利用泰勒公式求极限 (1)

合集下载

泰勒公式的证明及应用(1)

泰勒公式的证明及应用(1)

一.摘要 (3)前言 (3)二、泰勒公式极其极其证明........................ (3)(一)带有皮亚诺型余项的泰勒公式 (3)(二)带有拉格朗日型余项的泰勒公式 (4)(三)带有柯西型余项的泰勒公式 (5)(四)积分型泰勒公式 (6)(五)二元函数的泰勒公式 (7)三、泰勒公式的若干应用 (8)(一)利用泰勒公式求极限 (8)(二)利用泰勒公式求高阶导数 (9)(三)利用泰勒公式判断敛散性 (10)(四)利用泰勒公式证明中值定理 (12)(五)利用泰勒公式证明不等式 (13)(六)利用泰勒公式求近似和值误差估计 (15)(七)利用泰勒公式研究函数的极值 (16)四、我对泰勒公式的认识 (16)参考文献 (17)英文翻译 (17)Taylor 公式的证明及应用【摘要】数学中的著名的公式都是一古典的数学问题,它们在数学,化学与物理领域都有很广泛的运用。

在现代数学中Taylor 公式有着重要地位,它对计算极限,敛散性的判断,不等式的证明、中值问题及高阶导的计算以及近似值的计算等方面都有很大的作用。

在本文中,我将谈到关于公式的几种形式及其证明方法并对以上几个方面进一步的运用,和我对几者之间的一些联系和差异的看法。

并通过具体事例进行具体的说明相关运用方法 【关键词】泰勒公式 佩亚诺余项 拉格朗日余项 极限 级数1、常见Taylor 公式定义及其证明我们通常所见的Taylor 公式有皮亚诺型、拉格朗日型、柯西型与积分型,还有常用的二元函数的Taylor 公式和高阶函数的Taylor 公式。

定义:设函数存在n 阶导数,由这些导数构成n 次多项式,称为函数在该点处的泰勒多项式各项系数称为泰勒系数。

1.1首先是带皮亚诺型余项的Taylor 公式:若函数f 在点0x 存在且有n 阶导数,则有0()()(())n n f x T x x x =+ο-即"'200000()()()()()()2!f x f x f x f x x x x x =+-+-+⋯()00()()!n n f x x x n +-0(())n x x +ο-. (2) 其中()n T x 是由这些导数构造的一个n 次多项式,"()'20000000()()()()()()()()2!!n n n f x f x T x f x f x x x x x x x n =+-+-+⋯+- (3)称为函数f 在点0x 处的Taylor 多项式,()n T x 的各项系数()0()!k f x k (1,2,,)k n =⋯称为Taylor 系数。

泰勒公式其应用

泰勒公式其应用

泰勒公式其应用一、一阶泰勒公式1.带有Lagrange 型余项的Taylor 公式定理1(泰勒) 若函数f 在(a,b)上存在直到n 阶的连续导函数,在(a,b)内存在n +1阶导函数,则对任意给定的),(,0b a x x ∈,至少存在一点ξ使得:()(1)1000000()()()()()()()()1!!(1)!n n nn f x f x f f x f x x x x x x x n n ξ++'=+-++-+-+ξ在0,x x 之间。

2.带有皮亚诺余项的泰勒公式定理2若函数f 在(a,b)上存在直到n 阶的连续导函数,则对任意给定的),(,0b a x x ∈()000000()()()()()()0(())1!!n n n f x f x f x f x x x x x x x n '=+-++-+- (1)称为泰勒公式的余项.3、 函数的Maclaurin 公式210()2!!nxn x x e x x n =+++++352112sin (1)0()3!5!(21)!m m m x x x x x x m --=-+++-+-24221cos 1(1)0()2!4!(2)!m m m x x x x x m +=-+++-+ 231ln(1)(1)0()23nn n x x x x x x n -+=-+++-+ 2(1)(1)(1)(1)10()2!!n n x x x x n ααααααα---++=+++++2110()1n n x x x x x=+++++- 二、应用1.把函数)(x f 展开成n 阶Maclaurin 公式例1: 把函数22sin )(x x x f =展开成含16x 项的具Peano 型余项的Maclaurin 公式 .【解】 ) (!7!5!3sin 7753x x x x x x +-+-=,) (!7!5!3sin 141410622x x x x x x +-+-=. ) (!7!5!3sin 1616128422x x x x x x x +-+-=例2: 把函数x x f 2cos )(=展开成含6x 项的具Peano 型余项的Maclaurin 公式 .【解】 ) (!6!4!21cos 6642x x x x x +-+-=, ), (!62!34212cos 66642x x x x x +-+-= ∴ ) (!62!321)2cos 1(21cos 665422x x x x x x +-+-=+=. 2.求)(x f 的n 阶导数例3: )1ln()(2x x x f +=,求)3)(0()(≥n fn .【解】))(022()1ln()(22222--+-++-=+=n n x n x x x x x x x f 又)(0!)0(!1)0()0()()(n nn x x n f x f f x f +++'+= )(02243n n x n x x x +-++-=所以,21!)0()(-=n n f n ,2!)0()(-=n n f n3.利用Taylor 公式求极限 例4 求极限(1) )]1ln([cos lim2202x x x e x x x -+--→ (2)011lim (cot )x x x x →-. 【分析】用泰勒公式求极限把函数展开到x 多少次方呢?对于分子和分母有一个能确定次数的,把另一个展开到相同次数即可,例如:3sin limxx x x -→333))(61(limx x o x x x x +--=→=6161lim 330=→xx x但是对于分子和分母都不能确定次数的,要以具体情况而定。

利用泰勒公式求极限分母的余项证明处理

利用泰勒公式求极限分母的余项证明处理

泰勒公式是一种用于近似复杂函数的方法,它基于函数的导数信息在某一点附近展开函数。

泰勒公式的一般形式为:
f(x) = f(a) + f'(a)(x-a) + f''(a)/2!(x-a)^2 + ... + f^n(a)/n!(x-a)^n + R_n(x)
其中,f^n(a) 表示函数 f 在点a的n阶导数,R_n(x) 是泰勒公式的余项,它表示了泰勒展开式与实际函数值之间的误差。

在求极限的过程中,我们有时需要处理分母含有泰勒公式的余项的情况。

为了处理这种情况,我们通常会使用洛必达法则(L'Hôpital's Rule)或者泰勒公式的余项性质。

洛必达法则允许我们在极限表达式中分子和分母同时求导,从而简化表达式。

如果分子和分母在某一点的导数都存在,并且分母在该点的导数不为零,那么极限值就等于分子和分母在该点的导数的商的极限值。

对于泰勒公式的余项,如果我们知道它的阶数(即n的值),我们可以利用这个信息来估计余项的大小。

例如,如果余项是O((x-a)^(n+1)),那么当x趋近于a时,余项将趋近于零,因为任何正数的(n+1)次方在x趋近于a时都会趋近于零。

在处理含有泰勒公式余项的极限时,我们通常会结合使用洛必达法则和泰勒公式的余项性质。

首先,我们尝试使用洛必达法则简化表达式。

然后,我们利用泰勒公式的余项性质来估计余项的大小,从而确定极限的值。

请注意,这里提供的是一种一般性的方法,具体的处理步骤可能会因具体的函数和极限表达式而有所不同。

在实际应用中,我们需要根据具体情况灵活应用这些方法。

泰勒公式推断

泰勒公式推断

泰勒公式推断泰勒(Tayloy)公式是微积分中的一个重要公式,也是进行数学理论研究与计算的重要的工具,但大多数的高等数学教材中,对泰勒公式应用的介绍都较少,导致学生难以掌握泰勒公式及其应用技巧。

因为低次多项式不能很精确的表达函数,和作近似计算,所以遇到一些要求精确度高而且需要估算误差的情况时,就必须使用高次多项式来近似表达函数,同时给出相应的误差公式。

泰勒公式是数学分析里面一个重要的部分方程,因此在数学里面有很高的地位。

泰勒公式教学方法泰勒公式作为高等数学微分学的教学重点和难点,其教学方法一直吸引着广大数学教学工进行研究。

而泰勒中值定理及泰勒公式的抽象深奥,确会让大多数学生不知所云、莫名其妙,虽经充分预习、认真听课,仍会感觉一头雾水、疑问重重。

难、不懂、不理解是学生学完泰勒公式的主要感觉,而作为传道授业解惑的老师,总希望能改变这一现象,希望泰勒公式给学生留下最深刻的印象是好、有用、会用。

因此,这节课的讲授需要老师投入更多的精力去设计其教学方法和教学思路。

例:设函数f(x)在x=x0处存在二阶导数,试证:等式右端是一个二次多项式加一个高阶无穷小项。

我们回顾一下它的证明。

通过上节课的知识,我们只需要用一次洛必达法则和导数的定义就证明了这个结论。

但是,我们并不是第一次用多项式来表示一般的函数了,在第二章学习微分的时候,我们知道,如果函数f(x)在x=x0处可微,则f(x)=f(x0)+f忆(x0)(x-x0)+o(x-x0)。

