反比例函数与几何综合培优专题(真题含答案)

合集下载

数学反比例函数的专项培优练习题(含答案)及答案

数学反比例函数的专项培优练习题(含答案)及答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣2),与y轴交于点C.(1)m=________,k1=________;(2)当x的取值是________时,k1x+b>;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.【答案】(1)4;(2)﹣8<x<0或x>4(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).∴CO=2,AD=OD=4.∴S梯形ODAC= •OD= ×4=12,∵S四边形ODAC:S△ODE=3:1,∴S△ODE= S梯形ODAC= ×12=4,即OD•DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,∴直线OP的解析式是y= x,∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,即反比例函数解析式为y2= ,将点A(4,m)代入y2= ,得:m=4,即点A(4,4),将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,得:,解得:,∴一次函数解析式为y1= x+2,故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,故答案为:﹣8<x<0或x>4;【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.3.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A (﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;(3)求△PAB的面积.【答案】(1)解:当x=﹣1时,a=x+4=3,∴点A的坐标为(﹣1,3).将点A(﹣1,3)代入y= 中,3= ,解得:k=﹣3,∴反比例函数的表达式为y=﹣(2)解:当y=b+4=1时,b=﹣3,∴点B的坐标为(﹣3,1).作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,,解得:,∴直线AD的函数表达式为y=2x+5.当y=2x+5=0时,x=﹣,∴点P的坐标为(﹣,0)(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.4.如图,已知直线y=ax+b与双曲线y= (x>0)交于A(x1, y1),B(x2, y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).【答案】(1)解:∵直线y=ax+b与双曲线y= (x>0)交于A(1,3),∴k=1×3=3,∴y= ,∵B(3,y2)在反比例函数的图象上,∴y2= =1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,O)(2)解:如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG 交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴= ,= = ,∵b=y1+1,AB=BP,∴= ,= = ,∴B(,y1)∵A,B两点都是反比例函数图象上的点,∴x1•y1= • y1,解得x1=2,代入= ,解得y1=2,∴A(2,2),B(4,1)(3)解:根据(1),(2)中的结果,猜想:x1, x2, x0之间的关系为x1+x2=x0【解析】【分析】(1)先把A(1,3)),B(3,y2)代入y= 求得反比例函数的解析式,进而求得B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P的坐标;(2)作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,得出 = , = = ,根据题意得出 = , = = ,从而求得B(, y1),然后根据k=xy得出x1•y1= • y1,求得x1=2,代入 = ,解得y1=2,即可求得A、B的坐标;(3)合(1),(2)中的结果,猜想x1+x2=x0.5.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.6.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y= (k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(3,).(1)求反比例函数的表达式和m的值;(2)将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的函数关系式.【答案】(1)解:∵反比例函数y= (k≠0)在第一象限内的图象经过点E(3,),∴k=3× =2,∴反比例函数的表达式为y= .又∵点D(m,2)在反比例函数y= 的图象上,∴2m=2,解得:m=1(2)解:设OG=x,则CG=OC﹣OG=2﹣x,∵点D(1,2),∴CD=1.在Rt△CDG中,∠DCG=90°,CG=2﹣x,CD=1,DG=OG=x,∴CD2+CG2=DG2,即1+(2﹣x)2=x2,解得:x= ,∴点G(0,).过点F作FH⊥CB于点H,如图所示.由折叠的特性可知:∠GDF=∠GOF=90°,OG=DG,OF=DF.∵∠CGD+∠CDG=90°,∠CDG+∠HDF=90°,∴∠CGD=∠HDF,∵∠DCG=∠FHD=90°,∴△GCD∽△DHF,∴=2,∴DF=2GD= ,∴点F的坐标为(,0).设折痕FG所在直线的函数关系式为y=ax+b,∴有,解得:.∴折痕FG所在直线的函数关系式为y=﹣x+【解析】【分析】(1)由点E的坐标利用反比例函数图象上点的坐标特征即可求出k值,再由点B在反比例函数图象上,代入即可求出m值;(2)设OG=x,利用勾股定理即可得出关于x的一元二次方程,解方程即可求出x值,从而得出点G的坐标.再过点F作FH⊥CB于点H,由此可得出△GCD∽△DHF,根据相似三角形的性质即可求出线段DF的长度,从而得出点F的坐标,结合点G、F的坐标利用待定系数法即可求出结论.7.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;(2)若y= 的值不大于2,求符合条件的x的范围;(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.【答案】(1)解:y=2x+1中k=2>0,∴y随x的增大而增大,∴当x=2时,y最小=5;当x=4时,y最大=9.∵y= 中k=2>0,∴在2≤x≤4中,y随x的增大而减小,∴当x=2时,y最大=1;当x=4时,y最小= .∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,∴当x=1时,y最小=1;当x=4时,y最大=19(2)解:令y= ≤2,解得:x<0或x≥1.∴符合条件的x的范围为x<0或x≥1(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,整理得:2m2﹣15m+29=0.∵△=(﹣15)2﹣4×2×29=﹣7,无解.∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.8.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.9.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点在轴正半轴上,顶点B在第一象限,线段,的长是一元二次方程的两根,,.(1)直接写出点的坐标________点 C的坐标________;(2)若反比例函数的图象经过点,求k的值;(3)如图过点作轴于点;在轴上是否存在点,使以,,为顶点的三角形与以,,为顶点的三角形相似?若存在,直接写出满足条件的点的坐标;若不存在,请说明理由.【答案】(1);(2)解:如图,过点作,垂足为,∵,∴,设,∵ =12,∴EC=12-x,在RtΔBEC中,,∴整理得:,解得:(不合题意舍去),,∴,,∴,把代入,得(3)解:存在.如图2,若点P在OD上,若△PDB∽△AOP,则,即,解得:OP=2或OP=6,∴P(0,2)或P(0,6);如图3,若点P在OD上方,△PDB∽△AOP,则,即,解得:OP=12,∴P(0,12);如图4,若点P在OD上方,△BDP∽△AOP,则,即,解得:OP=4+2 或OP=4-2 (不合题意舍去),∴P(0,4+2 );如图5,若点P在y轴负半轴,△PDB∽△AOP,则,即,解得:OP=-4+2 或-4-2 (不合题意舍去),则P点坐标为(0,4-2 )故点的坐标为:或或或或【解析】【解答】解:(1)解一元二次方程,解得:,所以,所以,;【分析】(1)首先利用直接开平方法求出方程的两根,从而得出OA=OC=6,进而得出A,C两点的坐标;(2)如图,过点作,垂足为,根据等腰直角三角形的性质得出,设,EC=12-x,在RtΔBEC中利用勾股定理建立方程,求解并检验即可得出BE,OE 的长从而得出B点的坐标,然后利用待定系数法即可求出反比例函数的解析式;(3)存在.如图2,若点P在OD上,若△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解即可得出P点的坐标;如图3,若点P在OD上方,△PDB∽△AOP,根据相似三角形对应边成比例得出则根据比例式列出方程,求解并检验即可得出P点的坐标;如图4,若点P在OD上方,△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解并检验即可得出P 点的坐标;如图5,若点P在y轴负半轴,△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解并检验即可得出P点的坐标,综上所述即可得出答案。

数学反比例函数的专项培优练习题(含答案)含答案解析

数学反比例函数的专项培优练习题(含答案)含答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y= x+ ,把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;(3)解:如下图所示:设P点坐标为(t,t+ ),∵△PCA和△PDB面积相等,∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.2.如图,已知函数的图象与一次函数的图象相交不同的点A、B,过点A作AD⊥轴于点D,连接AO,其中点A的横坐标为,△AOD 的面积为2.(1)求的值及 =4时的值;(2)记表示为不超过的最大整数,例如:,,设 ,若,求值【答案】(1)解:设A(x0, y0),则OD=x0, AD=y0,∴S△AOD= OD•AD= x0y0=2,∴k=x0y0=4;当x0=4时,y0=1,∴A(4,1),代入y=mx+5中得4m+5=1,m=-1(2)解:∵,∴=mx+5,整理得,mx2+5x-4=0,∵A的横坐标为x0,∴mx02+5x0=4,当y=0时,mx+5=0,x=- ,∵OC=- ,OD=x0,∴m2•t=m2•(OD•DC),=m2•x0(- -x0),=m(-5x0-mx02),=-4m,∵- <m<- ,∴5<-4m<6,∴[m2•t]=5【解析】【分析】(1)根据反比例函数比例系数k的几何意义,即可得出k的值;根据反比例函数图像上的点的坐标特点,即可求出A点的坐标,再将A点的坐标代入直线y=mx+5中即可求出m的值;(2)解联立直线与双曲线的解析式所组成的方程组,得出mx2+5x-4=0,将A点的横坐标代入得出mx02+5x0=4,根据直线与x轴交点的坐标特点,表示出OC,OD的长,由m2•t=m2•(OD•DC)=-4m,根据m的取值范围得出5<-4m<6,从而答案。

九年级数学反比例函数的专项培优练习题(含答案)附答案解析

九年级数学反比例函数的专项培优练习题(含答案)附答案解析

九年级数学反比例函数的专项培优练习题(含答案)附答案解析一、反比例函数1.如图,点A在函数y= (x>0)图象上,过点A作x轴和y轴的平行线分别交函数y= 图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y= (x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y= (x>0)图象上运动时,线段BD与CE的长始终相等.【答案】(1)解:∵点C在y= 的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y= (x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y= 的图象上,∴B点坐标为(,4);(2)解:设A(a,),则C(a,),B(,),∴AB=a﹣ = a,AC= ﹣ = ,∴S△ABC= AB•AC= × × = ,即△ABC的面积不发生变化,其面积为;(3)解:如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴ = ,即 = ,∴EF= a,由(2)可知BG= a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.【解析】【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y= 可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.2.如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【答案】(1)解:当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x= ,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,,DANG则,﹣3x+2= ,当x=m时,﹣3m+2= ,∴k=﹣3m2+2m(0<m<)(2)解:由题意得:,ax+2= ,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM= ,∴12+(﹣)2=()2,a=±(3)解:当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3【解析】【分析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m<);(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。

