九年级数学上册知识点----相似多边形

合集下载

九年级数学相似多边形的性质

九年级数学相似多边形的性质
例如,若要证明两条线段AB和CD的比例关系为AB/CD = k,可以构造两个相似多 边形,使得它们的一组对应边分别为AB和CD,然后通过计算对应边的比例来得到k 的值。
利用相似多边形证明角度相等关系
若两个多边形相似,则它们的对应角相等。因此,可以通过 证明两个多边形相似来证明两个角度相等。
例如,若要证明两个角∠A和∠B相等,可以构造两个相似多边形, 使得它们的一组对应角分别为∠A和∠B,然后通过计算对应角的 度数来得到它们相等的结论。
已知一个五边形与一个边长为 5cm的正五边形相似,且相似 比为2:1,求这个五边形的周长。
若两个相似三角形的面积分别 为16cm²和36cm²,求它们的 相似比。
03 相似多边形在几何证明中 应用
利用相似多边形证明线段比例关系
若两个多边形相似,则它们的对应边成比例。因此,可以通过证明两个多边形相 似来证明两条线段的比例关系。
THANKS FOR WATCHING
感谢您的观看
对应角相等定理
如果两个多边形相似,那么它们 的对应角必定相等。
应用
这个定理在解决相似多边形的问 题时非常重要,因为它允许我们 通过比较对应角来验证或确定多 边形的相似性。
02 相似多边形面积与周长关 系
面积比与相似比平方关系
01
若两个多边形相似,且相似比为 $k$,则它们的面积之比为$k^2$。
04 相似多边形在生活实际问 题中应用
建筑设计中缩放模型原理
建筑设计中,常常需要制作建筑物的缩 放模型来研究和展示设计方案。相似多 边形的性质使得缩放模型能够保持与原 建筑物相同的形状,但尺寸按比例缩小
或放大。
利用相似多边形的性质,建筑师可以计 算缩放模型各部分的尺寸,以确保模型

人教版初中数学第二十七章相似知识点

人教版初中数学第二十七章相似知识点

第二十七章相似一、目标与要求1.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.2.能根据相似比进行计算.3.通过与相似多边形有关概念的类比,得出相似三角形的定义,领会特殊与一般的关系.4.能根据定义判断两个多边形是否相似,训练学生的判断能力.5.能根据相似比求长度和角度,培养学生的运用能力.6.通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.二、知识框架三、重点、难点1.理解并相似三角形的判定与性质2.位似图形的有关概念、性质与作图.3.利用位似将一个图形放大或缩小.4.用图形的坐标的变化来表示图形的位似变换.5.把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.四、中考所占分数与题型分布本章会出1-2道选择、填空题,简答题必有一道三角形和相似形的综合题,本章约占15-20分.第二十七章相似27.1 图形的相似1.每组图形中的两个图形形状相同,大小不同,具有相同形状的图形叫相似图形.2.相似图形强调图形形状相同,与它们的位置、颜色、大小无关.3.相似图形不仅仅指平面图形,也包括立体图形相似的情况.4.我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.5.若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.例1:1.从哈哈镜和平面镜中看见不同的镜像,是否相似?2.从放大镜或者望远镜中看见不同的镜像,是否相似?6.相似多边形对应角相等,对应边的比相等.对应边的比称为相似比.例2:在比例尺为1:10000000的地图上,量的A、B两地的距离为10cm,求两地的实际距离.解:地图与实际的环境是相似的,因此地图中的1cm相当于实际10000000cm,即100km.A、B两地相距10cm,相当于1000km.例3:如图27.1-1,四边形ABCD和EFGH相似,求角α、β的大小和EH的长度x.图27.1-1解:四边形ABCD 和EFGH 相似,他们的对应角相等,因此可得83o C α∠=∠=,118o A E ∠=∠=在四边形ABCD 中,四边形ABCD 和EFGH 相似,他们的对应边相等,由此可得EH EF AD AB =,即242118x = 解得28x cm =27.2 相似三角形27.2.1 相似三角形的判定在△ABC 和△A ‘B ‘C ’中,如果''',,A A B B C C ∠=∠∠=∠∠=∠,''''''=AB BC AC k A B B C AC==,我们就说△ABC 和△A ‘B ‘C ’相似,记作△ABC ∽△A ‘B ‘C ’,k 就是他们的相似比.对应角相等,对应边成比例的两个三角形叫做相似三角形. 成比例线段〔简称比例线段〕:对于四条线段a 、b 、c 、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a =c b d〔或a :b=c :d 〕,那么,这四条线段叫做成比例线段,简称比例线段. 例1.如图27.2-1,在△ABC 中,点D 是边AB 的中点,DE//BC,DE 交AC 于点E,△ADE 与△ABC 有什么关系? 解:在△ADE 与△ABC 中,A A ∠=∠DE//BC过点E 作EF//AB,EF 交BC 于点F.在□BFED 中,DE=BF,DB=EF又1,2A C ∠=∠∠=∠∴△ADE ∽△EFCAE=EC=在此处键入公式。