这说明如果函数f(x)在x0处有一阶导数,则f(x)等于一个一次的多项式加x-x0的高阶无穷小;如果函数f(x)在x0处有二阶导数,则f(x)等于一个二次的多项式加(x-x0)2的高阶无穷小;如果函数f(x)在x0处有三阶导数呢,大家猜想,我们会得到什么结论?到了这里,学生会自然而然地想到:如果函数f(x)在x0处有三阶导数,那么f(x)就等于一个三次的多项式加(x-x0)3的高阶无穷小。

微积分第三章答案

微积分第三章答案

习题 3-11. 验证函数()f x =[0,4]上满足罗尔定理的条件,并求出使得结论成立的点ξ。

解:显然函数()f x =[0,4]上连续,在(0,4)上可导,且有(0)(4)0f f ==所以函数在区间[0,4]上满足罗尔定理,那么有()0f ξ'==,83ξ=。

2. 验证函数3()1f x x =-在区间[1,2]上满足拉格朗日中值定理的条件,并求出使得结论成立的ξ。

解:函数3()1f x x =-在区间[1,2]上连续,在(1,2)上可导,那么满足拉格朗日中值定理,那么有2(2)(1)321f f ξ-=-,即ξ=3. 函数4()1f x x =-与2()g x x =在区间[1,2]上是否满足柯西中值定理的所有条件,如满足,求出满足定理的数值ξ。

解:函数4()1f x x =-与2()g x x =在区间上连续,在区间(1,2)上可导,那么满足柯西中值定理,那么有3(2)(1)4(2)(1)2f f g g ξξ-=-,即ξ= 4. 假设4次方程432012340a x a x a x a x a ++++=有4个不同的实根,证明3201234320a x a x a x a +++=的所有根皆为实根。

证明:设43201234()f x a x a x a x a x a =++++,()0f x =的四个实根分别为1234,,,x x x x ,且1234x x x x <<<,那么函数()f x 在1[,](1,2,3)i i x x i +=上满足罗尔定理的条件,那么在1(,)i i x x +内至少存在一点i ξ,使得()0i f ξ'=。

这说明方程3201234320a x a x a x a +++=至少有3个实根,而方程为3次方,那么最多也只有3个实根,所以结论得到证明。

5. 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明:存在(0,1)ξ∈,使得()()f f ξξξ'=-。

利用泰勒公式求极限

利用泰勒公式求极限

题 目决 定 .一 般 来 说 。先 用 低 阶 麦 克 劳 林 公 式 表 示 ,如 果 计 算
不 了 ,再 增加 阶数 ,总 是 可 以算 出来 的.
下 面 我 们 举 两 个 例 子 说 明 如 何 应 用 麦 克 劳 林 公 式 求
极 限.
例 1:求 极 限 lim.Slnx-xcosx
劳林 公 式是 泰勒 公式 的 一 个 特 例 .我 们 可 应 用 麦 克 劳 林 公 式
求 极 限. 利 用 麦 克 劳 林 公 式 求 极 限 的思 路 是 将 其 他 函数 表 示 为 的
幂 函 数 再 进 行 计 算 .至 于 用 几 阶麦 克 劳 林 公 式 表 示 ,根 据 具 体
— .
sபைடு நூலகம்n x


对 于 例 l,也 可 以 应 用 罗 比 达 法 则 来 求 极 限 ,可 以说 更 简 单 .
1ir a sinx-xcosx lim —siIlx- xcosx :lim —xsinx lim—sinx 1



=_






_=



= ——

sin x
n !
(1)式 称 为 f(x)在 x。处 的 带 有 佩 亚 诺 型 余 项 的n阶 泰 勒
公 式 . 在 泰 勒 公 式 (1)中 ,如 果 取 x。=0,那 么公 式 (1)为
f(x)=f(0) 0)x+
2+.._+
“+o( “) (2)
Z !
n !
公 式 (2)称 为 带 有 佩 亚 诺 型余 项 的 阶 麦 克 劳 林 公 式 .麦 克

泰勒公式在极限求解中的应用

泰勒公式在极限求解中的应用
例2 : 求l i m—— —

我们 可 以借 助 它 解 决很 多 问题 . 本 文 简 述 了泰 勒公 式在 求 解 函
数 的极 限 中 的应 用.
—一
( 1 + x )
关键词 : 泰勒公式 1 . 泰 勒 公 式
极限
应用
因 为 分子 关 于 x 的次 数 为2 ,所 以 只 要 次幂即可.
参考文献 : [ 1 ] 同 济 大 学 数 学 系. 高等数 学( 第五版 ) [ M] . 北京: 高 等 教 育 出版 社 , 2 0 0 1 : 1 3 9 — 1 4 5 . [ 2 ] 华 东 师 范 大 学 数 学 系. 数 学分析 ( 上册 ) [ M] . 北京 : 高 等 教 育 出版 社 . 2 0 0 2 . [ 3 ] 南 京 大 学 数 学 系. 数 学 分 析 习题 全 解 [ M] . 合肥: 安 徽 人 民 出版社 . 1 9 9 9 .


其中( R ( x ) = o ( x — x 。 ) ” ) 时, 称为带皮亚诺 ( P e a n 0 ) 余 项的n
阶泰勒公式. 2 . 泰勒 公 式 在 求 极 限 中 的 应 用 用 泰 勒 公式 计算 函数 极 限 的 实 质是 计 算 极 限 时 忽 略较 高
1 + x - 2 x 2 + o ( ) 【 2 ) . N ̄ / l i m

f ( x ( X 0 ) + f , ( x n ) ( 一 0 ) +
X 0 ) + n ( x )
x 0 ) 2 + . . . +
( x .


——: 兰 雨 一 ( 1 + x ) [ 1 + x - 2 。 ( ) ( 2 ) ] 一 ( 1 + x )

泰勒公式例题

泰勒公式例题

泰勒公式及其应用等价无穷小在求函数极限中的应用及推广泰勒公式及其应用1 引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2 预备知识定义2.1]1[ 若函数f 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()000()()(())!n n n f x x x o x x n +-+-(1)这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ ,(2)这里()n R x 为拉格朗日余项(1)10()()()(1)!n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.)(1)1(32)1ln(1132++++-+-+-=+n n n x o n x x x x x . )(1112n n x o x x x x+++++=- +-++=+2!2)1(1)1(x m m mx x m . 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .3 泰勒公式的应用 3.1 利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简捷地求出.例3.1 求极限2240cos lim x x x e x -→-.分析:此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和22x e-分别用泰勒展开式代替,则可简化此比式.解 由244cos 1()2!4!x x x o x =-++,222242()21()22x x x e o x --=-++得2444422111cos ()()()4!22!12x x ex o x x O x --=-+=-+⋅, 于是244244001()cos 112limlim 12x x x x O x x e x x -→→-+-==-. 例3.2极限1sin 2lim sin cos xx xx x x x xe →0---- .分析:此为00型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sinx, xe分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2xx x x e---=233331()())2626x x o o x x x x x ++++-1-x-(x-+=34333()()6126o o x xxx x ++=+,3233sin cos ()(1())62x x x o x o x x x x -x =-+--+33()3o xx =+于是1sin 2lim sin cos xx x x x x x x e →0----3333()162()3o o x x x x +==+例3.3利用泰勒展开式再求极限 。

泰勒公式及其应用

泰勒公式及其应用
3.3带有柯西型余项的泰勒公式
如果函数在闭区间上有阶导数,在开区间内有阶导数,那么
, (1)
当时,又有 (2)
其中,都称为泰勒公式的柯西型余项[3].
3.4 带有积分型余项的令,则对该邻域内异于的任意点,在和之间至少存在一个使得:
若函数ƒ在点有直至阶的导数,则有

(是某个无穷小量),其中叫皮亚诺型余项[1].
它仅仅适用于“自变量充分接近于点”的情形,也就是说,只是“在小范围里”刻画了函数;我们希望:“在大范围里”也可以这样做.误差应有明确的表达式.从这些方面的研究,便可以得到拉格朗日余项的泰勒公式.
3.2 带有拉格朗日余项的泰勒公式
4.1 利用泰勒公式求极限
应用泰勒公式求极限,可以使问题化繁为简.
例1 计算的极限.
分析:此题为型极限,若用洛必达法则比较麻烦,在这里可将和分别用泰勒展开式代替,则可简化此式子.
解:利用展开式:,,
由此可得:

所以:

2.2研究现状评价
泰勒公式应用广泛,且一直以来对它的研究持续不断,虽然它在求极限、极值、证明不等式、求高阶导数、研究函数图像等方面已有人研究,但在它的应用上还有继续研究的空间.
2.3提出问题
对于泰勒公式前面有许多的学者对它都有一定的研究,但大部分都是个人对某一方面的研究,因此这里对泰勒公式常见的几项应用及余项进行了研究,及其对应用做了一定的分析和总结,以便于后者对泰勒公式的应用和学习.
2.文献综述
2.1研究现状
对于泰勒公式,很多研究者喜欢研究它的证明和应用,特别是在2002年后的10年左右,研究泰勒公式和泰勒公式的应用的研究者颇多,并且在这些方面好大一部分研究者都取得了显著成果,例如湖南的唐仁献,洛阳的王素芳,陶容的张永胜,湖北的蔡泽林、陈琴等都发表了有关泰勒公式的文献.特别是泰勒公式的应用,它的定理和性质在不等式的证明和计算中得到了充分的利用,且方法多种多样,做法新颖,因为应用广泛,现如今研究它的人也不少.

