人教版六年级上册数学知识点整理(个人整理资料)汇编

合集下载

六年级数学上册期末复习知识点汇总(人教版)

六年级数学上册期末复习知识点汇总(人教版)

六年级数学上册期末复习知识点汇总(人
教版)
1. 数的读写和数位在数表中的比较
- 掌握百以内数的读写方法
- 进一步练百以内数字的大小比较
- 在数表中比较数位的大小
2. 术语的认识和深化
- 理解单位和量的关系,研究长度、容量、时间等单位的名称和换算
- 认识图线表、拔河运动、神奇图等特殊的数学问题
- 进一步掌握理论题中的数学术语,如加法、减法、乘法、除法等
3. 两位数和三位数的认识
- 认识两位数和三位数,并通过具体的例子进行演算
- 进一步研究如何将两位数和三位数的大小进行比较
- 在实际问题中运用两位数和三位数进行计算
4. 数量和对应关系的探讨
- 了解相等的概念,并通过具体例子进行对比
- 研究图表和表格的分析,找出其中的规律
- 运用对应关系解决实际问题,如物品的分组、排列等
5. 探究几何图形和图形的特征
- 了解常见的平面图形和立体图形,如三角形、四边形、圆、长方体、正方体等
- 掌握几何图形的命名及其特征
- 研究分析和比较不同几何图形的性质和关系
6. 数据的收集和分析
- 研究如何进行数据的收集、整理和表示
- 给出简单的表格和图表,进行数据的分析和总结
- 运用数据分析解决实际问题,如人数统计、天气变化等
以上是六年级数学上册的期末复习知识点汇总,希望同学们认真复习,并做好复习笔记和习题,以便顺利应对期末考试。

祝大家取得好成绩!。

(完整版)人教版六年级上册数学知识点汇总

(完整版)人教版六年级上册数学知识点汇总

第一单元位置1.找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。

第二单元分数乘法1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(为了计算简便,能约分的要先约分,然后再乘。

)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

(为了计算简便,可以先约分再乘。

)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c6.乘积是1的两个数互为倒数。

7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

1的倒数是1。

0没有倒数。

真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

8.一个数(0除外)乘以一个真分数,所得的积小于它本身。

9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

10.一个数(0除外)乘以一个带分数,所得的积大于它本身。

11.分数应用题一般解题步骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。

人教版六年级上册数学知识点整理(个人整理资料)

人教版六年级上册数学知识点整理(个人整理资料)

第一单元 位置1、用数对确定点的位置,如(3,5)表示:(第三列,第五行)竖排叫列 横排叫行(从左往右看) (从前往后看)2、 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。

3、图形左、右平移: 行不变 图形上、下平移: 列不变第二单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。

例如:98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。

2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×几几。

六年级上册数学人教版知识点归纳总结

六年级上册数学人教版知识点归纳总结

六年级上册数学知识点归纳总结一、整数1. 整数的概念整数组成了正整数、负整数和0三部分。

整数的定义包括自然数和自然数的相反数。

2. 整数的比较与加减整数比较时,绝对值大的整数可能正也可能负,需要根据正负号进行判断。

整数的加减法根据正负数的规律进行计算,同号相加为同号,异号相加为取绝对值相减并确定正负号。

3. 整数的乘除整数的乘法和除法同样遵循正负数的规律,同号相乘和除得正,异号相乘和除得负。

二、分数1. 分数的概念分数由分子和分母组成,分子表示几等份中的几份,分母表示被分为几等份。

2. 分数的加减和乘除分数的加减需要先通分,再按照通分后的分母进行计算。

分数的乘除则可以将其转化为乘法或除法进行计算,最后将结果化成最简形式。

三、小数1. 小数的概念小数是分数的一种表示方法,是指在整数部分以外还有小数部分表示的数。

2. 小数的加减和乘除小数的加减需要对齐小数点,然后按照小学数学四则运算进行计算。

小数的乘除可以先将小数化成分数,再按照分数的乘除法进行计算。

四、时间1. 时间的基本单位时间的基本单位包括年、月、日、小时、分钟、秒等。

2. 时间的计算时间的计算分为同年处理和跨年处理两种情况,需要根据具体情况进行计算。

五、长方形、正方形与三角形1. 长方形、正方形和三角形的周长和面积计算长方形的周长和面积分别为2×(长+宽)和长×宽,正方形的周长和面积分别为4×边长和边长的平方,三角形的周长为三条边的和,面积为底边乘以高后再除以2。

