电缆屏蔽线接地问题
浅谈高压电缆金属屏蔽层接地问题
浅谈高压电缆金属屏蔽层接地问题电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要可靠接地。
10kV高压电缆金属屏蔽层通常采用两端直接接地的方式。
这是由于10千V电缆多数是三芯电缆的缘故。
上世纪中期前,10kV 电缆均采用油浸纸绝缘三芯电缆。
结构多为统包型,少量为分相屏蔽型。
上世纪末期开始大量使用交联聚乙烯绝缘分相屏蔽三芯电缆,逐步淘汰了油纸电缆。
九十年代以来,随着城市经济建设的迅猛发展,负荷密度增大,环网开关柜等小型设备的应用,城市变电所出线和电缆网供电主干线电缆开始采用较大截面单芯电缆。
单芯电缆的使用提高了单回电缆的输送能力,减少了接头,短段电缆可以使用,方便了电缆敷设和附件安装,也由此带来了金属屏蔽接地方式的问题。
标签:三芯电缆、单芯电缆、一端接地一、单芯电缆金属护套工频感应电压计算单芯电缆芯线通过电流时,在交变电场作用下,金属屏蔽层必然感应一定的电动势。
三芯电缆带平衡负荷时,三相电流向量和为零金属屏蔽上的感应电势叠加为零,所以可两端接地。
单芯电缆每相之间存在一定的距离,感应电势不能抵消。
金属屏蔽层感应电压的大小与电缆长度和线芯负荷电流成正比,还与电缆排列的中心距离、金属屏蔽层的平均直径有关。
1、电缆正三角形排列时,以YJV-8.7/12kV-1×300mm2单芯电缆为例,电缆屏蔽层平均直径40mm,PVC护套厚度3.6mm,当电缆“品”字形紧贴排列,负荷电流为200A时,算得电缆护层的感应电压为每公里10.7V。
2、电缆三相水平排列时,设电缆间距相等,当三相电缆紧贴水平排列,其它条件与1相同时,算得边相的感应电压为每公里16.9V,中相的感应电压为每公里10.7V;当电缆间距200mm时,算得边相的感应电压为每公里36.1V,中相的感应电压为每公里31V。
边相感应电压高于中相感应电压。
(1)当电缆长度与工作电流较大的情况下,感应电压可能达到很大的数值。
屏蔽接地相关标准规范要求
屏蔽接地相关标准规范要求控制电缆接线工艺是电力工程重要的项目之一,而在整个接线过程中,电缆屏蔽接地是接线过程中必不可少的施工工序。
电缆屏蔽有效正确接地是防止电气设备受电磁干扰造成误动和危害的重要措施,国家及电力行业标准中有关屏蔽接地的要求如下列出,红色加粗部分为重点。
相关规范:一、继电保护及二次回路安装及验收规范GB/T 50976-2014二、电力工程电缆设计规范GB 50217-2007三、电力工业部关于颁发电力系统继电保护及安全自动装置反事故措施要点的通知 1994 年 3 月 31 日电安生1994191 号四、《国家电网公司十八项电网重大反事故措施》(试行)继电保护专业重点实施要求五、防止电力生产重大事故的二十五项重点要求六、电气装置安装工程电缆线路施工及验收规范 GB50168-2006七、关于印发《国家电网公司输变电工程质量通病防治工作要求及技术措施》的通知基建质量〔2010〕 19 号八、电气装置安装工程盘、柜及二次回路结线施工及验收规范GB50171-2012九、电气装置安装工程接地装置施工及验收规范GB50169-2006十、其他企业值得借鉴的屏蔽接地方法一、继电保护及二次回路安装及验收规范GB/T 50976-20144.3.1 用于继电保护和控制回路的二次电缆应采用铠装屏蔽同芯电缆,二次电缆端头应可靠封装。
4.3.8 保护通道信号的电传输部分应采用屏蔽电缆或音频线连接。
该屏蔽线所连接的两个设备之间不应再经端子转接,配线架除外。
单屏蔽层线缆的屏蔽层应在两端可靠接地;双屏蔽层线缆的外屏蔽层应两端接地,内屏蔽层应一端接地。
传输音频信号应采用屏蔽双绞线,屏蔽层应两端接地。
4.6.5在开关场的变压器、断路器、隔离刀闸、结合滤波器和电流、电压互感器等设备的二次电缆应经金属管从一次设备的接线盒(箱)引至就地端子箱,并将金属管的上端与上述设备的底座和金属外壳良好焊接,下端就近与主接地网良好焊接。
电气屏蔽线应一端接地还是两端接地
电气屏蔽线应一端接地还是两端接地文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。
① 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。
在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。
单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。
这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。
静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。
② 双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。