泰勒公式及其应用

泰勒公式及其应用

泰勒公式及其应用本文将介绍泰勒公式在数学分析中的应用。

泰勒公式是一种重要的工具,可以用于近似计算、函数凹凸性判断、敛散性的判断、等式与不等式的证明、中值问题以及行列式的计算等方面。

本文将重点讨论泰勒公式在极限计算、敛散性的判断、中值问题以及等式与不等式的证明方面的应用。

2.泰勒公式泰勒公式是一种将函数展开为幂级数的方法。

它可以分为带有拉格朗日余项、皮亚诺型余项、积分型余项和柯西型余项的泰勒公式。

这些不同类型的泰勒公式可以用于不同的问题求解。

2.1具有拉格朗日余项的泰勒公式具有拉格朗日余项的泰勒公式是最常用的一种泰勒公式。

它可以将一个函数展开为一个幂级数,其中每一项的系数都与函数的导数有关。

这个公式的余项是一个拉格朗日型余项,可以用来估计函数在某个点的误差。

2.2带有皮亚诺型余项的泰勒公式带有皮亚诺型余项的泰勒公式是一种更精确的泰勒公式。

它可以用来估计函数在某个点的误差,并且比具有拉格朗日余项的泰勒公式更加精确。

2.3带有积分型余项的泰勒公式带有积分型余项的泰勒公式是一种将函数展开为幂级数的方法。

它可以用来估计函数在某个点的误差,并且比具有拉格朗日余项的泰勒公式更加精确。

2.4带有柯西型余项的泰勒公式带有柯西型余项的泰勒公式是一种将函数展开为幂级数的方法。

它可以用来估计函数在某个点的误差,并且比具有拉格朗日余项的泰勒公式更加精确。

3.泰勒公式的应用泰勒公式在数学分析中有广泛的应用。

本文将介绍泰勒公式在极限计算、敛散性的判断、中值问题以及等式与不等式的证明方面的应用。

3.1利用泰勒公式求未定式的极限利用泰勒公式可以求解一些未定式的极限。

例如,可以用泰勒公式将一个函数展开为幂级数,并利用级数的性质求解未定式的极限。

3.2利用泰勒公式判断敛散性泰勒公式可以用来判断一些级数的敛散性。

例如,可以用泰勒公式将一个函数展开为幂级数,并利用级数的性质判断级数是否收敛。

3.3利用泰勒公式证明中值问题泰勒公式可以用来证明一些中值问题。

浅析泰勒公式在求极限中的应用

浅析泰勒公式在求极限中的应用

版权所有翻印必究 1浅析泰勒公式在求极限中的应用泰勒公式是高等数学中一个非常重要的内容,它可以将一些复杂函数近似的表示为简单的多项式函数,因此应用十分广泛,多用于以下四个方面:1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、泰勒级数可以用来近似计算函数的值,并估计误差。

3、证明不等式。

4、求待定式的极限。

在考研中,多应用于极限的计算和不等式的证明。

而要准确的应用泰勒公式,首先要知道定义,然后要弄清楚泰勒公式应用的方法,本次以其在极限计算中的应用为例讲述。

一、定义泰勒公式是一个将在0x x =处具有n 阶导数的函数()f x 利用关于0x x =的n 次多项式来逼近函数的方法。

若函数()f x 在包含0x 的某个闭区间[,]a b 上具有n 阶导数,且在开区间(,)a b 上具有1n +阶导数,则对闭区间[,]a b 上任意一点x x,成立下式:()20000000()()()=()+()())()()2!!n n n f x f x f x f x f x x x x x x x R x n '''-+-++-+ 其中,表示()f x 的n 阶导数,等号后的多项式称为函数()f x 在0x 处的泰勒展开式,剩余的()n R x 是泰勒公式的余项。

二、应用既然泰勒展开后是多项式,那么在应用时就必须弄清楚三点:1.展开的基点2.展开的阶数3.余项的形式 版权所有翻印必究2在极限计算中,余项的形式是佩亚诺(Peano )余项,是0()nx x -的高阶无穷小,即0()()n n R x o x x =-。

而基点和阶数要根据具体的问题来定。

例:求20444lim x x x x →++-解:这题用洛必达上下求导也可以解出来答案,但分子中含有根号,求导后相应也会变复杂,考生如若马虎很容易出错,但用泰勒公式就会方便很多,首先基点取0x =处,展开的阶段,发现分母是2x ,所以泰勒公式展开到二阶即可。

泰勒公式求极限

泰勒公式求极限

泰勒公式求极限S1:函数极限存在情况讨论根据S2的分析,我们知道函数极限在排除有界变量等特殊情况之下,可通过使用泰勒公式分别将分子分母等价位一个x的幂次项(最低幂次),从而化为式limx→0axkbxl1.极限为0的情况当(,a=0,b≠0)或(a≠0,b≠0,k>l)时,limx→0axkbxl=02.极限为∞的情况当(,a≠0,b=0)或(a≠0,b≠0,k<l)时,limx→0axkbxl=∞3.“上下同阶”的情况此时有k=l且(,a≠0,b≠0)时,limx→0axkbxl=ab毋庸置疑,考研的考点就是第三种情况!在我做题的逻辑上,是先进行S2的“等价无穷小”(泰勒公式),才进行后面的情况探讨,实际上,大家也可以看出来,化成最低幂次的形式,结果显然易得,或许根本不需要分类讨论,这就是我为什么刚开始没写这部分的原因,没有探讨的深度!实际上,你只要用泰勒公式做个30道题左右,自然会体悟出泰勒公式使用的注意点,希望大家身体力行,否则,即便看了我的分享,可能在考场上也无法用到!S2:更为广泛的等价无穷小!那么,就让我们来阐述以下泰勒公式的使用注意点!首先给出常用的8个泰勒展开公式!当x→0时,一些常用函数可用一组多项式来表示,即sinx=x−x36+o(x3)arcsinx=x+x36+o(x3)tanx=x+x33+o(x3)arctanx=x−x33+o(x3)cosx=1−x22+x424+o(x4)ln(1+x)=x−x22+x33+o(x3)ex=1+x+x22+x36+o(x3)(1+x)α=1+αx+α(α−1)2x2+α(α−1)(α−2)6x3+o(x3)(或α=±1或12最常用)tips:在考研数学范围内,以上常用函数和展开项数均达到考研考察的上限!一.x→0一定要注意此处给的泰勒公式仅适用于x→0时的情况,所以,当()x→a(a≠0)或x→∞时的情况,需要先进行代换,即令t=x−a或t=1x,此时,有t→0,即可放心使用泰勒公式。