(完整版)反比例函数与几何的综合应用及答案

(完整版)反比例函数与几何的综合应用及答案

专训1 反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程(组),解方程(组)即可得所求几何图形中的未知量或函数解析式中待定字母的值.反比例函数与三角形的综合1.如图,一次函数y =kx +b 与反比例函数y =x 6(x>0)的图象交于A(m ,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出使kx +b<x 6成立的x 的取值范围; (3)求△AOB 的面积.(第1题)2.如图,点A ,B 分别在x 轴、y 轴上,点D 在第一象限内,DC ⊥x 轴于点C ,AO=CD =2,AB =DA =,反比例函数y =x k(k >0)的图象过CD 的中点E.(1)求证:△AOB ≌△DCA ; (2)求k 的值;(3)△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 是否在反比例函数的图象上,并说明理由.(第2题)反比例函数与四边形的综合 反比例函数与平行四边形的综合3.如图,过反比例函数y =x 6(x >0)的图象上一点A 作x 轴的平行线,交双曲线y =-x 3(x <0)于点B ,过B 作BC ∥OA 交双曲线y =-x 3(x <0)于点D ,交x 轴于点C ,连接AD 交y 轴于点E ,若OC =3,求OE 的长.(第3题)反比例函数与矩形的综合4.如图,矩形OABC 的顶点A ,C 的坐标分别是(4,0)和(0,2),反比例函数y =x k(x>0)的图象过对角线的交点P 并且与AB ,(第4题)BC 分别交于D ,E 两点,连接OD ,OE ,DE ,则△ODE 的面积为________. 5.如图,在平面直角坐标系中,矩形OABC 的对角线OB ,AC 相交于点D ,且BE ∥AC ,AE ∥OB.(1)求证:四边形AEBD 是菱形;(2)如果OA =3,OC =2,求出经过点E 的双曲线对应的函数解析式.(第5题)反比例函数与菱形的综合6.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数y =x 3的图象(第6题)经过A ,B 两点,则菱形ABCD 的面积为( ) A .2 B .4 C .2 D .47.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =x k(k>0,x>0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在反比例函数y =x k(k>0,x>0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.(第7题)反比例函数与正方形的综合8.如图,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA ,OC分别在x 轴,y 轴上,点B 的坐标为(2,2),反比例函数y =x k(x >0,k ≠0)的图象经过线段BC 的中点D(1)求k 的值;(2)若点P(x ,y)在该反比例函数的图象上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R ,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的函数解析式并写出x 的取值范围.(第8题)反比例函数与圆的综合(第9题)9.如图,双曲线y =x k(k>0)与⊙O 在第一象限内交于P ,Q 两点,分别过P ,Q 两点向x 轴和y 轴作垂线,已知点P 的坐标为(1,3),则图中阴影部分的面积为________.10.如图,反比例函数y =x k(k <0)的图象与⊙O 相交.某同学在⊙O 内做随机扎针试验,求针头落在阴影区域内的概率.(第10题)专训2 全章热门考点整合应用名师点金:反比例函数及其图象、性质是历年来中考的热点,既有与本学科知识的综合,也有与其他学科知识的综合,题型既有选择、填空,也有解答类型.其热门考点可概括为:1个概念,2个方法,2个应用及1个技巧.1个概念:反比例函数的概念1.若y =(m -1)x |m|-2是反比例函数,则m 的取值为( )A .1B .-1C .±1D .任意实数 2.某学校到县城的路程为5 km ,一同学骑车从学校到县城的平均速度v(km /h )与所用时间t(h )之间的函数解析式是( )A .v =5tB .v =t +5C .v =t 5D .v =5t3.判断下面哪些式子表示y 是x 的反比例函数: ①xy =-31;②y =5-x ;③y =5x -2;④y =x 2a(a 为常数且a ≠0). 其中________是反比例函数.(填序号) 2个方法:画反比例函数图象的方法4.已知y 与x 的部分取值如下表: x … -6 -5 -4 -3 -2 -11 2 3 4 5 6…y… 1 1.21.52 3 6 -6-3-2-1.5 -1.2-1…析式;(2)画出这个函数的图象.求反比例函数解析式的方法5.已知反比例函数y =x k的图象与一次函数y =x +b 的图象在第一象限内相交于点A(1,-k +4).试确定这两个函数的解析式.6.如图,已知A(-4,n),B(2,-4)是一次函数y =kx +b 的图象和反比例函数y =x m的图象的两个交点.求:(1)反比例函数和一次函数的解析式;(2)直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)方程kx +b -x m=0的解(请直接写出答案);(4)不等式kx +b -x m<0的解集(请直接写出答案).(第6题)2个应用反比例函数图象和性质的应用7.画出反比例函数y =x 6的图象,并根据图象回答问题: (1)根据图象指出当y =-2时x 的值;(2)根据图象指出当-2<x<1且x ≠0时y 的取值范围; (3)根据图象指出当-3<y<2且y ≠0时x 的取值范围.反比例函数的实际应用8.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x(单位:吨),库存的原料可使用的时间为y(单位:小时).(1)写出y 关于x 的函数解析式,并求出自变量的取值范围.(2)若恰好经过24小时才有新的原料进厂,为了使机器不停止运转,则x 应控制在什么范围内?1个技巧:用k 的几何性质巧求图形的面积9.如图,A ,B 是双曲线y =x k(k ≠0)上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B .38C .3D .4(第9题)(第10题)10.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =x 2和y =-x 4的图象于A ,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.11.如图是函数y =x 3与函数y =x 6在第一象限内的图象,点P 是y =x 6的图象上一动点,PA ⊥x 轴于点A ,交y =x 3的图象于点C ,PB ⊥y 轴于点B ,交y =x 3的图象于点D.(1)求证:D 是BP 的中点; (2)求四边形ODPC 的面积.(第11题)答案1.解:(1)∵A(m ,6),B(3,n)两点在反比例函数y =x 6(x>0)的图象上, ∴m =1,n =2,即 A(1,6),B(3,2).又∵A(1,6),B(3,2)在一次函数y =kx +b 的图象上, ∴2=3k +b ,6=k +b ,解得b =8,k =-2,即一次函数解析式为y =-2x +8.(第1题)(2)根据图象可知使kx +b<x 6成立的x 的取值范围是0<x<1或x>3.(3)如图,分别过点A ,B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为E ,C ,设直线AB 交x 轴于D 点.令-2x +8=0,得x =4,即D(4,0). ∵A(1,6),B(3,2),∴AE =6,BC =2.∴S △AOB =S △AOD -S △ODB =21×4×6-21×4×2=8.2.(1)证明:∵点A ,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C ,∴∠AOB =∠DCA =90°.在Rt △AOB 和Rt △DCA 中,∵AB =DA ,AO =DC ,∴Rt △AOB ≌Rt △DCA. (2)解:在Rt △ACD 中,∵CD =2,DA =, ∴AC ==1.∴OC =OA +AC =2+1=3. ∴D 点坐标为(3,2).∵点E 为CD 的中点,∴点E 的坐标为(3,1).∴k =3×1=3. (3)解:点G 在反比例函数的图象上.理由如下:∵△BFG 和△DCA 关于某点成中心对称, ∴△BFG ≌△DCA.∴FG =CA =1,BF =DC =2,∠BFG =∠DCA =90°.∵OB =AC =1,∴OF =OB +BF =1+2=3.∴G 点坐标为(1,3). ∵1×3=3,∴点G(1,3)在反比例函数的图象上.3.解:∵BC ∥OA ,AB ∥x 轴,∴四边形ABCO 为平行四边形. ∴AB =OC =3.设Aa 6,则Ba 6,∴(a -3)·a 6=-3.∴a =2. ∴A(2,3),B(-1,3).∵OC =3,C 在x 轴负半轴上,∴C(-3,0), 设直线BC 对应的函数解析式为y =kx +b , 则-k +b =3,-3k +b =0,解得.9∴直线BC 对应的函数解析式为y =23x +29. 解方程组,3得y1=3,x1=-1,.3∴D23.设直线AD 对应的函数解析式为y =mx +n , 则,3解得.9∴直线AD 对应的函数解析式为y =83x +49. ∴E49.∴OE =49.4.415点拨:因为C(0,2),A(4,0),由矩形的性质可得P(2,1),把P 点坐标代入反比例函数解析式可得k =2,所以反比例函数解析式为y =x 2.因为D点的横坐标为4,所以AD =42=21.因为点E 的纵坐标为2,所以2=CE 2,所以CE =1,则BE =3.所以S △ODE =S 矩形OABC -S △OCE -S △BED -S △OAD =8-1-49-1=415.5.(1)证明:∵BE ∥AC ,AE ∥OB , ∴四边形AEBD 是平行四边形.∵四边形OABC 是矩形,∴DA =21AC ,DB =21OB ,AC =OB. ∴DA =DB.∴四边形AEBD 是菱形. (2)解:如图,连接DE ,交AB 于F , ∵四边形AEBD 是菱形,∴DF =EF =21OA =23,AF =21AB =1.∴E ,19.设所求反比例函数解析式为y =x k, 把点E ,19的坐标代入得1=29,解得k =29. ∴所求反比例函数解析式为y =2x 9.(第5题)(第7题)6.D7.解:(1)如图,过点D 作x 轴的垂线,垂足为F. ∵点D 的坐标为(4,3),∴OF =4,DF =3.∴OD =5. ∴AD =5.∴点A 的坐标为(4,8).∴k =xy =4×8=32.(2)将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数y =x 32(x>0)的图象上点D ′处,过点D ′作x 轴的垂线,垂足为F ′.∵DF =3,∴D ′F ′=3.∴点D ′的纵坐标为3.∵点D ′在y =x 32的图象上,∴3=x 32,解得x =332,即OF ′=332.∴FF ′=332-4=320.∴菱形ABCD 沿x 轴正方向平移的距离为320.8.解:(1)∵正方形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 的坐标为(2,2),∴C(0,2).∵D 是BC 的中点,∴D(1,2).∵反比例函数y =x k(x >0,k ≠0)的图象经过点D ,∴k =2.(2)当P 在直线BC 的上方,即0<x <1时,∵点P(x ,y)在该反比例函数的图象上运动,∴y =x 2.∴S 四边形CQPR =CQ ·PQ =x ·-22=2-2x ;当P 在直线BC 的下方,即x >1时,同理求出S 四边形CQPR =CQ ·PQ =x ·x 2=2x -2,综上,S =2-2x (0<x <1).2x -2(x >1),9.410.解:∵反比例函数的图象关于原点对称,圆也关于原点对称,故阴影部分的面积占⊙O 面积的41,则针头落在阴影区域内的概率为41.1.B 2.C 3.①③④4.解:(1)反比例函数:y =-x 6.(2)如图所示.(第4题)5.解:∵反比例函数y =x k的图象经过点A(1,-k +4),∴-k +4=1k ,即-k +4=k ,∴k =2,∴A(1,2).∵一次函数y =x +b 的图象经过点A(1,2),∴2=1+b ,∴b =1.∴反比例函数的解析式为y =x 2,一次函数的解析式为y =x +1.6.解:(1)将B(2,-4)的坐标代入y =x m ,得-4=2m ,解得m =-8.∴反比例函数的解析式为y =x -8.∵点A(-4,n)在双曲线y =x -8上,∴n =2.∴A(-4,2).把A(-4,2),B(2,-4)的坐标分别代入y =kx +b ,得2k +b =-4,-4k +b =2,解得b =-2.k =-1,∴一次函数的解析式为y =-x -2.(2)令y =0,则-x -2=0,x =-2.∴C(-2,0).∴OC =2.∴S △AOB =S △AOC +S △BOC =21×2×2+21×2×4=6.(3)x 1=-4,x 2=2.(4)-4<x<0或x>2.7.解:如图,由观察可知:(1)当y =-2时,x =-3;(2)当-2<x<1且x ≠0时,y<-3或y>6;(3)当-3<y<2且y ≠0时,x<-2或x>3.(第7题)点拨:解决问题时,画出函数图象.由图象观察得知结果.由图象解决相关问题,一定要注意数形结合,学会看图.8.解:(1)库存原料为2×60=120(吨),根据题意可知y 关于x 的函数解析式为y =x 120.由于生产能力提高,每小时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围是x>2.(2)根据题意,得y ≥24,所以x 120≥24.解不等式,得x ≤5,即每小时消耗的原料量应控制在大于2吨且不大于5吨的范围内.点拨:(1)由“每小时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数解析式.(2)要使机器不停止运转,需y ≥24,解不等式即可.(第9题)9.B 点拨:如图,过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,则CD =21BE.设Ax k ,则B2x k ,CD =4x k ,AD =x k -4x k .∵△ADO 的面积为1,∴21AD ·OC =1,即214x k ·x =1.解得k =38.10.311.(1)证明:∵点P 在双曲线y =x 6上,∴设P 点坐标为,m 6.∵点D 在双曲线y =x 3上,BP ∥x 轴,D 在BP 上,∴D 点坐标为,m 3.∴BD =m 3,BP =m 6,故D 是BP 的中点.(2)解:由题意可知S △BOD =23,S △AOC =23,S 四边形OBPA =6.∴S 四边形ODPC =S 四边形OBPA -S △BOD -S △AOC =6-23-23=3.。

数学反比例函数的专项培优练习题(含答案)附答案解析

数学反比例函数的专项培优练习题(含答案)附答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•B D= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.2.平面直角坐标系xOy中,点A、B分别在函数y1= (x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为2的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点,请说明理由.【答案】(1)解:由题意知,点A(a,),B(b,﹣),∵AB∥x轴,∴,∴a=﹣b;∴AB=a﹣b=2a,∴S△OAB= •2a• =3(2)解:由(1)知,点A(a,),B(b,﹣),∴OA2=a2+()2, OB2=b2+(﹣)2,∵△OAB是以AB为底边的等腰三角形,∴OA=OB,∴OA2=OB2,∴a2+()2=b2+(﹣)2,∴a2﹣b2=()2﹣()2,∴(a+b)(a﹣b)=( + )(﹣)= ,∵a>0,b<0,∴ab<0,a﹣b≠0,∵a+b≠0,∴1= ,∴ab=3(舍)或ab=﹣3,即:ab的值为﹣3;(3)解:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.理由:如图,∵a≥3,AC=2,∴直线CD在y轴右侧且平行于y轴,∴直线CD一定与函数y1= (x>0)的图象有交点,∵四边形ACDE是边长为2的正方形,且点D在点A(a,)的左上方,∴C(a﹣2,),∴D(a﹣2, +2),设直线CD与函数y1= (x>0)相交于点F,∴F(a﹣2,),∴FC= ﹣ = ,∴2﹣FC=2﹣ = ,∵a≥3,∴a﹣2>0,a﹣3≥0,∴≥0,∴2﹣FC≥0,∴FC≤2,∴点F在线段CD上,即:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.【解析】【分析】(1)先判断出a=﹣b,即可得出AB=2a,再利用三角形的面积公式即可得出结论;(2)利用等腰三角形的两腰相等建立方程求解即可得出结论;(3)先判断出直线CD和函数y1= (x>0)必有交点,根据点A的坐标确定出点C,F的坐标,进而得出FC,再判断FC与2的大小即可.3.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.【答案】(1)解:∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,∴CE=BE•tan∠ABO=6× =3,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y= 的图象上,∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣(2)解:∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,∴OA=OB•tan∠ABO=4× =2.∵S△BAF= AF•OB= (OA+OF)•OB= (2+ )×4=4+ .∵点D在反比例函数y=﹣第四象限的图象上,∴S△DFO= ×|﹣6|=3.∵S△BAF=4S△DFO,∴4+ =4×3,解得:n= ,经验证,n= 是分式方程4+ =4×3的解,∴点D的坐标为(,﹣4).【解析】【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的图象上,设出点D的坐标为(n,﹣)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.4.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.5.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点在轴正半轴上,顶点B在第一象限,线段,的长是一元二次方程的两根,,.(1)直接写出点的坐标________点 C的坐标________;(2)若反比例函数的图象经过点,求k的值;(3)如图过点作轴于点;在轴上是否存在点,使以,,为顶点的三角形与以,,为顶点的三角形相似?若存在,直接写出满足条件的点的坐标;若不存在,请说明理由.【答案】(1);(2)解:如图,过点作,垂足为,∵,∴,设,∵ =12,∴EC=12-x,在RtΔBEC中,,∴整理得:,解得:(不合题意舍去),,∴,,∴,把代入,得(3)解:存在.如图2,若点P在OD上,若△PDB∽△AOP,则,即,解得:OP=2或OP=6,∴P(0,2)或P(0,6);如图3,若点P在OD上方,△PDB∽△AOP,则,即,解得:OP=12,∴P(0,12);如图4,若点P在OD上方,△BDP∽△AOP,则,即,解得:OP=4+2 或OP=4-2 (不合题意舍去),∴P(0,4+2 );如图5,若点P在y轴负半轴,△PDB∽△AOP,则,即,解得:OP=-4+2 或-4-2 (不合题意舍去),则P点坐标为(0,4-2 )故点的坐标为:或或或或【解析】【解答】解:(1)解一元二次方程,解得:,所以,所以,;【分析】(1)首先利用直接开平方法求出方程的两根,从而得出OA=OC=6,进而得出A,C两点的坐标;(2)如图,过点作,垂足为,根据等腰直角三角形的性质得出,设,EC=12-x,在RtΔBEC中利用勾股定理建立方程,求解并检验即可得出BE,OE 的长从而得出B点的坐标,然后利用待定系数法即可求出反比例函数的解析式;(3)存在.如图2,若点P在OD上,若△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解即可得出P点的坐标;如图3,若点P在OD上方,△PDB∽△AOP,根据相似三角形对应边成比例得出则根据比例式列出方程,求解并检验即可得出P点的坐标;如图4,若点P在OD上方,△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解并检验即可得出P 点的坐标;如图5,若点P在y轴负半轴,△PDB∽△AOP,根据相似三角形对应边成比例得出,根据比例式列出方程,求解并检验即可得出P点的坐标,综上所述即可得出答案。

初三数学反比例函数的专项培优练习题(含答案)及详细答案

初三数学反比例函数的专项培优练习题(含答案)及详细答案

初三数学反比例函数的专项培优练习题(含答案)及详细答案一、反比例函数1.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.2.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.(1)求一次函数和反比例函数的解析式;(2)求△ABH面积.【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,∴CO=2,即C(0,2),把C(0,2),D(﹣1,0)代入y=ax+b可得,,解得,∴一次函数解析式为y=2x+2,∵点A的横坐标是1,∴当x=1时,y=4,即A(1,4),把A(1,4)代入反比例函数y= ,可得k=4,∴反比例函数解析式为y=(2)解:解方程组,可得或,∴B(﹣2,﹣2),又∵A(1,4),BH⊥y轴,∴△ABH面积= ×2×(4+2)=6.【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.3.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.4.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。

