹣4cos45°+(﹣π)0.(2)(x﹣2)2﹣x(x﹣3).20.(8分)(1)解方程:﹣=﹣3.(2)解不等式组:21.(8分)如图:在菱形ABCD中,E、F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是正方形.22.(8分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,图2中等级为A的扇形的圆心角等于°;(2)补全条形统计图;(3)若该校共有3000名学生,请你估计该校等级为D的学生有多少名?23.(6分)抛掷红、蓝两枚四面编号分别为1﹣4(整数)的质地均匀、大小相同的正四面体,将红色和蓝色四面体一面朝下的编号分别作为二次函数y=x2+mx+n的一次项系数m 和常数项n的值.(1)一共可以得到个不同形式的二次函数;(直接写出结果)(2)抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是多少?并说明理由.24.(8分)在边长为1的正方形网格图中,点B的坐标为(2,0),点A的坐标为(0,﹣3).(1)在图1中,将线段AB关于原点作位似变换,使得变换后的线段DE与线段AB的相似比是1:2(其中A与D是对应点),请建立合适的坐标系,仅使用无刻度的直尺作出变换后的线段DE,并求直线DE的函数表达式;(2)在图2中,仅使用无刻度的直尺,作出以AB为边的矩形ABFG,使其面积为11.(保留作图痕迹,不写作法)25.(8分)市区某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.若不计队伍的长度,联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间存在着某种函数关系.(1)求后队追到前队所用的时间的值;(2)联络员从出发到他折返后第一次与后队相遇的过程中,求此函数关系表达式,并在直角坐标系中画出此函数的图象;(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?26.(10分)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A(12,0),B(0,16),点C从B点出发向y轴负方向以每秒2个单位的速度运动,过点C作CE⊥AB于点E,点D为x轴上动点,连结CD,DE,以CD,DE为边作▱CDEF.设运动时间为t秒.(1)求点C运动了多少秒时,点E恰好是AB的中点?(2)当t=4时,若▱CDEF的顶点F恰好落在y轴上,请求出此时点D的坐标;(3)点C在运动过程中,若在x轴上存在两个不同的点D使▱CDEF成为矩形,请直接求出满足条件的t的取值范围.27.(10分)如图:已知二次函数y=x2+(1﹣m)x﹣m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,对称轴为直线L设P为对称轴l上的点,连接PA、PC,PA=P C.(1)∠ABC的度数为°;(2)求点P坐标(用含m的代数式表示);(3)在x轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC 相似,且线段PQ的长度最小,如果存在,求满足条件的Q的坐标及对应的二次函数解析式,并求出PQ的最小值;如果不存在,请说明理由.28.(10分)如图,在直角坐标系中,⊙O的圆心O在坐标原点,直径AB=6,点P是直径AB 上的一个动点(点P不与A、B两点重合),过点P的直线PQ的解析式为y=x+m,当直线PQ交y轴于Q,交⊙O于C、D两点时,过点C作CE垂直于x轴交⊙O于点E,过点E作EG垂直于y轴,垂足为G,过点C作CF垂直于y轴,垂足为F,连接DE.(1)点P在运动过程中,∠CPB= °;(2)当m=2时,试求矩形CEGF的面积;(3)当P在运动过程中,探索PD2+PC2的值是否会发生变化?如果发生变化,请你说明理由;如果不发生变化,请你求出这个不变的值;(4)如果点P在射线AB上运动,当△PDE的面积为3时,请你求出CD的长度.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.【解答】解:根据概念可知﹣8+(﹣8的相反数)=0,所以﹣8的相反数是8.故选:A.2.【解答】解:A、1是整数,属于有理数;B、是分数,属于有理数;C、既不是分数、也不是整数,不属于有理数;D、0.113是有限小数,即分数,属于有理数;故选:C.3.【解答】解:∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故选:B.4.【解答】解:A、x﹣2x=﹣x,此选项错误;B、(xy)2=x2y2,此选项错误;C、×=,此选项正确;D、(﹣)2=2,此选项错误;故选:C.5.【解答】解:A、若a>b,则a﹣5>b﹣5,故原题计算错误;B、若a>b,则2+a>2+b,故原题计算错误;C、若a>b,则﹣<﹣,故原题计算错误;D、若a>b,则3a>3b,故原题计算正确;故选:D.6.【解答】解:根据定义可得,极差是20,众数是98,中位数是91,平均数是90.故A 错误.故选:A. 7.【解答】解:如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∠CED=∠α=43°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣43°=47°,故选:B.8.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.9.【解答】解:∵tanB=tanC=tan∠MAN=1,∴∠B=∠C=∠MAN=45°,∵∠CAB=90°,∴AC=AB,将△BAM绕点A顺时针旋转90°至△ACN′,点B与点C重合,点M落在N′处,连接NN′,则有AN′=AM,CN′=BM,∠1=∠3,∵∠MCN=45°,∴∠1+∠2=45°,∴∠2+∠3=45°,∴∠NAN′=∠MAN.在△MAN与△NAN′中,,∴△MAN≌△NCN′(SAS),∴MN=NN′.