六、平行线与相交线1. 平行线的特性平行线是指不相交的两条直线,它们之间的距离始终相等。

2. 相交线的特性相交线是指相交的两条直线,相交形成角的种类有直角、钝角和锐角等。

以上就是六年级上册数学人教版的知识点归纳总结,学生需要认真学习这些知识点,并且进行不同类型的练习,才能更好地掌握数学知识。

希望大家在学习过程中能够加强对这些知识点的理解和掌握,夯实基础,为学习更深层次的数学知识打下坚实的基础。

人教版六年级上册数学全册知识点归纳

人教版六年级上册数学全册知识点归纳

一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。

2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。

3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。

4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。

6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。

二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。

2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。

3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。

4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。

2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。

3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。

人教版六年级数学上册教材的知识点重点梳理

人教版六年级数学上册教材的知识点重点梳理

人教版六年级数学上册教材的知识点重点梳理重点梳理:人教版六年级数学上册教材的知识点一、整数的认识与比较1. 整数的定义及表示方法2. 正整数、负整数、零的概念3. 整数的大小比较二、整数的加减运算1. 整数的加法运算2. 整数的减法运算3. 整数的加减法运算规则三、整数的乘法与除法运算1. 整数的乘法运算2. 整数的除法运算3. 乘法、除法的运算规则四、整数的应用1. 整数在坐标系中的表示与应用2. 整数的温度计表示法3. 整数在日常生活中的应用五、小数的认识与比较1. 小数的定义及表示方法2. 小数的大小比较3. 小数的整数部分与小数部分六、小数的加减运算1. 小数的加法运算2. 小数的减法运算3. 小数的加减法运算规则七、小数的乘法与除法运算1. 小数的乘法运算2. 小数的除法运算3. 乘法、除法的运算规则八、分数的认识与比较1. 分数的定义及表示方法2. 分数的大小比较3. 分数的整数部分与分数部分九、分数的加减运算1. 分数的加法运算2. 分数的减法运算3. 分数的加减法运算规则十、分数的乘法与除法运算1. 分数的乘法运算2. 分数的除法运算3. 乘法、除法的运算规则十一、分数的应用1. 分数在日常生活中的应用2. 分数在图形中的应用十二、单位换算1. 长度单位的换算2. 容量单位的换算3. 质量单位的换算十三、面积的认识与计算1. 长方形的面积计算2. 正方形的面积计算3. 三角形的面积计算十四、容量与质量的认识与计算1. 容量的认识与计算2. 质量的认识与计算十五、几何图形1. 图形的分类2. 平行线与垂直线的认识3. 常见几何图形的性质与应用以上是人教版六年级数学上册教材的知识点重点梳理。