九年级数学相似的知识点

九年级数学相似的知识点

九年级数学相似的知识点
1. 相似三角形:了解相似三角形的定义和性质,掌握判定两个三角形是否相似的几何条件,了解相似三角形的比例关系以及应用。

2. 相似多边形:了解相似多边形的定义和性质,掌握判断两个多边形是否相似的几何条件,了解相似多边形的比例关系以及应用。

3. 相似比例:学习相似比例的定义,掌握相似比例的计算和应用,了解相似比例与比例的关系。

4. 相似形状的尺寸关系:通过相似性的特点和比例关系,掌握计算相似形状的尺寸关系,实际应用中解决实际问题。

5. 相似图形的面积和体积:了解相似图形的面积和体积之间的关系,掌握计算相似图形的面积和体积的方法。

6. 相似三角形的三线合一定理:了解相似三角形的三线合一定理,掌握计算相似三角形的高、中线、角平分线以及重心、垂心和外心的方法。

7. 三角形的判定:了解判定三角形是否相似的几何条件,掌握相似三角形中角的性质和边的关系,应用相似三角形解决实际问题。

8. 相似函数的性质:了解相似函数的定义和性质,掌握相似函数的图像特点和变化规律,应用相似函数解决实际问题。

9. 相似变换:了解平移、旋转、翻折和缩放等相似变换的性质,掌握相似变换的基本概念、性质和运算法则,应用相似变换解决实际问题。

10. 相似图形中的角度关系:通过相似图形的角度关系,学习解决相似图形中的角度问题。

以上是九年级数学中与相似相关的知识点,希望对你有帮助!。

华师大版-数学-九年级上册-什么是相似多边形

华师大版-数学-九年级上册-什么是相似多边形

初中-数学-打印版
什么是相似多边形?
什么是相似多边形?
难易度:★★★
关键词:相似图形的性质
答案:
多边形的边数相同,各角对应相等,各边对应成比例叫相似多边形。

即把握两个关键各角对应相等,各边对应成比例。

【举一反三】
典例:两个多边形相似的条件是()
A.对应角相等 B.对应边相等
C.对应角相等,对应边相等 D.对应角相等,对应边成比例
思路导引:一般来讲,解决本题要把握相似多边形的概念,即把握两个关键各角对应相等,各边对应成比例。

标准答案:D
初中-数学-打印版。

九年级数学相似的知识点

九年级数学相似的知识点

九年级数学相似的知识点1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。

相似三角形的性质包括对应角相等、对应边成比例等。

通过相似三角形,可以解决一些几何问题,如计算不可测量的长度或距离。

2. 比例与相似:比例是指两个量之间的相对关系。

在相似三角形中,对应边的长度之比等于对应角的边之比。

比例与相似问题常用于解决物体的放大缩小、图形的变换等。

3. 相似多边形:相似多边形是指具有相同形状但大小不同的多边形。

相似多边形的性质包括对应角相等、对应边成比例等。

通过相似多边形,可以解决一些面积和体积比较的问题。

4. 黄金分割:黄金分割是指一条线段分割成两部分,较长部分与整体的比例等于整体与较短部分的比例。

黄金分割在艺术、建筑、设计等领域中广泛应用。

5. 图形的相似性变换:图形的相似性变换是指通过平移、旋转、镜像和缩放等变换操作使两个图形成为相似图形。

相似性变换常用于解决图形的构造、定位和证明问题。

6. 相似三角形的勾股定理:相似三角形的勾股定理是指在两个相似三角形中,两个直角边的平方的比等于两个斜边的平方的比。

7. 外接圆和内切圆:在相似三角形和相似多边形中,外接圆和内切圆分别是能够通过所有顶点(或顶点所在的边)的圆和能够被所有边(或边上的顶点)所切的圆。

外接圆和内切圆之间存在着一定的关系,如半径比例等。

8. 相似三角形的角平分线定理和中线定理:相似三角形的角平分线定理是指两个相似三角形中,两个对应角的角平分线也相似;相似三角形的中线定理是指两个相似三角形中,两个对应中位线也相似。