由旋转性质可知,∠ACN′=∠B=45°,∴∠NCN′=∠ACN′+∠ACB=90°,∴NN'2=NC2+N'C2,即x2=n2+m2,故选:D.10.【解答】解:∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,在Rt△ABD中,BD==10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,∴MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.故选:D.二、填空题(本题共8小题,每2分,共16分)11.【解答】解:根据题意得3x﹣2≥0,解得:x≥.故答案是:x≥.12.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).13.【解答】解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,﹣3)在此函数图象上上,∴﹣3=,解得m=﹣2.故答案为:﹣2.14.【解答】解:105 000=1.05×105.故答案为:1.05×105.15.【解答】解:由图可知,OA=OB=,而AB=4,∴OA2+OB2=AB2,∴∠O=90°,OB==2;则弧AB的长为==π,设底面半径为r,则2πr=π,r=(cm).这个圆锥的底面半径为cm.故答案为:cm16.【解答】解:如图所示,过B'作BC的垂线,交BC于F,交AD于G,则∠AGB'=∠B'FE=90°,由折叠可得,∠AB'E=∠B=90°,∴∠GAB'=∠FB'E,∴△AGB'∽△B'FE,∴=,由折叠可得AB'=AB=4,∵BC=6,点E为BC的中点,∴B'E=BE=3,设B'F=x,则B'G=4﹣x,∴=,即EF=(4﹣x)=3﹣x,∵Rt△EFB'中,EF2+B'F2=B'E2,∴(3﹣x)2+x2=32,解得x=,∴Rt△B'EF中,sin∠B′EC===.故答案为:.17.【解答】解:过点P作PM⊥OD于M,PN⊥OE于N,作EH⊥OD于H,在Rt△EOH中,EH=OE×sin∠AOB=OE,∴S△DOE=×OD×EH=•OD•OE,∵OC是∠AOB的平分线,OP=4,∠AOB=60°,∴∠MOP=∠NOP=30°,PM=PN=OP=2,∴S△DOE=S△DOP+S△POE=×OD•PM+×OE•PN=OD+OE,∴•OD•OE=OD+OE,∴=,故答案为:.18.【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.故答案为:2π.三、解答题(本题共10小题,共84分)19.【解答】解:(1)原式=2+2﹣4×+1=2+2﹣2+1=3;(2)原式=x2﹣4x+4﹣x2+3x=﹣x+4.20.【解答】解:(1)去分母得:1﹣x+1=﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解;(2),由①得:x>﹣1,由②得:x≤2,则不等式组的解集为﹣1<x≤2.21.【解答】证明:(1)∵BE=CF,∴BF=CE,又∵AF=DE,AB=DC,∴△ABF≌△DCE.(2)由△ABF≌△DCE得∠B=∠C,由AB∥CD得∠B+∠C=180°,得∠B=∠C=90°,四边形ABCD是正方形.22.【解答】解:(1)在这次调查中,一共抽取的学生数是: =50(人),∵a=×100%=24%;∴扇形统计图中A级对应的圆心角为24%×360°=86.4°;故答案为:50、86.4;(2)C等级人数为50﹣(12+24+4)=10,补全条形图如下:(3)3000×=240(人),答:估计该校等级为D的学生有240名.23.【解答】解:(1)根据题意知,m的值有4个,n的值有4个,所以可以得到4×4=16个不同形式的二次函数.故答案为16;(2)∵y=x2+mx+n,∴△=m2﹣4n.∵二次函数图象顶点在x轴上方,∴△=m2﹣4n<0,通过计算可知,m=1,n=1,2,3,4;或m=2,n=2,3,4;或m=3,n=3,4时满足△=m2﹣4n <0,由此可知,抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是.24.【解答】解:(1)如图所示,连接CE,交y轴于D,则DE即为所求,由E(1,0),D(0,﹣1.5),可得DE的解析式为y=x﹣,连接C'E',交y轴于D',则D'E'即为所求,由E'(﹣1,0),D'(0,1.5),可得D'E'的解析式为y=x+,∴直线DE的函数表达式为y=x﹣或y=x+;(2)如图所示,连接AD,EH,交于点G,由DE:AH=2:11,可得DG:AG=2:11,∴AG=AD=,同理可得,BF=,此时,矩形ABFG的面积为×=11.故矩形ABFG即为所求.25.【解答】解:(1)设线段AB对应的函数关系式为y1=kx+b.根据题意,得,解得.∴y1=﹣2x+4,当y=0时,﹣2x+4=0,解得x=2,故后队追到前队所用的时间的值是2h;(2)根据题意,得线段DE对应的函数关系式为y2=(12+4)(x﹣)=16x﹣8.如图所示:(3)根据题意,得线段AD对应的函数关系式为y3=k3x+b3,由题意,得,解得:.∴y3=﹣8x+4.分两种情况:①y1=2y3,即﹣2x+4=2(﹣8x+4),解得x=.②y1=2y2,即﹣2x+4=2(16x﹣8),解得x=.综上,联络员从出发到他折返后第一次与后队相遇的过程中,当x为或时,他离前队的路程与他离后队的路程相等.26.【解答】解:(1)根据题意知BC=2t、BO=16、OA=12,则OC=16﹣2t,∵CE⊥AB且E为AB中点,∴CB=CA=2t,在Rt△AOC中,由OC2+OA2=AC2可得(16﹣2t)2+122=(2t)2,解得:t=6.25,即点C运动了6.25秒时,点E恰好是AB的中点;(2)如图1中,当t=4时,BC=OC=8,∵A(12,0),B(0,16),∴直线AB的解析式为y=﹣x+16,∵CE⊥AB,C(0,8),∴直线CE的解析式为y=x+8,,解得,∴E(,),∵点F在y轴上,∴DE∥y轴,∴D(,0).