在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。
动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。
信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不同引发的地电流影响信号;数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。
所以个人以为,无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。
单端接地。
如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。
一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。
高频双端接地如编码器,开关量等,低频单端接地如模拟量等。
单端接地不存在接地电位差的问题,可减少接地干扰。
屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。
(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。
高压超高压电缆的屏蔽技术与接地措施分析
高压超高压电缆的屏蔽技术与接地措施分析为了保障电力系统的安全可靠运行,高压超高压电缆的屏蔽技术与接地措施成为了必不可少的环节。
本文将重点分析高压超高压电缆的屏蔽技术和接地措施,以期为电力系统的设计和运维提供一定的理论与实践参考。
一、高压超高压电缆的屏蔽技术1. 电缆屏蔽的概念与作用电缆屏蔽是指在高压超高压电缆的绝缘层外部包覆一层屏蔽材料,以减少外界电磁场的干扰对电缆内部信号的影响。
其作用主要有两方面:一是屏蔽外界电磁辐射,避免电磁波干扰引起的电缆通信质量下降;二是防止电缆内部信号干扰周围设备,保障电力系统的正常运行。
2. 屏蔽材料的选择与设计屏蔽材料的选择应综合考虑电磁屏蔽效果、绝缘性能、机械强度和防水防潮等因素。
常见的屏蔽材料有金属屏蔽、导电橡胶屏蔽和导电聚合物屏蔽等。
金属屏蔽具有良好的电磁屏蔽效果,但相对较重且易腐蚀;导电橡胶屏蔽具有柔软性和耐腐蚀性,但电磁屏蔽效果相对较差;导电聚合物屏蔽具有导电性能和电磁屏蔽效果兼备,但价格较高。
3. 屏蔽结构的设计与优化电缆屏蔽的结构设计应包括内屏蔽和外屏蔽两个层次。
内屏蔽用于避免电缆内部信号的干扰和泄露,外屏蔽则用于减少外界电磁场的干扰。
内屏蔽通常采用螺旋绕包或交联铝等结构,外屏蔽则采用金属网或导电聚合物屏蔽层等结构。
屏蔽结构的优化设计可通过数值模拟和试验验证相结合的方式进行,以提高屏蔽效果和降低电缆成本。
二、高压超高压电缆的接地措施1. 接地系统的重要性与作用接地是电力系统中保证人身及设备安全的重要手段,同时也是保障系统正常运行的基础。
高压超高压电缆的接地系统主要起到以下几个作用:一是保护人身安全,防止触电事故的发生;二是减少设备的绝缘损坏,提高设备的可靠性;三是提供电力系统的正常运行所需的地参考,确保电流具有合适的返回路径。
2. 接地方式的选择与设计高压超高压电缆的接地方式主要包括单点接地和多点接地两种。
单点接地通常适用于电压等级较低、系统规模较小的场合,其优点是结构简单、施工便捷;多点接地适用于电压等级较高、系统规模较大的场合,其优点是接地电流分布均匀、减小接地系统的电阻。
控制电缆屏蔽层接地方式的探讨
1、控制电缆屏蔽层接地方式的探讨各电建公司的电气专业一直为屏蔽电缆的屏蔽层是在一端一点接地,还是在两端两点接地的问题争论不休,而争论的结果是有的电建公司采用一点接地方式,而有的电建公司采用两点接地的方式进行施工。
其实根据《电力装置的继电保护和自动装置设计规范》、《国网公司十八条反措继电保护实施细则》以及《华北电网继电保护基建工程验收规范》要求,电气控制电缆屏蔽线必须两端接地。
上述国家规程、规范及反措要求电气控制电缆屏蔽线必须两端接地。
但是所有电气控制电缆的屏蔽层不分场合的全部两端接地,这样的要求是否正确,是值得做进一步商榷和探讨的,经过多台机组的安装实践可以确定:从主控或网控到升压站的控制电缆的屏蔽层必须两端接地;但在主厂房内敷设的控制电缆屏蔽层最好是单端接地。
其理由如下:从防止暂态过电压看,屏蔽层采用两点接地为好,两点接地使电磁感应在屏蔽层上产生一个感应纵向电流,该电流产生一个与主干扰相反的二次场,抵消主干扰场的作用,使干扰电压降低。
从主控到升压站的控制电缆,由于其输入和输出均有一端在开关场的高压或超高压环境中,电磁感应干扰是主要矛盾,且电缆芯所在回路为强电回路因而屏蔽层电流产生的干扰信号影响较小,所以必须采用两点接地的方式。
