怎样计算爆炸上限和下限
常见气体的爆炸极限及爆炸极限计算公式
常见气体的爆炸极限及爆炸极限计算公式(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)此定律一直被证明是有效的。
2.2理·查特里公式理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178 Nm3/h 体积分数=2.178/19000=0.012%甲醛体积分数=25.39 Nm3/h 体积分数=25.39/19000=0.134%混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。
常见气体的爆炸极限及爆炸极限计算公式
常见气体的爆炸极限及爆炸极限计算公式气体的爆炸极限是指气体混合物中可燃气体的浓度范围,在这个浓度范围内,混合物可以发生自燃或爆炸。
爆炸极限通常分为上爆炸极限和下爆炸极限。
下面将介绍一些常见气体的爆炸极限及其计算公式。
1.甲烷(CH4)甲烷是最常见的天然气成分之一,它在空气中的爆炸极限为5%~15%。
甲烷的爆炸极限可以通过LFL(Lower Flammability Limit)和UFL (Upper Flammability Limit)来计算。
公式如下:LFL=0.0416×M/VcUFL=0.1621×M/Vc其中,M表示混合物中甲烷的质量分数,Vc表示燃烧容积。
2.乙炔(C2H2)乙炔是一种常用的工业气体,它在空气中的爆炸极限为 2.5%~93.3%。
乙炔的爆炸极限计算公式如下:LFL=4.57×(Vg)^0.63UFL=38×(Vg)^0.63其中,Vg表示乙炔的体积分数。
3.氢气(H2)氢气是一种轻便的气体,在空气中的爆炸极限为4%~75%。
氢气的爆炸极限可以通过下面的公式进行计算:LFL=4.1×(Pg)^0.82UFL=77.7×(Pg)^0.82其中,Pg表示氢气的压力。
4.二氧化碳(CO2)二氧化碳是一种非常稳定的气体,不易燃烧。
它的下爆炸极限为34%~74%。
在常规条件下,二氧化碳不会引发自燃或爆炸反应。
5.氧气(O2)氧气是一种强氧化剂,它本身不可燃。
然而,许多物质在氧气的存在下能够更容易燃烧。
氧气在空气中的爆炸极限为24%~95%。
需要注意的是,不同气体具有不同的爆炸极限计算公式,而且这些公式仅适用于特定条件下的混合气体。
你在实际情况中应该使用与你的气体和条件相匹配的正确公式。
此外,爆炸极限受到许多因素的影响,例如温度、压力、湿度和空气中其他物质的存在等。
这些因素可能会使爆炸极限的数值发生变化。
因此,在实际操作中,我们需要进行实验或模拟来确定具体气体在特定条件下的爆炸极限值。
爆炸极限计算
爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。
爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。
实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。
可燃气体或蒸气分子式一般用C αH βO γ表示,设燃烧1mol 气体所必需的氧摩尔数为n ,则燃烧反应式可写成:C αH βO γ+nO 2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n 的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。
其中。
可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。
各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。
爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影.响,但仍不失去参考价值。
1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。
爆炸下限公式:(体积)爆炸上限公式:(体积)式中 L——可燃性混合物爆炸下限;下L——可燃性混合物爆炸上限;上n——1mol可燃气体完全燃烧所需的氧原子数。
某些有机物爆炸上限和下限估算值与实验值比较如表2:表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。
2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。
计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。
爆炸极限及其计算
本文为安徽理工大学化工学院弹药08-5班陈运成编辑爆炸极限及其计算爆炸极限是指可燃物质(可燃气体、蒸气和粉尘)与空气或氧气在一定的浓度范围内均匀混合形成预混气时,与火源发生爆炸的浓度范围或极限。
它是表征可燃气体和粉尘危险性的重要参数在此浓度范围内的混合气体(粉尘)称为爆炸性混合气体(粉尘)。
爆炸极限可用混合气体(粉尘)中可燃物的体积浓度和质量浓度来表示。