2022-2023学年人教版初中数学专题《反比例函数与几何综合问题》尖子生培优题典原卷

2022-2023学年人教版初中数学专题《反比例函数与几何综合问题》尖子生培优题典原卷

专题26.7反比例函数与几何综合问题大题专练(重难点培优)姓名:__________________ 班级:______________ 得分:_________________一、解答题(共24题)1.(2022·辽宁·灯塔市第一初级中学九年级期中)如图,在直角坐标系中,点B的坐标为(4,2),过点B(x>0)的图象分别交AB,BC于点E,F.分别作x轴、y轴的垂线,垂足分别是C,A,反比例函数y=4x(1)求直线EF的解析式;(2)求△EOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P的坐标.2.(2022·山东·新泰市宫里镇初级中学九年级阶段练习)如图,函数y=k(x>0)的图像过点A(n,2)和xB(8,2n−3)两点.5(1)求n和k的值;(2)将直线OA沿x轴向左移动得直线DE,交x轴于点D,交y轴于点E,交y=k(x>0)于点C,若S△ACOx=6,求直线DE解析式;(3)在(2)的条件下,第二象限内是否存在点F,使得△DEF为等腰直角三角形,若存在,请直接写出点F 的坐标;若不存在,请说明理由.3.(2022·上海·新区川沙新镇江镇中学九年级阶段练习)如图,直线AC:y=ax+2分别交y轴和反比例函数y=k(x>0)的图象于点C和点A(2,m),点B也在反比例函数的图象上,且BC∥x轴,tan∠ACB=2.x(1)求点A、B的坐标;(2)设点D在x轴的正半轴上,点E在该反比例函数的图象上.①若四边形BDCE是菱形,求出该菱形周长;②若以点A、C、D、E为顶点的四边形是平行四边形,请直接写出点D的坐标.4.(2021·河南·商城县第二中学九年级阶段练习)已知反比例函数y=1-m(m为常数)的图象在第一、三象x限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,4),(﹣3,0).①求出函数解析式;②【分类讨论思想】设点P是该反比例函数图象上的一点,若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为______个.5.(2022·安徽·利辛县汝集镇西关学校九年级阶段练习)如图,ΔAOB的边OB在x轴上,且∠ABO=90°,反(x>0)的图像与边AO、AB分别相交于点C、D,连接BC.已知OC=BC,ΔBOC的面积为12.比例函数y=kx(1)求k的值;(2)若AD=6,求直线OA的函数表达式.6.(2022·浙江省武义县实验中学八年级阶段练习)如图,四边形OBAC是矩形,OC=2,OB=6,反比例的图象过点A.函数y=kx(1)求k的值.(2)点P为反比例函数图象上的一点,作PD⊥直线AC,PE⊥x轴,当四边形PDCE是正方形时,求点P的坐标.(3)点G为坐标平面上的一点,在反比例函数的图象上是否存在一点Q,使得以A、B、Q、G为顶点组成的平行四边形面积为16?若存在,请求出点G的坐标;若不存在,请说明理由.7.(2022·广东·深圳市宝安第一外国语学校模拟预测)数学是一个不断思考,不断发现,不断归纳的过程,古希腊数学家帕普斯(Pappus,约300−350)把∠AOB三等分的操作如下:(1)以点O为坐标原点,OB所在的直线为x轴建立平面直角坐标系;(x>0)的图像,图像与∠AOB的边OA交于点C;(2)在平面直角坐标系中,绘制反比例函数y=1x(3)以点C为圆心,2OC为半径作弧,交函数y=1的图像于点D;x(4)分别过点C和D作x轴和y轴的平行线,两线交于点E,M;(5)作射线OE,交CD于点N,得到∠EOB.(1)判断四边形CEDM 的形状,并证明;(2)证明:O 、M 、E 三点共线;(3)证明:∠EOB =13∠AOB .8.(2022·广东·佛山市南海外国语学校三模)如图1,在平面直角坐标系xOy 中,点C 在x 轴负半轴上,四边形OABC 为菱形,反比例函数y =−12x (x >0)经过点A(a,−3),反比例函数y =kx (k >0,x <0)经过点B ,且交BC 边于点D ,连接AD .(1)求直线BC 的表达式.(2)求tan ∠DAB 的值.(3)如图2,P 是y 轴负半轴上的一个动点,过点P 作y 轴的垂线,交反比例函数y =−12x (x >0)于点N .在点P 运动过程中,直线AB 上是否存在点E ,使以B ,D ,E ,N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.9.(2022·广东·华南师大附中三模)如图,已知直线y =-34x 上一点B ,由点B 分别向x 轴、y 轴作垂线,垂足为A 、C ,若A 点的坐标为(0,5).(1)若点B也在一反比例函数的图象上,求出此反比例函数的表达式.(2)若将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,求点E的坐标.10.(2022·江苏·射阳县实验初级中学八年级期中)如图,在平面直角坐标系中,B、C两点在x轴的正半轴(x>0,上,以线段BC为边向上作正方形ABCD,顶点A在正比例函数y=2x的图象上,反比例函数y=kxk>0)的图象经过点A,且与边CD相交于点E.(1)若BC=4,求点E的坐标;(2)连接AE,OE,若△AOE的面积为16,求k的值.11.(2022·山东·新泰市楼德镇初级中学九年级阶段练习)反比例函数y=k(k>0)的图像与直线y=mx+nx的图像上,过点B作PB∥x轴交OQ于点P,过点P作的图像交于Q点,点B(3,4)在反比例函数y=kxPA∥y轴交反比例函数图像于点A,已知点A的纵坐标为9.4(1)求反比例函数及直线OP的解析式;(2)在x轴上存在点N,使得△AON的面积与△BOP的面积相等,请求出点N的坐标;(3)在y轴上找一点E,使△OBE为等腰三角形,直接写出点E坐标.12.(2022·江苏·射阳县实验初级中学八年级期中)定义:如图1,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股点.(1)【直接应用】如图1,已知点M、N是线段AB的勾股点,若AM=2,MN=4,则BN= .(2)【知识迁移】如图2,点C,D是线段AB的勾股点(CD>BD),以CD为直径画⊙O,点P在⊙O上,AC=CP,连接PA,PB,若∠A=2∠B,求∠B的度数.(3)【拓展应用】如图3,点P(a,b)是反比例函数y=2(x>0)上的动点,直线y=﹣x+2与坐标轴分别x交于A、B两点,过点P分别向x、y轴作垂线,垂足为C、D,且交线段AB于E、F两点.证明:点E、F是线段AB的勾股点.x+2及双曲线y 13.(2022·江苏·泰州中学附属初中八年级期末)如图在平面直角坐标系中,已知直线y=﹣12=k(k>0,x>0).直线交y轴于A点,x轴于B点,C、D为双曲线上的两点,它们的横坐标分别为a,a+m x(m>0).(1)如图①连接AC、DB、CD,当四边形CABD为平行四边形且a=2时,求k的值.(2)如图②过C、D两点分别作CC′∥y轴∥DD′交直线AB于C',D',当CD∥AB时,①对于确定的k值,求证:a(a+m)的值也为定值.,求d的最大值.②若k=6,且满足m=a﹣4+da14.(2021·江苏·宿迁市钟吾国际第一初级中学八年级期中)如图,直线y=ax+b与反比例函数y=k(xx<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(-2,6),点B的横坐标为-6,(1)试确定反比例函数的关系式;(2)求点C的坐标;(3)点M是x轴上的一个动点.①若点M在线段OC上,且△AMB的面积为8,求点M的坐标;②点N是平面直角坐标系中的一点,当以A、B、M、N四点为顶点的四边形是菱形时,请直接写出点N的坐标,15.(2022·江苏·张家港市东渡实验学校八年级期中)如图,直线y=x+b(b≠0)分别交x轴、y轴于A、B (x>0)于点D,过点D分别作x轴、y轴的垂线DC、DE,垂足分别为C、E,连接两点,交双曲线y=5xOD.(1)求证:AD平分∠CDE;(2)对于任意非零的实数b,求证:AD•BD为定值,并求出该定值;(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.16.(2022·贵州铜仁·九年级期末)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=k(x>0)的图象经过点B.x(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.的值;①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求DEEF②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.17.(2022·江苏·扬州市江都区实验初级中学八年级阶段练习)如图,菱形OABC的点B在y轴上,点C坐的图象经过点A.标为(12,5),双曲线y=kx(1)菱形OABC的边长为____;(2)求双曲线的函数关系式;(3)①点B关于点O的对称点为D点,过D作直线l垂直于y轴,点P是直线l上一个动点,点E在双曲线上,当P、E、A、B四点构成平行四边形时,求点E的坐标;②将点P绕点A逆时针旋转90°得点Q,当点Q落在双曲线上时,求点Q的坐标.18.(2021·湖南·李达中学九年级阶段练习)如图,一次函数y=kx+b的图像与反比例函数y=m的图像交x于C(2,n)、D两点,与x轴,y轴分别交于A、B(0,2)两点,如果△AOC的面积为6.(1)求点A的坐标;(2)求一次函数和反比例函数的解析式;(3)如图2,连接DO并延长交反比例函数的图像于点E,连接CE,求点E的坐标和△COE的面积.(m≠0)的19.(2022·四川·威远县凤翔中学八年级期中)已知一次函数y=kx+b(k≠0)与反比例函数y=mx图像交于A(2,3),B(﹣6,n)两点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)P是y轴上一点,且S△ABP=12,求出P点坐标;(4)M是x轴上一点,满足|MA−MB|最大,求点M的坐标.(5)求不等式kx+b﹣m<0的解集.(直接写出答案)x20.(2022·河南·商水县希望初级中学八年级期中)如图,在平面直角坐标系中,直线y=kx+3k+2与坐标轴交于点B与C(0,1),点A是x轴上一点,连接AC,且AB=1,D(1,m)是线段BC上一点,反比例函数y=k′x 的图象经过点D.(1)求k′的值.(2)求线段AC所在直线的函数表达式.(3)延长DO,与反比例函数y=k′的图象在第三象限交于点F,Q是x轴上的一点,当以F、Q、D三点构成的三x角形为直角三角形时,直接写出Q点的坐标.21.(2022·河南·商水县希望初级中学八年级期中)如图,一次函数y=kx+b(k≠0)与反比例函数y=−6x (x<0)的图象交于点C(m,1)和点D(n,6),与坐标轴交于点A,B.(1)求直线AB的函数表达式.<kx+b的解集.(2)结合图象,直接写出不等式−6x(3)连接OC,OD,在直线AB上是否存在一点P,使得S△OBP=S△COD,若存在,求出P点的坐标,若不存在,请说明理由.22.(2022·河南新乡·八年级期中)如图,在平面直角坐标系中,点B,D分别在反比例函数y=−6(x<0)和xy=k(k>0,x>0)的图象上,AB⊥x轴于点A,DC⊥x轴于点C,O是线段AC的中点,AB=3,DC=2.x(1)求反比例函数y=k的表达式;x(2)连接BD,OB,OD,求△ODB的面积;(3)P是线段AB上的一个动点,Q是线段OB上的一个动点,试探究是否存在点P,使得△APQ是等腰直角三角形?若存在,求所有符合条件点P的坐标;若不存在,请说明理由.23.(2022·吉林·长春市第一〇八学校八年级阶段练习)已知一次函数y=kx+b图像经过点A(2,0)、B (0,2),回答下列问题:(1)求一次函数解析式.(2)在函数y=kx+b图像上有两个点(a,2)、(b,3),请说明a与b的大小关系.(3)以AB为直角边作等腰直角△ABC,点C不与点O重合,过点C的反比例函数的解析式为y=k,请直接x写出点C的坐标以及过点C的反比例函数的解析式.(4)是否在x轴上找一点C,使S△ABC=2S△ABO,若存在,写出点C坐标若不存在,请说明理由.24.(2022·全国·九年级单元测试)如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(0,﹣6)、D(﹣3,﹣7),点B、C在第三象限内.(1)求点B的坐标;(2)在y轴上是否存在一点P,使△ABP是AB为腰的等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.(3)将正方形ABCD沿y轴向上平移,若存在某一位置,使在第二象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,求该反比例函数的解析式.。

初三数学反比例函数的专项培优练习题(含答案)含答案解析

初三数学反比例函数的专项培优练习题(含答案)含答案解析

初三数学反比例函数的专项培优练习题(含答案)含答案解析一、反比例函数1.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.2.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.3.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。

反比例函数培优 含答案

反比例函数培优 含答案

反比例函数培优含答案反比例函数是一种常见的数学模型,在现实生活中有着广泛的应用。

例如,我们可以通过改变电阻来控制电流的变化,从而达到舞台灯光变幻的效果;在过湿地时,我们可以在地面上铺上木板,减小人对地面的压强,从而避免陷入泥中。

反比例函数的图象是由两条曲线组成的双曲线,双曲线向坐标轴无限延伸,但不能与坐标轴相交。

k的正负性决定了双曲线大致位置及y随x的变化情况。

双曲线上的点是关于中心对称的,双曲线也是轴对称图形,对称轴是直线y=x及y=-x。

反比例函数与一次函数有着内在的联系,但它们毕竟不同。

反比例函数中k的几何意义是:k等于双曲线上任意一点作x轴、y轴的垂线所得的矩形的面积。

求两个函数图象的交点坐标,常通过解由这两个函数解析式组成的方程组得到。

求符合某种条件的点的坐标,常根据问题的数量关系和几何元素间的关系建立关于横纵坐标的方程(组),解方程(组)求得相关点的坐标。

在解反比例函数有关问题时,应充分考虑它的对称性,这样既能从整体上思考问题,又能提高思维的周密性。

反比例函数是描述变量之间相互关系的重要数学模型之一,用反比例函数解决实际问题,既要分析问题情景,建立模型,又要综合方程、一次函数等知识。

例1:已知双曲线y=k/x(k≠0)经过矩形OABC边AB的中点F且交BC于点E,四边形OEBF的面积为2,则k的值为多少?例2:函数y=k/x(x>0)的图象上有点P,直线y=-x+1与该图象相交于点Q,且PQ的长度为2,求k的值。

在解决这些问题时,我们可以通过连线、建立方程等方法,灵活运用数学知识,得出正确的答案。

题目:设点A在y轴上,点P(a,b),PM⊥x轴于M,交y轴于点B,交AB于点E,PN⊥y轴于点N,交AB于点F,则AF×BE的值为?解题思路:首先,我们需要明确题目中的各个点和线段的位置关系,然后根据题目所求,设点P的坐标为(a,b),并用a 和b表示AF和BE的长度,最终求得AF×BE的值。

反比例函数与几何综合 (通用版)(含答案)

反比例函数与几何综合 (通用版)(含答案)