这些是九年级数学中与相似有关的知识点,希望对你有帮助!。

九年级相似知识点归纳

九年级相似知识点归纳

九年级相似知识点归纳一、数学方面的相似知识点归纳1. 相似三角形相似三角形是指具有相同形状但不同大小的三角形。

相似三角形的性质包括:对应角相等,对应边成比例。

利用这些性质,我们可以求解各种与相似三角形相关的问题。

2. 相似比与比例相似比是指相似图形(包括三角形和多边形)的对应边的比值。

比例是指两个数之间的相对关系。

在解题中,我们需要用到相似比和比例来确定图形的相似性质以及求解未知数。

3. 相似多边形相似多边形是指具有相同形状但不同大小的多边形。

相似多边形的性质与相似三角形类似,对应角相等,对应边成比例。

我们可以利用相似多边形的性质来求解各类相关问题。

二、科学方面的相似知识点归纳1. 生物相似性在生物学中,相似性是指不同物种之间在形态特征、生理功能等方面存在相似之处。

相似性可以用来推断物种之间的亲缘关系,进行分类和进化研究。

2. 物理相似性在物理学中,相似性是指两个事物在某些性质上的相似程度。

物理相似性的研究可以帮助我们更好地理解和预测不同物体或系统的行为,比如利用相似性原理可以在实验室中进行模型实验,进而推广到真实情况。

3. 化学相似性在化学领域,相似性是指化合物或元素之间具有相似的化学性质或结构特征。

化学相似性可以用来预测物质的性质、反应行为,以及设计新的化合物或材料。

三、语文方面的相似知识点归纳1. 同义词与近义词同义词是指意思相同或相近的词语,而近义词指意思相近但不完全相同的词语。

在写作中,我们可以利用同义词和近义词来丰富文章的表达方式,避免重复使用相同的词汇。

2. 反义词与对义词反义词是指意思相反的词语,而对义词指相对应关系的词语。

在阅读理解和写作中,我们需要对反义词和对义词进行准确理解,以便正确地领会作者的意图和准确表达自己的思想。

3. 成语与俗语成语是特定社会和历史背景下形成的固定词组,具有特定的意义。

俗语是反映民间传统和智慧的短小词句。

在语文学习中,我们需要理解和运用成语和俗语,以提升语言表达的准确性和韵律感。

九年级数学(上)第四章 图形的相似相似多边形

九年级数学(上)第四章 图形的相似相似多边形
应边的比叫做相似比。
如:六边形ABCDEF与六边形A1B1C1D1E1F1相似, 记作六边形ABCDEF ∽六边形A1B1C1D1E1F1, 其中 AB:A1B1的值就是相似比.
注:1、相似符号“∽ ”读作“相似于”
2、在记两个多边形相似时,要把表示对应角顶点的字母写 在对应的位置上。
在其外围的木质边框宽7.5cm。边框的内外边缘所成
的矩形相似吗?为什么?
3m E
A
直观有时是 F 不可靠的
B
1.5m
(1.5+0.075×2)m
D
H
(3+0.075×2)m
1.5︰3≠1.65︰3.15
C G
1、五边形ABCDE∽五边形 A´B´C´D´E´,则 ∠ E=_80_° ,∠ A´=_11_8°,
∠A=∠A1,∠B=∠B1,∠C=∠C1,∠D=∠D1,∠E=∠E1,∠F=∠F1
(2)在上图两个多边形中,相等内角的两边是否成比例?
AB BC CD DE EF FA
A1B1 B1C1 C1D1 D1E1 E1F1 F1A1
A F
E
B C
D
A1 F1
E1
B1 C1
D1
六边形ABCDEF与六边形A1B1C1D1E1F1是形状相同 的图形;
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可能性的理解)

九年级数学上册第四章图形的相似3相似多边形学好相似多边形的性质及应用素材北师大版

九年级数学上册第四章图形的相似3相似多边形学好相似多边形的性质及应用素材北师大版

学好相似多边形的性质一.相似多边形的性质1.相似多边形对应角相等.对应边成比例;2.相似三角形对应高的比.对应角平分线的比和对应中线的比都等于相似比.3.相似多边形的周长比等于相似比,面积比等于相似比的平方.温馨提示:(1)对于相似多边形问题,一般是通过添加辅助线(如对角线),将其转化为相似三角形的问题来解决。

(2)此三条性质可以简单记做“相似多边形的对应角相等,对应边成比例”,这是揭示相似多边形边.角关系的重要结论,利用这一结论可以解决很多与相似多边形有关的问题,下面结合例题予以分类剖析,供同学们参考:二.相似多边形性质的应用1.已知相似多边形的某些边求相似比例1 四边形ABCD 的四边长分别是3.4.7.9,四边形ABCD ∽四边形A′B′C′D′,其最长边是15,则四边形ABCD 与四边形A′B′C′D′的相似比是 。

分析:相似多边形对应边的比称为相似比,要求相似比关键是找出对应边.9是四边形ABCD 的最长边,15是四边形A′B′C′D′的最长边,因此,它们是对应边,所以四边形ABCD与四边形A′B′C′D′的相似比是9:15,即53. 解:填53。

2.已知相似多边形的某些边求边例2 已知四边形ABCD 与四边形A 1B 1C 1 D 1相似,如图1,求BC .CD 的长.分析:根据“两个多边形相似,对应边之比相等”列方程求解.解:由于两个四边形相似,它们的对应边之比相等,所以 56436CD BC ==,解得54=BC ,45=CD 。

图1 36A B CDA 1B 1C 1D4 63.已知相似多边形的某些角求角例3已知梯形ABCD∽梯形A′B′C′D′,∠A=62°,∠C′=110°,求∠D′.∠B的度数.分析:根据“两个多边形相似,对应角相等”可轻而易举地求到对应角的度数.解:因为梯形ABCD∽梯形A′B′C′D′,所以∠A′=∠A=62°,因为A′B′∥C′D′,所以∠D′+∠A′=180°,所以∠D′=180°-62°=118°.因为∠C′+∠B′=180°,所以∠B′=70°,所以∠B=∠B′=70°.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