可燃气体和蒸气的爆炸极限以混合物中可燃气体(蒸气)所占的体积百分比L 表示,33/m m ;可燃粉尘的爆炸极限以单位体积内混合物中可燃粉尘的质量浓度Y 表示3/m g 。
在20℃时L 与Y 有如下的关系:4.2/2932731004.221000M L L M Y ∙=⨯⨯= 式中 M ——可燃气体的相对分子质量。
爆炸上限和爆炸下限分别表示爆炸性混合物能够发生爆炸的可燃物的最高浓度和最低浓度。
另外,爆炸下限越低,说明只要少量的预混气遇到火源就能发生爆炸;爆炸上限越高,说明在可燃物中只要混入少量空气(氧气)与火源就能发生爆炸。
所以可燃物的爆炸极限越宽越危险。
当可燃气体、蒸气或粉尘的浓度小于爆炸下限时,由于混合物中有过量的空气,过量空气起冷却作用的同时,同时可导致可燃物浓度不足,可燃物燃烧时得热小于失热,燃烧不能进行下去,最终熄灭不可能发生爆炸;同样可燃物的浓度大于爆炸上限时,可燃物浓度过量,燃烧时可燃物会因缺氧而熄灭,不可能发生爆炸。
第一节爆炸极限的影响因素爆炸极限不是一个恒定不变的的常数,它受压强、温度、氧气的体积分数、点火源的能量、容器的形状和大小、惰性气体、杂质的量等因素的影响。
A、温度的影响混合物的原始温度升高,则爆炸下限降低,上限增高,爆炸极限范围扩大,爆炸危险性升高。
温度升高的情况下,活化分子数增高,分子热运动加剧,致使爆炸更容易发生。
B、氧的体积分数的影响混合物中氧的体积分数增加,爆炸极限范围扩大,尤其是爆炸上限提高较多。
C、压力的影响混合物原始的压力增大,爆炸极限的范围也增大。
常见气体的爆炸极限及爆炸极限计算公式
爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。
2.2 理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已
知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369。
爆炸下限和爆炸上限计算公式
爆炸下限和爆炸上限计算公式
爆炸下限和爆炸上限的计算公式因所指的情境或物理参数不同而变化。
以下是几个常见的计算公式示例:
1. 爆炸下限(LEL,Lower Explosive Limit)和爆炸上限(UEL,Upper Explosive Limit)的计算公式通常用于气体或蒸汽混合物的爆炸性质分析:
- LEL = (最低爆炸浓度) / (混合物中气体总体积)
- UEL = (最高爆炸浓度) / (混合物中气体总体积)
2. 当涉及到材料的爆炸性质时,可以使用爆炸下限和爆炸上限的计算公式:
- 爆炸下限 = (材料的最小爆炸浓度) / (材料的总质量)
- 爆炸上限 = (材料的最大爆炸浓度) / (材料的总质量)
上述公式中,爆炸浓度指的是混合物或材料中导致爆炸的气体或蒸汽的最低或最高浓度。
爆炸浓度一般用体积份额或质量份额表示。
这些公式可用于评估材料或混合物在给定条件下的爆炸性质。
但请注意,具体使用哪种公式以及公式中涉及的参数取决于所研究的物质或情境。
爆炸极限计算
爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:(1)爆炸反应当量浓度。
爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。
实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。
可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成:CαHβOγ+nO2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。
其中。
可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。
各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。
爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影.响,但仍不失去参考价值。
1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。
爆炸下限公式:(体积)爆炸上限公式:(体积)式中L下——可燃性混合物爆炸下限;L上——可燃性混合物爆炸上限;n——1mol可燃气体完全燃烧所需的氧原子数。
某些有机物爆炸上限和下限估算值与实验值比较如表2:表2石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。
2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。
计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。
例如甲烷爆炸极限的实验值为5%~15%,与计算值非常接近。
爆炸极限的计算