高等数学 线性代数 习题答案第四章

高等数学 线性代数 习题答案第四章

习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解: 显然()ln sin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin x f x x x '===,则π2x = 即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=- 即 (1)(1)f f -= () f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20ex f x x '==得 0x =,即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim(1)1(0),(20)lim ()lim(1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2 上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)()f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导.又 (0)(2)1f f == 又由 101()112x f x x -<<⎧'=⎨<<⎩知 ()0f x '≠综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ.(3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续, () f x ∴在[]0,π上不连续, 显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos 02f ξξ'===. 综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2.3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理 ()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f ff x x -'=+==-则x =,取ξ=,即存在(0,1)3ξ=∈,使得(1)(0)()10f f f ξ-=-成立. 从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5. 已知函数f (x )在[a ,b ]上连续,在(a ,b )内可导,且f (a )=f (b )=0,试证:在(a ,b )内至少存在一点ξ,使得f (ξ)+f ′(ξ) = 0,ξ∈(a ,b ). 证: 令()()e xF x f x =,则()()()e e xxF x f x f x ''=+由e x 在(),-∞+∞上连续,可导,()f x 在[],a b 上连续,在(),a b 内可导,知()F x 在[],a b 上连续,在(),a b 内可导,而且()()0,()()0,()()e e 即abF a f a F b f b F a F b =====,由罗尓定理至少存在一点(,)a b ξ∈使()0F ξ'=. 即 ()()0e e f f ξξξξ'+= 而0e ξ≠ 故 ()()0f f ξξ'+=即在(),a b 内至少存在一点ξ,使得()()0f f ξξ'+=. 6.若方程10110n n n a x a x a x --+++= 有一个正根x 0,证明方程12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根. 证: 令1011()…nn n f x a x a xa x --=+++,显然()f x 在[]00,x 连续,在()00,x 内可导,且(0)0f =,依题意知0()0f x =.即有0(0)()f f x =.由罗尓定理,至少存在一点0(0,)x ξ∈,使得()0f ξ'=成立,即12011(1)0…n n n a n a n a ξξ---+-++=成立,这就说明ξ是方程12011(1)0n n n a nx a n x a ---+-++= 的一个小于0x 的正根.7. 设f (a ) = f (c ) = f (b ),且a <c <b , f ″(x )在[a ,b ]上存在,证明在(a ,b )内至少存在一点ξ,使f ″(ξ)= 0.证: 显然()f x 分别在[],a c 和[],c b 上满足罗尓定理的条件,从而至少存在1(,)a c ξ∈,2(,)c b ξ∈,使得12()()0f f ξξ''==.又由题意知()f x '在[]12,ξξ上满足罗尓定理的条件,从而至少存在一点12(,)(,)a b ξξξ∈⊂,使得()0f ξ''=.即在(,)a b 内至少存在一点ξ,使()0f ξ''=.习题4-21.利用洛必达法则求下列极限:(1) sin3lim tan5x xxπ→; (2) 0e 1lim (e 1)x x x x x →---;(3)lim m m n n x a x a x a →--; (4) 20()lim x xx a x a x →+-,(a >0); (5) 0ln lim cot x xx+→; (6) 0lim sin ln x x x +→; (7) 1ln(1)lim arccot x x x →+∞+; (8) 0e 1lim()e 1x x x x →--; (9) 10lim(1sin )xx x →+; (10) 2lim (arctan )πx x x →+∞(11) c s c 03e lim()2x x x x →-+ ; (12) 2120lim e x x x →;(13) lim )x x →+∞; (14) 1101lim (1)e xxx x →⎡⎤+⎢⎥⎣⎦.解:222000011sin 33cos33(1)limlim lim cos3cos 5tan 55sec 5533(1)(1)5511(2)lim lim lim (1)111lim 22(3)lim lim lim πππe e e e e e e e e x x x x x xx x x x x xx x x x m m m n n n x a x a x a x x x x x x x x x x x x a mx x a nx →→→→→→→--→→→==⋅=⋅-⋅-=----==--+++==+-==-.m n m nm m x a n n --=2002220()ln ln()()(4)lim lim 21()()()ln ln()()lim2x xxxx x x x x x x a x a a a x a x a a x x xa x a x a x a a a x a x a x a x →→→⎡⎤+-++⎢⎥+-+⎣⎦=⎡⎤++++-++⎢⎥+++⎣⎦=[]200021()ln ln 012 aa a a aa a a a ++-⋅+==2200000000001ln sin 2sin cos (5)lim lim lim lim cot csc 12sin 0cos 001ln sin (6)lim sin ln lim lim lim tan csc csc cot sin lim lim tan 100x x x x x x x x x x x x x x x x x x x x x x x xx x x xxx x ++++++++++→→→→→→→→→→==-=--=-⋅====-⋅-=-⋅=-⨯=222221111ln(1)111(7)lim lim lim lim 111cot 11arc x x x x xx x x x x x x x x →+∞→+∞→+∞→+∞-++++====+-++ 20002200001(1)(8)lim()lim lim 1(1)21443limlim 12022e e e e e e e e e e e e e e e e e e e x x x x x x x x x x x xxxxx x x x x x x xx x x x x x →→→→→-----==-------====+-++0002cos 11ln(1sin )cos 1sin ln(1sin )lim limlim 11sin 12112ln(arctan )arctan 1limlim 112ln(arctan )(9)lim(1sin )lim 2(10)lim (arctan )lim πππee =e ee ee eeπx x x x x xx xx x xxxxx x x x x x x x xxx x x x →→→→+∞→+∞++++→→⋅⋅+-→+∞→+∞+========221lim12lim(1)arctan (1)arctan πeeex x x xx xx→+∞→+∞--+-+===020033lnln322csc ln lim csc 2sin sin 0002(2)(3)33(2)limlim 1(3)(2)cos cos 3(11)lim()lim lim 21e e e e e e e e eee ee exxxx x x x x x x x e e e x x x x xxxxx x x x x x x x xxx →→→---+++→→→+-+--⋅----+--+-===+====2221111220000221()(12)lim lim lim lim 11()e e ee x xx x x x x x x x x x→→→→'⋅====∞'202211ln(1)1ln(1)1limlim lim 0(13)lim )lim1111lim31(14)lim (1) eeee x x x x x x x x xx xxx x x x x →→→+∞→+∞+-+-→=++===⎡⎤===+⎢⎥⎣⎦00111211lim2(1)2eex x xx →→-+--+==2.设 21lim 1x x mx nx →++-=5,求常数m ,n 的值.解: 1lim(1)0, x x →-= 而21lim 51x x mx n x →++=-21lim()0 x x mx n →∴++= 且21()lim 5(1)x x mx n x →'++='-即 10m n ++= 且 1l i m (2)5x x m →+= 即 1m n +=- 且 25m += 于是得 3,4m n ==-. 3.验证极限sin lim x x xx→∞+存在,但不能由洛必达法则得出.解: sin 1limlim(1sin )1x x x x x x x→∞→∞+=+=,极限存在,但若用洛必达法则,有sin lim lim(1cos )x x x xx x→∞→∞+=+因lim cos x x →∞不存在,所以不能用洛必达法则得出.4.设f (x )二阶可导,求2()2()()limh f x h f x f x h h →+-+-.解: 这是型未定式,利用洛必达法则有 [][]200000()2()()()()limlim2()()()()1lim 21()()1()()11lim lim ()()2222().h h h h h f x h f x f x h f x h f x h h hf x h f x f x h f x hf x h f x f x h f x f x f x h h f x →→→→→''+-+-+--=''''-+---=''''+---''''=+=+-''=5.设f (x )具有二阶连续导数,且f (0) = 0,试证g (x ) = (),0'(0),0f x x x f x ⎧≠⎪⎨⎪=⎩可导,且导函数连续. 证: 当0x ≠时,2()()()()()f x xf x f x g x x x '-''==当0x =时,由200000()(0)()(0)()(0)lim lim lim 00()(0)1()(0)1lim lim (0)2202x x x x x f x f g x g f x xf x x x x f x f f x f f x x →→→→→'-'--==--''''--''===- 即 1(0)(0)2g f '''=所以 2()(),0()1(0),02xf x f x x xg x f x '-⎧≠⎪⎪'=⎨⎪''=⎪⎩由(),()f x f x '的连续性知()g x '在0x ≠处连续,又20000()()()()()lim ()limlim211lim ()(0)(0)22x x x x xf x f x f x xf x f x g x x xf x fg →→→→'''''-+-'=='''''===故()g x '在0x =处连续,所以()g x '在(),-∞+∞内处处连续.综上所述,(),0()(0),0f x xg x x f x ⎧≠⎪=⎨⎪'=⎩可导,且导函数连续.习题4-31.求函数f (x ) =e x x 的n 阶马克劳林公式.解:()()(1),()(1)(2),()()…x x x x x x k x f x e xe e x f x e x e e x f x e k x '=+=+''=++=+=+()()(0)1(0),(1,2,3,)!!(1)!k k f k fk k k k k ∴====-又 (0)0f =321(1)()(01)2!(1)!(1)!n x n x x e n x f x x x x n n θθθ+++∴=+++++<<-+2.当01x =-时,求函数f (x ) = 1x的n 阶泰勒公式. 解:()()[]23()2341()1()112212!3!!()(1),()(1),()(1),,()(1)!(1)(1)!(1)(1)!1,(0,1,2,)!!(1)()(1)1(1)111(1) … n n n n n n n n n nn n f x f x f x f x x x x x n f n f n n n n x f x x x x x θ-++++''''''=-=-=-=-∴-=-⋅=----==-=+∴=-+-⎡⎤+++++++⎣⎦-++ (01)θ<<3.按(4)x -的乘幂展开多项式432()53 4.f x x x x x =-+-+解: 函数432()534f x x x x x =-+-+,根据泰勒公式按(4)x -的幂的展开式是2(4)34(4)()(4)(4)(4)(4)2!(4)(4)(4)(4)3!4! f f x f f x x f f x x '''=+-+-'''+-+- 而[][][]432324244(4)(4)454434456,(4)21,41523(4)137,123022!2(4)111,24303!3!(4)12414!4!x x x f f x x x f x x f x f ====-⨯+-⨯+=-'==-+-''==-+'''==-=⨯=所以,234()5621(4)37(4)11((4)(4)f x x x x x =-+-+-+-+-.4.利用泰勒公式求下列极限:(1) 30sin limx x x x →-; (2) 21lim ln(1)x x x x →+∞⎡⎤-+⎢⎥⎣⎦. 解: (1) 利用泰勒公式,有34sin ()3!x x x o x =-+所以 343300430()sin 3!lim lim 1()1lim()66x x x x o x x x x x o x x →→→--==-= (2) 利用泰勒公式,有221111ln(1)()2o x x x x+=-+,所以222222221111lim lim ln(1)(())21()1111lim lim .()1222x x x x x x x x o x x x x o x x o x x →+∞→+∞→+∞→+∞⎡⎤⎡⎤=-+--+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦ 习题4-41. 求下面函数的单调区间与极值:(1)32()26187f x x x x =---; (2)()ln f x x x =-; (3)23()1(2)f x x =--; (4)()(4)f x x x =-. 解: (1) 2()612186(1)(3),f x x x x x '=--=+-令()0f x '=得驻点121,3,x x =-=-在()(),,13,-∞-+∞上,()0f x '>,在()1,3-上()0f x '< ∴ ()f x 在(,1],[3,)-∞-+∞上单调增加,在[]1,3-上单调减少.