(3)如图2中,①当点C在y轴的正半轴上时,设以EC为直径的⊙P与x轴相切于点D,作ER⊥OA与R.根据PD=(OC+ER),可得:t= [16﹣2t+(20﹣t)×],解得t=.②当点C′在y轴的负半轴上时,设以E′C′为直径的⊙P′与x轴相切于点D′,作ER′⊥OA与K.根据P′D′=(OC′+E′K),可得:t= [2t﹣16+(t﹣20)×],解得t=,综上所述,点C在运动过程中,若在x轴上存在两个不同的点D使▱CDEF成为矩形,满足条件的t的取值范围为<t<.27.【解答】解:(1)令x=0,则y=﹣m,C点坐标为:(0,﹣m),令y=0,则x2+(1﹣m)x﹣m=0,解得:x1=﹣1,x2=m,∵0<m<1,点A在点B的左侧,∴B点坐标为:(m,0),∴OB=OC=m,∵∠BOC=90°,∴△BOC是等腰直角三角形,∠ABC=45°;故答案为:45°;(2)如图1,作PD⊥y轴,垂足为D,设l与x轴交于点E,由题意得,抛物线的对称轴为:x=,设点P坐标为:(,n),∵PA=PC,∴PA2=PC2,即AE2+PE2=CD2+PD2,∴(+1)2+n2=(n+m)2+()2,解得:n=,∴P点的坐标为:(,);(3)存在点Q满足题意,∵P点的坐标为:(,),∴PA2+PC2=AE2+PE2+CD2+PD2,=(+1)2+()2+(+m)2+()2=1+m2,∵AC2=1+m2,∴PA2+PC2=AC2,∴∠APC=90°,∴△PAC是等腰直角三角形,∵以Q、B、C为顶点的三角形与△PAC相似,∴△QBC是等腰直角三角形,∴由题意可得满足条件的点Q的坐标为:(﹣m,0)若PQ与x轴垂直,则=﹣m,解得:m=,PQ=,若PQ与x轴不垂直,则PQ2=PE2+EQ2=()2+(+m)2=m2﹣2m+=(m﹣)2+,∵0<m<1,∴当m=时,PQ2取得最小值,PQ取得最小值,∵,∴当m=,即Q点的坐标为:(﹣,0)时,PQ的长度最小.28.【解答】解:(1)∵过点P的直线PQ的解析式为y=x+m,∴图象与x轴交点坐标的为:(﹣m,0),图象与y轴交点坐标的为:(0,m),∴QO=PO,∠POQ=90°,∴∠CPB=45°,故答案为:45°;(2)作OM⊥CD于M点,则CM=MD,∵∠CPB=45°,CE⊥AB,∴∠OQP=∠HCP=45°,PH=CH,由题意得:QO=2,∴OP=OQ=2,∴PM=MQ=OM=,连接OC,则CM==,∴PC=+,PH=CH=PC=,∴CE=2CH=+2,OH=PH﹣OP=﹣2=,∴S矩形CEGH=CE×OH=(+2)×=5;(3)不变,当P点在线段OA上时,由(2)得:PC2+PD2=(CM+PM)2+(DM﹣PM)2,=(CM+OM)2+(CM﹣OM)2,=2(CM2+OM2),=2OC2,=2×32,=18,当P点在线段OB上时,同理可得:PC2+PD2=18,当P点与点O重合时,显然有:PC2+PD2=18;(4)①当点P在直径AB上时如图所示,由圆的对称性可知,∠CPE=2∠CPB=90°,PE=PC,∴S△PDE=PD×PE=PD×PC=3,∴PD×PC=6,即(CM﹣PM)(CM+PM)=6,(CM﹣OM)(CM+OM)=6,∴CM2﹣OM2=6,∴CM2﹣(32﹣CM2)=6,∴CM2=,∴CD=2CM=;②当点P在线段AB的延长线上时,如图,同理有:PD×PC=6,即:(PM+DM)(PM﹣CM)=6,(OM+CM)(OM﹣CM)=6,∴OM2﹣CM2=6,∴(32﹣CM2)﹣CM2=6,∴CM2=,∴CD=2CM=,综上所述:CD为或.。

苏教版2020年中考数学模拟卷(含答案解析)

苏教版2020年中考数学模拟卷(含答案解析)

2020年中考数学模拟试卷一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.12.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×1064.下图几何体的主视图是()A.B.C.D.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα二.填空题(共8小题)9.=.10.分解因式:x3﹣x=.11.已知一个多边形的内角和为540°,则这个多边形是边形.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是cm2.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.三.解答题(共10小题)17.计算或化简:(1)(2)18.解方程:+=1.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案与试题解析一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<1,∴各数中最小的数是﹣3.故选:A.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.4.下图几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的几何体的左边有3个正方形,中间只有2个正方形,右边有1个正方形.故选:C.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.7.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折【分析】根据题意和函数图象中的数据可以列出相应的方程,从而可以求得超过500元的部分可以享受的优惠,本题得以解决.【解答】解:设超过500元的部分可以享受的优惠是x折,(1000﹣500)×+500=900,解得,x=8,故选:C.8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.二.填空题(共8小题)9.= 2 .【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).11.