1、爆炸反应当量浓度的计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定可燃物的爆炸下限,公式如下:C =20.9/(0.209+n0)爆炸下限(LEL)=0.55×C爆炸上限(UEL)=4.8(C) ^0.5C——爆炸性气体完全燃烧时的化学计量浓度;0.55——常数;20.9%——空气中氧体积分数;n0——可燃气体完全燃烧时所需氧分子数。
例如:求丙烷的爆炸极限。
丙烷化学反应式:一分子丙烷+五分子氧气→三分子二氧化碳+四分子水丙烷(LEL)=0.55×C=2.21%丙烷(UEL)=4.8(20.9/(0.209+5))^0.5=9.62%2、由分子中所含碳原子数估算爆炸极限爆炸下限(LEL)=1/(0.1347n+0.04343)爆炸上限(UEL)=1/(0.01337n+0.05151)n——分子中所含碳原子数3、两种以上可燃气体组成的混合体系爆炸极限的计算3.1、莱夏特尔定律对于两种以上可燃气体混合体系,已知每种可燃气体的爆炸极限和所占空间体积分数,可根据莱夏特尔定律算出混合体系的爆炸极限。
(爆炸下限)LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(爆炸上限)UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)Pn——每种可燃气在混合物中的体积分数3.2、理查特里公式对于两种以上可燃性混合体系可用理查特里公式,该式适用于各组分间不反应、燃烧时无催化作用的可燃性混合体系。
EL=100/(V1/EL1+V2/EL2+……+Vn/ELn)EL——混合体系爆炸极限;ELn——混合体系中各组分的爆炸极限;Vn——各组分在混合气体中的体积分数。
4、含惰性气体的可燃性混合体系的爆炸极限对于有惰性气体混入的多元可燃性混合体系的爆炸极限,可用以下公式:EL=ELr/(1-D+(ELr×D)/100)EL——含惰性气体的可燃性混合体系的爆炸极限;ELr——可燃性混合体系中部分可燃物的爆炸极限;D——为惰性气体含量。
可燃气爆炸下限爆炸上限
可燃气爆炸下限爆炸上限可燃气爆炸下限和爆炸上限是研究可燃气体爆炸特性时所关注的两个重要参数。
本文将从基本概念、测定方法、影响因素和安全措施等方面进行探讨,总结出可燃气爆炸下限和爆炸上限的相关知识。
一、基本概念1.可燃气体爆炸下限(Lower Explosive Limit, LEL)指的是气体与空气混合物中,气体浓度达到一定比例时开始产生可燃燃烧的最低浓度。
2.爆炸上限(Upper Explosive Limit, UEL)指的是气体与空气混合物中,气体浓度达到一定比例时停止可燃燃烧的最高浓度。
3.爆炸范围(Explosive Range)是指气体与空气混合物的最小浓度和最大浓度之间的浓度范围,也称为可燃范围。
二、测定方法1.实验室法:通过实验室条件下气体与空气混合物的燃烧性质测定,例如火焰传播或爆炸试验。
2.计算法:利用气体与空气混合物燃烧性质的理论计算方法,如蒙特卡罗模拟或化学动力学模型等。
3.经验法:通过对类似气体混合物的经验数据进行总结和统计分析,得出可燃气爆炸下限和爆炸上限的范围值。
三、影响因素1.气体种类:不同的气体在与空气混合后的爆炸范围不同,例如甲烷的爆炸范围为5%-15%,而乙炔的爆炸范围则为2.5%-80%。
2.环境因素:温度、湿度、压力等环境因素都会对可燃气爆炸下限和爆炸上限产生影响。
例如,高温和高压条件下,气体的爆炸范围会增大。
3.氧气含量:氧气是燃烧的必需条件,当氧气含量低于一定比例时,燃烧反应无法进行,因此氧气含量也会影响可燃气体的爆炸范围。
四、安全措施1.防爆措施:在易发生可燃气爆炸的工作场所,应采取防爆设备和防爆措施,如隔爆设备、防爆电器等,以减少或阻止爆炸事故的发生。
2.通风管理:保持工作场所的通风良好,及时排除可燃气体,降低气体浓度,从而减少爆炸的危险性。
3.静电防护:采取静电接地、使用防静电设备等措施,减少静电的积聚和放电,防止静电引发可燃气体爆炸。
4.个体防护:工作人员应穿戴防护设备,如防爆服、防爆鞋等,增加个体的安全防护能力。
常见气体的爆炸极限及爆炸极限计算公式
爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律????对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)?此定律一直被证明是有效的。
2.2?理·查特里公式????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)????式中Lm——混合气体爆炸极限,%;????L1、L2、L3——混合气体中各组分的爆炸极限,%;????V1、V2、V3——各组分在混合气体中的体积分数,%。
????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
????Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012%甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134%混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。