当 1x =-时, ()f x 有极大值,极大值为(1)3f -=, 当 3x =时, ()f x 有极小值,极小值为(3)61f =-.(2) 11()1x f x x x-'=-=,令()0f x '=得驻点1x = 在()0,1上,()0f x '<;在()1,+∞上,()0f x '> ∴ ()f x 在(0,1]上单调递减;在[1,)+∞上单调递增. 当1x =时,()f x 有极小值,极小值为(1)1f =. (3)()()0f x f x ''=≠ 但当2x =时,()f x '不存在, 在(,2)-∞上,()0f x '>;在(2,)+∞上,()0f x '<, ∴ ()f x 在(,2]-∞上单调递增;在[2,)+∞上单调递减. 当2x =时, ()f x 有极大值,极大值为(2)1f =.(4) 2240()40x xx f x x xx ⎧-≥=⎨-+<⎩ ,则 240()240x x f x x x ->⎧'=⎨-+<⎩且当 0x =时,()f x '不存在,又令()0f x '=得2x = 在(,0),(2,)-∞+∞上,()0f x '>,在(0,2)上()0f x '< ∴ ()f x 在(,0],[2,)-∞+∞上单调递增;在[0,2]上单调递减; 当0x =时,()f x 有极大值,极大值为(0)0f =; 当2x =时, ()f x 有极小值,极小值为(2)4f =-. 2. 试证方程sin x = x 只有一个根.证: 显然0x =是方程sin x x =得一个根(亦可将()sin f x x x =-运用零点定理).令()sin f x x x =-,则()cos 10f x x '=-≤,而()0f x '=的点不是单调区间的分界点,故()f x 在(,)-∞+∞内单调下降,所以()f x 在(,)-∞+∞内只有一个零点,即方程sin x x =只有0x =一个根.3. 已知()([0,))f x C ∈+∞,若f (0) = 0, f ′(x )在[0,)+∞内存在且单调增加,证明()f x x在[0,+∞)内也单调增加.解: 0 x ∀>,由题意知()f x 在[]0,x 上满足拉格朗日中值定理的条件,利用拉格朗日中值定理得,(0,) x ξ∃∈,使()(0)()f x f xf ξ'-=, 因 ()f x '在[0,)+∞单调增加,且(0)0f =,所以()()()f x xf xf x ξ''=≤ 即 ()()0xf x f x '-≥令 ()()(0) f x F x x x=>,则 2()()()0xf x f x F x x '-'=≥ 所以()F x 单调递增,即 ()f x x在(0,)+∞内单调增加.4. 证明下列不等式:(1) 1+12x x >0; (2)2ln(1)(0)2 x x x x x -<+<>.证: (1) 令 1()12f x x =+则1()(12f x '=, 当 0x >时1,()0f x '<>即()f x 单调递增,从而()(0)0f x f >=,故112x +>. (2) 令 2()ln(1)2x f x x x =+-+,则 21()111x f x x x x'=-+=++当 0x >时,有()0f x '>,即()f x 单调递增,从而()(0)0f x f >= ,即2ln(1)2x x x +>-又令 ()ln(1)g x x x =-+,则1()111xg x x x'=-=++ 当 0x >时,()0g x '>,即 ()g x 单调递增,从而()(0)0g x g >=,即ln(1)x x >+.综上所述,当0x >时有2ln(1)2x x x x -<+<. 5. 试问a 为何值时,f (x ) = a sin x +13sin 3x 在x =3π处取得极值?是极大值还是极小值?并求出此极值.解: ()cos cos3f x a x x '=+若3πx =为极值点,则cos cos 03ππa +=,所以2a =.又()2sin 3sin 3,()03πf x x x f ''''=--=<故函数在3πx =处取得极大值,极大值为()3πf =习题4 - 51. 某个体户以每条10元的价格购进一批牛仔裤,设此批牛仔裤的需求函数为402Q P =-,问该个体户应将销售价定为多少时,才能获得最大利润? 解: 利润2()10260400L P PQ Q P P =-=-+-, ()460L P P '=-+,令 ()0L P '=得 P =15所以应将销售价定为每条15元,才能获得最大利润.2.设 f (x ) = cx α (c >0,0<α<1)为一生产函数,其中c 为效率因子,x 为投入量,产品的价格P 与原料价格Q 均为常量,问:投入量为多少时可使利润最大? 解: 依题意,总利润()()()L x Pf x Q x P cx Qx α=-=⋅- 则 1()L x Pc xQ αα-'=- 令 ()0L x '=得 11Q x Pc αα-⎛⎫=⎪⎝⎭所以,投入量为11Q Pc αα-⎛⎫⎪⎝⎭时利润最大.3. 某产品的成本函数为23()156C Q Q Q Q =-+,(1) 生产数量为多少时,可使平均成本最小?(2) 求出边际成本,并验证边际成本等于平均成本时平均成本最小. 解: (1) 2()()156C Q C Q Q Q Q==-+ 令 260()Q C Q '=-=⎡⎤⎣⎦得Q =3 故 生产数量3Q =时,可使平均成本最小. (2) 2()15123MC C Q Q Q '==-+当 3Q =时,15123396MC =-⨯+⨯= 2()156336C Q =-⨯+=即边际成本等于平均成本时平均成本最小. 4. 已知某厂生产Q 件产品的成本为C =25000+2000Q +1402Q (元). 问:(1) 要使平均成本最小,应生产多少件产品?(2) 若产品以每件5000元售出,要使利润最大,应生产多少件产品? 解: (1) 平均成本 250001()200040C Q Q Q =++ 边际成本1()200020C Q Q '=+. 当()()C Q C Q '=时,平均成本最小,由()()C Q C Q '=即2500011200020004020Q Q Q ++=+ 得1000Q =(负值不合题意已舍去). 所以要使平均成本最小,应生产1000件产品.(2)221()5000()500025000200040130002500040L Q Q C Q Q Q Q Q Q =-=---=-+-令 1()3000020L Q Q '=-+=, 得60000Q =(件) 所以应生产60000件产品.5. 某厂全年消耗(需求)某种钢材5170吨,每次订购费用为5700元,每吨钢材单价为2400元,每吨钢材一年的库存维护费用为钢材单价的13.2%,求: (1) 最优订购批量; (2) 最优批次; (3) 最优进货周期; (4) 最小总费用.解: 由题意 215170,5700,1,240013.2%316.8 R C T C ====⨯= 则(1)最优订购批量70*431.325q === (2)最优批次 5170*12*431.325R n q ==≈(次)(3)最优进货周期 36530.452*12T t n ===(天) (4)最小总费用*136643.9E ==≈(元)6. 用一块半径为R 的圆形铁皮,剪去一圆心角为α的扇形后,做成一个漏斗形容器,问α为何值时,容器的容积最大?解: 设漏斗的底面半径为r ,高为h ,为了计算方便令2ϕπα=-,则2,,2ππR r R r h ϕϕ====漏斗的容积2322123(83)πππV hr V ϕϕ==<<'=-令 0V '=得10ϕ=(舍之),2ϕ=,34222237),40,9πππV V ϕϕϕ''=-+-⎫''=-<⎪⎭故当ϕ=时漏斗得容积最大.由2πϕα=-得2π2πα==, 所以,当2πα=-时,容积最大. 7. 工厂生产出的酒可即刻卖出,售价为k ;也可窖藏一个时期后再以较高的价格卖出.设售价V 为时间t 的函数V = k (k >0)为常数.若贮存成本为零,年利率为r ,则应何时将酒售出方获得最大利润(按连续复利计算). 解: ()e rtrtA t k k -=⋅=令()0rt r A t k ⎫'-==⎪⎭得214t r = 所以,应窖藏214r 时以后售出可获得最大利润. 8. 若火车每小时所耗燃料费用与火车速度的三次方成正比,已知速度为20km/h ,每小时的燃料费用40元,其他费用每小时200元,求最经济的行驶速度. 解: 设火车每小时所耗燃料费为Q ,则 3Q k v = (k 为比例常数) 依题意得 34020k =⋅, 解得 1200k =, 又设火车行驶()km s 后,所耗费用为, 32200(200)()s E kv kv s v v=+⋅=+ 令 2200()0100v E s v'=-=, 得27.14v =≈ (km/h), 所以,最经济得行驶速度为27.14 km/h.习题 4-61. 讨论下列函数的凸性,并求曲线的拐点:(1) y =2x -3x ; (2) y = ln(1+2x ); (3) y = x e x; (4) y = 4(1)x ++e x; (5) y =2(3)x x +; (6) y=arctan e x. 解: (1)223,126,0.3令 得 y x x y x y x '=-''''=-==当13x <时,0y ''>; 当13x >时,0y ''<,且12()327f = 所以,曲线23y x x =-在1(,)3-∞内是下凸的,在1(,)3+∞内是上凸的,点12(,)327是曲线的拐点.(2) 222222222(1)222(1),1(1)(1)x x x x x y y x x x +-⋅--'''===+++, 令0y ''=得,121,1x x =-=,这两点将定义域(,)-∞+∞分成三个部分区间,列表考察各部分区间上二阶导数得符号.所以,曲线2l n (1)y x =+在(,1)-∞-及(1,)+∞内是上凸的,在(1,1)-内是下凸的,点(1,ln 2)±是曲线的拐点.(3) 324(1),12(1)0xxy x e y x e '''=++=++> 所以,曲线在定义域(,)-∞+∞内处处下凸,没有拐点.(4) 343212,(3)(3)x x y y x x --'''==++,令 0y ''=得6x = 当 6x <时,0y ''<,当6x >时,0y ''>;又2(6)27f =,函数的定义域为(,3)(3,)-∞--+∞ ;所以曲线在(,3),(3,6)-∞--内上凸,在(6,)+∞内下凸,点2(6,)27是拐点. (6)arctan 2arctan arctan arctan 2222221112(12)(1)(1)(1)x x x x y e x x x ey e e x x x '=⋅+-''=⋅-⋅=+++令 0y ''= 得 12x =当 12x <时,0y ''>,当12x >时,0y ''<,且 1arctan 21()2e f =,所以曲线在1(,)2-∞内向下凸,在1(,)2+∞内向上凸,点1arctan 21(,)2e是拐点. 2. 利用函数的凸性证明下列不等式:(1) e e 2x y +>2e x y+, x ≠y ;(2) x ln x +y ln y >(x +y )ln2x y +,x >0,y >0,x ≠y .证: (1) 令()e x f x =,则()e x f x '=,()0e xf x ''=>,所以函数()f x 的曲线在定义域(,)-∞+∞内是严格下凸的,由曲线下凸的定义有: ()(),()()22x y f x f y x y f x y ++∀≠<≠ 即 22e e ex y x y ++< 即2()2e e e x yx y x y ++>≠.(2) 令()ln f x x x =,则1()1ln ,()f x x f x x'''=+=当 0x >时,恒有()0f x >,所以()f x 的曲线在(0,)+∞内是严格下凸的,由曲线下凸的定义有, 0,0,,x y x y ∀>>≠有()()()22f x f y x y f ++>即ln ln ()ln222x x y x y x y+++> 即 ln ln ()ln 2x yx x y y x y ++>+.3. 当a ,b 为何值时,点(1,3)为曲线y =a 3x +b 2x 的拐点. 解: 因为32y ax bx =+是二阶可导的,所以在拐点处0y ''=,而232,62y a x b x y a x b'''=+=+ 所以 620a b += 又拐点(1,3)应是曲线上的点,所以3a b +=解方程6203a b a b +=⎧⎨+=⎩ 得 39,22a b =-=所以当39,22a b =-=时,点(1,3)为曲线32y ax bx =+的拐点. 4. 求下列曲线的渐近线:(1) y = ln x ; (2)y =22x -; (3) y = 23xx -; (4) y = 221x x -.解: (1) 0lim lim ln x x y x ++→→==-∞,所以ln y x =有垂直渐近线 0x =. 又 lim x y →+∞=+∞,但1ln lim lim lim 01x x x y xx y x x→+∞→+∞→+∞====,lim (0)x y x →+∞-⋅=∞,所以不存在水平或斜渐近线.(2) 220x x -=,所以有水平渐近线0y =,又2lim 0x x x y x -→∞→∞== ,所以没有斜渐近线,又函数22x y -=没有间断点,因而也没有垂直渐近线. (3) 221limlim 0331x x xxx x →∞→∞==--,所以有水平渐近线0y =,又函数23x y x ==-有两个间断点x x ==,且22,,3x x x xx x=∞=∞--所以有两条垂直渐近线x =x =又 21lim lim 3x x y x x →∞→∞==∞-,所以没有斜渐近线.(4) 2lim lim 21x x x y x →∞→∞==∞- ,所以没有水平渐近线,又 函数221x y x =-有间断点12x =,且212lim 21x x x →=∞-,所以有垂直渐近线12x =. 又 1limlim 212x x y x x x →∞→∞==- 2111l i m ()l i m ()l i m 22122(21)4x x x x x y x x x x →∞→∞→∞-=-==-- 所以有斜渐近线1124y x =+. 5.作出下列函数的图形: (1) f (x ) =21xx+; (2) ()2arctan f x x x =- (3) ()2,(0,)e xf x x x -=∈+∞. 解: (1) (i) 定义域为(,)-∞+∞.()()f x f x -=- ,故曲线关于原点对称.(ii) 21lim limlim 012x x x x y x x→∞→∞→∞===+ ,故曲线有渐近线0y =.(iii) 222222121,(1)(1)x x x x y x x +-⋅-'==++ 22223322423232(1)(1)2(1)222442(3)(1)(1)(1)x x x x x x x x x x x y x x x -+--⋅+⋅---+-''===+++,令0y '=即210x -=得驻点1x =±,又使0y ''=的点为0,x =.图4-1(2) (i) 定义域为(,)-∞+∞.又 ()arctan y x x x y -=-+=-,故为奇函数.(ii) 2arctan lim ,limlim (1)1,x x x y x y x x→±∞→±∞→±∞=∞=-=πlim ()lim (2arctan )(2)()π2x x y x x →±∞→±∞-=-=-±= 所以有渐近线πy x = .(iii) 222211,11x y x x -'=-=++ 2222222(1)(1)24,(1)(1)x x x x x y x x +--⋅''==++令 0y '=得驻点1x =±,又使0y ''=的点为0x =. 列表如下:图4-2(3) (i) 定义域为(,)-∞+∞,且()((,))f x C ∈-∞+∞. (ii) ()2(1),()2(2),e e xxf x x f x x --'''=-=-由()0f x '=得1x =,由()0f x ''=得2x =,把定义域分为三个区间 (,1),(1,2),(2,);-∞+∞(iv) lim ()0x f x →+∞=,故曲线()y f x =有渐近线0y =,lim ()x f x →+∞=-∞.(v) 补充点(0,0)并连点绘图,如图所示:图4-3。

