与三角形有关的角测试题及答案

合集下载

《11-2与三角形有关的角(第1课时)》测试与评价

《11-2与三角形有关的角(第1课时)》测试与评价

《11.2与三角形有关的角(第1课时)》测试与评价本课时的主要内容是三角形的内角和定理.以下题目分为三个水平等级:水平1(用★☆☆表示):运用基本知识、基本技能就能解决的题目;水平2(用★★☆表示):灵活运用基本知识、基本技能,并要具备一定的运算能力和推理能力才能解决的题目;水平3(用★★★表示):综合运用基本知识、基本技能、方法技巧,并要具备一定的运算能力和推理能力才能解决的题目.一、选择题.1.在△ABC中,若∠A=60°,∠B=65°,则∠C=().A.65°B.55°C.45°D.75°考查目的:本题考查三角形的内角和的有关计算.水平等级:★☆☆解析:因为三角形的内角和为180°,所以∠C=180°-∠A-∠B=180°-60°-65°=55°,故选B.答案:B.2.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于().A.50°B.75°C.100°D.125°考查目的:本题考查三角形的内角和的有关计算.水平等级:★☆☆解析:由于∠B比∠C大25°,所以可将∠C表示为∠B-25°,然后利用三角形的内角和定理∠A+∠B+∠C=180°,列出关于∠B的方程,即55°+∠B+∠B-25°=180°,解得∠B=75°,故选B.答案:B.3.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是().(第3题)A .85°B .80°C .75°D . 70°考查目的:本题考查三角形的内角和以及角平分线的有关计算.水平等级:★☆☆解析:在△ABC 中先由三角形的内角和定理求出∠C =60°,然后由三角形的角平分线的定义求出∠DBC =35°,最后在△BDC 中利用内角和定理求出∠BDC=85°,故选A .答案:A .二、填空题.4. 在△ABC 中,∠A :∠B :∠C =1:2:3,则∠C = ,△ABC 是 三角形. 考查目的:本题考查三角形的内角和的有关计算以及直角三角形的定义.水平等级:★☆☆解析:本题可由条件设∠A =x °,∠B =2x °,∠C =3x °,然后根据三角形的内角和定理列方程x +2x +3x=180,解得x =30,从而求出∠C =3x °=90°,所以△ABC 是直角三角形.答案:90°,直角.5. 若直角三角形的一个锐角为20°,则另一个锐角等于.考查目的:本题考查三角形的内角和定理.水平等级:★☆☆解析:根据三角形的内角和等于180°,可以求出另一个锐角为70°.答案:70°.6. 如图,在△ABC 中,∠B =46°,∠C =54°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠ADE 的大小是 .(第6题)B考查目的:本题考查三角形的内角和定理以及角平分线、平行线的性质等.水平等级:★★☆解析:先由三角形的内角和定理求出∠BAC =80°,再由角平分线的定义求出∠BAD = 40°,最后再由DE ∥AB 的条件,得到∠ADE=∠BAD=40°.答案:40°.三、解答题.7. 如图,在△ABC 中,∠BAC =80°,∠C =60°,高AD 和角平分线BE 交于F ,求 ∠AFB .考查目的:本题考查三角形的内角和、高线、角平分线的有关计算.水平等级:★★☆(第7题)解析:本题可先在△ABC中由三角形的内角和定理求出∠ABC的度数,然后利用角平分线的条件求出∠ABF,在△ADC中求出∠DAC,进一步求出∠BAD,最后在△BAF 中利用内角和定理求出∠AFB.解:∵△ABC中,∠BAC=80°,∠C=60°,∴∠ABC=40°.又BE平分∠ABC,∴∠ABF=20°.∵在△ADC中,AD是高,∠C=60°,∴∠DAC=180°-90°-60°=30°.∴∠BAD=∠BAC-∠DAC =80°-30°=50°.∴△ABF中,∠AFB=180°-∠ABF-∠BAD=180°-20°-50°=110°.。

边角关系测试题及答案

边角关系测试题及答案

边角关系测试题及答案一、选择题1. 在三角形ABC中,如果∠A = 50°,∠B = 70°,那么∠C的度数是多少?A. 40°B. 50°C. 60°D. 70°2. 如果一个三角形的内角和为180°,那么在三角形ABC中,如果∠A = 90°,∠B = 45°,∠C的度数是多少?A. 45°B. 90°C. 135°D. 180°3. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角的度数是多少?A. 30°B. 45°C. 60°D. 90°二、填空题4. 如果三角形的一个角是直角,那么这个三角形的另外两个角的和是______。

5. 在一个三角形中,如果两个内角的度数之和为90°,那么这个三角形被称为______三角形。

三、简答题6. 解释什么是补角,并给出一个补角的例子。

7. 解释什么是邻补角,并给出一个邻补角的例子。

四、计算题8. 在一个三角形中,已知∠A = 120°,求∠B和∠C的度数。

9. 如果一个三角形的三个内角的度数之和为180°,且已知∠A = 60°,∠B = 50°,求∠C的度数。

五、解答题10. 证明在一个三角形中,任意两个内角的和小于180°。

答案:一、选择题1. C2. A3. C二、填空题4. 90°5. 直角三、简答题6. 补角是指两个角的度数之和等于90°,例如,如果一个角是60°,那么它的补角是30°。

7. 邻补角是指两个角共享一条边,且它们的另一条边互为反向延长线,例如,在一个直角三角形中,两个锐角互为邻补角。

四、计算题8. ∠B = ∠C = (180° - 120°) / 2 =30°9. ∠C = 180° - 60° - 50° = 70°五、解答题10. 证明:设三角形ABC中,∠A和∠B为任意两个内角。

11.2 《与三角形有关的角》测试题练习题常考题试卷及答案

11.2 《与三角形有关的角》测试题练习题常考题试卷及答案

11.2 与三角形有关的角一、单选题(共18题;共36分)1.将两个含30º和45º的直角三角板如图放置,则∠a的度数是().A. 10°B. 15°C. 20°D. 25°2.如图,AB∥CD,∠A=70°,∠C=40°,则∠E等于()A. 30°B. 40°C. 60°D. 70°3.如图,∠ACD是△ ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG // CE,交AB于点G,若∠1=70°,∠2=36°,则∠3=()A. 36°B. 40°C. 34°D. 70°4.如图,一把直尺的边缘AB 经过一块三角板 DCB 的直角顶点B,交斜边CD 于点A,直尺的边缘EF 分别交CD、BD 于点E、F,若∠D=60°,∠ABC=20°,则∠1 的度数为()A. 25°B. 40°C. 50°D. 80°5.如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A. 50°B. 60°C. 70°D. 80°6.若等腰三角形的一个角为40∘,则该等腰三角形的顶角为()A. 40∘B. 70∘C. 100∘D. 40∘或100∘7.如图,在△ABC中,D是BC延长线上一点,∠B=50°,∠ACD= 110°,则∠A=().A. 50∘B. 60∘C. 70∘D. 80∘8.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A. 57°B. 60°C. 63°D. 123°9.将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA//EF,则∠AOF等于()A.75°B.90°C.105°D.115°10.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A. 120°B. 180°C. 240°D. 300°11.如图,在ΔABC中,AD⊥BC,AE平分∠BAC,若∠BAE=30°,∠CAD=20°,则∠B的度数为()A. 30°B. 40°C. 50°D. 60°12.如图所示,被纸板遮住的三角形是()A.直角三角形B. 锐角三角形C. 钝角三角形D. 以上三种情况都有可能13.如图,△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A. 110°B. 120°C. 130°D. 140°14.在△ABC中,∠C=90°,∠B=50°,则∠A=()A. 60°B. 30°C. 50°D. 40°15.如图,在△ABC中,∠ABC=50°,AD,CD分别平分∠BAC,∠ACB,则∠ADC等于()A.125°B.105°C.115°D.100°16.如图,∠ABC与∠ACB的角平分线BO,CO相交于点O,∠A=100°,则∠BOC=A. 60°B. 100°C. 130°D. 140°17.一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是()A. 115°B. 120°C. 125°D. 130°18.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形二、填空题(共12题;共13分)19.如图,若△OAD≌△OBC,且∠O=75o,∠C=10o,则∠OAD=________°.20.如图,△ABC与△A′B′C′关于直线l对称,且∠A=102°,∠C′=25°,则∠B的度数为________21.如图,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°。

人教版八年级上册数学《与三角形有关的角》同步练习(含答案)

人教版八年级上册数学《与三角形有关的角》同步练习(含答案)