爆炸极限计算资料
爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:(1)爆炸反应当量浓度。
爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。
实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。
可燃气体或蒸气分子式一般用CHO表示,设燃烧1mol气体所必需的氧摩尔数为n,γαβ则燃烧反应式可写成:CHO+nO→生成气体2αγβ按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。
其中。
可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。
各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。
爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。
1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。
爆炸下限公式:(体积)爆炸上限公式:(体积)式中 L——可燃性混合物爆炸下限;下 L——可燃性混合物爆炸上限;上n——1mol可燃气体完全燃烧所需的氧原子数。
某些有机物爆炸上限和下限估算值与实验值比较如表2:石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较 2表.从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。
2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。
计算公式如下:%。
例如甲烷爆炸此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10等可N、Cl、%~15%,与计算值非常接近。
爆炸极限的计算方法
爆炸极限的计算方法1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中 0.55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。
若空气中氧体积分数按20.9%计,c0可用下式确定c0=20.9/(0.209+n0)式中 n0——可燃气体完全燃烧时所需氧分子数。
如甲烷燃烧时,其反应式为CH4+2O2→CO2+2H2O此时n0=2则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。
2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:2.1 莱•夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱•夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)此定律一直被证明是有效的。
2.2 理•查特里公式理•查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.3693 可燃粉尘许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。
怎样计算爆炸上限和下限
怎样计算爆炸上限和下限爆炸温度计算【大纲考试内容要求】:1.了解爆炸温度和压力的计算;2.掌握爆炸上限和下限的计算。
【教材内容】:2.爆炸温度计算1)依照反应热计算爆炸温度理论上的爆炸最高温度可依照反应热计算。
[例]求乙醚与空气的混合物的爆炸温度。
[解](1)先列出乙醚在空气中燃烧的反应方程式:C4H100 + 602+ 22.6N→4C02 + 5H2O + 22.6N2式中,氮的摩尔数是按空气中N2∶O2=79∶21的比例确定的,即602对应的N2应为:6×79/21 = 22.6由反应方程式可知,爆炸前的分子数为29.6,爆炸后为31.6。
(2)计算燃烧各产物的热容。
气体平均摩尔定容热容计算式见表2—5。
表2-5气体平均摩尔定容热容计算式依照表中所列计算式,燃烧产物各组分的热容为:N:的摩尔定容热容为[(4.8 + O.00045t)×4186.8]J/(kmol·℃) H20的摩尔定容热容为[(4.0 + 0.00215t)X4186.8]J/(kmol·℃) CO。
的摩尔定容热容为[(9.0 + 0.00058t)X4186.8]J/(kmol·℃)燃烧产物的热容为:[22.6(4.8+0.00045t)×4186.8]J/(kmol·℃) = [(454+0.042t)×1O3]J/(kmol·℃)[5(4.0+0.00215t)×4186,8]J/(kmol·℃) = [(83.7+0.045t) ×1O3]J/(kmol·℃)[4(9.0+0.00058t)×4186.8]J/(kmol·℃)=E(150.7+0.0097t) ×1O3]J/(kmol·℃)燃烧产物的总热容为(688.4+0.0967t)×103J/(kmol·℃)。