泰勒公式及其在极限运算中的运用(论文)

泰勒公式及其在极限运算中的运用(论文)

摘要 (2)1 引言 (4)2 泰勒公式 (5)2.1 n次泰勒多项式 (5)2.2 泰勒公式 (6)2.3 泰勒公式的种类 (6)2.31 含有佩亚诺余项的泰勒公式 (6)2.32 含有拉格朗日余项的泰勒公式 (7)2.33 特殊的泰勒公式 (7)3 利用泰勒公式求极限及其应用 (8)3.1 一些常见的麦克劳林公式 (8)3.2 一些实例分析 (9)4 结论 (17)参考文献 (18)在初等函数中,多项式是最简单的函数,因为多项式函数的运算只有加、减、乘三种运算.如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而又满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义.而泰勒公式就起了很好的桥梁作用,本文将系统地阐述对一个函数具有什么条件才能用此多项式近似代替;这个多项式函数的各项系数与这个函数有什么样的关系;用多项式函数近似代替这个函数的误差又怎样;重点是怎样利用泰勒公式计算极限以及其在极限计算中的应用,对比分析出泰勒公式的优越性.关键词:泰勒公式;近似代替;极限运算AbstractPolynomial in elementary function is the most simple function, because the polynomial function is used only three kinds of add, subtract, multiply computing. If can the rational fractional function, especially the irrational function and elementary transcendental function approximation using polynomial function, and meet the requirements, obviously, the study of functional state and function value approximate calculation has important significance. And there was a very good role of bridge and Taylor formula, this article will systematically expounded is what condition for a function to substitute the polynomial approximation; The polynomial function coefficient and the function of what kind of relationship; Using polynomial function approximation instead of what the function of the error; Focuses on how to use Taylor formula calculation, the application limit and the limit analysis of the superiority of the Taylor formula.Key words:Taylor formula;and approximate replace;limit operation1 引言在数学中,泰勒公式是在级数基础上发展起来的,它是用函数在某点的信息描述其附近取值的公式.在近似计算、极限计算、函数凹凸性判断、敛散性的判断、等式与不等式的证明、中值问题以及行列式的计算等方面有重要的应用.泰勒公式是数学分析中一个非常重要的内容,不仅在理论上占有重要的地位.通过泰勒公式和极限运算的学习,已经掌握初等函数在某一点的泰勒展式,对于一些高阶的极限运算,直接求极限不好求,利用泰勒公式能很快地求出.所以对泰勒公式的进一步研究是非常重要的.泰勒公式的证明与应用方面的研究对于科研者来说一直具有强大的吸引力,许多研究者已在此领域获得许多研究成果.例如,[1]刘玉琏、傅沛仁、林玎等人重点谈了无理函数和初等函数用多项式函数近似代替,而这时误差又能满足要求,也即是把函数写成n次泰勒多项式.[3]张筑生体统地谈了用n次多项式来研究可导n次的函数,也就是带小o余项的泰勒公式是无穷小增量公式的推广.[4]沈燮昌、邵品琮等人主要是从逼近角度对它进行介绍,并说明泰勒公式的一些应用.其中用泰勒公式来求极限就是一个应用.对于一些高阶的极限运算,要求得其极限是非常困难的.对泰勒公式的研究就是为了解决上述问题的.通过对数学分析的学习,我感觉到泰勒公式是高等数学中最重要的内容,在各个领域有着广泛的应用,例如在函数值估测及近似运算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面.除此之外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题变得简单易解.下面主要针对泰勒公式在极限中的应用,在一些题目当中,为解题带来了很多的便捷,这同时也为求极限提供了一种很好的方法.2 泰勒公式泰勒公式是微积分学中的一个重要内容,它用n 次多项式来研究可导n 次函数,这种带o 余项的泰勒公式是无穷小增量公式的推广.因此,泰勒公式是求极限的重要方法.对泰勒公式及其种类的认识是很有必要的.2.1 n 错误!未找到引用源。

泰勒公式求极限

泰勒公式求极限

适用 了.这 里 和 z。都 已经 是 X的 次 幂 形
注1.若R,J( )=器
(z-Xo) 1, 式,因此只需将

1 、
In(1+÷)展开成泰勒公式,

·^, ,
称为带有拉格 朗 日型余项 的泰勒公式[2].