与三角形有关的角一 、选择题1.已知ABC ∆的三个内角为A ∠,B ∠,C ∠,令B C α∠=∠+∠,C A β∠=∠+∠,A B γ∠=∠+∠,则α∠,β∠,γ∠中锐角的个数至多为( )A .1个B .2个C .3个D .0个 2.如图,()A B C D E F G ∠+∠+∠+∠+∠+∠+∠=A .100︒B .120︒C .150︒D .180︒二 、填空题3.如图,ABC △中,ABC DBE EBC ACD DCE ECB ∠=∠=∠∠=∠=∠,,若145BEC ∠=︒,则BDC ∠等于 .4.如下图,求A B C D ∠+∠+∠+∠= .5.如图所示,点E 和D 分别在ABC ∆的边BA 和CA 的延长线上,若3050D B ∠=︒∠=︒,CF 、EF 分别平分ACB ∠和AED ∠,则F ∠的度数为 .GFEDCBAGFEDCBAED CBA 120︒100︒D CB A6.⑴如图,点P 是ABD ∠与ACD ∠的角平分线的交点,若60A ∠=︒,120D ∠=︒,则______BPC ∠=⑵如图,点P 是ABD ∠与ACD ∠的角平分线的交点,若40A ∠=︒,35P ∠=︒,则______D ∠=7.如右图所示,在ABC ∆中,CD 、BE 是外角平分线,BD 、CE 是内角平分线,BE 、CE 交于E ,BD 、CD 交于D ,试探索D ∠与E ∠的关系: .8.如图,在ABC △中,BD CD ,是ABC ACB ∠∠,的角平分线,连接AD ,125BDC ∠=︒,求ADB ∠的度数9.已知三角形的三个内角分别为α、β、γ,且αβγ≥≥,2αγ=,则β的取值范围是 .P DCBA DP CBA DCBA10.ABC ∆中,A ∠是最小角,B ∠是最大角,且25B A ∠=∠,若B ∠的最大值是m ︒,最小值是n ︒.则m n += .11.如下图,CGE α∠=,则A B C D E F ∠+∠+∠+∠+∠+∠= .12.如图,ABC △中,90C ∠=︒,13BAD BAE ∠=∠,13ABD ABF ∠=∠,则D ∠= .三 、解答题13.如下图,求C D ∠+∠的度数.14.如图,BF 是ABD ∠的角平分线,CE 是ACD ∠角的平分线,BE 与CF 交于G ,若140BDC ∠=︒,110BGC ∠=︒,求A ∠的度数.15.(1)若4030A B ∠=︒∠=︒,,求C D ∠+∠的度数(2)若BP CP 、为ABC ACD ∠∠、的角平分线,P ∠与A ∠和D ∠之间的关系αGFEDCBAFE DCB A70︒30︒E DCBA16.如右图所示,BD 是ABC ∠的角平分线,CD 是ABC ∆的外角平分线,BD 、CD交于点D ,若70A ∠=︒,求D ∠.17.如图,在三角形ABC 中,42A ∠=︒,ABC ∠和ACB ∠的三等分线分别交于D 、E ,求BDC ∠的度数.18.如图所示,已知70A ∠=︒,40B ∠=︒,20C ∠=︒,求BOC ∠度数.19.如图,求A B C D E ∠+∠+∠+∠+∠的度数.20.如图,P 是ABC △内一点,求证:BPC ∠>A ∠DCBAPDCBAABC D EF21.如下图所示,在ABC ∆中,90ACB ∠=︒,D 、E 为AB 上两点,若AE AC =,45DCE ∠=︒,求证:BC BD =.22.已知三角形有一个内角是(180)x -度,最大角与最小角之差是24︒.求x 的取值范围.PCBA54321E D CB A与三角形有关的角答案解析一 、选择题1.A;实际是问至多有几个顶点所对应的外角是锐角,即至多有几个内角是钝角.总结:一个三角形的内角至多有311⎧⎪⎨⎪⎩锐角个直角个钝角个 ;至少有2个锐角.2.D;如图,连接EF AC ,,则有G D GAD GCA ∠+∠=∠+∠,()()EFC AEF EAC ACF EAD CAD GCF GCA ∠+∠=∠+∠=∠+∠+∠+∠ ()()()()EAD GCF CAD GCA EAD GCF G D =∠+∠+∠+∠=∠+∠+∠+∠所以A B C D E F G ∠+∠+∠+∠+∠+∠+∠()()()EAD GCF G D B AEB CFB =∠+∠+∠+∠+∠+∠+∠ ()()EFC AEF B AEB CFB =∠+∠+∠+∠+∠()()180EFC CFB AEB AEF B EFB FEB B =∠+∠+∠+∠+∠=∠+∠+∠=︒二 、填空题3.110︒;根据燕尾形,故E A ABE ACE ∠=∠+∠+∠,2A E D ∠+∠=∠,35x y +=︒4.220︒.5.40︒;1()=402F D B ∠=∠+∠︒【解析】对顶八字形的应用 6.⑴90BPC ∠=︒;⑵30D ∠=︒7.D E ∠=∠;∵1122D AE A ∠=∠∠=∠,,∴D E ∠=∠ 8.35︒;两内角平分线的应用,1902A BDC ∠+︒=∠,又三内角平分线交于一点9.4572β︒︒≤≤;由题意可得2(180)3αβ=︒-,1803βγ︒-=,解不等式组yxED CBA2180(180)33βββ︒-︒-≥≥, 得:4572β︒︒≤≤.10.175;25A B ∠=∠,依题意得2718055B B B ∠︒-∠∠≤≤,解得75100B ︒∠︒≤≤,故175m n +=.11.2α.12.90︒;()()1118018033DAB ABD BAE ABD CAB ABC ∠+∠=∠+∠=︒-∠+︒-∠,90CAB ABC ∠+∠=︒三 、解答题13.180180100C D CED AEB A B ∠+∠=︒-∠=∠︒-∠=∠+∠=︒ 14.延长BD 交AC 于H ,则BDC HCD DHC ∠=∠+∠∵DHC A ABH ∠=∠+∠∴BDC A ABH HCD ∠=∠+∠+∠①∵BGC GFC FCG ∠=∠+∠,GFC A ABF ∠=∠+∠ ∴BGC A ABF FCG ∠=∠+∠+∠ ∴2222BGC A ABF FCG ∠=∠+∠+∠ 即22BGC A ABH ACD ∠=∠+∠+∠② ②-①得2BGC BDC A ∠-∠=∠ ∴211014080A ∠=⨯︒-︒=︒15.(1)70C D ∠+∠=︒.(2)如图⑤,x A y P +∠=+∠,x P y D +∠=+∠,化简可得2P A D ∠=∠+∠x x yy⑤DPCBA【解析】对顶八字形,需要掌握A B C D ∠+∠=∠+∠,第二问便是这个结论的应用16.∵ACE A ABC ∠=∠+∠∵12DCE ACE ∠=∠,12DBC ABC ∠=∠ ∴12DCE A DBC ∠=∠+∠ ∵DCE D DBC ∠=∠+∠∴12D DBC A DBC ∠+∠=∠+∠,即1352D A ∠=∠=︒.17.设ABC ∠的三分之一为x ,ACB ∠的三分之一为y ,因为三角形内角和为180︒, 所以有:3342180x y ++=︒, 即180423x y ︒-︒+=,所以180421802883BDC ︒-︒∠=︒-⨯=︒. 18.法1:如图(1),延长BO 交AC 于D ,求得130BOC ∠=法2:如图(2),连接BC ;法3:如图(3),连接AO 并延长到点D .本题的一个重要结论:如例题所示图形,BOC A B C ∠=∠+∠+∠ 19.连接BC ,∵EFD CFB ∠=∠(对顶角相等)∴E D FCB FBC ∠+∠=∠+∠(等量减等量差相等)∴ACB ABC ACD ABE FCB FBC ∠+∠=∠+∠+∠+∠(等量代换) ∵180A ABC ACB ∠+∠+∠=︒(三角形内角和定义) ∴180A B C D E ∠+∠+∠+∠+∠=︒(等量代换)20.图中没有三角形的外角,可适当引辅助线构造外角,再比较.延长BP 交AC 于D .则有BPC PDC ∠>∠,且PDC A ∠>∠,所以BPC A ∠>∠.21.如图,∵245∠=︒,AE AC =,∴523453∠=∠+∠=︒+∠.∴43A ∠=∠+∠,15(453)(90)345445B A A ∠=∠-∠=︒+∠-︒-∠=∠+∠-︒=∠-︒.∴4145BCD ∠=∠+∠︒=∠, ∴BC BD =.22.①若(180)x -度为最大角,则最小角为(156)x -度,那么,156180(180)(156)180x x x x ------≤≤,解得104112x ≤≤;②设(180)x -度是中间角,则121801222x x x --+≤≤,112128x ≤≤; ③设(180)x -度为最小角,则180180(180)(204)204x x x x ------≤≤,解得128136x ≤≤,综合⑴、⑵、⑶得x 的范围是104136x ≤≤.A PCBD。

初一数学与三角形有关的角试题

初一数学与三角形有关的角试题

初一数学与三角形有关的角试题1.一个三角形中最多有_____个内角是钝角,最多可有_____个角是锐角.【答案】,【解析】本题主要考查了三角形内角和. 根据三角形内角和是180°即可解决问题.解:如果一个三角形中出现2个或3个钝角,那么三角形的内角和就大于180°,不符合三角形内角和是180°,如果一个三角形中出现2个或3个直角,再加上第三个角,那么三角形的内角和就大于180°,也不符合三角形内角和是180°,所以,三角形中最多有一个钝角或直角,最少有两个锐角,一个三角形中最多有3个锐角,如锐角三角形,∴一个三角形最多有1钝角;最多有3个锐角.2.如图,_____.【答案】【解析】本题主要考查三角形的内角和定理. 连接∠2和∠4的顶点,可得两个三角形,根据三角形的内角和定理即可求出答案.解:连接∠2和∠4的顶点,可得两个三角形,根据三角形的内角和定理,∠1+∠2+∠3+∠4=360°.3.如图,已知折线,且.说明:.【答案】证明见解析【解析】本题考查的是三角形内角和定理.根据三角形内角和定理和平行线的判定求证解:连结BD在△BDC中,∠BDC+∠DBC+∠C=180°∵∴∠ABD+∠EDB =180°∴4.在△ABC中,若∠A=∠B=∠C,则∠C等于()A.45°B.60°C.90°D.120°【答案】C【解析】本题主要考查了三角形的内角和定理.依据三角形内角和定理得,∠C+∠C+∠C=180°,解得∠C=90°5.一个三角形的内角中,至少有()A.一个钝角B.一个直角C.一个锐角D.两个锐角【答案】D【解析】本题主要考查了三角形的内角和定理. 根据三角形的内角和等于180°,而直角与钝角都不小于90°,所以最多只能有一个,所以至少有两个锐角.解:∵三角形的内角和等于180°,∴直角或钝角至多有一个,∴锐角至少有两个.故选D.6.如图所示,∠1+∠2+∠3+∠4的度数为()A100° B.180° C.360° D.无法确定【答案】C【解析】本题主要考查了三角形的内角和定理.作如图辅助线,这样把∠1、∠2、∠3、∠4四个角的和转化为两个三角形的内角和,即2×180°=360°故选C7.如图所示,∠1+∠2+∠3+∠4的度数为 .【答案】300°【解析】本题主要考查了三角形的内角和定理. 根据三角形的内角和等于180°求解∵∠1+∠2=180°-30°=150°,∠3+∠4=180°-30°=150°,∴∠1+∠2+∠3+∠4=150°+150°=300°8.如图所示,在△ABC中,∠A=60°,BD,CE分别是AC,AB 上的高,H是BD,CE的交点,求∠BHC的度数.【答案】120°【解析】本题主要考查了三角形内角和定理.根据三角形内角和等于180°求解解:因为BD,CE分别是AC,AB 上的高,所以∠ADB=∠BEH=90°,所以∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,因此∠BHC=∠BEH+∠ABD=90°+30°=120°9.如图,______.【答案】【解析】本题主要考查了三角形的内角和定理.运用了三角形的内角和定理计算解:∵∠1+∠2=180°-40°=140°,∠3+∠4=180°-40°=140°,∴∠1+∠2+∠3+∠4=280°.10.已知∠A的两边与∠B的两边互相垂直,若∠A=80º,则∠B的度数是 .【答案】80º或100º【解析】本题主要考查角的概念若两个角的边互相垂直,那么这两个角必相等或互补,即可得到结果.两个角的边互相垂直,那么这两个角必相等或互补,∠A=80º,∠B80º或100º。

【能力培优】与三角形有关的角(含答案)

【能力培优】与三角形有关的角(含答案)

11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15° B.20° C.25° D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20° C.25° D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.参考答案:1.C解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=12∠ACE,∠2=12∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=12∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC ,∠BAP=12∠BAC,∠ABP=12∠ABC ,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°.(法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°,因为BD平分∠ABC,AP平分∠BAC,∠DBC=12∠ABC,∠PAC=12∠BAC ,所以∠DBC+∠PAD=45°.所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+12∠ACD=∠A+12∠ABD,即∠P=50°-12(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CD平分∠ACB,6.(1)证明:延长BD交AC于点E,∵∠BEC是△ABE的外角,∴∠BEC=∠A+∠B.∵∠BDC是△CED的外角,∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.祝福语祝你考试成功!。

与三角形有关的角练习题(含答案)

与三角形有关的角练习题(含答案)