但是,两点接地存在两个问题:其一,当接地网上出现短路电流或雷击电流时,由于电缆屏蔽层两点的电位不同,使屏蔽层内流过电流,可能烧毁屏蔽层.其二,当屏蔽层内流过电流时,对每个芯线将产生干扰信号.所以对敷设在主厂房内的电气电缆, 电磁感应干扰比较而言矛盾不突出,而两点接地产生的屏蔽层电流对芯线产生干扰有可能使装置误动,故宜采用一点接地。
而热工自动化专业规定,热工控制电缆的屏蔽层要求一点接地,其道理也如同上所述。
另外,电气专业要求控制电缆屏蔽层两端接地,而热工自动化专业规定屏蔽层一点接地,当电气量进入DCS时,两种规定发生冲突,目前国家规程和规范没有明确要求这种情况下是采用单端接地还是两端接地,根据电缆接线的工程实践,最好是采用单端接地,接地点的选择按取用原则来处理。
屏蔽线的四种接法
屏蔽线的四种接法:
1、两端同时接地:
很好地屏蔽射频信号易受地环路电流的影响
2、两端接地,并带大面积的并行结合线(with large-area parallel bonding wire)
很好地屏蔽射频信号地电流主要流过结合线,但易受电磁场影响
3、一端接地
对射频屏蔽不好,尤其是电缆超过1/8波长时,甚至比不加屏蔽线还差
4、发射端接地,接收端通过电容接地
如果电容类型、位置正确,可以很好地屏蔽射频信号没有低频地回流模拟信号单端接地就可以了。
如果两端接地,大地就构成一个回路,对线路的屏蔽效果不好。
模拟信号最好单端接地,尤其是线路较长时,应为两个接地点的电位不同,有可能造成检测信号的不准确。
数字信号无所谓,一般单端就可以
应分3种类型
动力电缆三芯以上电缆带屏蔽的应两端接地
单芯的电缆带屏蔽应一端接地
控制电缆原则上带屏蔽的应一端接地
仪表电缆模拟信号单端接地,一般在控制柜侧进行接地,中间的转接箱或盒屏蔽要连续电磁流量计的信号应在流量计侧接地.
数字信号应两端接地。
屏蔽层接地标准规范
屏蔽层接地标准规范一、单端接地屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。
在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。
单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。
这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。
静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。
二、双端接地双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。
在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。
动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。
信号线则需要区别情况对待,一般而言模拟信号电流信号、信号、温度信号、压力信号、流量信号等单端接地,以避免双端接地时,地电势不同引发的地电流影响信号。
数字信号、差分信号、编码器,开关量主张双端接地,只是过大的地电流也同样可能影响信号。
无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。
三、屏蔽线的接地三种情况单端接地方式、两端接地方式、屏蔽层悬浮(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻R L之后,i2再通过屏蔽层返回信号源。
因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。
这是一个很好的抑制磁场干扰的措施。
同时它也是一个很好的抵制磁场耦合干扰的措施。
(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流i G的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。
因此,它抑制磁场耦合干扰的能力也比单端接地方式差。
单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。
屏蔽线接地做法与接地作用
前言:我们使用的线缆很多带屏蔽金属网的,在实际的工程中屏蔽线的屏蔽接地怎么做呢?本文重点介绍屏蔽线怎么接地?正文:屏蔽的作用是将电磁场噪声源与敏感设备隔离,切断噪声源的传播路径。
屏蔽分为主动屏蔽和被动屏蔽,主动屏蔽目的是为了防止噪声源向外辐射,是对噪声源的屏蔽;被动屏蔽目的是为了防止敏感设备遭到噪声源的干扰,是对敏感设备的屏蔽。
屏蔽电缆的屏蔽层主要由铜、铝等非磁性材料制成,并且厚度很薄,远小于使用频率上金属材料的集肤深度,屏蔽层的效果主要不是由于金属体本身对电场、磁场的反射、吸收而产生的,而是由于屏蔽层的接地产生的,接地的形式不同将直接影响屏蔽效果。