反比例函数与几何综合(通用版)试卷简介:反比例函数与几何综合一、单选题(共8道,每道10分)1.如图,在平面直角坐标系中,直线y=-3x+3与x轴,y轴分别交于A,B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )A.1B.2C.3D.4答案:B解题思路:如图,作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.根据题意可得,A(1,0),B(0,3),△CEB≌△BOA≌△AFD.∴BE=OA=DF=1,CE=OB=AF=3,∴OF=OE=4,∴C(3,4),D(4,1),k=1×4=4.∵平移后点C的纵坐标为4,∴平移后点C的横坐标为1,∴a=3-1=2.试题难度:三颗星知识点:反比例函数与几何综合2.如图,反比例函数(x>0)的图象与矩形OABC的边AB,BC分别交于点E,F,且AE=BE, 则△OEF的面积为( )A.3B.C. D.答案:C解题思路:由反比例函数常用模型知道,若点E是BA中点,则点F是线段BC的中点,,,,∴.试题难度:三颗星知识点:反比例函数与几何综合3.如图,正方形ABCD的边AB在x轴的正半轴上,C(2,1),D(1,1).反比例函数的图象与边BC交于点E,与边CD交于点F.已知BE:CE=3:1,则DF:FC等于( )A.4:1B.3:1C.2:1D.1:1答案:D解题思路:方法一:易知点E,则反比例函数为,∴点,,∴DF:FC=1:1.方法二:如图,延长CD交y轴于点G,连接FE,BG.由反比例函数常见模型,可知FE∥BG,∴△CFE∽△CGB,∴,∵,易求∴DF:FC=1:1.试题难度:三颗星知识点:反比例函数与几何综合4.如图,在函数(x<0)和(x>0)的图象上,分别有A,B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,已知,,则线段AB的长度为( )A. B.C. D.答案:D解题思路:由,得.∴两反比例函数的解析式为,设B点坐标为(t>0),∵AB∥x轴,∴A点坐标为.由题意,可证得Rt△AOC∽Rt△OBC,∴OC:BC=AC:OC,即,∴,∴,,∴.试题难度:三颗星知识点:反比例函数与几何综合5.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(8,4).将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数的解析式为( )A. B.C. D.答案:B解题思路:只需求出点D的坐标即可.如图,连接OB,∵∴∵OC=AB=4,∴CD=2,即点D(2,4),∴.试题难度:三颗星知识点:反比例函数与几何综合6.如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B,C均在第一象限,OA=2,∠AOC=60°.点D在边AB上,将菱形OABC沿直线OD翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,且.若某反比例函数的图象经过点,则这个反比例函数的解析式为( )A. B.C. D.答案:D解题思路:连接CD,由折叠性质可知,,∴点A与点D重合.如图所示:根据题意可求得,点B的坐标为,∴点的坐标为,∴经过点的反比例函数的解析式为.试题难度:三颗星知识点:反比例函数与几何综合7.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积之比为4:1,则k的值为( )A. B.C.2D.3答案:B解题思路:由题意可知点,点易知△OPQ与△MPR相似,且相似比为2:1,∴,∴点,则试题难度:三颗星知识点:反比例函数与几何综合8.函数y=x的图象与函数的图象在第一象限内交于点B,点C是函数在第一象限图象上的一个动点,当△OBC的面积为3时,点C的坐标是( )A. B.C. D.答案:D解题思路:在x轴上找到点D使得△OBD的面积为3,过点D作OB的平行线,根据平行线间的距离处处相等及同底等高转化面积可知,平行线与反比例函数图象的交点即为要求的点C.如图,CD∥OB,由,点B的纵坐标为2,得OD=3,∴D(3,0).由CD∥OB可设直线CD的函数解析式为y=x+b,把D点坐标代入可得b=-3,∴直线CD的函数解析式为y=x-3.联立直线CD和反比例函数的解析式可求得C(4,1).同理可求得,直线的函数解析式为y=x+3,联立直线和反比例函数的解析式可求得.试题难度:三颗星知识点:反比例函数与几何综合二、填空题(共2道,每道10分)9.如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线经过点C,交x轴于点E,双曲线经过点D,则k=____.答案:1解题思路:∵点C的纵坐标为1,则点,∴OB=4,∵AB=3,BC=1,∴D(1,1),∴.试题难度:知识点:反比例函数图象上点的坐标特征10.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数(k<0)的图象上,则k=____.答案:-12解题思路:题目当中关键点是点C和点D,我们需要建立等式来求解,题干中给出建等式的信息有三点:①点C,D都在反比例函数的图象上;②四边形ABCD是平行四边形,可以利用对边相等等条件建立等式;③BC=2AB,可以用来建等式.设点C的坐标是,过点C作x轴的垂线,过点D作y轴的垂线,两垂线交于点E,如图所示:易证得△CED≌△BOA,则DE=1,CE=2,∴点D的坐标是.∵点D在反比例函数的图象上,∴(此时利用①②两个条件);由于DA=BC=2AB=,点D,点A(-1,0),构造直角三角形,利用勾股定理可以得到,整理我们可以得到,将其代入可以得到,∵,∴,∴.试题难度:一颗星知识点:反比例函数与几何综合第 11 页共 11 页。

精品反比例函数培优讲解(含答案)

精品反比例函数培优讲解(含答案)

反比例函数专题综合讲解(解答题)1.(2010 四川成都)如图,已知反比例函数ky x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【答案】解:(1)∵已知反比例函数ky x=经过点(1,4)A k -+, ∴41kk -+=,即4k k -+= ∴2k = ∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2), ∴21b =+ ∴1b = ∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。

(2)由12y x y x =+⎧⎪⎨=⎪⎩消去y ,得220x x +-=。

即(2)(1)0x x +-=,∴2x =-或1x =。

∴1y =-或2y =。

∴21x y =-⎧⎨=-⎩或12x y =⎧⎨=⎩ ∵点B 在第三象限,∴点B 的坐标为(21)--,。

由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是2x <-或01x <<。

2.(2010江苏徐州)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm<0的解集(直接写出答案). 【答案】3.(2010 浙江义乌)如图,一次函数2y kx =+的图象与反比例函数my x=的图象交于点P ,点P 在第一象限.P A ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D , 且S △PBD =4,12OC OA =.(1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当0x >时,一次函数的值大于反比例 函数的值的x 的取值范围.【答案】解:(1)在2y kx =+中,令0x =得2y = ∴点D 的坐标为(0,2) (2)∵ AP ∥OD ∴Rt △P AC ∽ Rt △DOC∵12OC OA = ∴13OD OC AP AC == ∴AP =6 又∵BD =624-= ∴由S △PBD =4可得BP =2∴P (2,6) 把P (2,6)分别代入2y kx =+与my x=可得 一次函数解析式为:y =2x +2反比例函数解析式为:12y x=(3)由图可得x >2 4.(2010江苏泰州)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图). ⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式. ⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平? ⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?【答案】⑴①当1≤x ≤5时,设ky x=,把(1,200)代入,得200k =,即200y x=;②当5x =时,40y =,所以当x >5时,4020(5)2060y x x =+-=-;⑵当y =200时,20x -60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元; ⑶对于200y x=,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2=6个月.5.(2010 山东)如图,已知直线12y x =与双曲线(0)ky k x=>交于A ,B 两点,且点A 的横坐标为4. (1)求k 的值;y xPBD AO C(2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求△AOC 的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P ,Q 两点(P 点在第一象限),若由点A ,B ,P ,Q 为顶点组成的四边形面积为24,求点P 的坐标.【答案】(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2∴ 点A 的坐标为(4,2 ) …………2’ ∵点A 是直线12y x =与双曲线8y x=(k>0)的交点, ∴ k = 4×2 = 8 ………….3’(2)解法一:∵ 点C 在双曲线上,当y = 8时,x = 1 ∴ 点C 的坐标为(1,8)………..4’ 过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 S △AOC = S 矩形ONDM -S △ONC -S △CDA -S △OAM = 32-4-9-4 =15 ………..6’解法二:过点 C 、A 分别做x 轴的垂线,垂足为E 、F , ∵ 点C 在双曲线8y x=上,当y = 8时,x = 1。

人教【数学】数学反比例函数的专项培优练习题(含答案)附答案

人教【数学】数学反比例函数的专项培优练习题(含答案)附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴0≤a≤1(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,∵y= +2x﹣4∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤ ,∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.2.如图,P1、P2(P2在P1的右侧)是y= (k>0)在第一象限上的两点,点A1的坐标为(2,0).(1)填空:当点P1的横坐标逐渐增大时,△P1OA1的面积将________(减小、不变、增大)(2)若△P1OA1与△P2A1A2均为等边三角形,①求反比例函数的解析式;②求出点P2的坐标,并根据图象直接写在第一象限内,当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值.【答案】(1)减小(2)解:①如图所示,作P1B⊥OA1于点B,∵A1的坐标为(2,0),∴OA1=2,∵△P1OA1是等边三角形,∴∠P1OA1=60°,又∵P1B⊥OA1,∴OB=BA1=1,∴P1B= ,∴P1的坐标为(1,),代入反比例函数解析式可得k= ,∴反比例函数的解析式为y= ;②如图所示,过P2作P2C⊥A1A2于点C,∵△P2A1A2为等边三角形,∴∠P2A1A2=60°,设A1C=x,则P2C= x,∴点P2的坐标为(2+x, x),代入反比例函数解析式可得(2+x) x= ,解得x1= ﹣1,x2=﹣﹣1(舍去),∴OC=2+ ﹣1= +1,P2C= (﹣1)= ﹣,∴点P2的坐标为( +1,﹣),∴当1<x< +1时,经过点P1、P2的一次函数的函数值大于反比例函数y= 的函数值【解析】【解答】解:(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,故△P1OA1的面积将减小,故答案为:减小;【分析】(1)当点P1的横坐标逐渐增大时,点P1离x轴的距离变小,而OA1的长度不变,故△P1OA1的面积将减小;(2)①由A1的坐标为(2,0),△P1OA1是等边三角形,求出P1的坐标,代入反比例函数解析式即可;②由△P2A1A2为等边三角形,求出点P2的坐标,得出结论.3.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.4.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。

九年级数学反比例函数的专项培优练习题(含答案)附详细答案

九年级数学反比例函数的专项培优练习题(含答案)附详细答案

九年级数学反比例函数的专项培优练习题(含答案)附详细答案一、反比例函数1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴= =3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y= (x>0)(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB= ×3×3+ ×(1+3)×6+ ×1×1=17,∴四边形OCDB的面积是17【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.2.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C (﹣2,3)和射线OA之间的距离为________;(2)如果直线y=x+1和双曲线y= 之间的距离为,那么k=________;(可在图1中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.【答案】(1)3;(2)﹣4(3)解:①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直),;②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),即图形W与图形N之间的距离为d,d===∴当x=﹣时,d的最小值为 = ,即图形W和图形N之间的距离.【解析】【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为 = ,故答案分别为:3,;(2)直线y=x+1和双曲线y= k x 之间的距离为,∴k<0(否则直线y=x+1和双曲线y= 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,由得,即点F(﹣,),则OF= = ,∴OE=OF+EF=2 ,在Rt△OEG中,∠EOG=∠OEG=45°,OE=2 ,则有OG=EG= OE=2,∴点E的坐标为(﹣2,2),∴k=﹣2×2=﹣4,故答案为:﹣4;【分析】(1)由题意可得出点B(2,3)到射线OA之间的距离为B点纵坐标,根据新定义得点C(﹣2,3)和射线OA之间的距离;(2)根据题意即可得k<0(否则直线y=x+1和双曲线y= k x 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= k x 交于点E、F,过点E作EG⊥x 轴,如图1,将其联立即可得点F坐标,根据两点间距离公式可得OF长,再由OE=OF+EF 求出OE长,在Rt△OEG中,根据等腰直角三角形的性质可得点E的坐标为(﹣2,2),将E点代入反比例函数解析式即可得出k值.(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直);②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,分别联立即可得出点M、N坐标,从而得出x取值范围,根据题意图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),从而求出图形W与图形N之间的距离为d,由二次函数性质知d 最小值.3.如图,已知直线y= x与双曲线y=交于A、B两点,且点A的横坐标为 .(1)求k的值;(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.【答案】(1)解:把x= 代入,得y= ,∴A(,1),把点代入,解得:;(2)解:∵把y=3代入函数,得x= ,∴C ,设过,两点的直线方程为:,把点,,代入得:,解得:,∴,设与轴交点为,则点坐标为,∴;(3)解:设点坐标,由直线解析式可知,直线与轴正半轴夹角为,∵以、、、为顶点的四边形是有一组对角为的菱形,在直线上,∴点只能在轴上,∴点的横坐标为,代入,解得纵坐标为:,根据,即得:,解得: .故点坐标为:或 .【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C 点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根据求解即可;(3)设点坐标,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得,求出a的值即可.4.如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y= (k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=________,k=________,点E的坐标为________;(2)当1≤t≤6时,经过点M(t﹣1,﹣ t2+5t﹣)与点N(﹣t﹣3,﹣ t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣ x2+bx+c的顶点.①当点P在双曲线y= 上时,求证:直线MN与双曲线y= 没有公共点;②当抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.【答案】(1)6;-6;(﹣,4)(2)解:①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣ x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t= 或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=【解析】【解答】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)【分析】(1)根据A点的坐标即可得出OA的长,将C点的坐标代入双曲线y=,即可求出k的值,得出双曲线的解析式,根据平行于x轴的直线上的点的坐标特点得出点E的纵坐标为4,将y=4代入双曲线的解析式即可算出对应的自变量的值,从而得出E点的坐标;(2)①用待定系数法求出直线MN解析式,将M,N两点的坐标代入抛物线y=﹣x2+bx+c,得出关于b,c的方程组,求解得出b,c的值,根据顶点坐标公式表示出P点的坐标,再将P点的坐标代入双曲线即可求出t的值,从而得出直线MN解析式,解联立直线MN解析式与双曲线的解析式组成的方程组,根据根的判别式的值小于0,得出直线MN与双曲线没有公共点;②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,故4=5t﹣2,求解得出t的值,当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点,故,求解得出t的值,综上所述得出答案;③根据P点的坐标判断出当1≤t≤6时,y P随t的增大而增大,此时,点P在直线x=﹣1上向上运动进而表示出F点的坐标,将F点的纵坐标配成顶点式,得出当1≤t≤4时,随者y F随t的增大而增大,此时,随着t的增大,点F在y轴上向上运动,故1≤t≤4,当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3),当t=4﹣时,直线MN过点A.根据割补法算出当1≤t≤4时,直线MN在四边形AEBO中扫过的面积。

九年级数学反比例函数的专项培优练习题(含答案)含详细答案

九年级数学反比例函数的专项培优练习题(含答案)含详细答案

九年级数学反比例函数的专项培优练习题(含答案)含详细答案一、反比例函数1.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,∴k=6,C(﹣2,﹣3),即k的值是6,C点的坐标是(﹣2,﹣3);(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,∵点A(2,3),k=6,∴AN=2,∵△APO的面积为2,∴,即,得OP=2,∴点P(0,2),设过点A(2,3),P(0,2)的直线解析式为y=kx+b,,得,∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,当y=0时,0=0.5x+2,得x=﹣4,∴点D的坐标为(﹣4,0),设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,则,得,∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,∴点D到直线AC的直线得距离为:= .【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.2.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标________,写出符合题意的其中一条抛物线解析式________,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数________.【答案】(1)解:如图1,当点A在x轴正半轴,点B在y轴负半轴上时,∵OC=0D=1,∴正方形ABCD的边长CD= ;∠OCD=∠ODC=45°,当点A在x轴负半轴、点B在y轴正半轴上时,设小正方形的边长为a,易得CL=小正方形的边长=DK=LK,故3a=CD= .解得a= ,所以小正方形边长为,∴一次函数y=x+1图象的伴侣正方形的边长为或(2)解:如图2,作DE,CF分别垂直于x、y轴,易知△ADE≌△BAO≌△CBF此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m,∴OF=BF+OB=2,∴C点坐标为(2﹣m,2),∴2m=2(2﹣m),解得m=1.反比例函数的解析式为y= .(3)(3,4);y=﹣ x2+ ;偶数【解析】【解答】解:(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合①当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;②当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,③当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在④当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;⑤当点A在x轴负半轴上,点B在y轴负半轴上,点D坐标为(3,4)时,另一个顶点C的坐标是(7,﹣3)时,对应的函数解析式是y=﹣;⑥当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,∴所求出的任何抛物线的伴侣正方形个数为偶数.【分析】解答此题时,要特别注意认真读题,分析题意,注意已知条件点A,B分别是x 轴、y轴上的动点,点C,D是某个函数图象上的点。