北师大版数学九年级上册相似多边形课件

北师大版数学九年级上册相似多边形课件

2.如果一个矩形对折后所得到的矩形与原矩 形类似,则此矩形的长边长与短边长的比是 ( C)
A.2∶1 C. 2∶1
B.4∶1 D.1∶ 2
3.如图,有两个形状相同的星星图案,则x的值 为_8__ .
4.两个类似多边形的最长边分别为10cm和20cm ,其中一个多边形的最短边为5cm,则另一个 多边形的最短边为__1_0_c_m_或__2_._5_c_m__.
练习
1.下列结论不正确的是( A )
A.所有的矩形都类似 B.所有的正方形都类似 C.所有的等腰直角三角形都类似 D.所有的正八边形都类似
2.在一张由复印机复印出来的纸上,一个多边形 的一条边由本来的1cm变成了4cm,那么这个多边 形的另一条边由本来的4cm变成了( C )
A.4cm
B.8cm
C.16cm D.32cm
北师大版数学九年级上册 第四章 图形的类似 4.3 类似多边形
学习目标
1.了解类似多边形的概念和性质. 2.在简单情形下,能根据定义判断两个 多边形类似. 3.会用类似多边形的性质解决简单的几 何问题.
回顾旧知
1.如图,DE∥BC,则下面比例式不成立的是( B )
A.AADB=AACE C.ADDB=EACE
例 设四边形ABCD与四边形A1B1C1D1是类似的图形, 且A与A1、B与B1、C与C1、 D与D1是对应点,已知 AB=12,BC=18,CD=18,AD=9,A1B1=8,求 四边形A1B1C1D1的周长.
分析:四边形ABCD与四边形A1B1C1D1是类似的图形, 则根据类似多边形对应边的比相等,就可求得
DABE=BECF=FCDA;
(2)由于正方形的每个角都是直角,所以∠A=∠E =90°,∠B=∠F=90°,∠C=∠G=90°, ∠D=∠H=90°;由于正方形四边相等,所以

九年级数学上册第四章图形的相似3相似多边形相似多边形的性质的应用素材北师大版

九年级数学上册第四章图形的相似3相似多边形相似多边形的性质的应用素材北师大版

相似多边形的性质的应用1、相似多边形的性质(1)相似多边形中,对应的三角形相似,其相似比等于原相似多边形的相似比. (2)相似多边形中,对应线段的比等于相似比.(3)相似多边形周长的比等于相似比;面积的比等于相似比的平方. 2、重要方法相似多边形的周长比等于相似比,面积比等于相似比的平方,运用这两个性质解决实际问题时,一定要弄清他们的关系,并努力把实际问题与之联系,从而把实际问题简单化. 相似三角形的性质(1)回答了相似三角形中所有对应线段都构成比例的问题,这个性质为我们今后证明线段的比例式提供了极大的方便.性质(2)、(3)揭示了相似三角形的周长、面积与相似比的关系,利用它可以解决相似三角形中有关周长和面积的问题,这里要注意这些性质的灵活运用.如:两个相似三角形的相似比,等于它的周长比;也等于它们的面积比的算术平方根.例1 一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,其最短边长为6,则最长边长为 ( )A .12B .18C .24D .30【思路与技巧 由相似多边形对应边成比例,设最长边为x 。

∴x662 ,∴2x=36,x=18. 答案 B点评本题根据相似多边形的对应边成比例的性质,第一个多边形的最短边与第二个多边形的最短边,第一个多边形的最长边与第二个多边形的最长边分别是对应边,切记不可将对应关系弄错.例2 如图在□ABCD中,AB=6,AD=4,EF∥AD,若□ABCD∽□EFDA,求AE的长.思路与技巧(1)图形中有几对相似的平行四边形?为什么?对应边分别是什么?(2)AE的对应边应是哪条线段?为什么?(3)试一试:求S□ABCD∶S□EFDA的值.解∵EF∥AD,四边形ABCD是平行四边形,AD=4 ∴EF=AD=4,∵□ABCD∽□EFDA,∴(相似多边形对应边成比例),又∵AB=6,∴∴.点评由相似的条件,可知AE的对应边是DA,一般的在条件中,若使用的是相似符号,则对应边则是确定的,因此书写相似多边形时,对应的字母要写在对应的位置上.例3 已知:如图,正方形ABCD中,E是AC上一点,EF⊥AB于F,EG⊥AD于G,AB=6,AE∶EC=2∶1,求S四边形AFEG.思路与技巧(1)四边形AFEG是什么图形?为什么?(2)AE∶EC的值与哪两条线段的比相等?为什么?如何求出AF的长?(3)任意的两个正方形都相似吗?为什么?所有的矩形都相似吗?所有的菱形都相似吗?解∵正方形ABCD,EF⊥AB,EG⊥AD∴EF∥CB,EG∥DC∵∠1=∠2=45° ∴EF=AF∵∠FAG=90°,∴AFEG是正方形,∴正方形ABCD∽正方形AFEG,∴S正ABCD∶S正AFEG=AB2∶AF2(相似多边形的面积比等于相似比的平方),在△ABC中,EF∥CB ∴AE∶EC=AF∶FB=2∶1,又AB=6 ∴AF=4 ∴S正ABCD∶S正AFEG=36∶16,∴。

