药效团
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于药效团的药物发现
吕炜
第一节药效团技术基本原理
利用分子的三维结构信息进行药物分子设计已经成为药物化学领域一项常规的技术。依据所依赖结构的不同(受体的三维结构或者配体的三维结构),药物设计的方法又可以分为两种:基于(受体)结构的药物设计方法和基于配体结构的药物设计方法。当受体(蛋白质、酶或DNA)的三维结构已知时,可以采用基于结构的药物设计方法,采用分子对接或从头设计技术,通过研究配体与受体之间的相互作用信息进行药物设计。而当受体结构未知时,则可以通过已知活性的配体分子的三维结构,建立恰当的构效关系模型来指导进行药物分子结构的优化和改造,这种方法叫做基于配体结构的药物设计方法。药效团模型方法就是一种最为杰出的基于配体结构的药物分子设计方法。
一. 药效团的基本概念:
在药物分子和靶点发生相互作用时,药物分子为了能和靶点产生好的几何匹配和能量匹配,会采用特定的构象模式,即活性构象。而且对于一个药物分子,分子中的不同基团对其活性影响是不同的,有些基团的改变对分子活性的影响甚小,而另外一些基团的变化则对分子与靶点的结合起着非常重要的影响。于是,就需要引入一个药效团(Pharmacophore)的概念。药效团是指药物活性分子中对活性起着重要作用的“药效特征元素”及其空间排列形式。这些“药效特征元素”是配体与受体发生相互作用时的活性部位,它们可以是某些具体的原子或原子团,比如氧原子、羟基、羰基等,也可以是抽象的化学功能结构,如疏水团、氢键给体、氢键受体等。
图1展示了一个经典的5-HT6受体拮抗剂药效团模型。该药效团模型由4个药效特征组成,其中两个为疏水团(蓝色球所示),一个为正电基团(红色球),另一个为氢键受体基团(绿色球,含方向)。各个药效特征之间存在几何约束,相互之间的距离以及角度需满足一定限制条件。任何药物分子,如果能够满足这一个药效团,就具备了与5-HT6受体结合的必要条件。
图1. 5-HT6受体拮抗剂药效团模型示意图
作为基于配体结构的药物设计中的最主要的两种方法,定量构效关系方法和药效团模型法虽然都是以配体小分子的结构作为起点,但二者之间存在明显不同。定量构效关系方法一般用于研究一系列骨架相同的同系列化合物,所得到的定量构效关系模型只能用于指导这一系列化合物的改造和活性预测。而药效团模型法可以从骨架不同类的先导化合物出发,得到与生物活性有关的重要的药效团特征,这组药效团特征是对配体小分子活性特征的抽象与简化。也就是说只要小分子拥有药效团特征,就可能具备有某种生物活性,而这些活性配体分子的结构未必需要相同,因此药效团模型方法可以用来寻找结构全新的先导化合物。
药效团模型方法包含两个层面的内容:药效团模型的构建以及数据库搜索。药效团模型的构建是指从一系列活性小分子出发得到合适的药效团模型。而如果想通过药效团模型来找到新的先导化合物,就需要采用基于药效团模型的数据库搜索。通过数据库搜索,可以寻找包含特定药效团特征的化合物,这些具有特定药效团特征的化合物可能具有相应的生物活性。药效团模型方法作为一种发现先导化合物的有效方法在药物研发领域已经得到了广泛的应用。近年来,文献也报道大量通过基于药效团的数据库搜索方法找到先导化合物的成功实例。可以预见,随着小分子三维结构数据库信息量的迅速增加以及计算机技术的快速发展,药效团模型方法在药物设计中会受到越来越多的关注。
二. 药效特征元素的定义:
在早期的药效团模型中,药效团模型的提问结构中一般只包括一些具体的原子或原子团,比如氮原子、羧基、苯环等。但是,从药物分子与受体相互作用的角度看,药物分子中某个位置上并不一定必须包含某种特定原子或者原子团才能产生必需的特征相互作用。例如,药物分子上某个原子能作为氢键受体和蛋白产生氢键相互作用,那么这个位置上的原子既可以是O,也可以是N和S。在这种情况下,仅仅在药效团模型中定义具体的原子或原子团显然是不够的,需要引入更一般化的基于功能的药效特征元素。这些药效特征元素特指一般化的化学功能结构,比如氢键受体、氢键给体、疏水中心、芳环中心、正负电荷中心、排斥体积等。下面将对这些药效特征进行简要的介绍。
(一)氢键受体
氢键相互作用是配体与受体之间相互识别非常重要的相互作用,因此氢键特征在药效团模型中占有重要地位。氢键特征可以分为两类:氢键给体和氢键受体。
广义来讲,任何带有孤对电子的原子,如氮、氧、氟、硫等,都可以作为氢键受体。但过于宽泛的定义往往会导致过多的命中结构,从而降低搜索的选择性。因此,在一般的药效团模型方法中(Discovery Studio, Catalyst),仅仅只考虑药物分子中最常见的氢键受体形式,包括:A.sp或sp2杂化的氧原子;
B.与碳原子以双键形式相连的硫原子;
C.与碳原子以双键或三键相连的氮原子
(二)氢键给体
氢键给体主要包括氢原子以及与之相连的氧原子和氮原子,一般有:
A.非酸性羟基;
B.氨基;
C.次氨基,但不包括三氟甲基磺酰胺和四唑中的次氨基。
需要特别指出的是,由于配体与受体之间的氢键相互作用一般具有明确的方向性,因此对于一个氢键给体或受体的描述,仅仅靠一个点是不够的。在药效团模型软件中(Discovery Studio, Catalyst),一般都采用两个点来描述氢键特征,一个点表示氢键特征中重原子的空间位置,而另一个点表示氢键给体或受体的矢量方向。对于氢键给体,矢量方向为重原子和与之相连的氢原子的成键方向。对于氢键受体,矢量方向一般为重原子和其上孤对电子连线的方向。如图2所示,为Discovery Studio软件包中氢键给体(紫色)和氢键受体(绿色)特征的示意图。在比较一个药效团和测试分子中的氢键特征时,不仅要比较氢键特征的位置,还需要比较氢键特征的矢量方向。
图2. 氢键受体与氢键给体矢量方向示意图
(三)疏水中心
疏水相互作用是配体与受体相互识别的重要作用方式。配体与受体上的疏水基团总是倾向于形成紧密的疏水堆积作用,形成疏水性内核。疏水相互作用本质上包含了熵效应和范德华相互作用两个部分。疏水基团一般由非极性原子组成,有疏水相互的片段很多,如甲基、乙基、苯环等。
与氢键给体、氢键受体特征不同,疏水中心无需用矢量表示,只需要用一个点表示配体与受体形成疏水相互作用的部位就可以了,见图3。
(四)芳环中心
芳环可以参与药物分子和蛋白受体之间∏电子离域系统的∏-∏相互作用。芳环中心主要包括五元和六元芳环,如噻吩、苯环等。在药效团模型方法中,芳环需要由两个参量来定义:一个参量是芳环的空间位置,即芳环中所有原子的几何中心;另一个参量是芳环平面矢量方向,一般用垂直于芳环平面的矢量来描述,见图3。
图3. 疏水中心和芳环中心药效特征示意图
(五)电荷中心
配体上的电荷中心是指配体上的带电基团,由于具有较多的部分电荷,这些基团往往可以和受体形成盐桥或较强的静电吸引作用。电荷中心既可以是带有电荷的原子,也可以是在生理PH下会发生电离的中性基团。比如,在生理PH下,脂肪胺会质子化形成正电荷中心,而羧基会去质子化形成负电荷中心。此外,∏电子离域系统,如羧酸盐、胍基、脒基等也可能形成电荷中心。电荷中心可以分为两类:正电荷中心和负电荷中心。
正电荷中心包括:
A.带正电荷的原子;
B.伯、仲、叔脂肪胺中的氮原子;
C.氮-氮双取代的脒基中的亚氨氮原子或四氮取代的胍基中的亚氨氮原子;
D.至少含有一个未取代氢原子的脒基中的氮原子中心或至少含有一个未取代氢原子的胍基中的氮原子中心。
负电荷中心包括:
A.带负电的原子;