2023年九年级中考数学专题培优训练:反比例函数的综合题【含答案】

2023年九年级中考数学专题培优训练:反比例函数的综合题【含答案】

2023年九年级中考数学专题培优训练:反比例函数的综合题一、单选题1.规定:如果关于x 的一元二次方程ax 2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x 2+2x﹣8=0是倍根方程;②若关于x 的方程x 2+ax+2=0是倍根方程,则a=±3;③若关于x 的方程ax 2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax 2﹣6ax+c 与x 轴的公共点的坐标是(2,0)和(4,0);④若点(m ,n )在反比例函数y= 的图象上,则关于x 的方程mx 2+5x+n=0是倍根方程.4x 上述结论中正确的有( )A .①②B .③④C .②③D .②④2.如图,一次函数 的图象与 轴、 轴分别相交于点 、 ,点 在反比例函y =43x +4x y A B C 数 的图象上.若 是等腰直角三角形,则下列 的值错误的是( )y =kx (x <0)△ABC kA .-28B .-21C .-14D .−4943.如图,平行于x 轴的直线与函数 (k 1>0,x >0),y=(k 2>0,x >0)的图像分别交于y =k 1x k 2x A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点.若△ABC 的面积为4,则k 1-k 2的值为( )4.如图,在 轴正半轴上依次截取 ,过点 、 、 x OA 1=A 1A 2=A 2A 3=⋯=A n−1A p =1A 1A 2 、…… 分别作 轴的垂线,与反比例函数 交于点 、 、 、…、A 3A n x y =2x (x >0)P 1P 2P 3 ,连接 、 、… ,过点 、 、…、 分别向 、 、…、 P n P 1P 2P 2P 3P n−1P n P 2P 3P n P 1A P 2A 2 作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于( ).P n−1A n−1A .B .C .D .2nn−1n2n +1n +22n5.下列选项中,阴影部分面积最小的是( )A .B .C .D .6.如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数y =−和y =的图象交于A 点4x 2x 和B 点,若C 为x 轴上任意一点,连接AC ,BC ,则△ABC 的面积为( )7.如图,在第一象限的点 既在双曲线上,又在直线 上,且直线A y =12x y =2x−2y =2x−2与 轴相交于点 , 、 ,当四边形 周长取得最小值时, ( x B C(0,b)D(0,b +2)ABCD b =)A .B .C .1D .1234528.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点M 是边BC 上一动点(不与B 、C 重合).过点M 的双曲线(x>0)交AB 于点N ,连接OM 、ON .下列结论:y =kx ①△OCM 与△OAN 的面积相等;②矩形OABC 的面积为2k ;③线段BM 与BN 的长度始终相等;④若BM =CM ,则有AN =BN .其中一定正确的是( )A .①④B .①②C .②④D .①③④二、填空题9.如图,菱形ABCD 中, ,顶点A ,C 在双曲线 上,顶点B ,D 在∠ABC =120°y =k 1x (k 1>0)双曲线 上,且BD 经过点O.若 ,则菱形ABCD 面积的最小值是 .y =k 2x (k 2<0)k 1+k 2=210.如图,点A ,B ,C 在反比例函数y =﹣ 的图象上,且直线AB 经过原点,点C 在第二象限上,kx 连接AC 并延长交x 轴于点D ,连接BD ,若△BOD 的面积为12,AC =kCD ,则 =  .DCDE11.如图,反比例函数y=的图象经过点(﹣1,-2),点A 是该图象第一象限分支上的动点,连结kx 2AO 并延长交另一分支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x轴交于点D ,当=时,则点C 的坐标为  .ADCD 212.已知一次函数 的图象过定点M.y =kx−5k +6(k ≠0)①请写出点M 的坐标 ,②若一次函数 的图象与反比例函数 的图象相交于点y =kx−5k +6(k ≠0)y =3x (x >0)A(p ,q).当一次函数y 的值随x 的值增大而增大时,p 的取值范围是 .13.已知点A (a ,b )在双曲线y= 上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b )5x 两点的一次函数的解析式(也称关系式)为 .14.如图,已知双曲线 经过Rt △OAB 的斜边OB 的中点D ,与直角边AB 相交于点y =kx (k >0)C .当 时,  .BC ⋅OA =6k =三、综合题15.如图,一次函数的图象交反比例函数的图象于,两点.y =kx +b y =m x A(2,−4)B(a ,−1)(1)求反比例函数与一次函数解析式.(2)连接,求的面积.OA ,OB ΔOAB (3)根据图象直接回答:当为何值时,一次函数的值大于反比例函数的值?x 16.已知一次函数y 1=3x﹣3的图象与反比例函数的图象交于点A (a ,3),B (﹣1,b ).y 2=mx (1)求a ,b 的值和反比例函数的表达式.(2)设点P (h ,y 1),Q (h 2)分别是两函数图象上的点.①试直接写出当y 1>y 2时h 的取值范围;②若y 2﹣y 1=3,试求h 的值.17.八年级下册,我们曾经探究过“一元一次方程、一元一次不等式与一次函数”之间的关系,学会了运用一次函数的图象可以解一元一次方程与一元一次不等式.例如:一次函数y=3x+2与x 轴交点的横坐标是方程3x+2=0的解;一次函数y=3x+2在x 轴上方部分图像的自变量取值范围是不等式3x+2>0的解集.(1)【类比解决】利用图像解下列方程或不等式.Ⅰ.如图①,方程ax 2+bx +c -m=0的解为  ;Ⅱ.如图②,不等式kx +b< 的解为  .mx (2)【拓展探究】已知函数y1=|60-x|,y2=|120-x|.Ⅰ.利用分类思想,可将函数y1=|60-x|先转化为,然后分别画出y1=60-x y 1={60−x(x≤60)x−60(x >60)的图像x≤60的部分和y1=x -60的图像x >60的部分,就可以得到函数y1=|60-x|的图像,如图③所示.请在图③所在的平面直角坐标系中直接画出y2=|120-x|的图像.Ⅱ.已知min{m ,n} =m (m≤n ),例如:min{1,-2} =-2.若y=min{y1,y2}的图像为W ,请计算图像W 与坐标轴围成图形的总面积.(3)【实际应用】有一条长为600米的步行道OA ,A 是垃圾投放点w1,若以O 为原点,OA 为x 轴正半轴建立直角坐标系,设B (x ,0),现要在步行道上建另一座垃圾投放点w2(t ,0),点B 与w1的距离为d1=|600-x|,点B 与w2的距离为d2=|x -t|,d 表示与B 点距离最近的垃圾投放点的距离,即:d =min{d1,d2}.若可以通过函数d 的图像与坐标轴围成的总面积来测算扔垃圾的便利程度,面积越小越便利.问:垃圾投放点w2建在何处才能比建在OA 中点时更加便利?18.如图,在平面直角坐标系xOy 中,正方形ABCD 的边AB 在x 轴的正半轴上,顶点C ,D 在第一象限内,正比例函数y 1=3x 的图象经过点D ,反比例函数的图象经过点D ,且与边y 2=kx (x >0)BC 交于点E ,连接OE ,已知AB =3.(1)点D 的坐标是 ;(2)求tan ∠EOB 的值;(3)观察图象,请直接写出满足y 2>3的x 的取值范围;(4)连接DE ,在x 轴上取一点P ,使,过点P 作PQ 垂直x 轴,交双曲线于点Q ,请S △DPE =98直接写出线段PQ 的长.19.如图所示,在平面直角坐标系中,一次函数 与反比例函数的图像交于第二、y =kx +b y =mx 四象限 、 两点,过点 轴于点 , , ,且点 的坐标为 A B A AD ⊥x D AD =4AO =5B .(n,−2)(1)求一次函数与反比例函数的解析式.(2) 是 轴上一点,且 是等腰三角形,请直接写出所有符合条件的 点坐标.E y ΔAOE E 20.定义:函数图象上到两坐标轴的距离都不大于的点叫做这个函数图象的“n 阶方点”.例n(n ≥0)如,点是函数图像的“阶方点”;点是函数图像的“2阶方点”.(13,13)y =x 12(2,1)y =2x (1)在①;②;③三点中,是反比例函数图像的“1阶方点”的(−2,−12)(−1,−1)(1,1)y =1x 有 (填序号);(2)若y 关于x 的一次函数图像的“2阶方点”有且只有一个,求a 的值;y =ax−3a +1(3)若y 关于x 的二次函数图像的“n 阶方点”一定存在,请直接写出n 的取y =−(x−n)2−2n +1值范围.答案解析部分1.【答案】C 2.【答案】C 3.【答案】A 4.【答案】B 5.【答案】C 6.【答案】A 7.【答案】A 8.【答案】A 9.【答案】4310.【答案】1611.【答案】(2,-)212.【答案】(5,6); <p<51213.【答案】y=﹣5x+5或y=﹣ x+11514.【答案】215.【答案】(1)解:把A (2,-4)的坐标代入得:m=-8,y =mx ∴反比例函数的解析式是;y =−8x 把B (a ,-1)的坐标代入得:-1=,y =−8x −8a 解得:a=8,∴B 点坐标为(8,-1),把A (2,-4)、B (8,-1)的坐标代入y=kx+b ,得:,{2k +b =−48k +b =−1解得: ,{k =12b =−5∴一次函数解析式为;y =12x−5(2)解:设直线AB 交x 轴于C .∵,y =12x−5∴当y=0时,x=10,∴OC=10,∴△AOB 的面积=△AOC 的面积-三角形BOC 的面积=;12×10×4−12×10×1=15(3)解:由图象知,当0<x <2或x >8时,一次函数的值大于反比例函数的值.16.【答案】(1)解:∵一次函数y 1=3x﹣3的图象与反比例函数的图象交于点A (a ,3),y 2=mx B (﹣1,b ),∴3=3a﹣3,b =﹣3﹣3,∴a =2,b =﹣6,∴A (2,3),B (﹣1,﹣6),把A (2,3)代入反比例函数 ,则3= ,y 2=m x m 2∴m =6,∴反比例函数的表达式是y 2= 6x(2)解:①点P (h ,y 1),Q (h ,y 2)分别是两函数图象上的点.当y 1>y 2时h 的取值范围是h >2或﹣1<h <0;②点P (h ,y 1),Q (h ,y 2)分别是两函数图象上的点,∴y 1=3h﹣3,y 2= ,6ℎ∵y 2﹣y 1=3,∴ ﹣(3h﹣3)=3,6ℎ整理得3h 2=6,∴h = .±217.【答案】(1)x=-1或4;x<-1或0<x<3(2)解:Ⅰ. 如图,Ⅱ. 看图可知:,W ={y 1x ≤90y 2x >90∴图像W 与坐标轴围成图形的总面积=×60×60+×60×30=2700;1212(3)解:∵ d =min{d1,d2} =min{ |600-x| , |x -t| },当d 1=d 2时,600-x=x -t ,得x=0.5t+300,∴,d ={|x−t |x ≤0.5t +300|600−x |x >0.5t +300∴d 与坐标轴围成的面积,如图所示,∴S=t 2+(600-t )2=t 2-300t+90000,121434 当t=300,S=×3002-300×300+90000=67500,34 由题可知,S <S (300)即t 2-300t+90000<67500,34 整理得:t 2-300t+22500<0,34(t-100)(t-300)<0,34 解得100<t<300,∴ 垃圾投放点w 2建在(100,0)和(300,0)之间比建在中点时更加便利 。

2019-2020反比例函数与几何综合 培优专题(解析版)

2019-2020反比例函数与几何综合 培优专题(解析版)