通过对这些知识点的学习与掌握,学生将能够建立起整数、小数、分数等数学概念的基础,并能够进行相应的计算与运用。

这些知识点的理解与掌握对于学生进一步学习数学及日常生活中的应用都具有重要意义。

人教版六年级上册数学重点知识归纳

人教版六年级上册数学重点知识归纳

人教版六年级上册数学重点知识归纳一、整数1. 整数的概念:整数是正整数、零、负整数的统称。

2. 整数的比较:可以利用数轴上数的相对位置进行比较。

3. 整数的加减法:同号两数相加/减,异号两数相减/加,差的符号与绝对值大的数一致。

二、分数1. 分数的概念:分数是一个整数除以另一个整数的结果。

2. 分数的大小比较:通分后比较分子的大小。

3. 分数的加减法:通分,按照分子进行加减法计算。

三、小数1. 小数的概念:有限小数和无限循环小数的概念。

2. 小数的大小比较:补0后比较大小。

3. 小数的加减法:按位相加/减,注意进位和借位。

四、长度1. 厘米、分米、米、千米之间的换算:1米=100厘米,1米=10分米,1千米=1000米。

2. 分米、厘米转换:1分米=10厘米。

3. 毫米、厘米转换:1毫米=0.1厘米。

五、容积1. 升与毫升:1升=1000毫升。

2. 升、毫升之间的换算。

3. 升、毫升的加减法。

六、质量1. 千克与克之间的换算:1千克=1000克。

2. 公斤、克之间的换算。

3. 公斤、克的加减法。

七、图形1. 平行四边形的特点及应用。

2. 正方形、长方形的计算。

3. 三角形的计算和特点。

八、时、刻表1. 时、分、秒之间的换算:1小时=60分钟,1分钟=60秒。

2. 时、分、秒的加减法。

3. 用时、刻、表表示时间。

以上为人教版六年级上册数学的一些重点知识归纳,希望同学们能够加强练习,巩固这些知识,做到理论通联实际,灵活运用。

接下来我们将继续扩展上述数学知识的内容,并进一步加深对六年级上册数学重点知识的理解和掌握。

九、约数和倍数1. 约数的概念:对于整数a和b,如果存在一个整数c,使得a=bc,则称c是a的约数。

2. 倍数的概念:如果存在整数m,使得a=mb,则称a是b的倍数,b是a的约数。

3. 最大公约数和最小公倍数:对于两个整数a和b,它们公有的约数中最大的称为最大公约数,它们公有的倍数中最小的称为最小公倍数。

人教版六年级数学上册全部知识点汇总

人教版六年级数学上册全部知识点汇总

人教版六年级数学上册全部知识点汇总(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

六年级上册数学知识点(人教版最新5篇

六年级上册数学知识点(人教版最新5篇

小学六年级数学知识点总结篇一(一)数与计算(1)分数的乘法和除法。

分数乘法的意义。

分数乘法。

乘法的运算定律推广到分数。

倒数。

分数除法的意义。

分数除法。

(2)分数四则混合运算。

分数四则混合运算。

(3)百分数。

百分数的意义和写法。

百分数和分数、小数的互化。

(二)比和比例比的意义和性质。

比例的意义和基本性质。

解比例。

成正比例的量和成反比例的量。

(三)几何初步知识圆的认识。

圆周率。

画圆。

圆的周长和面积。

_扇形的认识。

轴对称图形的初步认识。

圆柱的认识。

圆柱的表面积和体积。

圆锥的认识。

圆锥的体积。

球和球的半径、直径的初步认识。

(四)统计初步知识统计表。

条形统计图,折线统计图,_扇形统计图。

(五)应用题分数四则应用题(包括工程问题)。

百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。

比例尺。

按比例分配。

(七)整理和复习六年级数学学习方法:进入小学高年级后,科目稍微增加、内容拓宽、知识深化……学生认知结构发生根本变化,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于道题目的解答。

总结比较,理清思绪知识点的总结比较。

每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。

对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。

题目的总结比较。

同学们可以建立自己的题库。

在学习《位置》在用数对确定点的位置,这部分渗透了数形结合的思想,和一一对应的思想。

学生可在方格纸上画画。

学习分数乘法的意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

2、分数乘分数是求一个数的几分之几是多少。

例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?这种题型可以利用数形结合的数学思想,画一画,折一折。

再就是利用:工作效率_工作时间=工作总量在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是折纸实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。