已知一个多边形的内角和为540°,则这个多边形是五边形.【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5.则这个多边形是五边形.故答案为:五.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、3、3,2、3、4,2、3、5,其中三条线段能构成三角形的结果数为2种,所以能构成三角形的概率=.故答案为:.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是35πcm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【解答】解:底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为3<x≤9 .【分析】由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围.【解答】解:如图,∵抛物线y=﹣x2+2x+8,∴抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(﹣2,0)、C(4,0),分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1﹣2,1)、Q(1+2,1).可知,点A在不含端点的抛物线内时,∠BAC<90°,且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.则A的横坐标取值范围是3<x≤9.故答案为:3<x≤9.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为15 .【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积为=×BC×AD=15故答案为:15三.解答题(共10小题)17.计算或化简:(1)(2)【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=﹣2+2×+1=﹣2++1=1;(2)原式=1﹣×=1﹣=﹣.18.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)(x+1)﹣4=x2﹣1,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【解答】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×=9000(人次).20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.【分析】要证明BC=ED,只要证明△ABC≌△CED即可,根据题意目中的条件和平行线的性质可以得到证明两个三角形全等的条件,本题得以解决.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.【分析】(1)应用列表法,求出两次抽取数字和为5的概率是多少即可.(2)应用列表法,求出所抽取数字和为5的概率是多少即可.【解答】解:(1)1 32 (1,2)(3,2)4 (1,4)(3,4)∵共有4种可能性,且每种可能性都相同,数字和为5有两种可能性,∴两次抽取数字和为5的概率为:=.(2)1 2 3 41 ﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣∵共有12种可能性,且每种可能性都相同,数字和为5的有4种可能性,∴抽取数字和为5概率为:=.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)【分析】(1)直接作出平行线和垂线进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【分析】(1)利用tan∠ABC=3,得出C点坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF =(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c =0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。

2020年中考模拟检测《数学试题》附答案解析

2020年中考模拟检测《数学试题》附答案解析

中考考前综合模拟测试数 学 试 卷(时间:xx 分钟 总分:xx 分)学校________ 班级________ 姓名________ 座号________一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·长沙)下列个数中,比-3小的数是( )A .﹣5B .﹣1C .0D .12.(2019·株洲)下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y - 3.(2019·淄博)下列几何体中,其主视图、左视图和俯视图完全相同的是( )A.B. C. D.4.(2019·山西)五台山景区空气清爽,景色宜人."五一"小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,"五一"小长假期间五台山景区进山门票总收入用科学记数法表示为( ) A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元5.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=- 6.(2019·天津) 若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数xy 12-=的图像上,则y 1,y 2,y 3的大小关系是A. y 2<y 1<y 3B. y 3 <y 1 <y 2C. y 1 <y 2<y 3D. y 3 <y 2<y 17. (2019·泰安)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为A.15B.25C.35D.458.