对于电场、磁场屏蔽层的接地方式不同。
可采用不接地、单端接地或双端接地。
单端接地:1) 屏蔽电缆的单端接地对于避免低频电场的干扰是有帮助的。
或者说它能够避免波长λ远远大于电缆长度L 的频率干扰。
L<λ/202) 电缆屏蔽层单端接地能够避免屏蔽层上的低频电流噪声。
这种电流在内部导致共模干扰电压并且有可能干扰模拟量设备。
3) 屏蔽层的单端接地对于那些对低频干扰敏感的电路(模拟量电路)来说是可取的。
4) 连续测量值的上下波动和永久偏差表示有低频干扰。
双端接地:1) 确保到电控柜或者插头(圆形接触)的连接经过一个大的导电区域(低感应系数)。
选择金属在金属上比非金属在非金属上要好。
2) 由于有些模拟量模块使用了脉冲技术(例如:处理器和A/D 转换器集成在同一模块中),建议将模拟量信号彼此间屏蔽,确保正确的等电位连接,只有在这种情况下进行双端接地。
3) 通常金属箔屏蔽层的传输阻抗远远大于铜编织线的屏蔽层,其效果相差5-10 倍,不能用作数字信号电缆。
4) 偶尔的功能失灵表明有高频干扰。
这是导线等电位连接无法消除的。
5) 除去电缆的端点以外,屏蔽层多点接地是有利的。
6) 不要将屏蔽层接在插针上,避免“猪尾巴”现象。
7) 要时刻注意屏蔽层的并联阻抗应该小于自身阻抗的1/10。
双层屏蔽电缆的屏蔽层接线方法
双层屏蔽电缆的屏蔽层接线方法
双层屏蔽电缆的屏蔽层接线方法是将内层屏蔽层和外层屏蔽层分别接地。
具体步骤如下:
1. 首先,将内层屏蔽层与接地线连接。
可以通过使用铜箔或铜丝将内层屏蔽层和接地线连接起来。
确保连接紧固可靠,并使用压接或焊接等方法固定连接处。
2. 然后,将外层屏蔽层与接地线连接。
同样,可以使用铜箔或铜丝将外层屏蔽层和接地线连接起来。
同样要注意连接处的紧固可靠,并使用压接或焊接等方法固定连接处。
3. 接地线可以连接到地面的接地点,如建筑物的接地线或设备的接地线。
4. 完成所有屏蔽层的接线后,确保连接处没有松动,并进行必要的测试以验证连接的有效性和质量。
需要注意的是,在接线过程中,应注意避免破坏屏蔽层的完整性,避免屏蔽效果的降低。
同时,需要根据具体的应用场景和要求来确定屏蔽层的接线方法,以保证信号的传输质量和屏蔽效果。
一起6KV动力电缆屏蔽层接地错误导致零序保护误动事故分析
一起6KV动力电缆屏蔽层接地错误导致零序保护误动事故分析发表时间:2016-05-30T15:43:59.720Z 来源:《基层建设》2016年2期作者:赵晓臣[导读] 调兵山煤矸石发电有限责任公司辽宁调兵山 112700 电力系统中性点的工作方式主要决定于系统的绝缘水平、供电的可靠性以及继电保护的要求等。
赵晓臣调兵山煤矸石发电有限责任公司辽宁调兵山 112700摘要:本文针对辽宁调兵山煤矸石发电厂1号机组6KV厂用系统的三眼井变压器零序保护误动作故障的查找过程,分析三眼井变压器零序保护误动作的原因,介绍电缆钢铠接电线与零序电流互感器错误安装时误动的原因并给出正确的安装方法。
提出在设备安装施工及设备调试校验时零序保护误动的防范措施,消除设备隐患。
关键词:零序保护;电缆屏蔽层;电流互感器;误动作电力系统中性点的工作方式主要决定于系统的绝缘水平、供电的可靠性以及继电保护的要求等。
通常110kV及以上电压等级电网采用中性点直接接地方式;35kV 及以下电压等级电网采用中性点不接地或经消弧线圈接地方式。
在大短路电流接地系统中发生接地故障后,系统中会有零序电流和零序电压,利用这些电气量构成保护接地短路的继电保护装置统称为零序保护。
零序保护是利用零序互感器采集零序电流,正常情况下,三相的向量和为零,零序电流互感器无零序电流。
当发生故障的时候,三相的向量和不为零,零序电流互感器有零序电流,一旦达到保护动作定值,则保护动作跳闸。
2015年5月,调兵山发电厂6KV厂用系统三眼井变压器的综合保护装置零序保护跳闸,检查设备无异常,以前从未出现过这种状况。
1事故原因调查2015年5月27日13点03分,调兵山发电厂6KV厂用母线室三眼井变压器跳闸,变压器保护装置报高压侧零序保护动作,保护人员立即查看综合保护装置事件报告,保护装置动作记录见表1。
表1:保护装置动作记录检修人员对变压器一次二次系统进行检查,变压器的综合保护装置在检修期已经完成保护校验,定值准确,采样精度合格,从零序保护动作结果来看,保护正确动作。
变电所控制屏蔽电缆接地的探讨
参考 文献 1 aa. A 模期逻辑前沿. Zd6 L , . 模糊系统与数学.9,8 1 62 9 2 张冠军等. 变压器绝缘诊断中的模糊 工 D T S A A法。高电 O
.5 . 2
Da os i Dsoe Gs as, E Tas D ins U n i ld A lil E n P g i sg sv a nysE x WR , 19,121 93 (: 8 )3 ( 收稿 日期:99 1- 0 19-12 )
次母 线和 二次回路及 互感器 一次绕 组和二 次绕 组之 间 的电磁藕合。