爆炸压力计算
3.爆炸压力的计算
可燃性混合物爆炸产生的压力与初始压力、初始温度、浓度、组分以及容器的形状、大小等因素有关。
爆炸时产生的最大压力可按压力与温度及摩尔数成正比的规律确定,根据这个规律有下列关系式:
以上计算的爆炸温度与压力都没有考虑热损失,是按理论的空气量计算的,所得的数值都是最大值。
三)爆炸上限和下限的计算,含有惰性气体组成混合物爆炸极限计算
1.爆炸上限和下限的计算
1)根据完全燃烧反应所需氧原子数,估算碳氢化合物的爆炸下限和上限,其经验公式如下:
乙烷在空气中的爆炸下限浓度为3.38%,爆炸上限浓度为10.7%。
实验测得乙烷的爆炸下限为3.0%,爆炸上限为12.5%,对比上述估算结果,可知用此方法估算的爆炸上限值小于实验测得的值。
三级安全教案之防火安全--爆炸上限和下限
三、了解爆炸极限的意义:
了解各种可燃气体、蒸气或粉尘的爆炸极限,对于做好防火、防爆工作具有重要的意义。可燃物质危险性的大小,主要取决于爆炸极限幅度的宽窄。幅度越宽,其危险性就越大。因此,在生产和使用这类物质时,就要特别注意防止“跑、冒、滴、漏”,注意设备的密闭性,严防空气进入,同时还要注意安全操作。
3、例如,天那水的爆炸上限%(V/V):10.0,爆炸下限%(V/V):1.0的含义就是:该物质的在空气中的体积分数是10.0%与1.0%之间的时候遇到火源都会爆炸。
二、关于爆炸上限和爆炸下限:
1、在“发生爆炸的浓度范围”内,有一个最低的爆炸浓度叫爆炸下限(既为1.2%);还有一个最高的爆炸浓度叫爆炸上限(既为9.0%)。只有在这两个浓度之间,才有爆炸的危险。
职工三级安全教育之防火安全1:爆炸极限
教育类型
进场教育
岗位教育对象
所有职工
教育时间
教案编制人
赖会荣
主讲人
赖会荣
职务
兼职、当可燃气体、可燃液体的蒸气(或可燃粉尘)与空气混合并达到一定浓度时,遇到火源就会发生爆炸。这个能够发生爆炸的浓度范围,叫做爆炸极限。
2、通常用可燃气体、蒸气或粉尘在空气中的体积百分比【即“%(V/V)”,其中“%”为百分比,分子“V”代表能发生爆炸的气体体积,而分母“V”代表含有能爆炸的气体的气体混合物总体积】来表示。
上课人员签名:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
爆炸温度计算
【大纲考试内容要求】:
1.了解爆炸温度和压力的计算;
2.掌握爆炸上限和下限的计算。
【教材内容】:
2.爆炸温度计算
1)依照反应热计算爆炸温度
理论上的爆炸最高温度可依照反应热计算。
[例]求乙醚与空气的混合物的爆炸温度。
[解](1)先列出乙醚在空气中燃烧的反应方程式:
C4H100 + 602+ 22.6N→4C02 + 5H2O + 22.6N2
式中,氮的摩尔数是按空气中N2∶O2=79∶21的比例确定的,即602对应的N2应为:6×79/21 = 22.6
由反应方程式可知,爆炸前的分子数为29.6,爆炸后为31.6。
(2)计算燃烧各产物的热容。
气体平均摩尔定容热容计算式见表2—5。
表2-5气体平均摩尔定容热容计算式
依照表中所列计算式,燃烧产物各组分的热容为:
N:的摩尔定容热容为[(4.8 + O.00045t)×4186.8]J/(kmol·℃)
H20的摩尔定容热容为[(4.0 + 0.00215t)X4186.8]J/(kmol·℃)
CO。
的摩尔定容热容为[(9.0 + 0.00058t)X4186.8]J/(kmol·℃)
燃烧产物的热容为:
[22.6(4.8+0.00045t)×4186.8]J/(kmol·℃) = [(454+0.042t)×1O3]J/(kmol·℃)
[5(4.0+0.00215t)×4186,8]J/(kmol·℃) = [(83.7+0.045t) ×1O3]J/(kmol·℃)
[4(9.0+0.00058t)×4186.8]J/(kmol·℃)=E(150.7+0.0097t) ×1O3]J/(kmol·℃)
燃烧产物的总热容为(688.4+0.0967t)×103J/(kmol·℃)。
那个地点的热容是定容热容,符合于密闭容器中爆炸情况。
(3)求爆炸最高温度。
先查得乙醚的燃烧热为2.7×lO6J/mol,即2.7×109J/kmol。
因为爆炸速度极快,是在近乎绝热情况下进行的,因此全部燃烧热可近似地看作用于提高燃烧产物的温度,也确实是等于燃烧产物热容与温度的乘积,即:
2.7×lO9= [(688.4+0.0967t)×103]·t
解上式得爆炸最高温度t=2826℃。
上面计确实是将原始温度视为0℃。
爆炸最高温度特不高,尽管与实际值有若干度的误差,但对计算结果的准确性并无显著的阻碍。
2)依照燃烧反应方程式与气体的内能计算爆炸温度
可燃气体或蒸气的爆炸温度可利用能量守恒的规律估算,即依照爆炸后各生成物内能之和与爆炸前各种物质内能及物质的燃烧热的总和相等的规律进行计算。
用公式表达为:
∑u 2=∑Q+∑u l (2--6)
式中∑u 2——燃烧后产物的内能之总和;