第十一章三角形11.2 与三角形有关的角1.关于三角形内角的叙述错误的是A.三角形三个内角的和是180°B.三角形两个内角的和一定大于60°C.三角形中至少有一个角不小于60°D.一个三角形中最大的角所对的边最长2.下列叙述正确的是A.钝角三角形的内角和大于锐角三角形的内角和B.三角形两个内角的和一定大于第三个内角C.三角形中至少有两个锐角D.三角形中至少有一个锐角3.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是A.150°B.135°C.120°D.100°4.已知△ABC中,∠A=20°,∠B=∠C,那么△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.在不等边三角形中,最小的角可以是A.80°B.65°C.60°D.59°6.等腰三角形底角的外角比顶角的外角大30°,则这个三角形各内角度数是__________.7.等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的底角度数为__________.8.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=__________.9.若直角三角形的一个锐角为50°,则另一个锐角的度数是___________.10.求直角三角形两锐角平分线所夹的锐角的度数.11.一个零件的形状如图所示,按规定A∠、C∠应等于90︒,B∠应分别是21︒、32︒,检验工人量得∠=︒,就断定这个零件不合格,这是为什么呢?148BDC12.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是A.3 B.4 C.6 D.513.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC 边上的B′处,则∠ADB′等于A.25°B.30°C.35°D.40°14.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形15.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC= ___________.16.如图,将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=___________.17.如图,△ABC中,AD是高,AE是∠BAC的平分线,∠B=70°,∠DAE=18°,则∠C的度数是___________.18.如图,∠BCD为△ABC的外角,已知∠A=70°,∠B=35°,则∠BCD=___________.19.如图,AD是△ABC边BC上的高,BE平分∠△ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC 和∠BAC的度数.20.如图,△ABC中,∠A=40°,∠B=76°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF 的度数.21.如图,在△ABC中,D为AB边上一点,E为BC边上一点,∠BCD=∠BDC.(1)若∠BCD=70°,求∠ABC的度数;(2)求证:∠EAB+∠AEB=2∠BDC.22.如图,在ABC∠=∠,△中,AD是BC边上的高,E是AB上一点,CE交AD于点M,且DCM MAE 求证:AEM△是直角三角形.23.(2018•黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=A.75°B.80°C.85°D.90°24.(2018•宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是A.24°B.59°C.60°D.69°25.(2018•眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45°B.60°C.75°D.85°26.(2018•滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.27.(2018•淄博)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.28.(2018•宜昌)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC 的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.1.【答案】B【解析】A正确,根据三角形内角和定理可知,三角形三个内角的和是180°;C正确,三角形中至少有一个角不小于60°,否则三角形内角之和将小于180°;D正确,一个三角形中最大的角所对的边最长,不符合题意;B错误,三角形两个内角的和可能小于60°,如三角形的三个内角可以依次为20°,20°,140°,故B错误,故选B.4.【答案】A【解析】因为三角形内角和为180°,根据题意可得:∠B=∠C=80°,所以△ABC是锐角三角形.故选A.5.【答案】D【解析】在不等边三角形中,最小的角要小于60°,否则三内角的和大于180°.故选D.6.【答案】80°,50°,50°【解析】如图所示,AB=AC,∠1=∠2+30°.∵AB=AC,∴∠B=∠ACB,∵∠1、∠2分别是△ABC的外角,∴∠1=∠B+∠BAC,∠2=∠B+∠ACB,∵∠1=∠2+30°,∴∠1–∠2=∠B+∠BAC–∠B–∠ACB=∠BAC–∠ACB=30°①,∵∠B=∠ACB,∴∠B+ ∠ACB+∠A=180°,∴2∠ACB+∠BAC=180°,∴∠BAC=180°–2∠ACB,代入①得,180°–2∠ACB–∠ACB= 30°,解得,∠ACB=50°,∴∠B=50°,∠BAC=180°–∠B–∠ACB=180°–50°–50°=80°,∴这个三角形各个内角的度数分别是80°,50°,50°.故答案为:80°,50°,50°.7.【答案】70°或20°【解析】如图①,∵AB=AC,∠ABD=50°,BD⊥AC,∴∠A=40°,∴∠ABC=∠C=(180°–40°)÷2=70°;如图②:∵AB=AC,∠ABD=50°,BD⊥AC,∴∠BAC=50°+90°=140°,∴∠ABC=∠C=(180°–140°)÷2=20°,故答案为:70°或20°.9.【答案】40°【解析】因为三角形内角和为180°,一个直角为90°,一个锐角为50°,所以另一个锐角的度数为180°–90°–50°=40°.故答案为:40°.10.【解析】如图,△ACB 为直角三角形,C 为直角,AD ,BE 分别是∠CAB 和∠ABC 的角平分线,AD ,BE 相交于点F , ∵∠ACB =90°,∴∠CAB +∠ABC =90°, ∵AD ,BE 分别是∠CAB 和∠ABC 的角平分线, ∴∠FAB +∠FBA =21∠CAB +21∠ABC =45°, ∴∠DFB =∠FAB +∠FBA =45°,即直角三角形两锐角平分线所夹的锐角为45°.11.【解析】如图,延长CD 交AB 于点E .因为CDB∠是BDE△的一个外角,∴CDB B BED∠=∠+∠.因为BED∠是AEC△的一个外角,所以BED C A∠=∠+∠.所以902132143148CDB A B C∠=∠+∠+∠=︒+︒+︒=︒≠︒.所以可以判定这个零件不合格.12.【答案】A【解析】如图,过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD,可得12×4×2+12×AC×2=7.解得AC=3.故选A.13.【答案】D【解析】∵在△ACB中,∠ACB=100°,∠A=20°,∴∠B=180°–100°–20°=60°,∵△CDB′由△CDB翻折而成,∴∠CB′D=∠B=60°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D–∠A=60°–20°=40°.故选D.15.【答案】120°【解析】∵∠ABC=42°,∠A=60°,∠ABC+∠A+∠ACB=180°.∴∠ACB=180°–42°–60°=78°.又∵∠ABC、∠ACB的平分线分别为BE、CD,∴∠FBC=12∠ABC=21°,∠FCB=12∠ACB=39°.又∵∠FBC+∠FCB+∠BFC=180°,∴∠BFC=180°–21°–39°=120°.故答案为:120°.18.【答案】105°【解析】∠BCD=∠A+∠B=70°+35°=105°.故答案为:105°.19.【解析】∵AD是△ABC的高,∴∠ADB=90°,又∵180∠+∠+∠=︒,∠BED=70°,DBE ADB BED∴18020DBE ADB BED∠=︒-∠-∠=︒.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.又∵∠BAC+∠ABC+∠C=180°,∠C=60°,∴∠BAC=180°–∠ABC–∠C=80°.20.【解析】∵∠A=40°,∠B=76°,∴∠ACB=180°–40°–76°=64°,∵CE平分∠ACB,∴∠ACE=∠BCE=32°,∴∠CED=∠A+∠ACE=72°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=72°.21.【解析】(1)∵∠BCD=70°,∴∠BCD=∠BDC=70°,∴∠ABC=180°–70°–70°=40°.(2)∵∠EAB+∠AEB=180°–∠ABC,∠BCD+∠BDC=180°–∠ABC,即2∠BCD=180°–∠ABC,∴∠EAB+∠AEB=2∠BDC.22.【解析】∵AD是BC边上的高,∴90∠+∠=︒.DMC DCM又∵DMC AMEAME MAE∠+∠=︒,∠=∠,∴90∠=∠,DCM MAE即AEM△是直角三角形.23.【答案】A【解析】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°-25°=5°,∵△ABC中,∠C=180°-∠ABC-∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.24.【答案】B【解析】∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=59°,∵DE∥BC,∴∠D=∠DBC=59°,故选B.25.【答案】C【解析】如图,∵∠ACD=90°,∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选C.26.【答案】100°【解析】∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°-30°-50°=100°.故答案为:100°.27.【解析】如图,过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.28.【解析】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.。

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一、选择题(每小题 3 分,共 30 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:在直角三角形中,30°角所对的直角边等于斜边的一半。

设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。

2、已知在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:A解析:因为 sinA =,所以设 BC = 3x,AB = 5x,则 AC = 4x。

所以 tanB =。

3、在△ABC 中,∠C = 90°,AB = 15,sinA =,则 BC 等于()A 9B 12C 10D 6答案:B解析:因为 sinA =,所以 BC = AB×sinA = 15×= 9。

4、如图,在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,则cosB 的值是()A B C D答案:A解析:因为在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,所以BC = 3。

所以 cosB =。

5、一个直角三角形的两条直角边分别为 6 和 8,则其斜边上的高为()A 48B 5C 3D 10答案:A解析:根据勾股定理可得斜边为 10,设斜边上的高为 h,根据面积相等可得 ×6×8 = ×10×h,解得 h = 48。

6、在 Rt△ABC 中,∠C = 90°,若 sinA =,则 cosA 的值为()A B C D答案:B解析:因为 sin²A + cos²A = 1,sinA =,所以 cosA =。

7、如图,在 Rt△ABC 中,∠ACB = 90°,CD⊥AB 于点 D,若AC =,BC = 2,则 sin∠ACD 的值为()A B C D答案:A解析:因为∠ACB = 90°,AC =,BC = 2,所以 AB = 3。

《 与三角形有关的角》同步专题提升训练(附答案)2021-2022学年八年级数学人教版上册

《 与三角形有关的角》同步专题提升训练(附答案)2021-2022学年八年级数学人教版上册

2021-2022学年人教版八年级数学上册《11.2与三角形有关的角》同步专题提升训练(附答案)一.选择题1.如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E的度数是()A.20°B.30°C.50°D.70°2.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°3.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是()A.①③B.②④C.①③④D.①②③④4.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°6.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°7.如图,∠1,∠2,∠3,∠4恒满足关系式是()A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4﹣∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2﹣∠38.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°二.填空题9.如图,∠A=70°,∠B=15°,∠D=20°,则∠BCD的度数是.10.如图,在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,则∠A=.11.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=度.12.一副分别含有30°和45°的两个直角三角板,拼成如图图形,其中∠C=90°,∠B=45°,∠E=30°.则∠BFD的度数是.13.如图,∠A+∠B+∠C+∠D+∠E+∠F=度.14.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.15.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于.三.解答题16.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC的度数;(2)求∠EDF的度数.17.已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.18.如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.19.已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)20.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.参考答案一.选择题1.解:∵AB∥CD,∴∠BMD=∠B=50°,又∵∠BMD是△CDE的外角,∴∠E=∠BMD﹣∠D=50°﹣20°=30°.故选:B.2.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选:C.3.解:∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB故③正确.故选:C.4.解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选:B.5.解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.6.解:∵∠A+∠B+∠ACB=180°,∠ACB=100°,∠A=20°,∴∠B=60°,根据翻折不变性可知:∠CB′D=∠B=60°,∵∠DB′C=∠A+∠ADB′,∴60°=20°+∠ADB′,∴∠ADB′=40°,故选:A.7.解:∵∠6是△ABC的外角,∴∠1+∠4=∠6,﹣﹣﹣(1);又∵∠2是△CDF的外角,∴∠6=∠2﹣∠3,﹣﹣﹣(2);由(1)(2)得:∠1+∠4=∠2﹣∠3.故选:D.8.解:∵BE为△ABC的高,∴∠AEB=90°∵∠C=70°,∠ABC=48°,∴∠CAB=62°,∵AF是角平分线,∴∠1=∠CAB=31°,在△AEF中,∠EF A=180°﹣31°﹣90°=59°.∴∠3=∠EF A=59°,故选:A.二.填空题9.解:连接AC,并延长到E,∵∠A=70°,∠B=15°,∠D=20°,∴∠BCE=∠B+∠BAC,∠ECD=∠D+∠CAD,∴∠BCD=∠BCE+∠ECD=∠B+∠D+∠BAD=70°+15°+20°=105°,故答案为:105°.10.解:∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB),∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣130°=50°,∴∠ABC+∠ACB=50°×2=100°,∴∠A=180°﹣100°=80°.故答案为:80°.11.解:由题意得:∠NCM=∠NBM=×180°=90°,∴可得:∠CMB+∠CNB=180°,又∠CMB:∠CNB=3:2,∴∠CMB=108°,∴(∠ACB+∠ABC)=180°﹣∠CMB=72°,∴∠CAB=180°﹣(∠ACB+∠ABC)=36°.故答案为:36°.12.解:∵△CDE中,∠C=90°,∠E=30°,∴∠CDF=60°,∵∠CDF是△BDF的外角,∠B=45°,∴∠BFD=∠CDF﹣∠B=60°﹣45°=15°.故答案为:15°.13.解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.14.解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90°﹣72°=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.15.解:∵△ABC中,∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°,故答案为:230°.三.解答题16.解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∠ADC=50°+30°=80°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠ADE﹣∠ADC=100°﹣80°=20°.17.解:△ABD中,由三角形的外角性质知:∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①同理,得:∠2=∠EDC+∠C,已知∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B,②②代入①得:2∠EDC+∠B=∠B+40°,即∠EDC=20°.18.解:∵AD⊥BC∴∠ADC=90°∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20°;∵∠BAC=50°,∠C=70°∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的角平分线∴∠ABO=30°∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣25°﹣30°=125°.19.解:(1)结论:∠A+∠D=∠C+∠B;(2)结论:六个;(3)由∠D+∠1+∠2=∠B+∠3+∠4①(∵∠AOD=∠COB),由∠1=∠2,∠3=∠4,∴40°+2∠1=36°+2∠3∴∠3﹣∠1=2°(1)由∠ONC=∠B+∠4=∠P+∠2,②∴∠P=∠B+∠4﹣∠2=36°+2°=38°;(4)由①∠D+2∠1=∠B+2∠3,由②2∠B+2∠3=2∠P+2∠1①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1∠D+2∠B=2∠P+∠B.∴∠P=.20.解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°。