( 当一次系统发生接地短路或遭受雷击而使避 3 )
雷器动 作时 ,会有 很大的 电流流 入变电所 的接地网 , 产生 所谓 的 “ 反击 电压”, 这一 电位差将 对二 次回路 产生干 扰。 23 抑制干扰 电压的措施 要抑 制以上几种 一次回路的干扰 电压 , 采取 以 可
5 林泳 平等 ,油色 谱监 侧发 现变 压器 高能放 电故 障 ,变压 器t 19 ,( :8 9 9 2)2 6 i C. . t ,n x, S sm o Taa ne Fut Ln E e, epd yt fr nf nr l A e r o a
确。 性
( ) 1 , 1
2 外 电磁 场对控 制电缆 的干 扰和抑制
要 做好控制屏蔽 电缆接地工 作, 一定要 了解 其接 地 的 目的和作用 , 则肯定难 以奏 效。下面仅 就这两 否
() 1一次设备和二次设备之间的静电 藕合, 包括 一次母线和二次电缆间的静电 藕合及互感器一次绕
组和 二次绕组之 间的静电祸合 。
点谈谈笔者的体会.
2 1强电控制和 弱电控制 . 我 国以往在变龟所设 计中 。控制 和测量系统 大都 采 用强 电电源 , 直流用 20 或 10 电压 , 即 2 V 1V 交流 用 10 电压 和 5 0 V A的电流 作为标 准值 。使用这 种
屏蔽线接地规则
屏蔽线的一端接地,另一端悬空。
当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。
两端接地屏蔽效果更好,但信号失真会增大请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽!最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压;而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。
下面的规范是最好的佐证!《GB 50217-1994电力工程电缆设计规范》——3.6.8 控制电缆金属屏蔽的接地方式,应符合下列规定:(1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。
(2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。
双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。
(3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。
《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。
其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。
2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。
此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。
如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。
因为单点接地的静电放电速度是最快的。
但是,以下两种情况除外:1、外部有强电流干扰,单点接地无法满足静电的最快放电。
屏蔽线原理及接法
什么是屏蔽线?定义:导体外部有导体包裹的导线叫屏蔽线,包裹的导体叫屏蔽层,一般为编织铜网或铜泊(铝),屏蔽层需要接地,外来的干扰信号可被该层导入大地。
作用:避免干扰信号进入内层,导体干扰同时降低传输信号的损耗。
结构:(普通)绝缘层+屏蔽层+导线(高级)绝缘层+屏蔽层+信号导线+屏蔽层接地导线注意:在选用屏蔽线时,屏蔽层接地导线屏蔽层接地导线的绝缘层有导电功能,可以与屏蔽层导通(有一定的电阻)屏蔽线缆的原理:屏蔽布线系统源于欧洲,它是在普通非屏蔽布线系统的外面加上金属屏蔽层,利用金属屏蔽层的反射、吸收及趋肤效应实现防止电磁干扰及电磁辐射的功能,屏蔽系统综合利用了双绞线的平衡原理及屏蔽层的屏蔽作用,因而具有非常好的电磁兼容(EMC)特性。
电磁兼容(EMC)是指电子设备或网络系统具有一定的抵抗电磁干扰的能力,同时不能产生过量的电磁辐射。
也就是说,要求该设备或网络系统能够在比较恶劣的电磁环境中正常工作,同时又不能辐射过量的电磁波干扰周围其它设备及网络的正常工作。
U/UTP(非屏蔽)电缆的平衡特性并不只取决于部件本身的质量(如绞对),而会受到周围环境的影响。
因为U/UTP(非屏蔽)周围的金属、隐蔽的“地”、施工中的牵拉、弯曲等等情况都会破坏其平衡特性,从而降低EMC性能。
所以,要获得持久不变的平衡特性,只有一个解决方案:在所有芯线外加多一层铝箔进行接地。
铝箔为脆弱的双绞芯线增加了保护,同时为U/UTP(非屏蔽)电缆人为的创造了一个平衡环境。