数学六年级上册人教版知识点总结

数学六年级上册人教版知识点总结

数学六年级上册人教版知识点总结一、分数乘法。

1. 分数乘法的意义。

- 分数乘整数:表示几个相同分数相加的简便运算。

例如:(2)/(3)×3表示3个(2)/(3)相加。

- 一个数乘分数:表示求这个数的几分之几是多少。

例如:5×(3)/(4)表示5的(3)/(4)是多少。

2. 分数乘法的计算方法。

- 分数乘整数:用分子乘整数的积作分子,分母不变。

能约分的先约分再计算。

例如:(2)/(3)×3=(2×3)/(3) = 2。

- 分数乘分数:用分子相乘的积作分子,分母相乘的积作分母。

例如:(2)/(5)×(3)/(4)=(2×3)/(5×4)=(3)/(10)。

3. 分数乘法的简便运算。

- 整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

- 例如:(1)/(2)×(3)/(5)×2=(1)/(2)×2×(3)/(5)=1×(3)/(5)=(3)/(5)(运用乘法交换律);- ((1)/(3)+(1)/(4))×12=(1)/(3)×12+(1)/(4)×12 = 4 + 3=7(运用乘法分配律)。

二、位置与方向(二)1. 确定位置的要素。

- 要确定一个物体的位置,需要知道观测点、方向和距离。

- 例如,以学校为观测点,图书馆在学校东偏北30^∘方向,距离学校500米处。

2. 描述路线图。

- 描述路线图时,要按照行走的路线,依次描述出每一段的方向和距离。

- 例如,从家出发,先向东走300米到超市,再从超市向南偏东45^∘方向走400米到公园。

三、分数除法。

1. 分数除法的意义。

- 分数除法是分数乘法的逆运算。

已知两个因数的积与其中一个因数,求另一个因数的运算。

例如:如果(2)/(3)× x=(4)/(9),那么x=(4)/(9)÷(2)/(3)。

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总汇总一第一单元分数乘法一、分数乘法〔一〕分数乘法的意义:1、分数乘整数与整数乘法的意义一样。

都是求几个一样加数的和的简便运算。

2、分数乘分数是求一个数的几分之几是多少。

〔二〕、分数乘法的计算法那么:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意〔1〕分数的化简:分子、分母同时除以它们的最大公因数。

〔2〕关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。

〔3〕当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。

〔三〕、规律:〔乘法中比拟大小时〕一个数〔0除外〕乘大于1的数,积大于这个数。

一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。

一个数〔0除外〕乘1,积等于这个数。

〔四〕、分数混合运算的运算顺序和整数的运算顺序一样。

〔五〕、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a×b=b×d乘法结合律: a×b×c=a×(b×c)乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac二、分数乘法的解决问题〔单位“1”的量〔用乘法〕,求单位“1”的几分之几是多少〕1、找单位“1”:“占”、“是”、“比”的后面2、求一个数的几倍是多少;求一个数的几分之几是多少。

用乘法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。

(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

)2、求倒数的方法:〔1〕、求分数的倒数:交换分子分母的位置。

〔2〕、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

〔3〕、求带分数的倒数:把带分数化为假分数,再求倒数。

〔4〕、求小数的倒数:把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。

(完整版)人教版六年级数学上册要记、背的知识点

(完整版)人教版六年级数学上册要记、背的知识点

六年级数学上册要记、背的知识点一、分数乘法(一)分数乘法的意义和计算法则1、分数乘整数的意义 112×3 表示:① 求3个112是多少? ② 求112的3倍是多少?2、分数乘整数的计算方法分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(能约分的要先约分再乘)3、一个数乘分数的意义:就是求这个数的几分之几是多少。

53×41 表示:求53的41是多少。

4、分数乘分数的的计算方法分数乘分数,用分子乘分子,分母乘分母。

(能约分的要先约分再乘) (二)求一个数的几分之几是多少的问题1、找单位“1”的方法(1)是谁的几分之几,就把谁看作单位“1”。

(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

注意:① 找单位“1”在分率句里找,有分率的句子称为分率句。

② 分率不带单位,具体数量带有单位。

2、求一个数的几倍、几分之几是多少,用乘法计算。

15的53是多少? 15×53=93、已知单位“1”用乘法计算单位“1”×分率=分率的对应量注意:(1) 乘上什么样的分率就等于什么样的数量。

(2) 乘上谁占的分率就等于谁的数量。

(3) 是谁的几分之几,就用谁乘上几分之几。

4、已知A 比B 多(或少)几分之几,求A 的解题方法5、积与因数的大小关系大于1的数,积大于A 。

A(0除外)乘上小于1的数,积小于A 。

二、位置与方向1、确定物体的位置:(上北下南,左西右东) (1)北偏东30°就是从北向东移,夹角靠北。

(2)东偏北30°就是从东向北移,夹角靠东。

+-B ×(1 几分之几)=A2、物体位置的相对性(1)两地的位置关系是相对的,方向刚好相反,距离是一样的。

例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)南对北 东对西则学校在少年宫北偏西35°的方向上,相距250米。