(2019·衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路,某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( ) A. 9(1-2x )=1 B. 9(1-x )2=1 C. 9(1+2x )=1 D. 9(1+x )2=19.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是 A .2(4)6y x =-- B .2(1)3y x =-- C .2(2)2y x =--D .2(4)2y x =--10.(2019·广元)如图,在正方形ABCD 的对角线AC 上取一点E.使得∠CDE =15°,连接BE 并延长 BE 到F,使CF =CB,BF 与CD 相交于点H,若AB =1,有下列结论:①BE =DE;②CE+DE =EF;③S △DEC =14-④1DH HC =.则其中正确的结论有( ) A.①②③B.①②③ ④C.①②④D.①③④二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 11.(2019·德州)|x ﹣3|=3﹣x ,则x 的取值范围是 . 12.(2019 · 柳州)如图,在△ABC 中,sin B =,tan C =,AB =3,则AC 的长为 .13.(2019•广安)在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为__________米.14.(2019·宁波)如图,Rt △ABC 中,∠C =90°,AC =12 ,点D 在边BC 上,CD =5,BD =13.点P 是线段AD 上一动点,当半径为6的e P 与△ABC 的一边相切时,AP 的长为________.三、简答题 (本题共2小题,每题8分,共16分) 15.(2019·凉山)计算:tan45° + (3-2)0-(-21)-2+ ︱3-2︱. 16.(2019·无锡)解方程:0522=--x x 四(本题共2小题,每题8分,共16分) 17.(2019·安徽)观察以下等式:第1个等式:211=111+, 第2个等式:311=226+,第3个等式:211=5315+,第4个等式:211 =7428+,第5个等式:211=9545+,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.(2019•武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.五、(本题共2小题,每题10分,共20分)19.(2019·衡阳)如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A 的仰角为30°,沿坡面向下走到坡脚C处,然后向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60°,已知坡面CD=10米,山坡的坡度i=13(坡度i是指坡面的铅直高度与水平宽度的比),求楼房AB高度.(结果精确到0.1米)32≈1041)30°60°楼房i=1:3ADE20.(2019·南充)如图,在ABC∆中,以AC为直径的Oe交AB于点D,连接CD,BCD A∠=∠.(1)求证:BC是Oe的切线;(2)若5BC=,3BD=,求点O到CD的距离.六.(本题满分12分)21.(2019 ·荆州)体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别个数段频数频率1 0≤x<10 5 0.12 10≤x<20 21 0.423 20≤x<30 a4 30≤x<40 b(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.七、(本题满分12分)22.(2019浙江省杭州市)设二次函数y=(x-x1)(x-x2)( x1,x2是实数)(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=12时,y=-12.若甲求得的结果都正确·你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值.(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时.求证: 0<mn<1 16.八、(本题满分14分)23、(2019·海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A,D不重合),射线PE 与BC 的延长线交于点Q. (1)求证:△PDE ≌△QCE;(2)过点E 作EF ∥BC 交PB 于点F,连接AF,当PB =PQ 时,①求证:四边形AFEP 是平行四边形;②请判断四边形AFEP 是否为菱形,并说明理由.答案与解析一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·长沙)下列个数中,比-3小的数是( )A .﹣5B .﹣1C .0D .1 【答案】A【解析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.-5<-3<-1<0<1,所以比-3小的数是-5,故本题选:A .2.(2019·株洲)下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y - 【答案】C【解析】根据同类项的定义可知,含有相同的字母,并且相同字母的指数也分别相同,故选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本题考查了二次根式的性质,
a2
a
a a
a0
,正确理解该性质是解题的关键.