2.若 R (Iz)一o[-(x-3o) ],称为带有
由 于 一 ∞时 , 一0,因此使用ln(1+“)在 0
电压 随 时 问的 变 化规 律 ,这就 是 一 个 很好 的 微 分 方程 模 型 ,这 不 仅 让 学生 能够 很好 的理 解 ,而且也助于交学科之间知识 的结合. 7 结束语
面对民办院校本科学生现状 ,必需提高 学生学习《高等数学》的兴趣 ,以问题为中心 , 化抽象为具体 ,化隐为显 ,才能提高课 堂教学
以引入 经 典 的 可 口可乐 易拉 罐 的设 计 问 授之以渔.因此 ,我们要教给学生的不是解题
题[3].可口可乐易拉罐是大家都比较熟悉的. 的技巧与方法 ,而是不断提高学 生的学习兴
这种实际的问题能带动学生的学习激情和动 趣 ,自觉地发现 问题 ,分析问题 ,解决 问题.提
力 ,也对最值应用有所了解 ;再 如,在高等数 高学生学 习高等数 学课程 的积极性,提高学
皮亚诺型余项的泰勒公式 ].
(下转 第 60页)
收稿 日期 :2012—12—28 作者简介 :王小玲 (1979一 ),女 ,讲师 ,理学硕士 ,偏微分方程.
E-mail:wangxiaoling5202@ 163.tom
60
数 学教学研究
第 32卷第 2期 2013年 2月
例如 ,在高等数学函数最值的讲解中,可 效果及质量.中国有句古话 :授 之以鱼,不如

泰勒公式求极限典型例题

泰勒公式求极限典型例题

泰勒公式求极限典型例题若将函数f(x)随x的取值从某一个数a取到正无穷大时,函数f(x)取得的值p趋于某一个定值L,则称L为函数f(x)在x=a取极限,记作lim x→a f(x)=L,其中L称为极限值,a称为极限点,f(x)称为极限函数。

泰勒公式是求极限的一种常用方法,其公式有无限项式求和形式: lim x→a f(x)=f(a)+f(a)(x-a)+ (1/2)f(a)(x-a)2 +(1/6)f(a)(x-a)3 + ... + (1/n!)(f^(n)(a)(x-a)n+ ...其中f^(n)(a)是函数f(x)的n阶导数。

这里以典型例子来说明如何使用泰勒公式求极限:例题1:求lim x→0 sinx/x的极限。

解:由泰勒公式可知:lim x→0 sinx/x = f(0)+f(0)(x-0)+ (1/2)f(0)(x-0)2 + ...经过求导可知:f(0) = 0, f(0) = 1, f(0) = 0,所以lim x→0 sinx/x = 1例题2:求lim x→1 (x^3-1)/(x-1)的极限。

解:由泰勒公式可知:lim x→1 (x^3-1)/(x-1) = f(1)+f(1)(x-1)+ (1/2)f(1)(x-1)2 + ...经过求导可知:f(1) = 0, f(1) = 3, f(1) = 6,所以lim x→1 (x^3-1)/(x-1) = 3以上就是使用泰勒公式求极限的一般步骤,当函数f(x)的几阶导数可以计算出来时,就可以采用此方法来求极限了。

泰勒公式可以用来计算出大多数复杂函数的极限,对求极限有很大的帮助,它可以帮助我们分析复杂的函数关系,也可以帮助我们理解函数在某一点的取值情况,并由此分析函数在该点处的连续性等特征。

泰勒公式并非万能,有时候你会遇到函数f(x),其函数的某阶导数不存在,这也就意味着我们无法用泰勒公式来计算该函数的极限,或者某些次高阶导数取值很大,这就会使得该项在求极限的过程中的贡献很大,这时候、泰勒公式就可能不太准确。