人教版六年级数学上册知识点精编

人教版六年级数学上册知识点精编

六年级数学上册的知识点主要包括整数的加减乘除、小数的认识和计算、单位换算、分数的认识和计算、几何图形的认识和计算等内容。

下面将对这些知识点进行详细的介绍。

一、整数的加减乘除1.整数的概念:整数是正整数、零、负整数的集合,用0、1、2、3...表示正整数,用-1、-2、-3...表示负整数。

2.整数的加减法:同号为正,异号为负,相加取两数的绝对值,然后根据规则确定符号。

3.整数的乘除法:同号得正,异号得负,相乘时先取两数的绝对值,然后根据规则确定符号。

二、小数的认识和计算1.小数的概念:小数是整数部分和小数部分组成的实数,用小数点隔开,小数点右边的每一位数字都有一个个、十、百、千等对应的数位。

2.小数的读法:按照数位的意义读出每一位数字,并加上相应的数位单位。

3.小数的加减法:先将小数的整数部分相加或相减,然后将小数部分相加或相减,最后整数部分和小数部分相加,得到结果。

4.小数的乘法:先将小数的整数部分和小数部分分别相乘,然后将两个乘积相加,得到结果。

5.小数的除法:将小数化为整数,按照整数除法的规则进行计算,然后将得到的商再转化为小数。

三、单位换算1.长度单位换算:以米为基本单位,换算时可以利用10倍关系进行换算,如1千米=1000米,1米=100厘米,1厘米=10毫米等。

2.容积单位换算:以升为基本单位,换算时可以利用10倍关系进行换算,如1升=1000毫升,1毫升=1立方厘米等。

3.质量单位换算:以千克为基本单位,换算时可以利用10倍关系进行换算,如1克=1000毫克,1千克=1000克等。

4.时间单位换算:以秒为基本单位,换算时可以利用60进制进行换算,如1分钟=60秒,1小时=60分钟等。

四、分数的认识和计算1.分数的概念:分数由分子和分母构成,分子表示几分之几,分母表示每份有几等分,分子小于分母。

2.分数的读法:按照分子和分母的意义进行读出每一部分,并加上相应的单位。

3.分数的加减法:先将两个分数的分母化为相同的数,然后分别进行加减运算,最后化简得到结果。

人教版小学六年级数学上册知识点总结

人教版小学六年级数学上册知识点总结

人教版小学六年级数学上册知识点总结人教版小学六年级数学上册知识要点总结一、引言人教版小学六年级数学上册的知识要点总结旨在帮助学生更好地掌握所学内容,提高学习效率,并为初中数学学习奠定基础。

本总结涉及分数乘法、位置与方向(二)、分数除法、比、圆、百分数(一)和扇形统计图等方面的知识。

二、分数乘法1.概念:分数乘法是指两个或多个分数相乘得到一个新的分数的运算。

2.性质:o交换律:a × b = b × ao结合律:a × (b × c) = (a × b) × co分配律:a × (b + c) = a × b + a × c3.解题方法:o将分数相乘,约分得到最简结果。

