八年级上册数学 期中精选试卷测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学期中精选试卷测试卷附答案

一、八年级数学全等三角形解答题压轴题(难)

1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.

(1)求a,b的值;

(2)点P在直线AB的右侧;且∠APB=45°,

①若点P在x轴上(图1),则点P的坐标为;

②若△ABP为直角三角形,求P点的坐标.

【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】

【分析】

(1)利用非负数的性质解决问题即可.

(2)①根据等腰直角三角形的性质即可解决问题.

②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】

(1)∵a2+4a+4+b2﹣8b+16=0

∴(a+2)2+(b﹣4)2=0

∴a=﹣2,b=4.

(2)①如图1中,

∵∠APB=45°,∠POB=90°,

∴OP=OB=4,

∴P(4,0).

故答案为(4,0).

②∵a=﹣2,b=4

∴OA=2OB=4

又∵△ABP为直角三角形,∠APB=45°

∴只有两种情况,∠ABP=90°或∠BAP=90°

①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.

∴∠PCB=∠BOA=90°,

又∵∠APB=45°,

∴∠BAP=∠APB=45°,

∴BA=BP,

又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,

∴∠ABO=∠BPC,

∴△ABO≌△BPC(AAS),

∴PC=OB=4,BC=OA=2,

∴OC=OB﹣BC=4﹣2=2,

∴P(4,2).

②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.

∴∠PDA=∠AOB=90°,

又∵∠APB=45°,

∴∠ABP=∠APB=45°,

∴AP=AB,

又∵∠BAD+∠DAP=90°,

∠DPA+∠DAP=90°,

∴∠BAD=∠DPA,

∴△BAO≌△APP(AAS),

∴PD=OA=2,AD=OB=4,

∴OD=AD﹣0A=4﹣2=2,

∴P(2,﹣2).

综上述,P点坐标为(4,2),(2,﹣2).

【点睛】

本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.

2.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .

(1)填空:ABC S ∆=______2cm ;

(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;

(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.

【答案】(1)8;(2)见解析;(3)

45或4. 【解析】

【分析】

(1)直接可求△ABC 的面积;

(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;

(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.

【详解】

解:(1)∵S △ABC =

12⨯AC×BC ∴S △ABC =12

×4×4=8(cm 2) 故答案为:8

(2)如图:连接CD

∵AC=BC ,D 是AB 中点

∴CD 平分∠ACB

又∵∠ACB=90°

∴∠A=∠B=∠ACD=∠DCB=45°

∴CD=BD

依题意得:BE=CF

∴在△CDF 与△BDE 中

BE CF B DCA BD CD =⎧⎪∠=∠⎨⎪=⎩

∴△CDF ≌△BDE (SAS )

∴DE=DF

(3)如图:过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点

N ,

∵AD=BD ,∠A=∠B=45°,∠AND=∠DMB=90°

∴△ADN ≌△BDM (AAS )

∴DN=DM

当S △ADF =2S △BDE .

12×AF×DN=2×12

×BE×DM ∴|4-3x|=2x ∴x 1=4,x 2=45

综上所述:x=

45或4 【点睛】

本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本

题的关键.

3.如图,在ABC ∆中,903, 7C AC BC ∠=︒==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .

(1)填空:ABC ∆的面积等于 ;

(2)连接CE ,求证:CE 是ACB ∠的平分线;

(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.

【答案】(1)

212

;(2)证明见解析;(3)32【解析】

【分析】 (1)根据直角三角形的面积计算公式直接计算可得;

(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;

(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=

1()2

AC CD +,根据CD 的长度计算出CE 的长度即可.

【详解】

解:(1)903, 7C AC BC ∠=︒==, ∴112137222

ABC S AC BC =

⨯=⨯⨯=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,

∴∠EMA=∠END=90°,

又∵∠ACB=90°,

∴∠MEN=90°,

∴∠MED+∠DEN=90°,

∵△ADE 是等腰直角三角形

∴∠AED=90°,AE=DE

∴∠AEM+∠MED=90°,

相关文档
最新文档