Taylor公式求极限时“阶”的分析

Taylor公式求极限时“阶”的分析

㊀㊀㊀㊀㊀120㊀Taylor公式求极限时的分析Taylor公式求极限时 阶 的分析Һ吕志宇㊀(甘肃农业职业技术学院,甘肃㊀兰州㊀730020)㊀㊀ʌ摘要ɔTaylor公式是一个用函数在某点的信息描述其附近取值的公式,其充分运用 无限接近 这一数学理论,将一些复杂的数学函数转化为简易的多项式函数,是数学函数中最基本的理论.本文阐述Taylor公式,分析并归纳Taylor公式求极限的具体方法,以期为初学者提供理论参考.ʌ关键词ɔTaylor公式;极限; 阶 引㊀言在高等数学中,极限通常是讨论数学函数的基础方式,是解析数学函数的基本形式,还是数学微积分中重点学习的内容.在学习数学函数时,学生掌握求取极限的基本方法尤为重要.应用泰勒公式求取函数极限是高等数学学习的重点.Taylor公式作为表达数学函数的一种基本形态,其将 无限接近 作为解析数学函数的基本思想理论,让繁杂函数以多项式数学函数形态呈现出来,为数学函数解析提供多重解析方法.在运用Taylor公式过程中,未定式极限计算是其重点与难点,更是专升本考试中的一个重要考点.为进一步了解Taylor公式在求极限时的具体应用,本文主要就Taylor公式求极限时 阶 的具体计算进行分析.一㊁Taylor公式求极限时 阶 的具体分析1.Taylor公式求极限时的具体应用1.1利用Taylor公式展开求极限在求极限过程中我们可以将其中一项应用泰勒公式展开,将原复杂函数转化为多项式函数形式来求极限.例㊀求limxңɕx-x2ln1+1x()[].解㊀根据泰勒公式展开,ln1+1x()=1x-12x2+13x3-14x4+ ,其中x指数最高为2,因此原极限=limxңɕx-x2ˑ1x-12x2+o1x2æèçöø÷æèçöø÷éëêùûú=limxңɕx-x+12-o1x2æèçöø÷1x2éëêêêêùûúúúú=12.1.2求满足Taylor公式的θ的极限例㊀如果fᶄ(x)在D上存在连续导函数,fᵡ(x)ʂ0,那么对于x0+hɪD有f(x0+h)=f(x0)+hfᶄ(x0+θh)(0<θ<1),求limhң0θ.解㊀已知f(x0+h)=f(x0)+hfᶄ(x0+θh),那么应用泰勒公式可得出f(x0+h)=f(x0)+hfᶄ(x0)+12fᵡ(x0+θ1h)h2,两式相减可得到hfᶄ(x0+θh)-hfᶄ(x0)=12fᵡ(x0+θ1h)h2,limhң0fᶄ(x0+θh)-fᶄ(x0)h=limhң012fᵡ(x0+θ1h)=12fᵡ(x0),又因为㊀limhң0fᶄ(x0+θh)-fᶄ(x0)h=limhң0fᶄ(x0+θh)-fᶄ(x0)θhˑθ=fᵡ(x0)limhң0θ=12fᵡ(x0),所以limhң0θ=12.同理,如果已知f(x0+h)=f(x0)+hfᶄ(x0)+12fᵡ(x0+θh)h2,那么应用泰勒公式可得f(x0+h)=f(x0)+hfᶄ(x0)+12fᵡ(x0)h2+16f‴(x0+θ1h)h3,两式相减可以得到fᵡ(x0+θh)h2-fᵡ(x0)h2=13f‴(x0+θ1h)h3,即fᵡ(x0+θh)-fᵡ(x0)θhˑθ=13f‴(x0+θ1h),limhң0fᵡ(x0+θh)-fᵡ(x0)θhˑθ=limhң013f‴(x0+θ1h),最终得到f‴(x0)limhң0θ=13f‴(x0),所以limhң0θ=13.㊀㊀㊀121㊀㊀二㊁Taylor公式求极限时的方法1.实例分析在应用泰勒公式求极限时,一般情况下需要解决三个问题:一是函数具体需要在哪个点上进行泰勒展开,即需要明确展开泰勒公式所需要的函数点;二是泰勒公式需要展开到第几次幂结束,一般情况下,泰勒公式通常是展开至展开系数无法相互抵消为止;三是在应用泰勒公式展开过程中,具体需要应用哪种带有余项形式的泰勒公式.通常情况下,在计算未定式极限时,使用已知的麦克劳林公式较为常见,且并不需要客观评估余项,因此只需选择皮亚诺型余项.例㊀求极限limxңɕx-x2ln1+1x()[].具体分析㊀由题目可知从极限变化过程为xңɕ,归属于ɕ-0ˑɕ类型,这与洛必达法则定理不相符.其中x和x2皆是x的幂的形式,因此可以将ln1+1x()展开成泰勒公式,由于xңɕ时,1xң0,因此只需使用ln(1+u)在点u=0处的泰勒公式展开式,同时令u=1x便可.然而x2ln1+1x()=x21x-12x2+13x3+o1x3æèçöø÷æèçöø÷,将泰勒公式展开至三次幂是因为x-x2ln1+1x()=x-x21x-12x2+13x3+o1x3æèçöø÷æèçöø÷=12+o1x()的系数无法相互抵消,因此limxңɕx-x2ln1+1x()()=limxңɕx-x21x-12x2+13x3+o1x3æèçöø÷æèçöø÷éëêùûú=limxңɕ12+o1x()()=12.在应用泰勒公式过程中,如果一般形式为f(x)xk或者xkf(x),那么f(x)展开至x的k次方,遵循上下同阶原则;如果一般形式为f(x)-g(x),那么将f(x),g(x)分别展开至其系数不相等的最低次幂为止.2.错解分析在计算极限过程中,应用泰勒公式能够快速解出答案,十分适用.但是在应用泰勒公式时,学生必须要掌握精准的计算技巧.学生在实际计算过程中极易计算错误,并且很难发现错误之处,这给学生掌握用泰勒公式求极限造成一定难度.再举一例.例㊀用泰勒公式求极限limxң0ex(x-2)+x+2sin3x.错误解答㊀原式=limxң01+x+x22()(x-2)+x+2x3=limxң012x3x3=12.具体分析㊀以上解答表面看上去十分正确,实则存在多处错误.如在展开时没有写余项,此处乃初学者常犯错误之一.其实,按照正确计算方式将展开至二阶ex=1+x+x22+o(x2),ex(x-2)+x+2=1+x+x22+o(x2)[](x-2)+x+2=x32+o(x2)=o(x2),(xң0)此刻再代入原式中问题便凸显出来了,实际上,limxң0ex(x-2)+x+2sin3x=limxң01+x+x22+o(x2)()(x-2)+x+2x3=limxң012x3+o(x2)x3ʂ12.讨论:泰勒公式求极限时具体展开至几阶才算合适?将ex泰勒公式展开至一阶,ex=1+x+o(x),那么ex(x-2)+x+2=1+x+o(x)[](x-2)+x+2=x-2+x2-2x+o(x)+x+2=x2+o(x)=o(x),(xң0)进而limxң0ex(x-2)+x+2sin3x=limxң0(1+x+o(x))(x-2)+x+2x3=limxң0o(x)x3,不存在正常极限.将ex泰勒公式展开至三阶ex=1+x+12!x2+13!x3+o(x3),则ex(x-2)+x+2=1+x+12!x2+13!x3+o(x3)()(x-2)+x+2=16x3+o(x3),(xң0)(1)将ex泰勒公式展开至nnȡ4()阶,那么㊀㊀㊀㊀㊀122㊀ex=1+x+12!x2+13!x3+14!x4+ +1n!xn+o(xn),ex(x-2)+x+2=(1+x+12!x2+13!x3+14!x4+ +1n!xn+o(xn))(x-2)+x+2=12x3-26x3+13!x4-24!x4+14!x5+ +o(xn+1)=16x3+o(x3),(xң0)(2)因此,由(1)(2)综合可得limxң0ex(x-2)+x+2sin3x=limxң016x3+o(x3)x3=16+limxң0o(x3)x3=16.综上所得,应用泰勒公式求00型的limxң0f(x)-g(x)xa形式的极限,具体有以下几点结论:一是如果将分子展开至小于a阶时,那么得不到正确极限;二是如果将分子展开至a阶,那么可以得到正确极限,而且计算快速方便,较为节约时间;三是如果将分子展开至大于a阶,那么可以得到正确极限,但是比较浪费时间,精力.3.题型分类探讨类型1㊀limxң0f(x)-g(x)xa=limxң0cxa+oxa()xa=c.(1.1)例㊀使用泰勒公式求极限:limxң0exsinx-xx+1()xsinx㊃tanx.解㊀原式=limxң01+x+x22+o(x2)[]x-16x3+o(x3)[]-xx+1()x3=limxң0x-16x3+x2+12x3+o(x3)-x-x2x3=13.类型2㊀limxң0xaf(x)-g(x)=limxң0xadxa+oxa()=limxң01d+oxa()xa=1d.(1.2)例2㊀使用泰勒公式求极限:limxң0x4ln1+sin2x()-632-cosx-1().解㊀原式=limxң0x4x2-56x4+o(x4)()-616x2-124x4+o(x4)()=limxң0x4-712x4+o(x4)=-127.公式(1.1),(1.2)的积为类型3:limxң0f(x)-g(x)u(x)-v(x)=limxң0cxa+oxa()dxa+oxa()=limxң0c+oxa()xad+oxa()xa=cd.4.结论根据以上分析讨论可得以下几点结论:一是对于单侧极限xң0+,xң0-,以上分析讨论完全有效;二是当存在xң+ɕ,xң-ɕ,xңɕ情况时,可以将变量进行替换,如t=1x,将其转化为xң0+,xң0-,xң0;三是当出现极限为0和无穷情况时,仍然可以使用泰勒展开式求极限,分别对应(1.1)中c=0和(1.2)中d=0的情况.例㊀使用泰勒公式求极限:limxң0cosx-e-x22x2.解㊀由于cosx-e-x22=1-x22!+o(x2)()-(1-x22+o(x2))=o(x2),同时根据公式(1.1)可得知limxң0cosx-e-x22x2=limxң0o(x2)x2=0.注:应用洛必达法则可以验证此结论,实际上有limxң0cosx-e-x22x2=limxң0-sinx+xe-x222x=limxң0-cosx+e-x22-x2e-x222=0.根据公式(1.2)可得知limxң0x2cosx-e-x22=limxң0x2o(x2)=ɕ.结㊀语综上所述,泰勒公式是一种将复杂函数转化为多项式函数的公式,在求取函数极限时发挥着至关重要的作用.在应用泰勒公式求极限过程中,泰勒公式应用条件较为苛刻,限制性较大,函数必须是n阶可连续函数,且求取的函数值与函数阶数息息相关,阶数越小,最终结果误差便会越大.因此,在应用泰勒公式求极限时,要注意分析题意,了解题目特点与函数形式,准确把握泰勒公式基本规律,熟练掌握应用泰勒公式求取极限时的方法与技巧.ʌ参考文献ɔ[1]陈叻,赵向青,吴涛.Taylor公式求极限时 阶 的分析[J].高等数学研究,2019(05):16-18.[2]黄辉.巧用等价无穷小与泰勒公式求极限[J].江西电力职业技术学院学报,2019(04):50-51,54.。

数列极限可以用泰勒公式

数列极限可以用泰勒公式

数列极限可以用泰勒公式数列极限这事儿,听上去就让人有点儿头疼,对吧?可是,咱们可以用泰勒公式来解开这个谜团。

想象一下,一个数列就像一群小动物在森林里玩耍。

每个小动物都代表着一个数,而它们在不断地移动,寻找自己的家。

这个家,就是数列的极限。

嗯,极限,简单说就是小动物们最后聚集到的地方。

泰勒公式就是咱们的指南针,能帮助这些小动物找到方向。

说到泰勒公式,嘿,它可不是个陌生的家伙。

它就像一位温柔的老师,耐心地告诉你怎么一步一步地接近真相。

你瞧,泰勒公式可以把复杂的函数化成简单的小碎片。

就像把一大块蛋糕切成小块,吃起来方便多了。

你只需要知道,泰勒公式的核心就是用函数的导数来逼近函数本身。

乍一看,似乎有点儿抽象,但其实就是把复杂的问题简化成简单的数学游戏。

想象一下,你在吃牛排,刀叉一划,哗啦一声,肉就被切开了。

这个过程就像泰勒公式把函数切成了小片,让我们更容易理解。

这些导数,就像是牛排上的调料,给它加点儿味道。

说到味道,牛排的嫩滑、香气四溢,跟数列的极限一样,都是让人心驰神往的。

极限的存在,给了数列一个终点,告诉我们:嘿,不管你们怎么闹腾,最后都会回到这里。

可别小看这泰勒公式的威力。

举个例子,如果你想求解某个函数在某一点的极限,用泰勒展开简直就是如鱼得水。

你可以把这个函数在那个点附近展开,慢慢逼近,直到找到极限。

就像你在游泳池里,先是用手指探水温,接着就跳进水里,感觉那个温度,最终可以沉下去,享受清凉。

数列的极限,就像那个清凉的水,你越靠近,越能感受到它的美好。

这过程并不是一帆风顺。

数列像是调皮的小孩,偏偏不愿意回到极限的地方。

这个时候,泰勒公式就成了家长,耐心地引导着这些小家伙回到正轨。

想想看,数学就像一场人生的旅程。

每个数列都有它的故事,有起有伏,有欢笑有泪水。

而泰勒公式,正是那条指引你走向幸福的路。

不过呢,这个路并不好走。

就好比你在路上遇到个堵车,心里烦躁不已。

但这时候,泰勒公式就像是导航,帮你绕过那些坑坑洼洼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档