o整数与分数相乘,将整数化成分数再相乘。

o乘法的交换律、结合律和分配律同样适用于分数乘法。

4.应用实例:o计算面积:长方形面积 = 长×宽,其中宽为分数。

o计算路程:速度×时间 = 路程,其中速度为分数。

三、位置与方向(二)1.知识点:o相对位置:通过方向角和距离描述两个物体之间的相对位置关系。

o方向角:描述物体相对于参考点在平面上的方向。

o距离:描述两个物体之间的直线距离。

2.应用实例:在地图上标注物体位置时,需要确定其相对于已知点的方向和距离。

四、分数除法1.概念:分数除法是指将一个分数除以另一个分数得到一个新的分数的运算。

2.性质:o倒数性质:a ÷ b = a × 1/b,其中1/b是b的倒数。

o除法的交换律、结合律和分配律同样适用于分数除法。

3.解题方法:o将除法转化为乘法,约分得到最简结果。

o整数与分数相除,将整数化成分数再相除。

4.应用实例:o计算数量:总数÷部分数 = 部分数所占总数的比例。

o计算平均数:总和÷个数 = 平均数。

五、比1.概念:比是指两个数相除得到的一个数值,表示两个数之间的比例关系。

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总
一、整数
1. 自然数、负整数和零的概念
2. 整数的比较大小
3. 整数相加、相减
4. 整数的乘法和除法
5. 整数的绝对值
6. 整数的加法和减法运算法则
7. 整数的乘法和除法运算法则
8. 整数的混合运算
二、分数
1. 分数的概念
2. 分数的比较大小
3. 分数的相加、相减
4. 分数的乘法和除法
5. 分数的化简
6. 分数的三个基本性质:相等性、倍数性、约分性
7. 分数的混合运算
三、小数
1. 小数的概念
2. 小数和分数的关系
3. 小数的读法和写法
4. 小数的比较大小
5. 小数的加法和减法
6. 小数的乘法和除法
7. 小数的化简
8. 小数的混合运算
四、数据与图形
1. 数据和调查的关系
2. 数据的整理和分类
3. 表格和柱形图的绘制和解读
4. 折线图和饼图的绘制和解读
五、数式与方程
1. 代数字母的认识和使用
2. 使用字母表示数的大小
3. 表达计算结果的数式
4. 数式的运算:加法、减法、乘法和除法
5. 解一元一次方程。

人教版6年级数学上册知识点汇总

人教版6年级数学上册知识点汇总

2023小学资料——欢迎下载(word版)人教版六年级数学上册知识点汇总第一单元分数乘法〔一〕分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

5 5 5例如:×6,表示:6 个相加是多少,还表示的6 倍是多少。

12 12 122、一个数〔小数、分数、整数〕乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

5 5例如:6×,表示:6 的是多少。

12 122 5 2 5×,表示:的是多少。

7 12 7 12〔二〕分数乘法的计算法那么1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

〔三〕分数大小的比拟:1、一个数〔0 除外〕乘以一个真分数,所得的积小于它本身。

一个数〔0 除外〕乘以一个假分数,所得的积等于或大于它本身。

一个数〔0 除外〕乘以一个带分数,所得的积大于它本身。

2、如果几个不为 0 的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

〔四〕解决实际问题。

1、分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位"1"的量(3)根据线段图写出等量关系式:单位"1"的量×对应分率=对应量。

(4)根据条件和问题列式解答。

2、乘法应用题有关注意概念。

(1)乘法应用题的解题思路:一个数,求这个数的几分之几是多少?(2)找单位"1"的方法:从含有分数的关键句中找,注意"的"前"比"后的规那么。

当句子中的单位"1"不明显时,把原来的量看做单位"1"。

人教版六年级上册数学全册重点知识点归纳

人教版六年级上册数学全册重点知识点归纳

人教版数学六年级上册重点知识点归纳第一单元知识点一、分数、百分数应用题解题公式单位“1” 已知:单位“1” × 对应分率= 对应数量求单位“1”或单位“1”未知:对应数量÷ 对应分率= 单位“1”1、求一个数是另一个数的几分之几(或百分之几)公式:一个数÷ 另一个数= 一个数是另一个数的几分之几(百分之几)2、求一个数比另一个数多几分之几(或百分之几)公式:多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几)3、求一个数比另一个数少几分之几(或百分之几)公式:少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几)二、熟练掌握:百分数和分数、小数的互化,熟练背诵:2/1= 0.5 = 50% 4/1= 0.25=25% 4/3= 0.75 = 75%5/1= 0.2 = 20% 5/2= 0.4 = 40% 5/3= 0.6 = 60%5/4= 0.8 = 80% 8/1=0.125=12.5% 8/3=0.375=37.5%8/5=0.625=62.5% 8/7=0.875=87.5% 10/1=0.1=10%20/1=0.05=5% 25/1=0.04=4% 50/1=0.02=2%100/1=0.01=1%第二单元知识点1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