2019-2020反比例函数与几何综合培优专题(解析版)一、解答题1.如图,一次函数1522y x=-+的图像与反比例函数kyx=(k>0)的图像交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.2.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.3.如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═35,反比例函数y=kx的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为32.(1)求反比例函数的解析式; (2)求直线EB 的解析式; (3)求S △OEB .4.如图,一次函数y=x+4的图象与反比例函数y=kx(k 为常数且k≠0)的图象交于A (﹣1,a ),B 两点,与x 轴交于点C . (1)求此反比例函数的表达式; (2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.5.如图,菱形ABCD 的顶点A 在y 轴正半轴上,边BC 在x 轴上,且BC=5,sin ∠ABC=45,反比例函数ky x=(x>0)的图象分别与AD ,CD 交于点M 、点N ,点N 的坐标是(3,n ),连接OM ,MC.(1)求反比例函数的解析式; (2)求证:△OMC 是等腰三角形.6.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2ky x=的图象交于点()A 1,2和()B 2,m -.()1求一次函数和反比例函数的表达式; ()2请直接写出12y y >时,x 的取值范围;()3过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.7.一次函数y=kx+b 的图象经过点A(-2,12),B(8,-3). (1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数()0my m x=>的图象相交于点C(x 1,y 1),D(x 2,y 2),与y 轴交于点E ,且CD=CE ,求m 的值.8.如图,已知A (3,m ),B (﹣2,﹣3)是直线AB 和某反比例函数的图象的两个交点. (1)求直线AB 和反比例函数的解析式;(2)观察图象,直接写出当x 满足什么范围时,直线AB 在双曲线的下方;(3)反比例函数的图象上是否存在点C ,使得△OBC 的面积等于△OAB 的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C 的坐标.9.直线y =kx+b 与反比例函数8y x=(x >0)的图象分别交于点A (m ,4)和点B (8,n ),与坐标轴分别交于点C 和点D .(1)求直线AB 的解析式;(2)观察图象,当x >0时,直接写出8kx b x+>的解集; (3)若点P 是x 轴上一动点,当△COD 与△ADP 相似时,求点P 的坐标.10.如图,一次函数y=k 1x-3(k 1>0)的图象与x 轴、y 轴分别交于A ,B 两点, 与反比例函数y=2k x(k 2>0)的图象交于C,D 两点,作CE ⊥y 轴,垂足为点E ,作DF ⊥y 轴,垂足为点F ,已知CE=1.(1) ①直接写出点C 的坐标 (用k 1来表示)②k 2﹣k 1= ;(2) 若B 为AC 的中点,求反比例函数的表达式;(3) 在(2)的条件下,设点M 是x 轴负半轴上一点,将线段MF 绕点M 按顺时针或逆时针方向旋转90°得到线段MN ,当点M 滑动时,点N 能否在反比例函数的图象上?如果能,求出点N 的坐标;如果不能,请说明理由.11.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=mx(m≠0)的图象交于第二、四象限A 、B 两点,过点A 作AD ⊥x 轴于D ,AD=4,sin ∠AOD=45,且点B 的坐标为(n,-2).(1)求一次函数与反比例函数的解析式;(2)E 是y 轴上一点,且△AOE 是等腰三角形,请直接写出所有符合条件的E 点坐标.12.已知一次函数y=k 1x+b 与反比例函数y=2k x 的图象交于第一象限内的P (12,8),Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)直接写出不等式k 1x+b≥2k x的解集; (3)M 为线段PQ 上一点,且MN ⊥x 轴于N ,求△MON 的面积最大值及对应的M 点坐标.13.如图,在平面直角坐标系xOy 中,A (0,3),B (1,0),连接BA ,将线段BA 绕点B 顺时针旋转90°得到线段BC ,反比例函数y =(0)kx x的图象G 经过点C . (1)请直接写出点C 的坐标及k 的值;(2)若点P 在图象G 上,且∠POB =∠BAO ,求点P 的坐标;(3)在(2)的条件下,若Q (0,m )为y 轴正半轴上一点,过点Q 作x 轴的平行线与图象G 交于点M ,与直线OP 交于点N ,若点M 在点N 左侧,结合图象,直接写出m 的取值范围.14.如图,在平面直角坐标系中,正比例函数(0)y kx k =>与反比例函数3y x=的图象分别交于A 、C 两点,已知点B 与点D 关于坐标原点O 成中心对称,且点B 的坐标为(),0.m 其中0m >.()1四边形ABCD 的是______.(填写四边形ABCD 的形状)()2当点A 的坐标为(),3n 时,四边形ABCD 是矩形,求m ,n 的值.()3试探究:随着k 与m 的变化,四边形ABCD 能不能成为菱形?若能,请直接写出k 的值;若不能,请说明理由.15.如图,直线y =﹣2x +4与x 轴,y 轴分别交于点C ,A ,点D 为点B (﹣3,0)关于AC 的对称点,反比例函数y =kx的图象经过点D . (1)求证:四边形ABCD 为菱形; (2)求反比例函数的解析式; (3)已知在y =kx的图象(x >0)上一点N ,y 轴正半轴上一点M ,且四边形ABMN 是平行四边形,求点M的坐标.16.如图,点A(3,2)和点M(m,n)都在反比例函数y=kx(x>0)的图像上,(1)求k的值,并求当m=4时,直线AM的解析式;(2)过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,直线AM交x轴于点Q,试说明四边形ABPQ是平行四边形;(3)在(2)的条件下,四边形ABPQ能否为菱形?若能,请求出m的值;若不是,请说明理由.17.如图,一次函数y=ax﹣1的图象与反比例函数kyx的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=10,tan∠AOC=1 3(1)求a,k的值及点B的坐标;(2)观察图象,请直接写出不等式ax﹣1≥kx的解集;(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.18.如图1,已知直线y=mx分别与双曲线y=8x,y=kx(x>0)交于P,Q两点,且OP=2OQ.(1)求k的值;(2)如图2,若A是双曲线y=8x上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=kx(x>0)于B,C两点,连接BC,设A点的横坐标为t.①分别写出A,B,C的坐标,并求△ABC的面积;②当m=2时,D为直线y=2x上的一点,若以A,B,C,D为顶点的四边形是平行四边形,求A点坐标.19.如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,<的解集.(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.20.如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y 轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.21.如图,一次函数y=kx+b(k≠0)与反比例函数y=ax(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.22.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.23.如图,菱形OABC的边OC在x轴正半轴上,点B的坐标为(8,4).(1)请求出菱形的边长;(2)若反比例函数经过菱形对角线的交点D,且与边BC交于点E,请求出点E的坐标.24.如图,一次函数与反比例函数相交于、两点,与轴,轴分别交于、两点,已知,的面积为1.(1)求一次函数和反比例函数的解析式;(2)连接,,点是线段的中点,直线向上平移个单位将的面积分成两部分,求的值.25.如图,反比例函数y=kx(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值;(2)点P在反比例函数y=kx(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.26.如图,点M(﹣3,m)是一次函数y=x+1与反比例函数y=(k≠0)的图象的一个交点.(1)求反比例函数表达式;(2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为时,△AMC与△AMC′的面积相等.27.如图1,已知点A(﹣1,0),点B(0,﹣2),AD与y轴交于点E,且E为AD的中点,双曲线y=kx经过C,D两点且D(a,4)、C(2,b).(1)求a、b、k的值;(2)如图2,线段CD能通过旋转一定角度后点C、D的对应点C′、D′还能落在y=kx的图象上吗?如果能,写出你是如何旋转的,如果不能,请说明理由; (3)如图3,点P 在双曲线y=kx上,点Q 在y 轴上,若以A 、B 、P 、Q 为顶点的四边形为平行四边形,试求满足要求的所有点P 、Q 的坐标.28.参照学习函数的过程与方法,探究函数y=2(0)x x x-≠的图象与性质. 因为y=221x x x -=-,即y=﹣2x +1,所以我们对比函数y=﹣2x来探究. 列表:x…﹣4﹣3﹣2﹣1﹣12121 2 3 4 …y=﹣2x…12 23124﹣4﹣11﹣23 ﹣12 …y=2x x- …32 532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以y=2x x-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y 轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来; (2)观察图象并分析表格,回答下列问题:①当x <0时,y 随x 的增大而 ;(填“增大”或“减小”)②y=2x x -的图象是由y=﹣2x的图象向 平移 个单位而得到; ③图象关于点 中心对称.(填点的坐标) (3)设A (x 1,y 1),B (x 2,y 2)是函数y=2x x-的图象上的两点,且x 1+x 2=0,试求y 1+y 2+3的值.29.如图,反比例函数ky x=的图像经过点A(1,6),过点A 作AC ⊥x 轴于点C,点B 是直线AC 右侧的双曲线上的动点,过点B 作BD ⊥y 轴于点D ,交AC 于点F ,连接AB 、BC 、CD 、AD. (1) k=_____;(2四边形ABCD 能否为菱形?若能,求出B 点的坐标,若不能,说明理由; (3)延长AB ,交x 轴于点E ,试判断四边形BDCE 的形状,并证明你结论.30.如图,在平面直角坐标系xOy 中,已知点A 的坐标为(3,a )(其中a >4),射线OA 与反比例函数y=12x 的图象交于点P ,点B 、C 分别在函数y=12x的图象上,且AB ∥x 轴,AC ∥y 轴; (1)当点P 横坐标为2,求直线AO 的表达式; (2)连接CO ,当AC=CO 时,求点A 坐标; (3)连接BP 、CP ,试猜想:ABP ACPSS的值是否随a 的变化而变化?如果不变,求出ABP ACPSS的值;如果变化,请说明理由.31.如图1,已知直线y=﹣12x+m与反比例函数y=kx的图象在第一象限内交于A、B两点(点A在点B的左侧),分别与x、y轴交于点C、D,AE⊥x轴于E.(1)若OE•CE=12,求k的值.(2)如图2,作BF⊥y轴于F,求证:EF∥CD.(3)在(1)(2)的条件下,EF=5,AB=25,P是x轴正半轴上的一点,且△PAB是以P为直角顶点的等腰直角三角形,求P点的坐标.32.如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m >1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)求出反比例函数解析式;(2)求证:△ACB∽△NOM.(3)延长线段AB,交x轴于点D,若点B恰好为AD的中点,求此时点B的坐标.33.如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.34.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于P(n,2),与轴交于A (﹣4,0),与y轴交于C,PB⊥轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B、C、P、D为顶点的四边形是菱形,求出点D的坐标.35.如图,已知直线与x、y轴交于M、N,若将N向右平移个单位后的N,,恰好落在反比例函数的图像上.(1)求k的值;(2)点P为双曲线上的一个动点,过点P作直线PA⊥x轴于A点,交NM延长线于F点,过P点作PB⊥y轴于B交MN于点E.设点P的横坐标为m.①用含有m的代数式表示点E、F的坐标②找出图中与△EOM 相似的三角形,并说明理由.36.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,OA =10,sin∠AOB =4 5 ,反比例函数y =kx-1(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)求反比例函数的表达式;(2)若点F为BC的中点,求△OBF的面积.37.如图,直线y=﹣x+2 与反比例函数y=kx(k≠0)的图象交于A(a,3)、B(3,b)两点,直线AB 交y 轴于点C、交x 轴于点D.(1)请直接写出a=_______,b=______,反比例函数的解析式为_______.(2)在x 轴上是否存在一点E,使得∠EBD=∠OAC,若存在请求出点E 的坐标,若不存在,请说明理由.(3)点P 是x 轴上的动点,点Q 是平面内的动点,是以A、B、P、Q 为顶点的四边形是矩形,若存在请求出点Q 的坐标,若不存在请说明理由.参考答案1.(1)y=2x ;(2)最小值即为1092,P (0,1710).【解析】 【分析】(1)根据反比例函数比例系数k 的几何意义得出112k =,进而得到反比例函数的解析式; (2)作点A 关于y 轴的对称点A ',连接A B ',交y 轴于点P ,得到PA PB +最小时,点P 的位置,根据两点间的距离公式求出最小值A B '的长;利用待定系数法求出直线A B '的解析式,得到它与y 轴的交点,即点P 的坐标. 【详解】(1)反比例函数(0)ky k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1,∴112k =, 0k >, 2k ∴=,故反比例函数的解析式为:2y x=; (2)作点A 关于y 轴的对称点'A ,连接'A B ,交y 轴于点P ,则PA PB +最小.由15222y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得12x y =⎧⎨=⎩,或412x y =⎧⎪⎨=⎪⎩,()1,2A ∴,14,2B ⎛⎫⎪⎝⎭,()'1,2A ∴-,最小值()221109'41222A B ⎛⎫=++-= ⎪⎝⎭. 设直线'A B 的解析式为y mx n =+,则2142m n m n -+=⎧⎪⎨+=⎪⎩,解得3101710m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线'A B 的解析式为3171010y x =-+, 0x ∴=时,1710y =, P ∴点坐标为170,10⎛⎫⎪⎝⎭.【点睛】考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA PB +最小时,点P 的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键. 2.(1)①132y x =-+;②四边形ABCD 是菱形,理由见解析;(2)四边形ABCD 能是正方形,理由见解析,m+n=32. 【解析】 【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论;②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论; (2)先确定出B (4,4m ),D (4,4n),进而求出点P 的坐标,再求出A ,C 坐标,最后用AC=BD ,即可得出结论. 【详解】 (1)①如图1,4m =,∴反比例函数为4y x=,当4x =时,1y =,()4,1B ∴,当2y =时,42x∴=, 2x ∴=, ()2,2A ∴,设直线AB 的解析式为y kx b =+,∴ 2241k b k b +=⎧⎨+=⎩,∴ 123k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为132y x =-+;②四边形ABCD 是菱形, 理由如下:如图2,由①知,()4,1B ,//BD y 轴,()4,5D ∴,点P 是线段BD 的中点,()4,3P ∴,当3y =时,由4y x =得,43x =, 由20y x =得,203x =,48433PA ∴=-=,208433PC =-=,PA PC ∴=,PB PD =,∴四边形ABCD 为平行四边形,BD AC ⊥,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,BD AC ∴=,当4x =时,4m m y x ==,4n ny x == 4,4m B ⎛⎫∴ ⎪⎝⎭,4,4n D ⎛⎫⎪⎝⎭,4,8m n P +⎛⎫∴ ⎪⎝⎭,8(m A m n ∴+,)8m n +,8(n C m n +,)8m n+ AC BD =,∴8844n m n mm n m n -=-++, 32m n ∴+=.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键. 3.(1)反比例函数的解析式为y=12x ;(2)直线BE 的解式为:y=14x ﹣2;(3)S △OEB =12. 