北师大九年级上第四章图形的相似4.3相似多边形(教案)

北师大九年级上第四章图形的相似4.3相似多边形(教案)
然而,我也注意到,在小组讨论中,部分学生依赖性较强,需要我进一步引导他们独立思考和解决问题。在接下来的教学中,我打算增加一些开放性问题,鼓励学生们自主探索和发现几何图形之间的关系。
对于教学难点,我觉得可以采取分步骤讲解的方式,将复杂的性质分解成简单的部分,让学生一步一步地掌握。同时,我计划在下一节课中增加一些针对性的练习题,特别是那些能够帮助学生巩固相似多边形判定和性质应用的题目。
c.实际应用:设计一些综合应用题,如求相似多边形中未知边长或面积,指导学生如何识别问题中的相似关系,并运用性质进行计算。
d.证明过程:引导学生通过几何画板或实际操作,体验相似多边形证明的过程,理解证明的每一步逻辑,从而能够独立完成相似多边形的证明。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似多边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似的图形?”比如,两张不同大小的照片,它们的长宽比是一样的。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似多边形的奥秘。
二、核心素养目标
1.培养学生的几何直观:通过观察、操作、推理等过程,让学生掌握相似多边形的判定方法,提高学生对几何图形的认识和理解能力。
2.提升学生的逻辑推理能力:引导学生运用已知条件,通过严密的逻辑推理证明相似多边形的性质,培养学生分析问题和解决问题的能力。
3.增强学生的空间观念:通过研究相似多边形的性质,让学生体会几何图形在空间中的相互关系,培养学生的空间想象力和创造力。
4.培养学生的数学应用意识:将相似多边形的知识应用于解决实际问题,使学生认识到数学与现实生活的紧密联系,提高学生的数学应用能力。

北师大版九年级数学上册说课稿:4.3 相似多边形

北师大版九年级数学上册说课稿:4.3 相似多边形

北师大版九年级数学上册说课稿:4.3 相似多边形一. 教材分析北师大版九年级数学上册第4.3节“相似多边形”是学生在学习了相似三角形的性质和判定后,对相似形的进一步研究。

教材从生活实例出发,引出相似多边形的概念,并通过实例让学生体会生活中许多图形都是相似的。

教材还通过探究活动,让学生掌握相似多边形的性质和判定,为后续学习函数、解析几何等知识打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质和判定,具备一定的观察、操作、推理能力。

但九年级学生对抽象几何图形的认识还不够深入,对相似多边形的应用和实际意义可能理解不透。

因此,在教学过程中,我将以学生为主体,引导他们通过观察、操作、猜想、推理等方法,理解和掌握相似多边形的性质和判定。

三. 说教学目标1.知识与技能:理解相似多边形的概念,掌握相似多边形的性质和判定方法。

2.过程与方法:通过观察、操作、猜想、推理等方法,培养学生的空间想象能力和推理能力。

3.情感态度与价值观:体会数学与生活的联系,提高学生学习数学的兴趣。

四. 说教学重难点1.重点:相似多边形的概念、性质和判定方法。

2.难点:相似多边形的性质和判定在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动、案例教学、小组合作、探究式学习等方法。

2.教学手段:多媒体课件、几何画板、实物模型等。

六. 说教学过程1.导入:通过展示生活中的相似多边形实例,如教室窗户、电视屏幕等,引导学生观察和讨论,引出相似多边形的概念。

2.探究相似多边形的性质:让学生通过观察、操作、猜想、推理等方法,探究相似多边形的性质,如对应边成比例、对应角相等等。

3.探究相似多边形的判定:引导学生通过实例,探讨相似多边形的判定方法,如两组对应边成比例且对应角相等、两组对应角相等且对应边成比例等。

4.应用与拓展:让学生运用相似多边形的性质和判定解决实际问题,如计算图形面积、解决实际尺寸等。

5.总结与反思:对本节内容进行总结,让学生谈谈自己的收获和体会,引导学生关注数学与生活的联系。

北师大版九年级上册数学第四章图形的相似第三节相似多边形

北师大版九年级上册数学第四章图形的相似第三节相似多边形
. 边框的内边缘所成的
矩形ABCD与边框的外边缘所成的矩形EFGH 相似吗?
为什么?
解题秘方:紧扣“相似多边形的
定义”进行说明.
感悟新知
解:不相似. 理由如下:
知1-练
∵在矩形ABCD 中,AB=1.5m,AD=3m,镶在其外围的
木质边框宽7.5cm=0.075m,
知1-练
感悟新知
知1-练
2-1. 如图, 正方形EFGH 的四个顶点分别在正方形ABCD
的四条边上,若正方形EFGH 与正方形ABCD 的相似
比为
35,则ABEE
1 (AE<BE)的值为____2_____
.
感悟新知
知1-练
2-2. 如图是两个相似四边形,求未知边x的长度和角α的大小. 解:∵两个四边形相似, ∴148=x7,解得 x=31.5, α=360°-(77°+83°+117°)=83°.
∴ EF=1.5+2×0.075=1.65(m),EH=3+2×0.075=3.15(m).
∴AEBF
=
1.5 1.65
=
1101,EAHD
=
3 3.15
=
2201.∵
10 11
≠2201,
∴边框的内边缘所成的矩形ABCD与边框的外边缘所成的
矩形EFGH 不相似.
感悟新知
1-1. 图中的三个矩形相似的是( A ) A.甲和丙 B.甲和乙 C.乙和丙 D.甲、乙和丙
知1-练
感悟新知
知1-练
例2 如图4-3-2, 梯形ABCD∽梯形A ′B ′C ′D ′,AD∥BC, A′D′∥B′C′,∠ A= ∠ A′,AD=4,A′D′=6,AB=6, B′C′=12,∠ C=60°.