从而形成我们现在所说的屏蔽线缆。
屏蔽电缆的屏蔽原理不同于双绞的平衡抵消原理,屏蔽电缆是在四对双绞线的外面加多一层或两层铝箔,利用金属对电磁波的反射、吸收和趋肤效应原理(所谓趋肤效应是指电流在导体截面的分布随频率的升高而趋于导体表面分布,频率越高,趋肤深度越小,即频率越高,电磁波的穿透能力越弱),有效的防止外部电磁干扰进入电缆,同时也阻止内部信号辐射出去,干扰其它设备的工作。
10kV电缆屏蔽层接地不当导致的故障分析
10kV电缆屏蔽层接地不当导致的故障分析【摘要】详细分析了一起某110kV变电站因10kV电缆屏蔽层接地线安装不当而导致的越级跳闸事故,在此基础上给出了几种可能出现的三芯电缆金属屏蔽层接地线的安装方式,并讨论了各种10kV电缆屏蔽层接地线安装方式对零序CT测量值的影响,指出了其中既不影响零序CT的测量值,又合乎规范的安装方式。
本文的讨论分析对现场人员理解10kV电缆屏蔽层接地方式具有很高的参考价值。
【关键词】10kV电缆;接地;故障;零序CT0 引言随着我国电网改造的深入,大量的架空线被电力电缆取代。
电力电缆跟架空线不同,它被埋在地下,运行维护较困难,正确使用电缆,是降低工程投资,保证安全可靠供电的重要条件[1]。
在城市配电网络中,应用最广的是交联聚乙烯三芯绝缘电缆[2],且多采用零序保护,如电缆屏蔽层接地线安装方式出现错误,在电缆出现对地故障时,将会影响零序保护的动作,可能导致事故的扩大。
作者参与了一起110kV变电站因10kV电缆屏蔽层接地线安装不当导致越级跳闸的技术分析,认为该类故障具有一定的代表性,以下通过对这次故障原因的深入调查,全面分析了三芯电缆屏蔽层可能出现的错误接地方式,给出了合理的接地方式的建议。
1 事件经过东莞某110kV变电站与此次故障相关的电气接线如图1所示。
2012年9月8日15:47,变电站值班员监盘时发现:10kVF20线路720开关跳闸,重合闸动作;同时,#2主变10kV侧502甲、502乙开关分闸,#2站用变压器变兼接地变压器524开关分闸,10kV2甲M、2乙M同时失压。
变电站迅速将跳闸和保护动作情况上报,并安排值班员到现场检查相关设备情况,通知相关人员对F20线路进行巡视。
值班员检查后确认10kVF20线路720开关、#2站变兼接地变524开关、#2主变10kV侧502甲、502乙开关、2甲M、2乙M母线一次设备均无异常。
最终检查结果发现,15:47时,F20线路的C相发生接地故障,F20过流一段保护动作,跳开720开关,重合闸后接地故障仍存在,故障本应由F20零序保护切除,但由于F20电缆屏蔽层接地线安装错误,导致F20零序保护不能动作。
高压单芯电缆金属屏蔽层及接地问题探究
高压单芯电缆金属屏蔽层及接地问题探究摘要:按照现有国家有关标准规定,电力电缆屏蔽短路试验由制造厂与用户考虑电网实际短路条件确定;中压电力电缆标准缺少关于金属屏蔽截面积的规定,制造厂一般都没有对电缆的金属屏蔽层进行短路热稳定试验;在实际招投标过程中,往往缺少对电力电缆金属屏蔽的截面积的明确规定,虽然单芯电缆的使用提高了单回电缆的输送能力,减少了接头,方便了电缆敷设和附件安装,但高压单芯电力电缆在敷设安装中还存在一些问题。
关键词:高压电力;单芯电缆;金属屏蔽层;接地问题;探究 1 引言高压单芯电力电缆线路金属屏蔽层或金属护套上感应电势的幅值,与线路的长度和电流大小成正比关系。
当电缆越长或电流越大时,感应电势叠加起来就越大,会危及人身安全和电缆绝缘安全;当高压单芯电力电缆线路发生短路故障、遭受雷电冲击或操作过电压时,该感应电势很高,有可能击穿金属屏蔽层绝缘。
2 高压单芯电力电缆与统包电力电缆接地方式差异性分析高压电力电缆作为电力系统的重要组成部分,有着良好的市场前景,对于国家经济发展和推动社会发展有至关重要的作用,因此相关人员对于高压电力电缆的检测工作越来越重视。
为了能使电缆更好地运行、发挥重要作用,必须掌握高压电力电缆运行中常见的故障,并能够做出正确处理,同时运用正确的试验方法对其进行质量评估和检测,需要具备一定的专业素质。
在统包电力电缆中,涉及到三芯或者四芯电缆,电力电缆内的芯线分布方式就是“品字形”,而且具有对称性特点。
如果在三相负荷平衡的状态中,就会得到相等大小的流经各芯线电流,以及三相电流矢量和是零。
因此,感应电压并不会发生于金属护套或金属屏蔽层中。
但是在单芯电力电缆中,如果芯线内出现流经交流电流的情况,则金属屏蔽层或者金属护套上,高压单芯电力电缆能够形成磁链现象。
这时,在单芯电力电缆金属屏蔽层仅予以一端接地的情况下,如果电压等流经单芯电力电缆线芯就会于形成高冲击电压。
而且在出现电力系统短路故障期间,高压单芯电力电缆的金属屏蔽层不接地端容易产生高工频感应电势,一旦不能对此电压产生承受,则势必会大大损伤到电缆金属屏蔽层绝缘,另外高压单芯电力电缆也会形成多点接地现象产生环流问题。
信号线的屏蔽线是否到底是一端接地还是两端接地?