【解析】分析:(1)利用待定系数法求反比例函数的解析式;(2)根据点A的坐标可求得直线OA的解析式,联立直线OA和反比例函数解析式列方程组可得点E的坐标,再利用待定系数法求BE的解析式;(3)根据三角形的面积公式计算即可.详解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6,∵cos∠OAB═35 ABOA=,∴635 OA=,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,32),∵点D在反比例函数的图象上,∴k=8×32=12,∴反比例函数的解析式为:y=12x;(2)设直线OA的解析式为:y=bx,∵A(8,6),∴8b=6,b=34,∴直线OA的解析式为:y=34 x,则1234xx=,x=±4,∴E(-4,-3),设直线BE的解式为:y=mx+n,把B(8,0),E(-4,-3)代入得:8043 m nm n+⎧⎨-+-⎩==,解得:142 mn⎧⎪⎨⎪-⎩==,∴直线BE 的解式为:y=14x-2; (3)S △OEB =12OB•|y E |=12×8×3=12. 点睛:本题考查了一次函数与反比例函数的交点问题,用待定系数法求反比例函数的解析式及计算图形面积的问题.解题的关键是:确定交点的坐标. 4.(1)y=-3x(2)点P (﹣6,0)或(﹣2,0) 【解析】 【分析】(1)利用点A 在y=﹣x+4上求a ,进而代入反比例函数ky x=求k . (2)联立方程求出交点,设出点P 坐标表示三角形面积,求出P 点坐标. 【详解】(1)把点A (﹣1,a )代入y=x+4,得a=3, ∴A (﹣1,3)把A (﹣1,3)代入反比例函数k y x= ∴k=﹣3,∴反比例函数的表达式为3.y x=- (2)联立两个函数的表达式得4y x k y x =+⎧⎪⎨=⎪⎩解得13x y =-⎧⎨=⎩或31x y =-⎧⎨=⎩∴点B 的坐标为B (﹣3,1) 当y=x+4=0时,得x=﹣4 ∴点C (﹣4,0) 设点P 的坐标为(x ,0)∵32ACP BOC S S =V V , ∴()1313441,222x ⨯⨯--=⨯⨯⨯ 解得x 1=﹣6,x 2=﹣2∴点P (﹣6,0)或(﹣2,0) 【点睛】本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过 联立方程求交点坐标以及在数形结合基础上的面积表达. 5.(1)4y x=;(2)见解析. 【解析】 【分析】(1)先根据菱形的性质求出AD=AB=5,再根据三角函数求出OA ,进而利用勾股定理求出OB ,求出点C ,D 坐标,利用待定系数法求出直线CD 解析式,进而求出点N 坐标,最后用待定系数法即可得出结论;(2)先求出点M 坐标,再用两点间的距离公式求出OM 和CM ,即可得出结论. 【详解】:(1)∵四边形ABCD 是菱形, ∴AD ∥BC ,AB=AD=BC=5, 在Rt △AOB 中,sin ∠ABC=455OA OA AB ==, ∴OA=4,根据勾股定理得,OB=3, ∴OC=BC-OB=2, ∴C (2,0), ∵AD=5,OA=4, ∴D (5,4),∴直线CD 的解析式为y=43x-83, ∵点N 的坐标是(3,n ), ∴n=4843333⨯-=,∴N (3,43), ∵点N 在反比例函数y=kx(x >0)图形上, ∴k=3×43=4,∴反比例函数的解析式为y=4x; (2)由(1)知,反比例函数的解析式为y=4x, ∵点M 在AD 上, ∴M 点的纵坐标为4, ∴点M 的横坐标为1, ∴M (1,4), ∵C (2,0),∴OM=221417+=,CM=22(12)417-+=, ∴OM=CM ,∴△OMC 是等腰三角形. 【点睛】本题是反比例函数综合题,考查了菱形的性质,锐角三角函数,勾股定理,等腰三角形的判定,待定系数法,两点间的距离公式,求出直线CD 的解析式是解题的关键. 6.()1反比例函数的解析式为22y x=,一次函数解析式为:1y x 1=+;()2当2x 0-<<或x 1>时,12y y >;()3当点C 的坐标为()13,1--或()31,1+-时,AC 2CD =.【解析】 【分析】(1)利用待定系数法求出k ,求出点B 的坐标,再利用待定系数法求出一次函数解析式; (2)利用数形结合思想,观察直线在双曲线上方的情况即可进行解答;(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD ,分点C 在点D 的左侧、点C 在点D 的右侧两种情况解答. 【详解】()1点()A 1,2在反比例函数2ky x=的图象上, k 122∴=⨯=,∴反比例函数的解析式为22y x =, 点()B 2,m -在反比例函数22y x=的图象上,2m 12∴==--,则点B 的坐标为()2,1--, 由题意得,{a b 22a b 1+=-+=-,解得,{a 1b 1==,则一次函数解析式为:1y x 1=+;()2由函数图象可知,当2x 0-<<或x 1>时,12y y >; ()3AD BE ⊥,AC 2CD =,DAC 30∠∴=,由题意得,AD 213=+=, 在Rt ADC 中,CD tan DAC AD ∠=,即CD 333=, 解得,CD 3=,当点C 在点D 的左侧时,点C 的坐标为()13,1--,当点C 在点D 的右侧时,点C 的坐标为()31,1+-,∴当点C 的坐标为()13,1--或()31,1+-时,AC 2CD =.【点睛】本题考查一次函数和反比例函数的交点问题,熟练掌握待定系数法求函数解析式的一般步骤、灵活运用分类讨论思想、数形结合思想是解题的关键. 7.(1)392y x =-+;(2)12. 【解析】 【分析】(1)将A,B 点代入式子即可求出k,b,随之可得出解析式.(2) 分别过点C 、D 做CA y ⊥轴于点A ,DB y ⊥轴于点B , 设点C 坐标为(),a b ,根据条件求出a,b,随之即可解答. 【详解】解:(1)把点()2,12A -,()8,3B -代入y kx b =+得:12238k bk b =-+⎧⎨-=+⎩解得:329k b ⎧=-⎪⎨⎪=⎩∴一次函数解析式为:392y x =-+(2)分别过点C 、D 做CA y ⊥轴于点A ,DB y ⊥轴于点B设点C 坐标为(),a b ,由已知ab m = 由(1)点E 坐标为()0,9,则9AE b =-//AC BD ,CD CE = 2BD a ∴=,()29EB b =- ()92929OB b b ∴=--=-∴点D 坐标为()2,29a b -()2?29a b m ∴-=整理得6m a =ab m = 6b ∴=则点D 坐标化为()2,3a 点D 在392y x =-+图象上 2a ∴= 12m ab ∴==【点睛】本题考查了一次函数的图象与反比例函数的综合运用,学会用待定系数法求解析式是解答本题的关键.8.(1)y=6x,y=x ﹣1;(2)x <﹣2或0<x <3时,直线AB 在双曲线的下方;(3)存在点C ,点C 的坐标为(﹣3,﹣2),(43,92),(﹣43,﹣92).【解析】试题分析:(1)设反比例函数解析式为y=kx,将B 点坐标代入,求出反比例函数解析式,将A 点坐标代入反比例解析式求出m 的值,确定出点A 的坐标,设直线AB 的解析式为y =ax +b ,将A 与B 的坐标代入一次函数解析式求出a 与b 的值,即可确定出一次函数解析式; (2)根据图像写出答案即可;(3)分3中情况求解,延长AO 交双曲线于点C 1,由点A 与点C 1关于原点对称,求出点点C 1的坐标;如图,过点C 1作BO 的平行线,交双曲线于点C 2,将OB 的解析式与C 1C 2的解析式联立,求出点C 2的坐标;A 作OB 的平行线,交双曲线于点C 3,,将AC 3的解析式与反比例函数的解析式联立,求出点C 3的坐标解:(1)设反比例函数解析式为y=,把B (﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6, ∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+''b,把A(3,2)代入,可得2=×3+''b,解得''b=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).点睛:此题考查了反比例函数与一次函数的综合,涉及的知识有:坐标与图形性质,一次函数图像的交点与二元一次方程组的关系,反比例函数与一次函数的交点问题,利用函数图像解不等式,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.9.(1)152y x=-+;(2)2<x<8;(3)点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【解析】【分析】(1)首先确定A、B两点坐标,再利用待定系数法即可解决问题;(2)观察图象,根据A、B两点的横坐标即可确定.(3)分两种情形讨论求解即可.【详解】解:(1)∵点A(m,4)和点B(8,n)在8yx=图象上,∴882148m n====,,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y kx b=+得4218k b k b =+⎧⎨=+⎩解得:125k b ⎧=-⎪⎨⎪=⎩,所以直线AB 的解析式为:152y x =-+ (2)由图象可得,当x>0时,6kx b x+>的解集为2<x<8.(3)由(1)得直线AB 的解析式为152y x =-+,当x=0时,y=5,当y=0时,x=10,即C 点坐标为(0,5),D 点坐标为(10,0)∴OC=5,OD=10,222251055CD OC OD =+=+= ∴()22102445AD =-+=设P 点坐标为(a ,0),由题可以,点P 在点D 左侧,则PD=10-a 由∠CDO =∠ADP 可得 ①当AD PD CD OD =时,△COD ∽△APD ,此时AP ∥CO ,45101055a-=,解得a=2, 故点P 坐标为(2,0) ②当AD PD OD CD =时,△COD ∽△PAD ,即45101055a-=,解得a=0, 即点P 的坐标为(0,0)因此,点P 的坐标为(2,0)或(0,0)时,△COD 与△ADP 相似. 【点睛】本题是反比例函数综合题,还考查了一次函数的性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用分类讨论的思想思考问题,属于中考常考题型.10.(1)①C ()113k ---,; ②3;(2) 6y x =;(3)能,N 333-3-3322⎛⎫- ⎪ ⎪⎝⎭,. 【解析】分析:(1)①由CE =1,可得点C 横坐标-1,代入y =k 1x -3,即可求出点C 的纵坐标;②)联立y =k 1x -3和y =2k x,然后把x =-1代入整理即可; (2)先证明△CBE ≌△ABO ,可得OB =BE .求出 y =k 1x -3于y 轴的交点B 的坐标(-1,-3),可得C 点的坐标(-1,-6),用待定系数法即可求出反比例函数解析式;(3)分MN 绕点M 顺时针旋转90°和MN 绕点M 逆时针旋转90°两种情况讨论解答即可. 详解:(1)①∵CE =1, ∴点C 横坐标-1, 当x =-1时, y =k 1x -3=- k 1-3, ∴C (-1,- k 1-3); ②由题意得, k 1x -3=2k x, 把x =-1代入得, - k 1-3=-k 2, ∴k 2﹣k 1=3;(2)∵B 为AC 的中点, ∴AB =BC .在△CBE 和△ABO 中, ∵∠CBE =∠ABO , AB =BC∠CEB =∠AOB =90°, ∴△CBE ≌△ABO , ∴OB =BE .把x =0代入y =k 1x -3得, y =-3, ∴B (-1,-3), ∴C (-1,-6), 把C (-1,-6)代入y =2k x得, k 2=6,∴6 yx =.(3)如图,当MN绕点M顺时针旋转90°时,点N在反比例函数图像上,作NG⊥x轴于点G. 把C(-1,-6)代入y=k1x-3得,-k1-3=-6,∴k1=3,∴y=3x-3解336y xyx=-⎧⎪⎨=⎪⎩得,1116x y =-⎧⎨=-⎩,1123xy=⎧⎨=⎩,∴D(2,3),∴OF=3.∵∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3.在△MOF和△NGM中,∵∠2=∠3,∠MGN=∠MOF,MN=MF,∴△MOF≌△NGM,∴MG=OF=3.设M(a,0)(a<0),则OG=-a-3,NG=OM=-a , ∴N(a+3,a),把N(a+3,a)代入6yx=得,∴a(a+3)=6,∴1333 2a--=,23332a-+=(舍去),∴a +3=3332--+3=3332-, ∴N 333-3-3322,⎛⎫- ⎪ ⎪⎝⎭.当MN 绕点M 逆时针旋转90°时,点N 在第二象限,此时点N 不能落在反比例函数图像上.点睛:本题考查了一次函数与反比例函数的综合,全等三角形的判定与性质,待定系数法求函数解析式,旋转的性质及分类讨论的数学思想,熟练掌握全等三角形的判定与性质、一次函数与反比例函数的交点坐标的求法是解答本题的关键. 11.(1)223y x =-+;(2)当点E(0,8)或(0,5)或(0,-5)或(0,258)时,△AOE 是等腰三角形. 【解析】 【分析】(1)由垂直的定义及锐角三角函数定义求出AO 的长,利用勾股定理求出OD 的长,确定出A 坐标,进而求出m 的值确定出反比例解析式,把B 的坐标代入反比例解析式求出n 的值,确定出B 坐标,利用待定系数法求出一次函数解析式即可;(2)分类讨论:当AO 为等腰三角形腰与底时,求出点E 坐标即可. 【详解】 (1)一次函数y kx b =+与反比例函数my x=图象交于A 与B ,且AD x ⊥轴, 90ADO ∴∠=︒,在Rt ADO ∆中,4AD =,4sin 5AOD ∠=, ∴45AD AO =,即5AO =, 根据勾股定理得:22543DO =-=,()3,4A ∴-,代入反比例解析式得:12m =-,即12y x=-, 把B 坐标代入得:6n =,即()6,2B -,代入一次函数解析式得:3462k b k b -+=⎧⎨+=-⎩,解得:232k b ⎧=-⎪⎨⎪=⎩,即223y x =-+;(2)当325OE OE AO ===,即()20,5E -,()30,5E ; 当15OA AE ==时,得到128OE AD ==,即()10,8E ;当44AE OE =时,由()3,4A -,()0,0O ,得到直线AO 解析式为43y x =-,中点坐标为()1.5,2-, AO ∴垂直平分线方程为33242y x ⎛⎫-=+ ⎪⎝⎭, 令0x =,得到258y =,即4250,8E ⎛⎫⎪⎝⎭,综上,当点()0,8E 或()0,5或()0,5-或250,8⎛⎫⎪⎝⎭时,AOE ∆是等腰三角形.【点睛】此题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解本题的关键. 12.(1)y=4x ,y=﹣2x+9;(2)当x <0或12<x <4时,k 1x+b≥2kx ;(3)当x=94时,面积最大值为8116,M (94,92)【解析】 【分析】 (1)首先把P (12,8)代入反比例函数解析式中确定k 2的值,得到反比例函数解析式;然后把Q (4,m )代入反比例函数确定m 的值,再根据P ,Q 两点坐标利用待定系数法确定一次函数解析式; (2)根据函数的图象即可求得;(3)设M (x ,﹣2x+9),则ON=x ,MN=﹣2X+9,根据三角形面积公式即可得到关于x 的二次函数,将其化为顶点式,即可得到函数的最大值,从而确定M 点的坐标. 【详解】 (1)∵点P (12,8)在反比例函数图象上, ∴8=212k ,∴k 2=4,∴反比例函数的表达式为:4y x=, ∵Q (4,m )在反比例函数的图象上, ∴m=44=1, ∴Q (4,1), 把P (12,8),Q (4,1)分别代入一次函数y=k 1x+b 中, ∴1182k b =+,114k b =+, 解得:k1=-2,b=9,∴一次函数的表达式为y=﹣2x+9; 即反比例函数的表达式:4y x=,一次函数的表达式为:y=﹣2x+9;(2)由图象得:当x<0或12<x<4时,k1x+b≥2kx.(3)设M(x,﹣2x+9),∴ON=x,MN=﹣2X+9,∴S△MON=12×ON×MN=12x×(﹣2x+9)=﹣x2+92x=﹣(x﹣94)2+8116,∴当x=94时,面积最大值为8116,即M(94,92).【点睛】本题主要考查反比例函数的图象与性质,主要利用了待定系数法求函数解析式,二次函数的最值问题,熟练掌握知识点是解题的关键.13.(1)点C的坐标(4,1),k的值是4;(2) P(23,233);(3)233m【解析】【分析】(1)过C点作CH⊥x轴于H,如图,利用旋转的性质得BA=BC,∠ABC=90°,再证明△ABO≌△BCH得到CH=OB=1,BH=OA=3,则C(4,1),然后把C点坐标代入y=kx(x>0)中可计算出k的值;(2)画出过点C的反比例函数y=kx(x>0)的草图,结合条件点P在图象G上,根据相似三角形的判定和性质即可得到结论;(3)由Q(0,m),得到OQ=m,得到M(4m,m),N(3m,m),根据点M在点N左侧,列不等式即可得到结论.【详解】解:(1) 过C点作CH⊥x轴于H,如图,∵线段AB绕点B顺时针旋转90°,得到线段BC,∴BA=BC,∠ABC=90°,∵∠ABO+∠CBH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBH,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数与几何综合培优专题(真题含答案)反比例函数与几何综合的处理思路:1. 从关键点入手.“关键点”是信息汇聚点,通常是 函数图像 和几何图形的交点.通过 关键点坐标 和 横平竖直的线段长 的互相转化可将 函数特征 与 几何特征 综合在一起进行研究. 补充:函数几何特征常见转化作法:1.函数→坐标→几何 ①借助表达式设出点坐标; ②将点坐标转化为横平竖直线段长; ③结合几何特征利用线段长列方程. 2.几何→坐标→函数①研究几何特征,考虑线段间关系; ②通过设线段长进而表达点坐标; ③将点坐标代入函数表达式列方程.2. 梳理题干中的函数和几何信息,依次转化.3. 借助 函数特征 或 几何特征 列方程求解. 与反比例函数相关的几个结论,在解题时可以考虑调用.结论:2||ABO ABCO S S k ==△矩形 结论:OCD ABCD S S =△梯形①结论:AB =CD结论:BD ∥CE一、单选题1.(2019·贵州中考真题)如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为4,2,反比例函数y kx=(x >0)的图象经过A ,B 两点,若菱形ABCD 的面积为k 的值为( )A .2B .3C .4D .62.(2019·江苏中考真题)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 与原点O 重合,顶点B 落在x 轴的正半轴上,对角线AC 、BD 交于点M ,点D 、M 恰好都在反比例函数()0ky x x=>的图象上,则ACBD的值为( )②③A B C .2D 3.