数对的作用:确定一个点的位置。

经度和纬度就是这个原理。

2、确定物体位置的方法:(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。

在平面图上标出物体位置的方法:先用量角器确定方向,再以选定的单位长度为基准用直尺来确定图上距离,最后找出物体的具体位置,标上名称。

位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

最全面人教版数学六年级上册知识点归纳总结

最全面人教版数学六年级上册知识点归纳总结

最全面人教版数学六年级上册知识点归纳总结人教版数学六年级上册知识点是学生在初中数学学习过程中的基本知识,需要学生认真掌握和理解。

下面是数学六年级上册知识点的详细归纳总结。

第一章分类整数知识点1.1 整数和自然数自然数:1, 2, 3, 4, 5,…….(不包括0)整数:…….-2, -1, 0, 1, 2, ……(自然数和负整数)知识点1.2 整数的相加法则同号两数相加,绝对值相加,符号不变;异号两数相加,绝对值相减,结果的符号与绝对值较大的数的符号相同。

知识点1.3 整数减法整数减法可以转化为加法,即a - b = a + (-b)知识点1.4 绝对值数轴上数a的绝对值,表示为|a|,表示a到0的距离。

知识点1.5 整数的大小比较两个整数比较大小,可以先比较绝对值,再根据符号确定大小。

知识点1.6 整数的拓展绝对值可以是小数或分数,小数或分数的绝对值用绝对值符号表示。

第二章十进制小数知识点2.1 小数的意义小数是指有小数点的数,小数点是整数位和小数位的分界线。

知识点2.2 小数的读法从小数点左起第一位到最后一位依次读出,小数点可以读作“点”.知识点2.3 小数的比较比较小数大小,可以先确定小数点后的整数大小,然后比较小数点后的小数位。

知识点2.4 小数的相加法则小数相加,先让小数点对齐,然后按位相加,最后把小数点写在和的下方。

知识点2.5 小数的减法法则小数相减,先让小数点对齐,然后按位相减,最后把小数点写在答案的下方。

知识点2.6 小数的乘法法则小数相乘,先把小数前的数乘起来,再把总位数相加,最后把小数点放到乘积中位数的位置。

知识点2.7 小数的除法法则小数相除,先把被除数和除数放大到整数,再按整数的除法法则计算,最后把小数点放在商中位数的位置。

第三章平面图形知识点3.1 分类平面图形可以分为点、线、面,其中面又可分为三角形、四边形等。

知识点3.2 三角形三角形是由三条边和三个角组成的图形,可以根据边长和角度分类。

六年级上册人教版数学知识点归纳总结

六年级上册人教版数学知识点归纳总结

六年级上册人教版数学知识点归纳总结一、分数乘法1. 分数乘法的意义:乘法的意义:把一个数平均分成若干份,求其中的几份,就是求这个数的几分之几是多少。

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零。

3. 分数混合运算的运算顺序和整数的运算顺序相同。

4. 整数乘法的交换律、结合律和分配律,对于分数乘法也适用。

二、分数除法1. 分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2. 分数除法的计算方法:除以一个数(0除外),等于乘上这个数的倒数。