a0
7.D
解析:D
【解析】
【分析】
根据菱形对角线互相垂直平分的性质,可以求得 BO=OD,AO=OC,在 Rt△AOB 中,根
据勾股定理可以求得 AB 的长,即可求出菱形 ABCD 的周长.
【详解】
∵四边形 ABCD 是菱形,
∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,
在解集中求特殊解,了解求特殊解的方法是解决本题的关键.
9.C
解析:C 【解析】 【分析】 【详解】 ∵A(﹣3,4),
∴OA= 32 42 =5,
∵四边形 OABC 是菱形, ∴AO=CB=OC=AB=5,则点 B 的横坐标为﹣3﹣5=﹣8, 故 B 的坐标为:(﹣8,4),
将点 B 的坐标代入 y k 得,4= k ,解得:k=﹣32.故选 C.
2020 年数学中考模拟试题(含答案)
一、选择题
1.下列四个实数中,比 1小的数是( )
A. 2
B.0
C.1
D.2
2.已知二次函数 y=ax2+bx+c,且 a>b>c,a+b+c=0,有以下四个命题,则一定正确
命题的序号是( )
①x=1 是二次方程 ax2+bx+c=0 的一个实数根;
②二次函数 y=ax2+bx+c 的开口向下;
x2 2x
18.当 m ____________时,解分式方程 x 5 m 会出现增根. x3 3x
19.等腰三角形一腰上的高与另一腰的夹角的度数为 20°,则顶角的度数是 .
20.若式子 x 3 在实数范围内有意义,则 x 的取值范围是_____. 三、解答题
21.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店 设有甲、乙两家分店,均销售 A、B、C、D 四种款式的电脑,每种款式电脑的利润如表 1 所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的 50 台电脑的款式,统计各种 款式电脑的销售数量,如表 2 所示. 表 1:四种款式电脑的利润
一、选择题 1.A 解析:A 【解析】 试题分析:A.﹣2<﹣1,故正确; B.0>﹣1,故本选项错误;
C.1>﹣1,故本选项错误; D.2>﹣1,故本选项错误; 故选 A. 考点:有理数大小比较.
2.C
解析:C 【解析】 试题分析:当 x=1 时,a+b+c=0,因此可知二次方程 ax2+bx+c=0 的一个实数根,故①正 确;根据 a>b>c,且 a+b+c=0,可知 a>0,函数的开口向上,故②不正确;
25.如图 1,菱形 ABCD 中, ABC 120 , P 是对角线 BD 上的一点,点 E 在 AD 的 延长线上,且 PA PE , PE 交 CD 于 F ,连接 CE .
(1)证明:△ADP≌△CDP ;
(2)判断 △CEP 的形状,并说明理由.
(3)如图 2,把菱形 ABCD 改为正方形 ABCD ,其他条件不变,直.接.写出线段 AP 与线 段 CE 的数量关系. 【参考答案】***试卷处理标记,请不要删除
4.D
解析:D 【解析】 【分析】 【详解】
解:A 选项中,根据对顶角相等,得 1与 2 一定相等; B、C 项中无法确定 1与 2 是否相等;
D 选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1. 故选:D
5.D
解析:D 【解析】 【分析】 由被开方数为非负数可行关于 x 的不等式,解不等式即可求得答案. 【详解】
由 a2 a 可确定 a 的范围,排除掉在范围内的选项即可.
【详解】
解:当 a ≥0 时, a2 a ,
当 a <0 时, a2 a ,
∵ a =1>0,故选项 A 不符合题意, ∵ a =0,故选项 B 不符合题意, ∵ a =﹣1﹣k,当 k<﹣1 时, a >0,故选项 C 不符合题意, ∵ a =﹣1﹣k2(k 为实数)<0,故选项 D 符合题意, 故选:D. 【点睛】
a 1, b 2, c 4 ,
(2)2 4 1 (4) 20 0 ,
方程由两个不相等的实数根.