(2019·山东中考真题)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到A B C '''∆.若反比例函数ky x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .184.(2019·重庆中考真题)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点(10,0)A ,4sin 5COA ∠=.若反比例函数(0,0)ky k x x =>>经过点C ,则k 的值等于( )A .10B .24C .48D .505.(2019·重庆中考真题)如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)ky k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .40二、填空题6.(2019·江苏中考真题)如图,过点C(3,4)的直线2y x b =+交x 轴于点A ,∠ABC=90°,AB=CB ,曲线0ky x x=>()过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a 的值为________.7.(2019·湖南中考真题)如图,直线y =4﹣x 与双曲线y 3x=交于A ,B 两点,过B 作直线BC ⊥y 轴,垂足为C ,则以OA 为直径的圆与直线BC 的交点坐标是_____.8.(2019·湖北中考真题)如图,双曲线9(0)y x x=>经过矩形OABC 的顶点B ,双曲线(0)ky x x=>交AB ,BC 于点E ,F ,且与矩形的对角线OB 交于点D ,连接EF .若:2:3OD OB =,则BEF ∆的面积为__________.9.(2019·辽宁中考真题)如图,在平面直角坐标系中,等边OAB 和菱形OCDE 的边OA OE ,都在x 轴上,点C 在OB 边上,ABDS=反比例函数()0ky x x=>的图象经过点B ,则k 的值为_____.10.(2019·湖北中考真题)如图,在平面直角坐标系中,函数(0,0)ky k x x=>>的图象与等边三角形OAB 的边OA ,AB 分别交于点M ,N ,且2OM MA =,若3AB =,那么点N 的横坐标为___________.11.(2019·湖南中考真题)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则2k =+④若25MF MB =,则MD =2MA .其中正确的结论的序号是_______.12.(2019·浙江中考真题)如图,已知在平面直角坐标系xOy 中,直线112y x =-分别交x 轴,y 轴于点A 和点B ,分别交反比例函数()10,0ky k x x=>>,()220ky x x=<的图象于点C 和点D ,过点C 作CE x ⊥轴于点E ,连结,OC OD . 若COE ∆的面积与DOB ∆的面积相等,则k 的值是_____.13.(2019·浙江中考真题)如图,过原点的直线与反比例函数()0ky k x=>的图象交于A ,B 两点,点A 在第一象限点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为BAC ∠的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若3AC DC =,ADE ∆的面积为8,则k 的值为________.14.(2019·浙江中考真题)如图,在平面直角坐标系中,O 为坐标原点,ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将AOD ∆沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若ky x=(0)k ≠图象经过点C ,且1S BEF ∆=,则k 的值为____.15.(2018·广东中考真题)如图,已知等边△11OA B ,顶点1A 在双曲线0)y x =>上,点1B 的坐标为(2,0).过1B 作121//B A OA 交双曲线于点2A ,过2A 作2211//A B A B 交x 轴于点2B ,得到第二个等边△122B A B ;过2B 作2312//B A B A 交双曲线于点3A ,过3A 作3322//AB A B 交x 轴于点3B ,得到第三个等边△233B A B ;以此类推,⋯,则点6B 的坐标为__.16.(2018·宁夏中考真题)在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数ky x=(k 是常数,k≠0) 的图象经过点M ,交AC 于点N ,则MN 的长度是________.17.(2019·广东深圳外国语学校中考模拟)如图,已知第一象限内的点A 在反比例函数y =2x 上,第二象限的点B 在反比例函数y =k x 上,且OA ⊥OB ,cos A k 的值为______.18.(2019·四川中考模拟)已知一次函数y =﹣x+m 的图象与反比例函数2y x=的图象交于A 、B 两(点A 在点B 的左侧),点P 为x 轴上一动点,当有且只有一个点P ,使得∠APB =90°,则m 的值为_____.19.(2019·广东中考模拟)如图,已知四边形ABCD 是平行四边形,BC=3AB ,A ,B 两点的坐标分别是(﹣1,0),(0,2),C ,D 两点在反比例函数ky x=(x <0)的图象上,则k 的值等于_____.20.(2019·浙江中考模拟)如图,点,A B 是反比例函数(0,0)ky k x x=>>图像上的两点(点A 在点B 左侧),过点A 作AD x ⊥轴于点D ,交OB 于点E ,延长AB 交x 轴于点C ,已知2125OAB ADC S S ∆∆=,145OAE S ∆=,则k 的值为__________.21.(2019·江西中考模拟)如图,在平面直角坐标系xOy 中,等边△AOB 的边长为10,点C 在边OA 上,点D 在边AB 上,且OC =3BD .反比例函数y =kx(k ≠0)的图象恰好经过C 、D 两点,则k 的值为_____.三、解答题22.(2019·江苏中考真题)如图,点()2,A n 和点D 是反比例函数()0,0my m x x=>>图象上的两点,一次函数()30y kx k =+≠的图象经过点A ,与y 轴交于点B ,与x 轴交于点C ,过点D 作DE x ⊥轴,垂足为E ,连接,OA OD .已知OAB ∆与ODE ∆的面积满足:3:4OAB ODE S S ∆∆=.(1)OAB S ∆= _____,m = _____;(2)已知点()6,0P 在线段OE 上,当PDE CBO ∠=∠时,求点D 的坐标.23.(2019·四川中考真题)如图,在平面直角坐标系中,直线AB 与y 轴交于点(0,7)B ,与反比例函数8y x-=在第二象限内的图象相交于点(1, )A a -. (1)求直线AB 的解析式;(2)将直线AB 向下平移9个单位后与反比例函数的图象交于点C 和点E ,与y 轴交于点D ,求ACD ∆的面积;(3)设直线CD 的解析式为y mx n =+,根据图象直接写出不等式8mx n x-+≤的解集.24.(2019·四川中考真题)如图,一次函数(0)y mx n m =+≠的图象与反比例函数(0)ky k x=≠的图象交于第二、四象限内的点(,4)A a 和点(8,)B b .过点A 作x 轴的垂线,垂足为点C ,AOC ∆的面积为4.(1)分别求出a 和b 的值; (2)结合图象直接写出kmx n x+<的解集;(3)在x 轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.25.(2019·湖南中考真题)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数2(1)|1(1)x y x x x ⎧-⎪=⎨⎪--⎩…的图象与性质.列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以相应的函数值y 为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象; (2)研究函数并结合图象与表格,回答下列问题:①点()15,A y -,27,2B y ⎛⎫-⎪⎝⎭,15,2C x ⎛⎫⎪⎝⎭,()2,6D x 在函数图象上,1y 2y ,1x 2x ;(填“>”,“=”或“<”)②当函数值2y =时,求自变量x 的值;③在直线1x =-的右侧的函数图象上有两个不同的点()33,P x y ,()44,Q x y ,且34y y =,求34x x +的值;④若直线y a =与函数图象有三个不同的交点,求a 的取值范围.26.(2019·江苏中考真题)如图,A 为反比例函数ky x=(x>0)图象上的一点,在x 轴正半轴上有一点B ,4OB =.连接OA ,AB ,且OA AB ==(1)求k 的值;(2)过点B 作BC OB ⊥,交反比例函数ky x=(x>0)的图象于点C ,连接OC 交AB 于点D ,求ADDB的值.27.(2019·湖北中考模拟)如图,在平面直角坐标系xOy 中,已知Rt △ABC ,∠ABC =90°,顶点A 在第一象限,B ,C 在x 轴的正半轴上(C 在B 的右侧),BC =2,AB =△ABC 沿AC 翻折得△ADC ,点A 和点D 都在反比例函数y =kx的图象上,则k 的值是_____.参考答案1.C 【解析】 【分析】过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为4,2,可得出横坐标,即可求得AE ,BE 的长,根据菱形的面积为AE 的长,在Rt △AEB 中,即可得出k 的值. 【详解】过点A 作x 轴的垂线,交CB 的延长线于点E ,∵A ,B 两点在反比例函数y kx=(x >0)的图象,且纵坐标分别为4,2, ∴A (4k,4),B (2k ,2),∴AE =2,BE 12=k 14-k 14=k ,∵菱形ABCD 的面积为∴BC×AE =BC =∴AB =BC =在Rt △AEB 中,BE ==1∴14k =1, ∴k =4. 故选:C . 【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键. 2.A 【解析】 【分析】利用菱形的性质, 根据正切定义即可得到答案. 【详解】解:设,k D m m ⎛⎫⎪⎝⎭,(),0B t , ∵M 点为菱形对角线的交点, ∴BD AC ⊥,AM CM =,BMDM =,∴,22m t k M m +⎛⎫⎪⎝⎭,把,22m t k M m +⎛⎫⎪⎝⎭代入k y x =得22m t k k m +⋅=, ∴3t m =,∵四边形ABCD 为菱形,∴OD AB t ==,∴()2223k m m m ⎛⎫+= ⎪⎝⎭,解得2k =,∴()2M m ,在Rt ABM ∆中,tanBM MAB AM ∠===∴ACBD=. 故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,解题关键在于运用菱形的性质. 3.C 【解析】 【分析】作'A H y ⊥轴于.H 证明AOB ≌()'BHA AAS ,推出OA BH =,'OB A H =,求出点'A 坐标,再利用中点坐标公式求出点D 坐标即可解决问题.【详解】解:作A H y '⊥轴于H .∵90AOB A HB ABA ∠=∠'=∠'=︒,∴90ABO A BH ∠+∠'=︒,90ABO BAO ∠+∠=︒, ∴BAO A BH ∠=∠', ∵BA BA =',∴()AOB BHA AAS '≌, ∴OA BH =,OB A H =',∵点A 的坐标是()2,0-,点B 的坐标是()0,6, ∴2OA =,6OB =,∴2BH OA ==,6A H OB '==, ∴4OH =, ∴()6,4A ', ∵BD A D =', ∴()3,5D ,∵反比例函数ky x=的图象经过点D , ∴15k =.故选:C . 【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化-旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题. 4.C 【解析】 【分析】由菱形的性质和锐角三角函数可求点()6,8C ,将点C 坐标代入解析式可求k 的值.【详解】解:如图,过点C 作CE OA ⊥于点E ,∵菱形OABC 的边OA 在x 轴上,点(10,0)A , ∴10OC OA ==, ∵4sin 5CE COA OC∠==. ∴8CE =,∴6OE == ∴点C 坐标(6,8)∵若反比例函数k(0,0)xy k x=>>经过点C,∴6848k=⨯=故选:C.【点睛】本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点C坐标.5.B【解析】【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4)利用矩形的性质得出E为BD中点,∠DAB=90°,根据线段中点坐标公式得出E(12x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x-2)2+42=x2,求出x,得到E点坐标,代入kyx=y=冬,利用待定系数法求出k.【详解】解:∵BD//x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,. ∴E为BD中点,∠DAB=90°.∴E(12x,4)∵∠DAB=90°,∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4), ∴22+42+(x-2)2+42=x 2,解得x=10, ∴E (5,4).又∵反比例函数ky x=(k>0,x>0)的图象经过点E , ∴k=5×4=20;故选:B. 【点睛】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E 点坐标是解题的关键. 6.4 【解析】 【分析】分别过点B 、点C 作y 轴和x 轴的平行线,两条平行线相交于点M ,与x 轴的交点为N .将C(3,4)代入2y x b =+可得b=-2,然后求得A 点坐标为(1,0),证明△ABN ≌△BCM ,可得AN=BM=3,CM=BN=1,可求出B(4,1),即可求出k=4,由A 点向上平移后落在4y x=上,即可求得a 的值. 【详解】分别过点B 、点C 作y 轴和x 轴的平行线,两条平行线相交于点M ,与x 轴的交点为N ,则∠M=∠ANB=90°,把C(3,4)代入2y x b =+,得4=6+b ,解得:b=-2,所以y=2x-2,令y=0,则0=2x-2,解得:x=1, 所以A(1,0), ∵∠ABC=90°, ∴∠CBM+∠ABN=90°, ∵∠ANB=90°, ∴∠BAN+∠ABN=90°, ∴∠CBM=∠BAN ,又∵∠M=∠ANB=90°,AB=BC , ∴△ABN ≌△BCM , ∴AN=BM ,BN=CM ,∵C(3,4),∴设AN=m ,CM=n ,则有413m n m n +=⎧⎨+-=⎩,解得31m n =⎧⎨=⎩,∴ON=3+1=4,BN=1, ∴B(4,1),∵曲线0ky x x=>()过点B , ∴k=4,∴4y x=, ∵将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,此时点A 移动后对应点的坐标为(1,a),∴a=4,故答案为:4.【点睛】本题考查了反比例函数与几何图形的综合,涉及了待定系数法,全等三角形的判定与性质,点的平移等知识,正确添加辅助线,利用数形结合思想灵活运用相关知识是解题的关键. 7.(﹣1,1)和(2,1).【解析】【分析】求得交点A、B的坐标,即可求得直径AB的长度和P点的坐标,从而求得PE的长度,利用勾股定理求得EM=EN=32,结合P的坐标即可求得以OA为直径的圆与直线BC的交点坐标.【详解】由43y xyx=-⎧⎪⎨=⎪⎩求得13xy=⎧⎨=⎩或31xy=⎧⎨=⎩,∴A(1,3),B(3,1),∴OA==设OA的中点为P,以AB为直径的⊙P与直线BC的交点为M、N,过P点作PD⊥x轴于D,交BC于E,连接PN,∵P是OA的中点,∴P(12,32),∴PD32 =,∵BC⊥y轴,垂足为C,∴BC∥x轴,∴PD⊥BC,∴PE32=-112=,在Rt△PEN中,EM=EN32 ===,∴M(﹣1,1),N(2,1).∴以OA为直径的圆与直线BC的交点坐标是(﹣1,1)和(2,1),故答案为(﹣1,1)和(2,1).【点睛】本题是反比例函数的综合题,考查了一次函数和反比例函数的交点问题,垂径定理,勾股定理的应用,求得圆心的坐标是解题的关键.8.25 18.【解析】【分析】设(2,2)D m n ,根据题意(3,0)A m ,(0,3)C n ,(3,3)B m n ,即可得出933m n =⋅,224k m n mn =⋅=,解得1mn =,由43,3E m n ⎛⎫ ⎪⎝⎭,4,33F m n ⎛⎫ ⎪⎝⎭,求得BE 、BF ,然后根据三角形面积公式得到12BEF S BE BF ∆=⋅进行求解即可. 【详解】设(2,2)D m n ,∵:2:3OD OB =,∴(3,0)A m ,(0,3)C n , ∴(3,3)B m n ,∵双曲线9(0)y x x=>经过矩形OABC 的顶点B , ∴933m n =⋅,∴1mn =,∵双曲线(0)k y x x=>经过点D , ∴4k mn =∴双曲线4(0)mn y x x=>, ∴43,3E m n ⎛⎫ ⎪⎝⎭,4,33F m n ⎛⎫ ⎪⎝⎭, ∴45333BE n n n =-=,45333BF m m m =-=, ∴1252521818BEF S BE BF mn ∆=⋅==,故答案为:2518. 【点睛】 本题考查了反比例系数 的几何意义和反比例函数图象上点的坐标特征、三角形面积等,表示出各个点的坐标是解题的关键.9【解析】【分析】连接OD ,根据等边△OAB ,求出∠AOB,根据四边形OCDE 是菱形,求出60DEO AOB ∠∠︒==,得出△DEO 为等边三角形,求出BDO AOD S S =,求出3AOB ABD S S ==B 作BH OA ⊥于H ,求出OBH S =k. 【详解】解:连接OD ,OAB 是等边三角形, 60AOB ∴∠︒=,四边形OCDE 是菱形,//DE OB ∴,60DEO AOB ∴∠∠︒==,DEO ∴是等边三角形,60DOE BAO ∴∠∠︒==,//OD AB ∴,BDO AOD S S ∴=,ABDO ADO ABD BDO AOBS S S S S ++四边形==, 3AOB ABD S S =∴=,过B 作BH OA ⊥于H ,OH AH ∴=,OBH S ∴=反比例函数()0k y x x =>的图象经过点B ,k ∴故答案为:【点睛】本题考查的是反比例函数,熟练掌握菱形,三角形的性质是解题的关键.10.32+ . 【解析】【分析】。

相关文档
最新文档