九年级数学 相似多边形 知识点精讲 教案 课件

九年级数学 相似多边形 知识点精讲 教案 课件

九年级数学相似多边形知识点精讲知识点1:相似多边形的概念相似多边形:各角分别相等、各边成比例的两个多边形叫做相似多边形。

定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比。

相似比:相似多边形对应边的比叫做相似比。

知识点2:相似多边形的性质和判定相似多边形的性质:相似多边形的对应角相等,对应边成比例。

相似多边形的判定:各角分别相等,各边成比例的两个多边形相似。

考点复习常见考法(1)判断某两个图形是不是相似;(2)判断一组数据是不是成比例线段;(3)已知图上距离和比例尺大小求实际距离;(4)利用比例的性质求值。

误区提醒(1)在判断四条线段是否成比例问题时忽略单位统一;(2)在用图上距离求实际距离时忽略了单位换算问题。

【典型例题】(2010江苏淮安)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4.5 cm,则A,B两地间的实际距离为m.【解析】4.5×200=9000cm=9m初中数学相似多边形的性质知识点(二)相似三角形一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。

2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

三、相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。

2.性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

3. 判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。

九年级相似多边形知识点

九年级相似多边形知识点

九年级相似多边形知识点相似多边形是初中数学中重要的概念之一,它在几何学中有着广泛的应用。

本文将介绍九年级学生所需了解的相似多边形知识点,包括定义、性质和解题方法。

一、相似多边形的定义相似多边形是指两个多边形的对应角相等且对应边成比例。

具体而言,如果两个多边形的所有内角相等,并且各对应边的长度的比值相等,那么这两个多边形就是相似多边形。

二、相似多边形的性质1. 相似多边形的对应边成比例。

对于相似多边形中的两条对应边AB和A'B',它们的长度比值等于两个多边形的相似比例:AB/A'B' = BC/B'C' = CD/D'C' = ...2. 相似多边形的对应角相等。