八年级数学上册《与三角形有关的角》测试题

八年级数学上册《与三角形有关的角》测试题

八年级数学上册《与三角形有关的角》测试题一、选择题(本大题共有15小题,每小题3分,满分45分)1. 一个三角形的一个内角大于其余两个内角的和,这个三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形【答案】B2. 在△ABC中,若∠A=96°,∠B=38°,则∠C的度数为()A.32°B.44°C.46°D.52°【答案】C3. 一个三角形的一个内角等于另外两个内角的和,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定【答案】A4. 如图,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数为()A.40°B.60°C.80°D.120°【答案】B5. 一个三角形的三个内角的度数比是1:2:1,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【答案】D6. 如图,直线a∥b,AC⊥AB,AC交直线b于点C,若∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°【答案】D7. 三角形的三个内角()A. 至少有两个锐角B. 至少有一个直角C. 至多有两个钝角D. 至少有一个钝角【答案】A8. 直角三角形中两个锐角的平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°【答案】B9.如图,点D在△ABC边AB的延长线上,DE∥BC. 若∠A=35°,∠C=24°,则∠D的度数是()A.24°B.59°C.60°D.69°【答案】B10. 如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠C=()A.75°B.80°C.85°D.90°【答案】A11. 下列选项能说明∠1>∠2的是()【答案】C12. 如图,已知AB⊥BD,AC⊥CD,∠A=36°,则∠D的度数为()A.36°B.46°C.54°D.64°【答案】A13. 如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【答案】C14. 如图,在△ABC中,CD是∠ACB的平分线,∠A=80°,∠ACB=60°,则∠BDC 的度数为()A.80°B.90°C.100°D.110°【答案】D15. 将一副三角尺按如图放置,则∠AOD的度数为()A.75°B.100°C.105°D.120°【答案】C二、填空题(本大题共有7小题,每空3分,满分36分)16. 已知△ABC中,∠A=60°,∠ABC、∠ACB的平分线交于点O,则∠BOC的度数为________度.【答案】12017.已知∠A,∠B,∠C为△ABC的三个内角.(1)若∠A=30°,∠B=50°,则∠C=;(2)若∠A=50°,∠B=∠C,则∠C=;(3)若∠A∶∠B∶∠C=1∶3∶5,则∠A=,∠B=,∠C=. 【答案】(1)100°(2)65°(3) 20°60°100°18. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.【答案】30°19. 根据图中已知角的度数,分别写出∠α的度数.(1)(2)(1)∠α=;(2)∠α=.【答案】(1)50°(2)27°20. 如图,已知△ABC中,AB=5,AC=3,则中线AD的取值范围是____________.【答案】1<AD<421. 将两张三角形纸片按如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=.【答案】40°22. 如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.【答案】55°三、解答题(本大题共有4小题,满分39分)23.(7分)如图,DE⊥AB于点E,∠A=40°,∠D=30°,求∠ACD的度数.解:∵DE⊥AB于点E,∠D=30°,∴∠B=90°-30°=60°.在△ABC中,∠ACB=180°-∠A-∠B=80°,∴∠ACD=180°-∠ACB=180°-80°=100°.24. (8分)如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.解:(1)∵BC=4,BD=5,∴BD-BC<CD<BD+BC,即1<CD<9.(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°.又∵∠A=55°,∴∠C=180°-∠AEC-∠A=70°.25. (9分)如图,点D,E分别在△ABC的边BC,AC上,AD,BE交于点F.求证:(1)∠AFB>∠C;(2)∠AFB=∠1+∠2+∠C.证明:(1)∵∠AFB是△AEF的一个外角,∴∠AFB>∠AEF.∵∠AEF是△BCE的一个外角,∴∠AEF>∠C,∴∠AFB>∠C.(2)∵∠AFB=∠AEB+∠1,∠AEB=∠C+∠2,∴∠AFB=∠1+∠2+∠C.26. (15分)动手操作:一个三角形的纸片ABC,沿DE折叠,使点A落在点A′处.观察猜想:(1)如图①,若∠A=40°,则∠1+∠2=°;若∠A=55°,则∠1+∠2=°;若∠A=n°,则∠1+∠2=°.(2)利用图①,探索∠1,∠2与∠A有怎样的关系?请说明理由.拓展应用:(3)如图②,把△ABC折叠后,BA′平分∠ABC,CA′平分∠ACB,若∠1+∠2=108°,利用(2)中结论求∠BA′C的度数.解:(1)∵点A沿DE折叠后落在点A′处,∴∠ADE =∠A ′DE ,∠AED =∠A ′ED , ∴∠ADE =12(180°-∠1),∠AED =12(180°-∠2) 在△ADE 中,∠A +∠ADE +∠AED =180°, ∴40°+12(180°-∠1)+12(180°-∠2)=180°, 整理,得∠1+∠2=80°.同理若∠A =55°,则∠1+∠2=110°; ∠A =n °,则∠1+∠2=2n °.(2)∠1+∠2=2∠A , 理由如下:∵∠BDE ,∠CED 是△ADE 的两个外角, ∴∠BDE =∠A +∠AED ,∠CED =∠A +∠ADE , ∴∠BDE +∠CED =∠A +∠AED +∠A +∠ADE , ∴∠1+∠ADE +∠2+∠AED =2∠A +∠AED +∠ADE , 即∠1+∠2=2∠A .(3)由(2)知∠1+∠2=2∠A ,得2∠A =108°, ∴∠A =54°.∵BA ′平分∠ABC ,CA ′平分∠ACB , ∴∠A ′BC +∠A ′CB =21(∠ABC +∠ACB ) =21(180°-∠A ) =90°-21∠A. ∴∠BA ′C =180°-(∠A ′BC +∠A ′CB ), =180°-(90°-21∠A ) =90°+21∠A=90°+21×54° =117°.。

与三角形有关的角试题

与三角形有关的角试题

21B A C M 与三角形有关的角1.三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.2、三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。

.3.三角形外角的性质 (1)三角形的一个外角等于它不相邻的两个内角之和.(2)三角形的一个角大于与它不相邻的任何一个内角.注意:(1)它不相邻的内角不容忽视;(2)作CM ∥AB 由于B 、C 、D 共线∴∠A=∠1,∠B=∠2.即∠ACD=∠1+∠2=∠A+∠B.那么∠ACD>∠A.∠ACD>∠B 。

例1.如图,已知∠1=20o ,∠2=25o ,∠A=35o ,则∠BDC 的度数为________例2.在△ABC 中,∠A=∠B=∠C ,则此三角形是(??)A .锐角三角形?????B .直角三角形???C .钝角三角形???D .等腰三角形例3、探索发现:.如图,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P ,且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.⑴.β=180°-(∠B+∠C)/2=90°+α/2.⑵.∠B/2+∠C+(180°-∠C)/2+β=180°.α=180°-∠B -∠C.算得β=α/2.⑶β=180°-[(180°-∠B)/2+(180°-∠C)/2]=90°-α/2.例4.如图,在△ABC 中,AD ⊥BC 于D ,AE 平分∠BAC(∠C>∠B),试说明∠EAD=(∠C ?∠B).解:(1)∵∠1=∠2,∴∠1=∠BAC ,又∵∠BAC=180°-(∠B+∠C ),∴∠1=[180°-(∠B+∠C )]=90°-(∠B+∠C ),∴∠EDF=∠B+∠1=∠B+90°-(∠B+∠C )=90°+(∠B-∠C ),又∵EF ⊥BC ,∴∠EFD=90°, ∴∠DEF=90°-∠EDF=90°-[90°+(∠B-∠C )]=(∠C-∠B );(2)当点E 在AD 的延长线上时,其余条件都不变,(1)中探索所得的结论仍成立。

7.2 与三角形有关的角(含答案)

7.2 与三角形有关的角(含答案)

7.2 与三角形有关的角一、选择题:1.如果三角形的三个内角的度数比是5:3:4,则它是( )A.锐角三角形B.钝角三角形;C.直角三角形D.钝角或直角三角形2.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60°3.已知三角形的一个内角是另一个内角的3倍,是第三个内角的6倍,则这个三角形各内角的度数分别为( )A.18°,54°,108°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90°4.若一个三角形的一个外角等于与它相邻的内角,则这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.无法确定5.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )A.30°B.60°C.90°D.120°6.已知三角形的三个外角的度数比为1:2:2,则它的最大内角的度数为( )A.90°B.110°C.108°D.120°7.已知三角形两个内角的和大于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形8.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ中( )A.有两个锐角、一个钝角B.有两个钝角、一个锐角C.至少有两个钝角D.三个都可能是锐角9.在△ABC中,∠A=2∠B=3∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.已知等腰三角形的一个外角是120°,则它是( )11.如图所示,若∠A =30°,∠B =55°,∠C =40°,则∠DFE 等于( )A .120°B .125°C .110°D .105°F EDCBA654321FECBA第11题 第12题 12.如图所示,在△ABC 中,E ,F 分别在AB ,AC 上,则下列各式不能成立的是( )A .∠BOC =∠2+∠6+∠A ;B .∠2=∠5-∠A ;C .∠5=∠1+∠4;D .∠1=∠ABC +∠4 二、填空题:1.三角形中,若最大内角等于最小内角的3倍,最小内角又比另一个内角小30°,则此三角形的最小内角的度数是________.2.在△ABC 中,若∠A +∠B =∠C ,则此三角形为_______三角形;若∠A +∠B <∠C ,则此三角形是_____三角形.3.三角形的三个外角中,最多有_______个锐角.4.如果一个三角形的各内角与一个外角的和是250°,则与这个外角相邻的内角是____度.5.已知等腰三角形的一个外角为100°,则它的底角为_____.6.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______.7.在△ABC 中,∠B ,∠C 的平分线交于点O ,若∠BOC =120°,则∠A =_______度.8.如图所示,已知∠1=20°,∠2=25,∠A =35°,则∠BDC 的度数为________. 21DCB AEODCBA三、解答题1.如图所示,在△ABC 中,AD ⊥BC 于D ,AE 平分∠BAC (∠C >∠B ), 试说明∠EAD =12(∠C -∠B ). E D CBA2. 如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°, 求∠DAC 的度数.4321D CBA3.如图所示,已知∠1=∠2,∠3=∠4,∠C =32°,∠D =28°,求∠P 的度数.43P21DCBA4.如图所示,在△ABC 中,∠A =α,△ABC 的内角平分线或外角平分线交于点P , 且∠P =β,试探求下列各图中α与β的关系,并选择一个加以说明.(1)PCBA(2)PCBA(3)PCBA5.如图所示,将△ABC 沿EF 折叠,使点C 落到点C ′处,试探求∠1,∠2与∠C 的关系.21C 'FEC BA参考答案一、选择题C B A A C C A C B C B C 二、填空题1.30°2.直角 钝角3.14.110°5、80°或 50°6、36°7.60°8.80° 三、解答题 1.解:∵AD ⊥BC ,∴∠BDA =90°, ∴∠BAD =90°-∠B , 又∵AE 平分∠BAC , ∴∠BAE =12∠BAC =12(180°-∠B -∠C ), ∴∠EAD =∠BAD -∠BAE=90°-∠B -12(180°-∠B -∠C ) =90°-∠B -90°+12∠B +12∠C=12∠C -12∠B =12(∠C -∠B ). 2.2403.3004. 00111(1)90(2)(3)90222βαβαβα=+==-(说明略)5.解:∵∠1=180°-2∠CEF ,∠2=180°-2∠CFE ,∴∠1+∠2=360°-2(∠CEF + ∠CFE ) =360°-2(180°-∠C ) =360°-360°+2∠C =2∠C .。