故选:A.
【点睛】
本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.
12.无
二、填空题
13.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式 即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的 运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确
OD= 1 OC,且△ACD 的面积是 6,连接 BC. 2
(1)求 m,k,n 的值; (2)求△ABC 的面积.
23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共 150 棵用来美化 小区环境,购买银杏树用了 12000 元,购买玉兰树用了 9000 元.已知玉兰树的单价是银杏 树单价的 1.5 倍,那么银杏树和玉兰树的单价各是多少? 24.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委 组织了一次全校 2000 名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成 绩均不低于 50 分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中 200 名 学生的海选比赛成绩(成绩 x 取整数,总分 100 分)作为样本进行整理,得到下列统计图 表: 抽取的 200 名学生海选成绩分组表
由题意得,2x-1≥0,
解得:x≥ 1 , 2
故选 D. 【点睛】 本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自 变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为 0;(3)当函数表达 式是二次根式时,被开方数非负.
6.D
解析:D 【解析】 【分析】
上,函数 y k (x 0) 的图象经过顶点 B,则 k 的值为( ) x
A. 12
B. 27
C. 32
10.已知关于 x 的方程 2x+a-9=0 的解是 x=2,则 a 的值为
D. 36
A.2
B.3
C.4
D.5
11.一元二次方程 (x 1)(x 1) 2x 3 的根的情况是( )
A.有两个不相等的实数根
家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店
作出暂停营业的决定?并说明理由.
22.如图,在平面直角坐标系中,直线 AB 与函数 y= k (x>0)的图象交于点 A(m, x
2),B(2,n).过点 A 作 AC 平行于 x 轴交 y 轴于点 C,在 y 轴负半轴上取一点 D,使
电脑款式
A
B
C
D
利润(元/台)
160
200
240
320
表 2:甲、乙两店电脑销售情况
电脑款式
A
B
C
D
甲店销售数量(台)
20
15
10
5
乙店销售数量(台)8
8
10
14
18
试运用统计与概率知识,解决下列问题:
(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于 240 元的概率为

(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一
∴AB=
=5,
∴菱形的周长为 4×5=20.
故选 D.
【点睛】
本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且 平分的性质,本题中根据勾股定理计算 AB 的长是解题的关键.
8.C
解析:C 【解析】 【分析】
解关于
x
x
的不等式组
3
a
0
,结合解集为 x>4,确定 a 的范围,再由分式方程
根据二次函数的对称轴为 x=- b ,可知无法判断对称轴的位置,故③不正确; 2a
根据其图像开口向上,且当 x=2 时,4a+2b+c>a+b+c=0,故不等式 4a+2b+c>0 一定成立, 故④正确. 故选:C.
3.B
解析:B 【解析】 【分析】 根据相反数的性质可得结果. 【详解】 因为-2+2=0,所以﹣2 的相反数是 2, 故选 B. 【点睛】 本题考查求相反数,熟记相反数的性质是解题的关键 .
x2
2x
∴a=0、3、4
关于
x
的不等式组
x x
3
a 2
0 2(
x
1)
整理得
x x
a 4
∵不等式组
x
3
a
0
的解集为 x>4
x 2 2(x 1)
∴a≤4
于是符合条件的所有整数 a 的值之和为:0+3+4=7
故选 C.
【点睛】
本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后
B.有两个相等的实数根
C.只有一个实数根 12.8×200=x+40 解得:x=120
D.没有实数根
答:商品进价为 120 元.
故选:B.
【点睛】
此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程
是关键.
二、填空题
13.已知 x 6 2 ,那么 x2 2 2x 的值是_____.
组别
海选成绩 x
A组
50≤x<60
B组
60≤x<70
C组
70≤x<80
D组
80≤x<90
E组
90≤x<
100
请根据所给信息,解答下列问题: (1)请把图 1 中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上) (2)在图 2 的扇形统计图中,记表示 B 组人数所占的百分比为 a%,则 a 的值为 ,表 示 C 组扇形的圆心角 θ 的度数为 度; (3)规定海选成绩在 90 分以上(包括 90 分)记为“优等”,请估计该校参加这次海选比赛 的 2000 名学生中成绩“优等”的有多少人?
相关文档
最新文档