∑u l——燃烧前物质的内能之总和;
∑Q——燃烧物质的燃烧热之总和。
[例]已知一氧化碳在空气中的浓度为20%,求CO与空气混合物的爆炸温度。
爆炸混合物的最初温度为300K。
[解]通常空气中氧占21%,氮占79%,因此混合物中氧和氮分不占
由于气体体积之比等于其摩尔数之比,因此将体积百分比换算成摩尔数,即l mol混合物中应有0.2 mol一氧化碳、0.168mol氧和0.632 mol氮。
从表2—6查得一氧化碳、氧、氮在300K时,其摩尔内能分不为6238.33 J/mol、6238.33 J /mol和6238.33J/mol,混合物的摩尔内能为:
表2—6不同温度下几种气体和蒸气的摩尔内能 J/mol
T/K H2O2N2CO CO2H2O 2004061.24144.934144.934144.93————3006028.996238.336238.336238.336950.097494.37 4008122.398373.608289.868331.7310048.3210090.19 60012309.1912937.2112602.2712631.5817333.3515114.35 80016537.8617877.6417082.1417207.7525581.3521227.08 100020850.2623069.2721855.1022064.4434541.1027549.14 140029935.6233996.8232029.0232405.8353591.0439439.66 180039690.8645217.4442705.3643249.6474106.3657359.16
200044798.7651288.3048273.8048859.9684573.3665732.76 220048985.5657359.1654009.7254470.2795040.3674106.36 240055265.7663220.6859452.5660143.38105507.3682898.64 260060708.6069500.8865314.0865816.50116893.0491690.92 280066570.1275362.4070756.9271594.28127278.72100901.88 300072012.9681642.676618.4477455.80138164.40110112.84 320077874.4888341.4882479.9683317.32149050.08119742.48
∑u 1= (0.2×6238.33+0.168×6238.33+0.632×6238.33)J
= 6238.33J
一氧化碳的燃烧热为285624J,则0.2 mol一氧化碳的燃烧热为:
(O.2×285624)J = 57124.8J
燃烧后各生成物内能之和应为:
∑u 2 = (6238.33+57124.8)J = 63363.13J
从一氧化碳燃烧反应式2CO+O2= 2CO2能够看出,0.2 mol一氧化碳燃烧时生成0.2mol二氧化碳,消耗0.1mol氧。
1mol混合物中,原有0.168mol氧,燃烧后应剩下0.168-0.1= O.068 mol氧,氮的数量不发生变化,则燃烧产物的组成是:二氧化碳0.2 mol,氧0.068mol,氮0.632mol。
假定爆炸温度为2400K,由表2—6查得二氧化碳、氧和氨的摩尔内能分不为105507.36J/mol、63220.68J/mol和59452.56J/mol,则燃烧产物的内能为:
∑u 2’= (0.2×105507.36 + 0.068×3220.68+0.632×59452.56)J=62974.5J
讲明爆炸温度高于2400K,因此再假定爆炸温度为2600K,则内能之和应为;
∑u 2”=(0.2×116893.04+0.068×69500.88+0.632×85314.08)J=69383.17J
∑u 2”值又大于∑u 2值,因相差不太大,因此准确的爆炸温度可用内插法求得:
以摄氏温度表示为:
t=(T—273)℃=(2412—273) ℃ = 2139℃
3.爆炸压力的计算
可燃性混合物爆炸产生的压力与初始压力、初始温度、浓度、组分以及容器的形状、大小等因素有关。
爆炸时产生的最大压力可按压力与温度及摩尔数成正比的规律确定,依照那个规律有下列关系式:
式中P、T和n——爆炸后的最大压力、最高温度和气体摩尔数;
Po、To和m——爆炸前的初始压力、初始温度和气体摩尔数。
由此能够得出爆炸压力计算公式:
[例]设Po = 0.1MPa.To=27℃,T=2411K,求一氧化碳与空气混合物的最大爆炸压力。
[解]当可燃物质的浓度等于或稍高于完全反应的浓度时,爆炸产生的压力最大,因此计算时应采纳完全反应的浓度。
先按一氧化碳的燃烧反应式计算爆炸前后的气体摩尔数:
2CO+O2+3.76N2=2C02+3.76N2
由此可得出m=6.76,n=5.76,代入式(2—8),得:
2411×5.76 ×0.1
P = ————————— = 0.69
300×6.67
以上计算的爆炸温度与压力都没有考虑热损失,是按理论的空气量计算的,所得的数值差不多上最大值。