信号线的屏蔽线是否到底是一端接地还是两端接地?2012年03月11日星期日19:20信号线的屏蔽线是否应该只有输入端(热端)接地?-------------------------------------------请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽!最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压;而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。
下面的规范是最好的佐证!《GB50217-1994电力工程电缆设计规范》——3.6.8控制电缆金属屏蔽的接地方式,应符合下列规定:(1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。
(2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。
双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。
(3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。
《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。
其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。
2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。
此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。
如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。
因为单点接地的静电放电速度是最快的。
但是,以下两种情况除外:1、外部有强电流干扰,单点接地无法满足静电的最快放电。
如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。
当然了,真是那样,也没有必要选择两层屏蔽。
屏蔽线单端接地
屏蔽线单端接地是怎么个接法?屏蔽线的一端接地,另一端悬空。
当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。
两端接地屏蔽效果更好,但信号失真会增大请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽!最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压;而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。
下面的规范是最好的佐证!《GB50217-1994电力工程电缆设计规范》——3.6.8控制电缆金属屏蔽的接地方式,应符合下列规定:(1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。
(2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。
双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。
(3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。
《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。
其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。
2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。
此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。
如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。
因为单点接地的静电放电速度是最快的。
但是,以下两种情况除外:1、外部有强电流干扰,单点接地无法满足静电的最快放电。
控制电缆屏蔽层和铠装接地施工措施
控制电缆屏蔽层和铠装接地施工措施1. 概述控制电缆在电力系统中的使用越来越普遍,而控制电缆作为传递控制信号的重要元件,在工程项目中安装前需要根据实际情况对其屏蔽层和铠装接地的施工措施进行严格的把控,以保证其可靠性、稳定性和安全性。
本文将详细介绍影响控制电缆屏蔽层和铠装接地施工的主要因素以及应对措施。
2. 影响控制电缆屏蔽层和铠装接地施工的主要因素2.1 电磁干扰控制电缆作为传递控制信号的元件,需要保障其不会受到外部电磁环境的干扰。
在施工过程中,要注意减少电缆外皮和接头的皮肤效应和屏蔽泄漏,标准化接口连接方式,减少负载和电感等失控因素。
2.2 接地电阻控制电缆的铠装接地一般通过接头与地网相连。
接地电阻对电缆运行安全稳定起着至关重要的作用。
如果接地电阻过大,将导致控制电缆无法正常工作,严重时可能会造成事故。
2.3 腐蚀在地下架设的控制电缆,会受到地下水埋深的影响,还会受到电化学、化学、生物等因素的腐蚀,对电缆的稳定性和安全性造成威胁。
要从选材、防腐措施入手,尽可能避免这些因素的影响。
2.4 温度控制电缆的安装环境和使用环境一般都需要在一定的温度范围内。
若温度太高,可能会热老化;若温度太低,会导致电缆变脆。
因此,在施工过程中,要统筹考虑温度因素,采取相应的保温措施,以保证控制电缆在恰当的温度下工作。
3. 应对措施为了保证控制电缆的安全稳定运行,我们需要在施工过程中采取一定的措施,以应对上述因素对控制电缆屏蔽层和铠装接地的影响。
以下是一些常见的应对措施:3.1 勘察在控制电缆的施工前,需要进行现场勘察,分析周围环境、温度、水位、电磁干扰等问题,以便针对性地采取相应的措施。