初中数学八年级上册与三角形有关的角练习题含答案

初中数学八年级上册与三角形有关的角练习题含答案

初中数学八年级上册与三角形有关的角练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 给定下列条件,不能判定三角形是直角三角形的是()A.∠A:∠B:∠C=2:3:5B.∠A−∠C=∠BC.∠A=∠B=2∠CD.∠A=12∠B=13∠C2. 在△ABC中,若∠A=60∘,∠B=95∘,则∠C的度数为()A.24∘B.25∘C.30∘D.35∘3. 关于三角形的三个内角,下面说法错误的是()A.必有一内角不少于60∘B.必有一内角不大于60∘C.最少有两个锐角D.最多有两个锐角4. 下列各组数中不能作为直角三角形三边长的是()A.√1,√2,√3B.7,24,25C.6,8,10D.1,2,35. 给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形,菱形).其中,能用完全重合的含有30∘角的两块三角板拼成的图形是()A.②③B.②③④C.①③④⑤D.①②③④⑤6. 在一个直角三角形中,有一个锐角等于40∘,则另一个锐角的度数是()A.40∘B.50∘C.60∘D.70∘7. 在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形8. 如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,D是∠ACB外角与内角∠ABC 平分线交点,E是∠ABC,∠ACB外角平分线交点,若∠BOC=120∘,则∠D=()度.A.15∘B.20∘C.25∘D.30∘9. 如果一个三角形的两个外角之和为270∘,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定10. 如图所示,一块试验田的形状是三角形(设其为△ABC),管理员从BC边上的一点D出发,沿DC⇒CA⇒AB⇒BD的方向走了一圈回到D处,则管理员从出发到回到原处在途中身体()A.转过90∘B.转过180∘C.转过270∘D.转过360∘11. 如图,在△ABC中,∠A=30∘,若∠B=∠C,则∠B的度数是________度.12. 如图,一副三角板叠在一起放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100∘,那么∠BMD为________度.13. 在△ABC中,若∠C=90∘,∠B=35∘,则∠A的度数为________.14. 在Rt△ABC中,∠C=90∘,∠A=70∘,则∠B=________.15. 在直角三角形中,已知一个锐角为25∘,则另一个锐角的度数为________.16. 如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75∘,则∠D=________.17. 在Rt△ABC中,锐角∠A的平分线与锐角∠B的平分线相交于点D,则∠ADB=________.18. 如图,∠1、∠2是△ABC的外角,已知∠1+∠2=260∘,求∠A的度数是________.19. 如图,已知△ABC的内角∠A=a,分别作内角∠ABC与外角∠ACD的平分线,两条平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…以此类推得到∠A2016,则∠A2016的度数是________.20. 如图,在△ABC中,∠ABC和∠ACB的外角平分线交于D,∠A=50∘,那么∠D=________.21. 如图,在△ABC中,D是BC上一点,∠1=∠2,∠3=∠4,∠BAC=80∘,求∠DAC 的度数.22. 如图,在△ABC中,D,E是边AC,BC上的点,AE和BD交于点F,已知∠CAE= 20∘,∠C=40∘,∠CBD=30∘ .(1)求∠AFB的度数;(2)若∠BAF=2∠ABF,求∠BAF的度数.23. 如图,AC⊥BD,∠1=∠2,∠D=35∘,求∠BAD的度数.24. 如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=70∘,∠C=30∘,求∠DAE和∠AOB.25. 如图,AD、AE分别为△ABC的高和角平分线,∠B=35∘,∠C=45∘,求∠DAE的度数.26. 如图所示,在△ABC中,∠A=40∘,BD是角平分线,CE⊥AB于E,∠BDC=70∘,BD,CE交于点F,求∠BFC和∠ACB的度数.27. 如图,D是△ABC中BC边延长线上一点,DF⊥AB于F,交AC于E,∠A=40∘,∠D=30∘,求∠ACB的度数.28. 在△ABC中,∠C=90∘,∠B=55∘,点D在边BC上,点E在CA的延长线上,连接DE,∠E=25∘,求∠BFD的度数.29. 如图在直角三角形ABC中,∠ACB=90∘,斜边AB的高为CD,若AC=3,BC=4,AB=5,(1)求S△ABC;(2)求CD.30. 如图,在直角△ABC中,∠C=90∘,BD平分∠ABC交AC于点D,AP平分∠BAC交BD于点P.(1)∠APD的度数为________;(2)若∠BDC=58∘,求∠BAP的度数.31. 如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=69∘,求∠DAC的度数.32. 如图,已知在△ABC中,AB>AC,∠AEF=∠AFE,延长EF于BC的延长线交于点(∠ACB−∠B).G点,求证:∠G=1233. 如图所示,已知在△ABC中,AD⊥BC于D,AE平分∠BAC,若∠B=28∘,∠DAE=16∘,求∠C的度数.34. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.(1)已知一个“特征三角形”的“特征角”为100∘,求这个“特征三角形”的最小内角的度数;(2)是否存在“特征角”为120∘的三角形,若不存在,请说明理由.35. 已知:如图,△ABC中,∠A=45∘,E是∠ABC的平分线与∠ACB的外角平分线的交点.求∠E的度数.36. 如图,∠B=60∘,∠BAC=80∘,AD⊥BC,AE平分∠BAC,求∠DAE的度数.37. 已知△ABC中,∠ACD是外角,BE平分∠ABC,CE平分∠ACD,∠BEC=52∘,求∠EAC的度数.38. 如图,点P是△ABC内的一点,连接BP、CP.求证:∠BPC>∠BAC.39. 在△ABC中,∠A=12∠B=13∠C,求△ABC各内角的度数.40. 已知∠ACD=150∘,∠B=120∘,求∠A.参考答案与试题解析初中数学八年级上册与三角形有关的角练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】三角形内角和定理【解析】根据三角形的内角和等于180∘求出三角形的最大角,进而得出结论.【解答】×180∘=90∘,解:A,最大角∠C=52+3+5是直角三角形,不符合题意;B,由∠A−∠C=∠B,可得∠B+∠C=∠A,则最大角∠A=180∘÷2=90∘,是直角三角形,不符合题意;x,C,设∠A=∠B=x,则∠C=12x=180∘,解得x=72∘,所以x+x+12则最大角∠A=∠B=72∘,是锐角三角形,符合题意;D,设∠A=x,则∠B=2x,∠C=3x,所以x+2x+3x=180∘,解得x=30∘,则最大角∠C=3×30∘=90∘,是直角三角形,不符合题意.故选C.2.【答案】B【考点】三角形内角和定理【解析】此题暂无解析【解答】解:根据三角形的内角和定理可得:∠C=180∘−∠A−∠B=180∘−60∘−95∘=25∘.故选B.3.【答案】D【考点】三角形内角和定理【解析】本题考查了三角形的内角和定理的应用.【解答】解:根据三角形的内角和等于180∘,一个三角形的三个内角中至少有两个锐角,可以有三个锐角.故选D.4.【答案】A【考点】直角三角形的性质【解析】此题暂无解析【解答】此题暂无解答5.【答案】C【考点】直角三角形的性质【解析】当把完全重合的含有30∘角的两块三角板拼成的图形有三种情况:①当把60度角对的边重合,且两个直角的顶角也重合时,所成的图形是等边三角形;②当把30度角对的边重合,且两个直角的顶角也重合时,所成的图形是等腰三角形;③当斜边重合,且一个三角形的30度角的顶点与另一个三角形60度角的顶点重合时,所成的图形是矩形,矩形也是平行四边形.【解答】解:如图,把完全重合的含有30∘角的两块三角板拼成的图形有四种情况:分别有等边三角形,等腰三角形(腰与底边不相等),矩形,平行四边形.故选C.6.【答案】B【考点】直角三角形的性质【解析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵直角三角形中,一个锐角等于40∘,∴另一个锐角的度数=90∘−40∘=50∘.故选:B.7.【答案】A【考点】三角形内角和定理【解析】根据三角形的内角和定理及三个内角的比例关系即可解答.【解答】解:设∠A=2x,∠B=3x,∠C=5x2x+3x+5x=180∘解得:x=18∘∴ ∠A=36∘,∠B=54∘,∠C=90∘∴ ABC为直角三角形,故答案为:A.8.【答案】D【考点】三角形的外角性质三角形内角和定理三角形的角平分线【解析】根据角平分线的定义有∠ABC=2∠OBC,∠ACB=2∠0CB,根据三角形内角和定理得∠A,再根据三角形内角2∠OBC+2∠OCB+∠A=180∘,即有∠OCB+∠OBC=90∘−12∠A,即可得到和定理得到∠OCB+∠OBC+∠BOC=180∘,于是有∠BOC=90∘+12∠BOC的度数,三角形外角的性质有∠FCD=∠D+∠DBC,∠ACF=∠ABC+∠A,则∠A,于是得到∠D,然后根据三角形的2∠D+2∠DBC=∠ABC+∠A,即可得到∠D=12内角和即可得到结论.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,又∵∠ABC+∠ACB+∠A=180∘,∴2∠OCB+2∠OBC+∠A=180∘,∴∠OCB+∠OBC=90∘−1∠A,2又∵∠OCB+∠OBC+∠BOC=180∘,∴90∘−1∠A+∠BOC=180∘,2∴∠BOC=90∘+1∠A,2而∠BOC=120∘,∴∠A=60∘,∵∠DCF=∠D+∠DBC,∠ACF=∠ABC+∠A,BD平分∠ABC,DC平分∠ACF,∴∠ACF=2∠DCF,∠ABC=2∠DBC,∴2∠D+2∠DBC=∠ABC+∠A,∴2∠D=∠A,即∠D=1∠A.2∵∠A=60∘,∴∠D=30∘,故选D.9.