a÷b=a×b倒数(b≠0)三、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

四、比的意义和性质1. 比的意义:两个数相除又叫做两个数的比。

2. 比的性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

五、比例的意义和性质1. 比例的意义:表示两个比相等的式子叫做比例。

2. 比例的性质:在比例里,两个内项的积是最小的合数;两个外项的积是最大的合数。

六、百分数的意义和性质1. 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。

百分数通常用“%”来表示。

百分号是一个符号,它代表1%。

2. 百分数的性质:百分数只表示两个数的倍数关系,不能带单位名称。

六年级上册数学人教版知识点整理

六年级上册数学人教版知识点整理

六年级上册数学人教版知识点整理
六年级上册数学人教版知识点整理如下:
1. 分数乘法:
分数乘法的意义:把一个数平均分成几份,取其中的几份。

分数乘法的计算法则:分数乘整数时,用分数的分子和整数相乘的积做分子,分母不变;分数乘分数时,用分子乘分子的积做分子,分母乘分母的积做分母。

分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),
分数的大小不变。

2. 分数除法:
分数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

分数除法的计算法则:甲数除以乙数(0除外)等于甲数乘乙数的倒数。

商与被除数的关系:除数大于1,商小于被除数;除数小于1(大于0),商大于被除数;除数等于1,商等于被除数。

混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

3. 比:
比的意义:两个数相除也叫两个数的比。

比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比
值不变。

化简比:化简之后结果还是一个比,不是一个数。

4. 百分数:
百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。

百分数也叫做百分率或百分比。

百分数的写法:通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

5. 折线统计图:
折线统计图的特点:能清楚地反映数量的增减变化情况。

制作折线统计图的一般步骤:根据图纸的大小,画出两条互相垂直的射线;根据数据把点标在射线上;顺次用线段把点连接起来,形成折线统计图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

书 香 浸 润, 励 志 成 长!第一单元 位置1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)↓ ↓竖排叫列 横排叫行(从左往右看) (从前往后看)2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。

3、图形左、右平移: 行不变 图形上、下平移: 列不变第二单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。

例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。

2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。

4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数: 把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。

因为1×1=1;0乘任何数都得0,01(分母不能为0) 4、 对于任意数(0)a a ≠,它的倒数为1a ;非零整数a 的倒数为1a ;分数b a 的倒数是a b; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

第三单元 分数除法一、 分数除法1、分数除法的意义:乘法: 因数 × 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

4、 “[]”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

二、分数除法解决问题(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。

)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X ,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就 一个数÷另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或: ① 求多几分之几:大数÷小数 – 1② 求少几分之几: 1 - 小数÷大数三、比和比的应用 (一)、比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10= 23(比值通常用分数表示,也可以用小数或整数表示) ∶ ∶ ∶ ∶前项 比号 后项 比值 3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例: 路程÷速度=时间。

4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、 比和除法、分数的联系:7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:①用比的前项和后项同时除以它们的最大公因数。

(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。

注意: 最后结果要写成比的形式。

如: 15∶10 = 15÷10 = 23 = 3∶2 5.按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

如: 已知两个量之比为:a b ,则设这两个量分别为ax bx 和。

6、路程一定,速度比和时间比成反比。

(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)第四单元 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

一般用字母O 表示。

它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r 表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同圆或等圆内,有无数条半径,有无数条直径。

所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。

用字母表示为:d =2r 或r =2d 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。

二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C表示。

2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai)表示。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

圆周率π是一个无限不循环小数。

在计算时,一般取π ≈ 3.14。

(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

4、圆的周长公式:C= π÷π或C=2π÷ 2π5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即π r (2)半圆的周长:等于圆的周长的一半加直径。

计算方法:πr+2r 即 5.14 r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。

用字母S表示。

2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

顶点在圆心的角叫做圆心角。

3、圆面积公式的推导:(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。

(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

(3)、拼出的图形与圆的周长和半径的关系。

圆的半径 = 长方形的宽圆的周长的一半 = 长方形的长因为: 长方形面积 = 长 × 宽所以: 圆的面积 = 圆周长的一半 × 圆的半径S 圆 = πr × r圆的面积公式: S 圆 = πr 2 2 = S ÷ π4、环形的面积:一个环形,外圆的半径是R ,内圆的半径是r 。

(R =r +环的宽度.)S 环 = πR²-πr² 或环形的面积公式: S 环 = π(R²-r²)。

5扇形的面积计算公式: S 扇 = πr 2×360n (n 表示扇形圆心角的度数) 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

相关文档
最新文档