3.2 选材要选择具有良好绝缘性、抗腐蚀性、耐高温性等特点的电缆,以保证其质量和可靠性。
3.3 施工质量把控在进行铠装接地施工时,应遵循国家相关标准,按照电缆产品证明文件的要求,保证了铠装接地的质量;在屏蔽层方面要确保接地端口良好,为电缆和设备建立一个共同的参考电势。
电缆屏蔽线接地问题
电缆屏蔽线接地问题
屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。
① 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。
在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。
单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。
这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。
静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。
② 双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。
在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。
动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。
由于三芯电力电缆两端的屏蔽线均接地,若某种原因导致屏蔽线出现感应电压,则屏蔽线中就会出现电流,电流流过零序电流互感器一次侧,将在二次侧感应出零序电流。
此电流并非电缆线路中的零序电流,将导致保护误动作。
为防止屏蔽线上的电流影响,实际中都将屏蔽引出线回穿过零序电流互感器后再接地(如下图),这样即相当在零序电流互感器一次侧流过大小相同而方向相反的屏蔽层电流,两个电流磁场抵消,从而不会在互感器二次侧感应出零序电流,不会导致保护误动作。
控制电缆屏蔽层接地方式存在的问题及改造
控制电缆屏蔽层接地方式存在的问题及改造摘要:升华热电厂变电站是2005年新投建的35 kV等级变电站。
由于雷雨天气频繁,故误动事故频发,导致部分设备损坏。
通过分析误动的原因,认为控制电缆屏蔽层没有取得良好的屏蔽效果,是由于其屏蔽层接地方式存在问题,受到外界磁场干扰,引起误动,并由此提出相应改造措施。
关键词:控制电缆;屏蔽层;干扰;接地方式近年来,综合自动化技术在变电站中得到了广泛的应用。
微机型二次设备要想在这样一个高强度电磁场、强电磁干扰环境下安全、可靠的运行,需要满足两个条件:一是这些二次设备应具有一定的耐受电磁干扰的能力;二是进入设备的电磁干扰水平必须低于设备自身的耐受水平,即要求尽量减少由控制电缆侵入的干扰和降低干扰信号的水平,选择合适的屏蔽和接地的方法。
提高二次电缆抗干扰的防护水平,需要正确理解电缆屏蔽层的作用及屏蔽层应如何正确接地。
本文主要就控制电缆屏蔽层电缆接地方式,结合变电站的主要干扰途径、原理、屏蔽层作用等因素进行讨论,并提出相应改进措施。
1 问题的提出和原因分析升华热电厂变电站是2005年新投建的35 kV等级变电站,全站采用南京力导微机保护装置。
变电站位于钟管镇,属于多雷区,年平均雷暴日为34天,雷暴强度较大。
在投运后不久遭受雷害,发生烧毁微机保护装置的事故。
信息来自:输配电设备网雷电是一种强烈的大气过电压,损坏设备可分为两种情况,一种是受雷电直击,直击站内设备概率很低;绝大多数损坏为感应造成,通过耦合二次回路感应干扰电压等途径对设备产生间接的有害影响。
连接导线与设备的电缆端口是电磁干扰的主要传播途径,以电源线、接地线、信号线等方式传播。
通过检查发现:电源线串有抗干扰低通滤波电容,电源模块采用的是高频开关,外壳金属接地线及保护接地均完好,初步怀疑是由信号控制线引入的。
经过现场进一步察勘:电缆沟内未采取多路分层的敷设方式,由于场地限制使众多控制电缆密集的排列于电缆沟内,且电缆沟内控制电缆与接地线、固定电缆的钢筋紧贴在一起,并且控制屏蔽电缆未采取接地措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电缆屏蔽线接地问题
屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。
① 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。
在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。
单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。
这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。
静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。
② 双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。
在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。
动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。
由于三芯电力电缆两端的屏蔽线均接地,若某种原因导致屏蔽线出现感应电压,则屏蔽线中就会出现电流,电流流过零序电流互感器一次侧,将在二次侧感应出零序电流。
此电流并非电缆线路中的零序电流,将导致保护误动作。
为防止屏蔽线上的电流影响,实际中都将屏蔽引出线回穿过零序电流互感器后再接地(如下图),这样即相当在零序电流互感器一次侧流过大小相同而方向相反的屏蔽层电流,两个电流磁场抵消,从而不会在互感器二次侧感应出零序电流,不会导致保护误动作。