【答案】B【考点】三角形的外角性质【解析】先根据邻补角求出∠BAC+∠BCA,再根据三角形内角和定理求出即可.【解答】解:如图:∵∠EAC+∠FCA=270∘,∴∠BAC+∠ACB=180∘−∠EAC+180∘−∠FCA=360∘−(∠EAC+∠FCA)=90∘,∴∠B=180∘−(∠BAC+∠ACB)=90∘,即△ABC是直角三角形.故选B.10.【答案】D【考点】三角形的外角性质【解析】由题意可得,管理员从出发到回到原处正好走过转过的角度是三角形的外角和360∘.【解答】解:管理员正面朝前行走,转过的角的和正好为三角形的外角和360∘.故选D.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】75【考点】三角形内角和定理【解析】根据三角形内角和定理即可求得结论.【解答】解:∵∠A+∠B+∠C=180∘,∵∠A=30∘,∠B=∠C,∴∠B=180∘−∠A=75∘.2故答案为:75.12.【答案】85【考点】三角形内角和定理【解析】先根据∠ADF=100∘求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.【解答】解:∵∠ADF=100∘,∠EDF=30∘,∴∠MDB=180∘−∠ADF−∠EDF=180∘−100∘−30∘=50∘,∴∠BMD=180∘−∠B−∠MDB=180∘−45∘−50∘=85∘.故答案为:85.13.【答案】55∘【考点】三角形内角和定理【解析】根据直角三角形的性质解答即可.【解答】解:∵在△ABC中,∠C=90∘,∠B=35∘,∴∠A=180∘−90∘−35∘=55∘.故答案为:55∘.14.【答案】20∘【考点】直角三角形的性质【解析】此题暂无解析【解答】解:根据直角三角形的两锐角互余可得,∵∠C=90∘,∠A=70∘,∴∠B=90∘−∠A=20∘.故答案为:20∘.15.【答案】65∘【考点】直角三角形的性质【解析】直角三角形两个锐角和为90∘,即可得另一个锐角度数.【解答】解:由题意得,在直角三角形中,两个锐角和为90∘,∴另一个锐角的度数为:90∘−25∘=65∘.故答案为:65∘.16.【答案】40∘【考点】直角三角形的性质【解析】先根据∠FCD=60∘及三角形内角与外角的性质及∠A:∠B=1:2可求出∠A的度数,再由DE⊥AB及三角形内角和定理解答可求出∠AFE的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠FCD=75∘,∴∠A+∠B=75∘,∵∠A:∠B=1:2,∴∠A=13×75∘=25∘,∵DE⊥AB于E,∴∠AFE=90∘−∠A=90∘−25∘=65∘,∴∠CFD=∠AFE=65∘,∵∠FCD=75∘,∴∠D=180∘−∠CFD−∠FCD=180∘−65∘−75∘=40∘.故答案为:40∘17.【答案】135∘【考点】三角形内角和定理直角三角形的性质【解析】根据三角形内角和定理求出∠CAB+∠CBA,再根据角平分线的定义求出∠DAB+∠DBA,然后利用三角形内角和定理列式进行计算即可得解.【解答】解:在Rt△ABC中,∠CAB+∠CBA=180∘−90∘=90∘,∵锐角∠A的平分线与锐角∠B的平分线相交于点D,∴∠DAB+∠DBA=12(∠CAB+∠CBA)=12×90∘=45∘,在△ABD中,∠ADB=180∘−(∠DAB+∠DBA)=180∘−45∘=135∘.故答案为:135∘.18.【答案】80∘【考点】三角形的外角性质【解析】根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260∘,根据三角形内角和定理得出∠A+∠ACB+∠ABC=180∘,即可得出答案.【解答】∵∠1、∠2是△ABC的外角,∠1+∠2=260∘,∴∠A+∠ACB+∠A+∠ABC=260∘,∵∠A+∠ACB+∠ABC=180∘,∴∠A=80∘,19.【答案】α22016【考点】三角形的外角性质三角形内角和定理【解析】根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可求出∠A1的度数,同理求出∠A2,可以发现后一个角等于前一个角的12,根据此规律即可得解.【解答】解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴12(∠A+∠ABC)=12∠ABC+∠A1,∴∠A1=12∠A,∵∠A=α,∴∠A1=α2;同理可得∠A2=12∠A1=12⋅12α=α22,∴∠A n=α2n,∴∠A2016=α22016.故答案为:α22016 20.【答案】65∘【考点】三角形的外角性质三角形内角和定理三角形的角平分线【解析】先根据外角平分线的性质求出∠DBC 、∠DCB 与∠A 的关系,再由三角形内角和定理解答即可.【解答】解:∵ BD 、CD 是∠ABC 和∠ACB 外角的平分线,∴ ∠CBD =12(∠A +∠ACB),∠BCD =12(∠A +∠ABC),∵ ∠ABC +∠ACB =180∘−∠A ,∠BDC =180∘−∠CBD −∠BCD=180∘−12(∠A +∠ACB +∠A +∠ABC) =180∘−12(2∠A +180∘−∠A) =90∘−12∠A .=65∘.故答案为:65∘.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:∵ ∠BAC =80∘,∴ ∠2+∠3=100∘. ①∵ ∠1=∠2,∴ ∠4=∠3=∠1+∠2=2∠2. ②把②代入①得:3∠2=100∘,解得∠2=1003∘,∴ ∠DAC =80∘−1003∘=1403∘.【考点】三角形的外角性质三角形内角和定理 【解析】根据三角形的内角和定理和三角形的外角性质即可解决.【解答】解:∵ ∠BAC =80∘,∴ ∠2+∠3=100∘. ①∵ ∠1=∠2,∴ ∠4=∠3=∠1+∠2=2∠2. ②把②代入①得:3∠2=100∘,解得∠2=1003∘,∴ ∠DAC =80∘−1003∘=1403∘.22.【答案】解:(1)∵ ∠AEB =∠C +∠CAE =40∘+20∘=60∘,∴ ∠AFB =∠CBD +∠AEB =30∘+60∘=90∘.(2)由(1)可知,∠AFB =90∘,又∠BAF =2∠ABF ,∴ 3∠ABF =90∘,∴ ∠ABF =30∘,∴ ∠BAF =2∠ABF =60∘ .【考点】三角形的外角性质三角形内角和定理【解析】无无【解答】解:(1)∵ ∠AEB =∠C +∠CAE =40∘+20∘=60∘,∴ ∠AFB =∠CBD +∠AEB =30∘+60∘=90∘.(2)由(1)可知,∠AFB =90∘,又∠BAF =2∠ABF ,∴ 3∠ABF =90∘,∴ ∠ABF =30∘,∴ ∠BAF =2∠ABF =60∘ .23.【答案】解:∵ AC ⊥BD ,∠1=∠2,∴ ∠1=45∘,∠ACB =90∘.∵ ∠D =35∘,∴ ∠CAD =55∘,∴ ∠BAD =∠1+∠CAD =100∘.【考点】三角形内角和定理【解析】利用三角形的内角和定理和已知条件易求∠,∠CAD 的度数,进而可求出∠BAD 的度数.【解答】解:∵ AC ⊥BD ,∠1=∠2,∴ ∠1=45∘,∠ACB =90∘.∵ ∠D =35∘,∴ ∠CAD =55∘,∴ ∠BAD =∠1+∠CAD =100∘.24.【答案】解:(1)∵ ∠ABC =70∘,∠C =30∘,∴∠BAC=180∘−∠ABC−∠C=80∘,∵AE、BF分别是∠BAC、∠ABC的平分线,∴∠CAE=12∠BAC=40∘,∠CBF=12∠ABC=35∘,∴∠AED=∠CAE+∠C=40∘+30∘=70∘,∵AD⊥BC,∴∠DAE=90∘−∠AED=20∘;(2)∵∠AOB=∠AED+∠CBF,∴∠AOB=70∘+35∘=105∘.【考点】三角形内角和定理三角形的外角性质【解析】(1)先根据三角形内角和定理计算出∠BAC=180∘−∠ABC−∠C=80∘,再根据角平分线的性质得到∠CAE=12∠BAC=40∘,利用三角形外角性质得∠AED=∠CAE+∠C= 70∘,进一步求得∠DAE;(2)利用三角形外角的性质得出∠AOB=∠AED+∠CBF进行计算.【解答】解:(1)∵∠ABC=70∘,∠C=30∘,∴∠BAC=180∘−∠ABC−∠C=80∘,∵AE、BF分别是∠BAC、∠ABC的平分线,∴∠CAE=12∠BAC=40∘,∠CBF=12∠ABC=35∘,∴∠AED=∠CAE+∠C=40∘+30∘=70∘,∵AD⊥BC,∴∠DAE=90∘−∠AED=20∘;(2)∵∠AOB=∠AED+∠CBF,∴∠AOB=70∘+35∘=105∘.25.【答案】解:在△ABC中,∵AE平分∠BAC,∴∠CAE=12∠BAC,∵∠B=35∘,∠C=45∘,∴∠BAC=100∘,∠DAC=45∘,∴∠CAE=50∘,∴∠DAE=∠CAE−∠DAC=5∘.【考点】三角形内角和定理【解析】根据三角形内角和定理求得∠BAC的度数,则依据角平分线的定义求得角∠EAC,然后在直角△ACD中,求得∠DAC的度数,则∠DAE=∠CAE−∠DAC即可求解.【解答】解:在△ABC中,∵AE平分∠BAC,∴∠CAE=12∠BAC,∵∠B=35∘,∠C=45∘,∴∠BAC=100∘,∠DAC=45∘,∴∠CAE=50∘,∴∠DAE=∠CAE−∠DAC=5∘.26.【答案】解:∵∠A=40∘,∠BDC=70∘,∴∠ABD=∠BDC−∠A=30∘,∵BD是角平分线,∴∠ABC=60∘,∴∠ACB=180∘−∠A−∠ABC=80∘,∵CE⊥AB于E,∠ABD=30∘,∴∠BFC=∠ABD+∠BEF=120∘.【考点】三角形内角和定理三角形的外角性质【解析】根据三角形外角的性质得到∠ABD=∠BDC−∠A.利用角平分线的定义得到∠ABC,利用三角形的内角和得出∠ACB;根据三角形外角的性质得到∠BFC=∠ABD+∠BEF.【解答】解:∵∠A=40∘,∠BDC=70∘,∴∠ABD=∠BDC−∠A=30∘,∵BD是角平分线,∴∠ABC=60∘,∴∠ACB=180∘−∠A−∠ABC=80∘,∵CE⊥AB于E,∠ABD=30∘,∴∠BFC=∠ABD+∠BEF=120∘.27.【答案】解:在△DFB中,∵DF⊥AB,∴∠DFB=90∘,∵∠D=30∘,∠DFB+∠D+∠B=180∘,∴∠B=60∘.在△ABC中,∠A=40∘,∠B=60∘,∴∠ACB=180∘−∠A−∠B=80∘.