相似多边形中的对应角度量相等,即∠A = ∠A',∠B = ∠B',∠C = ∠C',...3. 相似多边形的对应边平行。

如果两个多边形相似,那么它们的对应边必定是平行的。

三、相似多边形的解题方法1. 求相似比例将两个相似多边形的对应边长度进行比较,可以求得相似比例。

例如,已知两个三角形ABC和DEF相似,可以通过求两个相似三角形的任意一对对应边的长度比值来确定相似比例。

2. 根据相似比例求其他边长已知两个相似多边形的相似比例后,可以通过已知边长求其他边长。

例如,已知两个相似三角形的相似比例为1:2,且已知其中一个三角形的某一边长为3 cm,可以通过比例关系计算出另一个三角形的对应边长为6 cm。

3. 求相似多边形的面积比相似多边形的面积比等于对应边长度的平方比。

例如,已知两个相似三角形的相似比例为1:2,可以得到它们的面积比为1:4。

4. 判定相似多边形在解题过程中,有时需要判定给定的多边形是否相似。

可以根据相似多边形的性质来判断,比如对应角相等、对应边成比例和对应边平行等。

5. 应用相似多边形解决实际问题相似多边形的概念在实际问题中有着广泛的应用。

华东师大初中数学九年级上册平行线分线段成比例及相似多边形—知识讲解

华东师大初中数学九年级上册平行线分线段成比例及相似多边形—知识讲解

平行线分线段成比例及相似多边形【学习目标】1. 平行线分线段成比例及其推论.2. 平行线分线段成比例及其推论的应用. 3.相似多边形的有关概念.【要点梳理】要点一、平行线分线段成比例及其推论平行线分线段成比例,一般地,有如下基本事实:两条直线被一组平行线所截,所得的对应线段成比例.推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例. 要点诠释:(1).对应线段成比例可用下面的语言形象表示:右全左全右上左上全上全上下上下上,,等等.(2)有推论可以得出以下结论:要点二、行线分线段成比例及其推论的应用行线分线段成比例及其推论的应用主要是来求线段的长度.要点三、相似多边形的有关概念相似多边形:各角分别相等、各边成比例的两个多边形叫做相似多边形.它的符号是“∽”,读作“相似于”.相似比:相似多边形的对应边的比叫做相似比. 要点诠释:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是全等.(3)相似多边形的定义既是判定方法,又是它的性质.【典型例题】类型一、平行线分线段成比例及其推论1、(2016?兰州)如图,在△ABC 中,DE ∥BC ,若=,则=()A.B.C.D.【思路点拨】直接利用平行线分线段成比例定理写出答案即可.【答案】C.【解析】解:∵DE∥BC,∴==,故选C.【总结升华】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基础定义或定理,难度不大.2、如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【思路点拨】根据PQ∥BC可得,进而得出,再解答即可.【答案与解析】解:∵PQ∥BC,∴=,∴,∴,∵AP=AQ,∴PQ=3.【总结升华】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.举一反三【变式】如图,直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,已知AC=4,CE=6,BD=3,则BF等于______________.【答案】7.5.类型二、平行线分线段成比例及其推论的应用3、如图,已知梯形ABCD 中,AB ∥DC ,△AOB 的面积等于9,△AOD 的面积等于6,AB=7,求CD 的长.【思路点拨】根据△AOB 的面积等于9,△AOD 的面积等于6,可知OB :OD 的值,再根据平行线分线段成比例即可求解.【答案与解析】解:∵AB ∥DC ,∴22242DMAB ,∵△AOB 的面积等于9,△AOD 的面积等于6,∴23DO BO ,∴23CDDO AB CO ,∵AB=7,∴CD= 143.【总结升华】主要考查了平行线分线段成比例和等高三角形的面积的比等于对应底边的比的性质,熟练掌握性质是解题的关键.举一反三【变式】如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,已知AE=6,37ADAB ,则EC 的长是()A .4.5B .8C .10.5D .14【答案】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AE AB AC,∴6367 AEAC EC,解得:EC=8.故选:B.4、如图,直线l1∥l2∥l3,若AB=2,BC=3,DE=1,则EF的值为()A23 B32C 6 D16【答案】B.【解析】解:∵直线l1∥l2∥l3,∴AB DE AC EF,∵AB=2,BC=3,DE=1,∴213EF,∴EF=32,故选B.【总结升华】本题考查平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的对应线段成比例.举一反三【变式】如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE ∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:5【答案】解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE∥BC,∴CE:AC=BD:AB=5:8,∵EF∥AB,∴CF:CB=CE:AC=5:8.故选A.类型三、相似多边形的有关概念5、如图是一个由12个相似(形状相同,大小不同)的直角三角形所组成的图案,它是否有点像一个商标图案?你能否也用相似图形设计出几个美丽的图案?最好再给你设计的图案取一个名字.【思路点拨】相似图形是指形状相同的图形.根据相似图形进行变换可以形成一些美丽的图案.【答案与解析】解:由12个相似的直角三角形形成的图案很有创意,给人以美的享受,可以作为一个商标的图案.以下几个图案分别是用相似形设计的美丽图案.【总结升华】考查的是相似图形,相似图形是指形状相同的图形.把一组相似图形进行变换可以得到美丽的图案.6.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.【思路点拨】(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到112BP AB,然后求得EP=2,最后利用勾股定理求得EB的长即可求得线段GD的长即可.【答案与解析】(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.【总结升华】本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.。

浙教版数学九年级上册4.5《相似多边形》说课稿

浙教版数学九年级上册4.5《相似多边形》说课稿

浙教版数学九年级上册4.5《相似多边形》说课稿一. 教材分析《相似多边形》是浙教版数学九年级上册4.5节的内容,本节内容是在学生已经掌握了多边形的概念、三角形的知识以及全等图形的性质等基础上进行讲解的。

相似多边形是数学中的一个重要概念,它不仅可以巩固学生对全等图形的理解,还能为后续的函数、解析几何等章节打下基础。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于图形的认识也有了一定的基础。

但是,学生对于相似多边形的理解可能会存在一定的困难,因为相似多边形既包含了图形的形状,又包含了图形的大小,这对于学生来说是一个新的概念。

三. 说教学目标1.让学生理解相似多边形的概念,掌握相似多边形的性质。

2.培养学生观察、分析、解决问题的能力。

3.提高学生的空间想象能力,培养学生的抽象思维能力。

四. 说教学重难点1.重点:相似多边形的概念及其性质。

2.难点:相似多边形的性质的证明和应用。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生通过观察、思考、交流等方式自主探索相似多边形的性质。

2.利用多媒体手段,如图片、动画等,帮助学生形象直观地理解相似多边形的概念。

六. 说教学过程1.导入:通过展示一些生活中的相似图形,如两只相似的钟表、两只相似的飞机模型等,让学生感受相似图形的魅力,激发学生的学习兴趣。

2.新课导入:引导学生思考,如果两个多边形的形状完全相同,但大小不同,我们应该如何称呼它们?从而引入相似多边形的概念。

3.概念讲解:通过具体的例子,解释相似多边形的定义,让学生理解相似多边形的内涵。

4.性质探索:引导学生通过观察、思考、交流等方式,自主探索相似多边形的性质。

5.性质证明:利用几何画板等工具,引导学生证明相似多边形的性质。

6.性质应用:通过一些具体的题目,让学生运用相似多边形的性质解决问题。

7.课堂小结:让学生回顾本节课所学的内容,加深对相似多边形的理解。

8.布置作业:布置一些有关相似多边形的练习题,让学生巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上(BS) 教学课件
九年级数学上册知识点
图形的相似 相似多边形
观察与思考
想一想:下面几组图形有什么相同点和不同点?
(1)
(2)
(3)
(4)
放大镜下的图形和原来的图形有什么相同与不 同吗?
放大镜下的角与原图 形中角是什么关系?
相似多边形与相似比
观察与思考
多边形 ABCDEF 是显示在电脑屏幕上的,而多
EF将四边形ABCD分成两个相似四边形AEFD和EBCF. 若AD=3,BC=4,求AE:EB的值.
解:∵四边形AEFD∽四边形EBCF,
∴ AD EF
EF BC
.
A
D
∴EF2=AD·BC=3×4=12,
∴EF= 2 3.
E
F
∵四边形AEFD∽四边形EBCF,
∴AE:EB=AD:EF=3: 2 3 = 3 :2. B
B
F
C
小结
形状相同的图形叫做相似图形

相似图形 相似图形的大小不一定相同




对应角相等,对应边成比例
相似多边形 相似多边形对应边的比叫 做相似比
的大小和EH的长度 x.
21 D
A
β
18
H x E 118°
24
78° 83°
B
C
F
α G
解:∵ 四边形 ABCD 和 EFGH 相似,∴ 它们的对 应角相等.由此可得
∠α=∠C=83°,∠A=∠E=118°.
在四边形ABCD中,
∠β=360°-(78°+83°+118°)=81°.
21 D A
β
5
α= 90°;
╮125°
α╭
y
3
图①
(2) 如图②是两个相似的矩形,
x= 22.5 .
20
x
30
15
图②
6. 如图,把矩形 ABCD 对折,折痕为 EF,若矩形
ABCD 与矩形 EABF 相似,AB = 1.
(1) 求BC长; 解:∵ E 是 AD 的中点,
A
E
D
∴ AE 1 AD 1 BC.
c,d 的长度. cd
6 9
3 5
2
b
a
7.5
解:相似多边形的对应边的比相等,由此可得
a
7.5 , b
7.5 ,
6
7.5

9
7.5 ,
25 35 c5 d 5
解得:a=3,b=4.5,c=4,d=6.
所以未知边a,b,c,d的长度分别为3,4.5,4,6.
例2:如图,在四边形ABCD中,AD∥BC,EF∥BC,
分析:已知等边三角形的每个角都为60°, 三边都相 等. 所以满足边数相等,对应角相等,以及对应边的 比相等.
…a1a2a3an同理,任意两个正方形都相似.
归纳:任意两个边数相等的正多边形都相似.
思考: 任意的两个菱形(或矩形)是否相似?为什么?
典例精析
例1 如图,四边形 ABCD 和 EFGH 相似,求角α,β
相似多边形用符号“∽” 表示,读作“相似于”
各角分别相等、各边成比例的两个多边形
叫做相似多边形.
◑ 相似多边形的特征: 相似多边形的对应角相等,对应边成比例.
◑ 相似比: 相似多边形的对应边的比叫作相似比.
议一议
任意两个等边三角形相似吗?任意两个正方形 呢?任意两个正 n 边形呢?

a1
a2
a3
an
18
78°83°
B
C
x E
118° 24
F
H
α G
∵ 四边形ABCD和EFGH相似,∴它们的对应边成比 例,由此可得
EH AD
EF AB
,即
x 21
24 18
.
解得 x = 28 cm.
21 D A
β
18
78°83°
B
C
x E
118° 24
F
H
α G
练一练
如图所示的两个五边形相似,求未知边 a,b,
2
2
又∵矩形 ABCD 与矩形 EABF
相似,AB=1,
B
F
C
∴ AB BC ,∴ AB2 = AE·BC, AE AB
∴ 12 1 BC BC . 解得 BC 2. 2
(2) 求矩形 ABEF 与矩形 ABCD 的相似比.
解:矩形 ABEF 与矩形 ABCD A
E
D
的相似比为:
AB 1 2 . BC 2 2
B. 3500 m D. 7500 m
3. 如图所示的两个四边形是否相似? 答案:不相似.
4. 观察下面的图形 (a)~(g),其中哪些是与图形 (1)、 (2) 或 (3) 相似的?
5. 填空: (1) 如图①是两个相似的四边
形,则x= 2.5 ,y = 1.5 ,
3 ╯80°
x
6 65╰° ╯80°
边形 A1B1C1D1E1F1 是投射到银幕上的.
A1 F1
B1 C1
AB
F
C
E1
D1
E
D
问题1 这两个多边形相似吗? 问题2 在这两个多边形中,是否有对应相等的内角? 问题3 在这两个多边形中,夹相等内角的两边否成 比例?
A1 F1
B1 C1
AB
F
C
E1
D1
E
D
要点归纳 ◑ 相似多边形的定义:
C
练习
1. 下列图形中能够确定相似的是
( ABDF )
A.两个半径不相等的圆 B.所有的等边三角形
C.所有的等腰三角形 D.所有的正方形
E.所有的等腰梯形
F.所有的正六边形
2. 若一张地图的比例尺是 1:150000,在地图上量得
甲、乙两地的距离是 5cm,则甲、乙两地的实际
距离是
( D)
A. 3000 m C. 5000 m
相关文档
最新文档