所以∠ACB的度数是80度.【考点】三角形内角和定理【解析】在直角三角形DFB中,根据三角形内角和定理,求得∠B的度数;再在△ABC中求∠ACB的度数即可.【解答】解:在△DFB中,∵DF⊥AB,∴∠DFB=90∘,∵∠D=30∘,∠DFB+∠D+∠B=180∘,∴∠B=60∘.在△ABC中,∠A=40∘,∠B=60∘,∴∠ACB=180∘−∠A−∠B=80∘.所以∠ACB的度数是80度.28.【答案】解:∵∠C=90∘,∠E=25∘,∴∠EDC=65∘,∴∠BFD=∠EDC−∠B=10∘.【考点】三角形的外角性质直角三角形的性质【解析】根据三角形内角和定理求出∠EDC的度数,根据三角形的外角的性质计算即可.【解答】解:∵∠C=90∘,∠E=25∘,∴∠EDC=65∘,∴∠BFD=∠EDC−∠B=10∘.29.【答案】解:(1)∵直角三角形ABC中,∠ACB=90∘,斜边AB的高为CD,AC=3,BC=4,∴S△ABC=12AC⋅BC=12×3×4=6;(2)∵在直角三角形ABC中,∠ACB=90∘,斜边AB的高为CD,AB=5,∴S△ABC=12AB⋅CD=12×5CD=6CD=125.【考点】直角三角形的性质【解析】根据已知条件,利用直角三角形的面积公式解答.【解答】解:(1)∵直角三角形ABC中,∠ACB=90∘,斜边AB的高为CD,AC=3,BC=4,∴S△ABC=12AC⋅BC=12×3×4=6;(2)∵在直角三角形ABC中,∠ACB=90∘,斜边AB的高为CD,AB=5,∴S△ABC=12AB⋅CD=12×5CD=6CD=125.30.45∘.(2)∵∠BDC=58∘,∴∠DBC=90∘−∠BDC=32∘,∵BD平分∠ABC,∴∠ABD=∠DBC=32∘,∴∠BAP=∠APD−∠ABD=45∘−32∘=13∘.【考点】直角三角形的性质【解析】(1)先利用三角形内角和定理,得出∠ABC+∠BAC=90∘,再由角平分线的定义得到∠BAP+∠ABP=45∘,然后根据三角形外角的性质得出∠APD=∠BAP+∠ABP,即可求解;(2)先利用三角形内角和定理的推论,得出∠DBC=32∘,再由角平分线的定义得到∠ABD=∠DBC=32∘,然后根据三角形外角的性质得出∠BAP=∠APD−∠ABD,即可求解.【解答】解:(1)∵∠C=90∘,∴∠ABC+∠BAC=90∘,∴12(∠BAC+∠ABC)=45∘.∵BD平分∠ABC,AP平分∠BAC,∴∠BAP+∠ABP=12∠BAC+12∠ABC=12(∠BAC+∠ABC)=45∘.∴∠APD=∠BAP+∠ABP=45∘;(2)∵∠BDC=58∘,∴∠DBC=90∘−∠BDC=32∘,∵BD平分∠ABC,∴∠ABD=∠DBC=32∘,∴∠BAP=∠APD−∠ABD=45∘−32∘=13∘.31.【答案】解:∵∠1=∠2,∠3=∠4,又∠3=∠1+∠2,∴∠3=∠4=∠1+∠2=2∠1.在△ADC中,∠DAC+∠3+∠4=180∘,∴∠DAC+4∠1=180∘.∵∠BAC=∠1+∠DAC=69∘,∴∠1+180∘−4∠1=69∘,解得∠1=37∘,∴∠DAC=69∘−37∘=32∘.【考点】三角形内角和定理三角形的外角性质无【解答】解:∵∠1=∠2,∠3=∠4,又∠3=∠1+∠2,∴∠3=∠4=∠1+∠2=2∠1.在△ADC中,∠DAC+∠3+∠4=180∘,∴∠DAC+4∠1=180∘.∵∠BAC=∠1+∠DAC=69∘,∴∠1+180∘−4∠1=69∘,解得∠1=37∘,∴∠DAC=69∘−37∘=32∘.32.【答案】证明:由三角形的外角性质得,∠AEF=∠B+∠G,∠CFG=∠ACB−∠G,∵∠AFE=∠CFG,∠AEF=∠AFE,∴∠B+∠G=∠ACB−∠G,∴∠G=1(∠ACB−∠B).2【考点】三角形的外角性质【解析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AEF、∠CFG,根据对顶角相等可得∠AFE=∠CFG,然后列出等式整理即可得证.【解答】证明:由三角形的外角性质得,∠AEF=∠B+∠G,∠CFG=∠ACB−∠G,∵∠AFE=∠CFG,∠AEF=∠AFE,∴∠B+∠G=∠ACB−∠G,∴∠G=1(∠ACB−∠B).233.【答案】解:∵AD⊥BC,∴∠B+∠BAD=90∘,∴∠BAD=90∘−∠B=90∘−28∘=62∘,∴∠BAE=∠BAD−∠EAD=62∘−16∘=46∘,∵AE平分∠BAC,∴∠BAC=2∠BAE=2×46∘=92∘,∴∠C=180∘−∠B−∠BAC=180∘−28∘−92∘=60∘.【考点】三角形内角和定理【解析】在Rt△ABD中可求得∠BAD,则可求得∠BAE,根据角平分线的定义可求得∠BAC,在△ABC中由三角形内角和定理可求得∠C.【解答】解:∵AD⊥BC,∴∠B+∠BAD=90∘,∴∠BAD=90∘−∠B=90∘−28∘=62∘,∴∠BAE=∠BAD−∠EAD=62∘−16∘=46∘,∵AE平分∠BAC,∴∠BAC=2∠BAE=2×46∘=92∘,∴∠C=180∘−∠B−∠BAC=180∘−28∘−92∘=60∘.34.【答案】解:(1)设三角形的三个内角为α,β,γ,∵α=2β,且α+β+γ=180∘,∴当α=100∘时,β=50∘,则γ=30∘,∴这个“特征三角形”的最小内角的度数30∘.(2)不存在.设三角形的三个内角为α,β,γ,∵α=2β,且α+β+γ=180∘,∴当α=120∘时,β=60∘,则γ=0∘,此时不能构成三角形,∴不存在“特征角”为120∘的三角形.【考点】三角形内角和定理【解析】(1)设三角形的三个内角为α、β、γ,根据特征角的定义可得α=2β,然后利用三角形的内角和定理求出γ,即可得解;(2)根据特征角的定义和三角形的内角和定理分别求出α、β、γ,然后判断即可.【解答】解:(1)设三角形的三个内角为α,β,γ,∵α=2β,且α+β+γ=180∘,∴当α=100∘时,β=50∘,则γ=30∘,∴这个“特征三角形”的最小内角的度数30∘.(2)不存在.设三角形的三个内角为α,β,γ,∵α=2β,且α+β+γ=180∘,∴当α=120∘时,β=60∘,则γ=0∘,此时不能构成三角形,∴不存在“特征角”为120∘的三角形.35.【答案】解:∵EB是∠ABC的平分线,EC是∠ACB的外角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,∴∠E=∠ECD−∠EBC=12×(∠ACD−∠ABC)=12∠A=22.5∘.【考点】三角形的外角性质【解析】根据角平分线的定义得到∠EBC=12∠ABC,∠ECD=12∠ACD,根据三角形的外角的性质计算即可.【解答】解:∵EB是∠ABC的平分线,EC是∠ACB的外角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,∴∠E=∠ECD−∠EBC=12×(∠ACD−∠ABC)=12∠A=22.5∘.36.【答案】解:∵AE平分∠BAC,∴∠BAE=12∠BAC=12×80∘=40∘,∵AD⊥BC,∴∠ADE=90∘,∴∠AEC=∠ADE+∠DAE=∠B+∠BAE,即90∘+∠DAE=60∘+40∘,解得∠DAE=10∘.【考点】三角形的外角性质【解析】根据角平分线的定义可得∠BAE=12∠BAC,根据垂直的定义可得∠ADE=90∘,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式表示出∠AEC即可得解.【解答】解:∵AE平分∠BAC,∴∠BAE=12∠BAC=12×80∘=40∘,∵AD⊥BC,∴∠ADE=90∘,∴∠AEC=∠ADE+∠DAE=∠B+∠BAE,即90∘+∠DAE=60∘+40∘,解得∠DAE=10∘.37.【答案】解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BEC=52∘,∴∠BAC=2∠BEC,∴∠BAC=104∘,∴∠CAH=76∘,∵BE平分∠ABC,CE平分∠ACD,∴∠ACD=2∠ECD,∠ABC=2∠EBC,∵∠ECD=∠BEC+∠EBC,∠ACD=∠ABC+∠BAC,∴∠BEC=12∠BAC=52∘,∠EAC=12∠CAH=38∘.【考点】三角形的外角性质【解析】过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,求出∠CAH的度数,求出∠BAC,根据三角形的外角性质求出∠BAC=2∠BEC,即可求出答案.【解答】解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BEC=52∘,∴∠BAC=2∠BEC,∴∠BAC=104∘,∴∠CAH=76∘,∵BE平分∠ABC,CE平分∠ACD,∴∠ACD=2∠ECD,∠ABC=2∠EBC,∵∠ECD=∠BEC+∠EBC,∠ACD=∠ABC+∠BAC,∴∠BEC=12∠BAC=52∘,∠EAC=12∠CAH=38∘.38.【答案】证明:延长BP交AC于点D,∵∠BPC是△DPC的外角,∴∠BPC>∠CDP,∵∠CDP是△ABD的外角,∴∠CDP>∠BAC,∴∠BPC>∠BAC.【考点】三角形的外角性质【解析】延长BP交AC于点D,根据∠BPC是△DPC的外角可知∠BPC>∠CDP,由∠CDP是△ABD的外角,可知∠CDP>∠BAC,故可得出结论.【解答】证明:延长BP交AC于点D,∵∠BPC是△DPC的外角,∴∠BPC>∠CDP,∵∠CDP是△ABD的外角,∴∠CDP>∠BAC,∴∠BPC>∠BAC.39.【答案】解:∵△ABC中,∠A=12∠B=13∠C,∴设∠A=x,则∠B=2x,∠C=3x,∵∠A+∠B+∠C=180∘,∴x+2x+3x=180∘,解得x=30∘,∴∠A=30∘,∠B=60∘,∠C=90∘.【考点】三角形内角和定理【解析】设∠A=x,则∠B=2x,∠C=3x,再根据三角形内角和定理求出x的值,进而可得出结论.【解答】解:∵△ABC中,∠A=12∠B=13∠C,∴设∠A=x,则∠B=2x,∠C=3x,∵∠A+∠B+∠C=180∘,∴x+2x+3x=180∘,解得x=30∘,∴∠A=30∘,∠B=60∘,∠C=90∘.40.【答案】解:∵∠ACD=∠A+∠B,∠ACD=150∘,∠B=120∘,∴∠A=∠ACD−∠B=30∘.【考点】三角形的外角性质【解析】据三角形外角性质得出∠ACD=∠A+∠B,代入求出即可.【解答】解:∵∠ACD=∠A+∠B,∠ACD=150∘,∠B=120∘,∴∠A=∠ACD−∠B=30∘.。

人教版2021年八年级上册11.2《与三角形有关的角》同步练习 word版,含答案

人教版2021年八年级上册11.2《与三角形有关的角》同步练习  word版,含答案

人教版2021年八年级上册11.2《与三角形有关的角》同步练习一.选择题1.如图,在△ABC中,∠B=50°,∠C=70°,直线DE经过点A,∠DAB=50°,则∠EAC的度数是()A.40°B.50°C.60°D.70°2.如图,∠A、∠1、∠2的大小关系是()A.∠A>∠1>∠2B.∠2>∠1>∠A C.∠A>∠2>∠1D.∠2>∠A>∠13.如图,已知直线l1、l2、l3两两相交,且l1⊥l3,若α=50°,则β的度数为()A.120°B.130°C.140°D.150°4.在下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=5:3:2,③∠A=90°﹣∠B,④∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个5.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°6.如图,在△ABC中,∠ACB=90°,∠A=25°,点D在AB边上,将△ABC沿CD折叠,使得B点落在AC边上的B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.40°7.如图,点C是∠BAD内一点,连CB、CD,∠A=80°,∠B=10°,∠D=40°,则∠BCD的度数是()A.110°B.120°C.130°D.150°8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG 的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定二.填空题9.如图,∠1=115°,∠2=50°,那么∠3=.10.△ABC中,∠C=90°,∠A=54°,则∠B=.11.如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是.12.如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系.13.如图,若BO、CO分别是∠ABC、∠ACB的三等分线,也就是∠OBC=∠ABC,∠OCB=∠ACB,∠A=72°,则∠BOC=°.14.如图,在△ABC中,∠A=70°,∠ABC的角平分线与△ABC的外角角平分线交于点E,则∠E=度.15.如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2021为.三.解答题16.已知:如图,在Rt△ABC中,∠BAC=90°,D是BC延长线上一点,AD=AB,求证:∠BAD=2∠ACB.17.如图,F A⊥EC,垂足为E,∠F=40°,∠C=20°,求∠FBC的度数.18.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;(2)证明:∠BAC=∠B+2∠E.19.如图,在△ABC中,∠ACB=90°,∠A=29°,CD是边AB上的高,E是边AB延长线上一点.求:(1)∠CBE的度数;(2)∠BCD的度数.20.在△ABC中,CD平分∠ACB交AB于点D,AH是△ABC边BC上的高,且∠ACB=70°,∠ADC=80°,求:(1)∠BAC的度数.(2)∠BAH的度数.21.互动学生课堂上,某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC,点D是三角形ABC内一点,连接BD,CD,试探究∠BDC与∠A、∠1、∠2之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵∠BDC+∠DBC+∠BCD=180°,()∴∠BDC=180°﹣∠DBC﹣∠BCD,(等式性质)∵∠A+∠1++∠DBC+∠BCD=180°,∴∠A+∠1+∠2=180°﹣﹣∠BCD,∴∠BDC=∠A+∠1+∠2.()(2)请你按照小丽的思路完成探究过程.22.△ABC中,三个内角的平分线交于点O,过点O作∠ODC=∠AOC,交边BC于点D.(1)如图1,若∠ABC=50°,求∠BOD的度数;(2)如图1,若∠ABC=n°,求∠BOD的度数;(3)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.求证:BF∥OD;(4)若∠F=∠ABC=40°,将△BOD绕点O顺时针旋转一定角度α后得△B'OD'(0°<α<360°),B'D'所在直线与FC平行,请直接写出所有符合条件的旋转角度α的值.参考答案一.选择题1.解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵∠DAB=50°,∠DAB+∠BAC+∠EAC=180°,∴∠EAC=180°﹣∠DAB﹣∠BAC=180°﹣50°﹣60°=70°,故选:D.2.解:∵∠1是三角形的一个外角,∴∠1>∠A,又∵∠2是三角形的一个外角,∴∠2>∠1,∴∠2>∠1>∠A.故选:B.3.解:如图,根据对顶角相等得:∠1=∠α=50°,∵l1⊥l3,∴∠2=90°.∵∠β是三角形的外角,∴∠β=∠1+∠2=50°+90°=140°,故选:C.4.解:①∵∠A+∠B=∠C,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形;②∵∠A:∠B:∠C=5:3:2,设∠A=5x,则∠B=3x,∠C=2x,∴5x+2x+3x=180,解得:x=18°,∴∠5=18°×5=90°,∴△ABC是直角三角形;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∴∠C=180°﹣90°=90°,∴△ABC是直角三角形;④∵3∠C=2∠B=∠A,∴∠A+∠B+∠C=∠A+∠A+∠A=180°,∴∠A=()°,∴△ABC为钝角三角形.∴能确定△ABC是直角三角形的有①②③共3个,故选:C.5.解:∵CF∥AB,∴∠B=∠FCM,∵CF平分∠ACM,∠ACF=50°,∴∠FCM=∠ACF=50°,∴∠B=50°,故选:D.6.解:∵在△ABC中,∠ACB=90°,∠A=25°,∴∠B=180°﹣90°﹣25°=65°,∵△CDB′是由△CDB翻折而来,∴∠DB′C=∠B=65°,∵∠DB′C是△AB′D的外角,∴∠ADB′=∠DB′C﹣∠A=65°﹣25°=40°.故选:D.7.解:延长BC交AD于E,∵∠BED是△ABE的一个外角,∠A=80°,∠B=10°,∴∠BED=∠A+∠B=90°,∵∠BCD是△CDE的一个外角∴∠BCD=∠BED+∠D=130°,故选:C.8.解:∵AD、BE、CF为△ABC的角平分线∴可设∠BAD=∠CAD=x,∠ABE=∠CBE=y,∠BCF=∠ACF=z,∴2x+2y+2z=180°即x+y+z=90°∵在△AHB中,∠AHE=x+y=90°﹣z,在△CHG中,∠CHG=90°﹣z,∴∠AHE=∠CHG.故选:C.二.填空题9.解:∵∠1=115°,∠2=50°,∴∠3=∠1﹣∠2=65°,故答案为:65°.10.解:∵在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∵∠A=54°,∴∠B=90°﹣54°=36°,故答案为:36°.11.解:∵∠A=30°,∠B=50°,∠A+∠B+∠ACB=180°,∴∠ACB=180°﹣30°﹣50°=100°,∵CD平分∠ACB,∴∠BCD=∠ACB=×100°=50°,∴∠ADC=∠BCD+∠B=50°+50°=100°,故答案为:100°.12.解:∵∠BF A=∠P AC+∠P,∠BF A=∠PBC+∠C,∴∠P AC+∠P=∠PBC+∠C,∵∠CAD和∠CBD的平分线相交于点P,∴∠P AC=∠CAD,∠PBC=∠CBD,∴∠CAD+∠P=∠CBD+∠C①,同理:∠CAD+∠D=∠CBD+∠P②,①﹣②,得∠P﹣∠D=∠C﹣∠P,整理得,2∠P=∠D+∠C,故答案为:2∠P=∠D+∠C.13.解:∵∠A=72°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣72°=108°,∵∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×108°=36°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣36°=144°,故答案为:144.14.解:∵BE和CE分别是∠ABC和∠ACD的角平分线,∴∠EBC=∠ABC,∠ECD=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC)=∠A+∠ECD,∵∠ECD是△BEC的一外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠A+∠EBC﹣∠EBC=∠A=×70°=35°,故答案为:35.15.解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理理可得∠A2=∠A1,∠A3=∠A2,……则∠A2021=∠A1=.故答案为:.三.解答题16.证明:∵AD=AB,∴∠B=∠D,设∠B=∠D=α,∴∠BAD=180°﹣∠B﹣∠D=180°﹣2α=2(90°﹣α),∵∠BAC=90°,∴∠ACB=90°﹣∠B=90°﹣α,∴∠BAD=2∠ACB.17.解:在△AEC中,F A⊥EC,∴∠AEC=90°,∴∠A=90°﹣∠C=70°.∴∠FBC=∠A+∠F=70°+40°=110°.18.(1)解:∵∠B=35°,∠E=25°,∴∠ECD=∠B+∠E=60°,∵CE平分∠ACD,∴∠ACE=∠ECD=60°,∴∠BAC=∠ACE+∠E=85°;(2)证明:∵CE平分∠ACD,∴∠ECD=∠ACE,∵∠BAC=∠E+∠ACE,∴∠BAC=∠E+∠ECD,∵∠ECD=∠B+∠E,∴∠BAC=∠E+∠B+∠E,∴∠BAC=2∠E+∠B.19.解:(1)∵∠ACB=90°,∠A=29°,∠CBE是△ABC的外角,∴∠CBE=∠ACB+∠A=90°+29°=119°;(2)∵CD是AB边上的高,∴∠ADC=90°.∴∠A+∠ACD=90°.∵∠ACB=∠ACD+∠BCD=90°,∠A=29°,∴∠BCD=∠A=29°.20.解:(1)∵CD平分∠ACB,∠ACB=70°,∴∠ACD=∠ACB=35°,∵∠ADC=80°,∴∠BAC=180°﹣∠ACD﹣∠ADC=180°﹣35°﹣80°=65°;(2)由(1)知,∠BAC=65°,∵AH⊥BC,∴∠AHC=90°,∴∠HAC=90°﹣∠ACB=90°﹣70°=20°,∴∠BAH=∠BAC﹣∠HAC=65°﹣20°=45°.21.解:(1)∵∠BDC+∠DBC+∠BCD=180°,(三角形内角和定理)∴∠BDC=180°﹣∠DBC﹣∠BCD,(等式性质)∵∠A+∠1+∠2+∠DBC+∠BCD=180°,∴∠A+∠1+∠2=180°﹣∠DBC﹣∠BCD,∴∠BDC=∠A+∠1+∠2 (等量代换),故答案为:三角形内角和定理;∠2;∠DBC;等量代换;(2)如图,延长BD交AC于E,由三角形的外角性质可知,∠BEC=∠A+∠1,∠BDC=∠BEC+∠2,∴∠BDC=∠A+∠1+∠2.22.(1)解:∵∠ABC=50°,∴∠BAC+∠BCA=130°,∵△ABC的三个内角的平分线交于点O,∴∠OBD=25°,∠OAC+∠OCA=65°,∴∠AOC=115°,∵∠ODC=∠AOC,∴∠ODC=115°,∵∠ODC是△OBD的一个外角,∴∠BOD=∠ODC﹣∠OBD=115°﹣25°=90°.(2)解:∵∠ABC=n°,∴∠BAC+∠BCA=180°﹣n°,∵△ABC的三个内角的平分线交于点O,∴∠OBD=n°,∠OAC+∠OCA=90°﹣n°,∴∠AOC=180°﹣(90°﹣n°)=90°+n°,∵∠ODC=∠AOC,∴∠ODC=90°+n°,∵∠ODC是△OBD的一个外角,∴∠BOD=∠ODC﹣∠OBD=90°+n°﹣n°=90°.(3)证明:由(2)得,∠BOD=90°,∵BO平分∠ABC,BF平分∠ABE,∴∠ABF=∠ABE,∠ABO=∠ABC,∴∠FBO=∠ABE+∠ABC=90°,由(2)得,∠BOD=90°,∴∠FBO=∠BOD,∴BF∥OD.(4)∵∠F=∠ABC=40°,∠FBO=∠BOD=90°,∴∠OBD=∠OB'D'=20°,∠FOB=50°,∴∠ODB=∠OD'B'=70°,∠DOC=180°50°﹣90°=40°,、如图(1),∵D'B'∥FC,∴∠OD'B'=∠D'OC=70°,∴∠DOD'=∠D'OC﹣∠DOC=70°﹣40°=30°,即α=30°,如图(2),∵D'B'∥FC,∴∠OD'B'=∠D'OF=70°,∴α=∠FOD'+∠FOB+∠DOB=70°+50°+90°=210°,∴旋转角α为30°或210°时,B'D'所在直线与FC平行.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与三角形有关的角测试题
一、选择题
1、一个三角形的两个内角分别是55°和65°,不可能是这个三角形外角的是()
A.115°B.120°
C.125°D.130°
2、如图,已知∠1=20°,∠2=25°∠A=35°,则∠BDC的度数为()
A.50°B.80°
C.70°D.60°
3、已知如下图所示,△ABC,
(1)如图(1),若P点是∠ABC和∠ACB的角平分线的交点,则
(2)如图(2),若P点是∠ABC和∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图(3),若P点是外角∠CBF和∠BCE的角平分线的交点,则
上述说法正确的个数是()
A.0个B.1个
C.2个D.3个
4、如图,∠1+∠2+∠3+∠4=()
A.100°B.200°
C.280°D.300°
5、下列语句中,正确的是()
A.三角形的外角大于它的内角
B.三角形的一个外角等于它的两个内角
C.三角形的一个内角小于和它不相邻的外角
D.三角形的外角和为180°
6、如图所示,住宅小区呈三角形ABC形状,且周长为2000m,现规划沿小区周围铺上宽为3m的草坪,则草坪的面积(精确到1m)是()
A .6000m 2
B .6016m 2
C .6028m 2
D .6036m 2
7、在△ABC 中,AD⊥BC 于D ,且AD 将∠BAC 分成的两个小角度分别为20°和50°,则此三角形一定是( )
A .锐角三角形
B .钝角三角形
C .直角三角形
D .以上都不对
8、如图∠2+α=180°,则下列式子中值为180°的是( )
A .α+β+γ
B .α+β-γ
C .β+γ-α
D .α-β+γ
9、如图,∠A+∠B+∠C+∠D+∠E=( )
A .150°
B .180°
C.135° D.120°
10、若△ABC的三个内角满足关系式∠B+∠C=3∠A,则这个三角形()
A.一定有一个内角为45°B.一定有一个内角为60°
C.一定是直角三角形D.一定是钝角三角形
二、解答题
11、如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=_______.
12、如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF的度数为________.
13、在△ABC中,∠B=66°,∠ACB=54°,BE⊥AC于E,CF⊥AB于F,BE与CF 交于H,试求∠BHC的度数.
14、△ABC中,∠A=96°,延长BC于D,∠ABC与∠ACD的平分线相交于A1点,∠A1BC与∠A1CD的平分线相交于A2点,依次类推∠A4BC与∠A4CD的平分线相交于
A5,则∠A5的大小是多少.
15、已知:如图,在△ABC中,AE平分∠BAC,∠C>∠B,F为AE上一点,且FD⊥BC 于D.
(1)试推导∠EFD与∠B、∠C的大小关系;
(2)当点F在AE的延长线上时,图(2)其余条件都不变,你在(1)中推导的结论是否仍然成.
16、如图,AC、BD相交于点O,BP、CP分别平分∠ABD、∠ACD,且交于点P.(1)若∠A=70°,∠D=60°,求∠P的度数;
(2)试探索∠P与∠A、∠D间的数量关系;
(3)若∠A:∠D:∠P=2:4:x,求x的值.
答案:
1—10 DBCCC CABBA
11、220度
12、68度
13、因为∠ABC=66°,∠ACB=54°,
又BE⊥AC于E,CF⊥AB于F,
∠HBC=90°-54°=36°,
∠HCB=90°-66°=24°,
∴∠BHC=180°-∠HBC-∠HCB=120°.
14、∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,
∴而∠ACD=2∠A1CD,∠ABC=2∠A1BC,
∴∠A1=∠A,
同理
15、
16、(1)由∠CEB=∠D+∠DCE=∠P+∠EBP,

由∠OFB=∠P+∠PCE=∠A+∠FBA可得
.。

相关文档
最新文档