高一数学集合知识点归纳
高一数学必修一集合知识点梳理
![高一数学必修一集合知识点梳理](https://img.taocdn.com/s3/m/a2ecec13ac02de80d4d8d15abe23482fb4da02b8.png)
高一数学必修一集合知识点梳理一、集合的概念:1.集合:由一些确定的事物按照一定的规则组成的整体。
2.元素:构成集合的单个事物。
3.集合的表示方法:枚举法、描述法。
4.空集:不包含任何元素的集合,用符号∅表示。
5.集合的相等:两个集合的元素完全相同,则称两个集合相等。
二、集合的运算:1.并集:包含两个集合中的所有元素的集合,用符号∪表示。
2.交集:包含两个集合中共有的元素的集合,用符号∩表示。
3.差集:包含第一个集合中有而第二个集合中没有的元素的集合,用符号\(A-B\)表示。
4.互斥集:两个集合没有相同的元素,即交集为空集。
5.补集:在一个全集中,除去一个集合的元素剩下的元素构成的集合,用符号A'表示。
三、集合的关系:1. 子集:如果集合A的所有元素都是集合B的元素,则称集合A是集合B的子集,用符号\( A \subseteq B \)表示。
2. 真子集:如果集合A是集合B的子集且集合A不等于集合B,则称集合A是集合B的真子集,用符号\( A \subset B \)表示。
3. 幂集:由原集合的所有子集构成的集合,用符号\(\mathcal{P}(A)\)表示。
四、集合的拓展:1.有限集与无限集:元素个数有限的集合称为有限集,元素个数不限的集合称为无限集。
2.嵌套集:集合中的元素本身也是集合的集合。
3.无序对:是由两个元素组成的二元关系,其中元素的顺序是不重要的。
4.索引集:用一个集合的所有元素作为索引的集合。
五、集合的运用:1.列举集合的元素。
2.解集合间的元素关系问题。
3.使用集合运算解决实际问题。
4.使用文氏图表示集合的关系。
六、集合的应用:1. Venn图:用圆形表示集合,用图示的方式描述集合间的关系和运算。
2.元素的分类:将一组事物按其中一种特征分类,构建一个集合。
3.基数计数:通过挑选元素,建立元素与集合间的一一对应关系,测量集合中元素的个数。
4.群体角度问题:确定集合元素满足其中一种性质的条件,并找出集合中所满足不同性质条件的元素个数。
高一集合知识点总结
![高一集合知识点总结](https://img.taocdn.com/s3/m/fb2637d3e43a580216fc700abb68a98271feacdf.png)
高一集合知识点总结一、集合的基本概念1. 集合定义:集合是具有某种特定性质的事物的总体。
2. 元素:组成集合的每个事物称为该集合的元素。
3. 集合的表示:常用大写字母表示集合,如集合A、B等;集合中的元素用小写字母表示,如a、b等。
二、集合的分类1. 有限集:元素数量有限的集合。
2. 无限集:元素数量无限的集合。
3. 空集:不包含任何元素的集合,记作∅。
三、集合的表示方法1. 枚举法:直接列举出集合中的所有元素。
2. 描述法:用数学表达式描述集合中的元素性质。
3. 图示法:用图形表示集合及其关系。
四、集合间的关系1. 子集:如果集合A的所有元素都属于集合B,则A是B的子集。
2. 真子集:集合A是集合B的子集,且A不等于B。
3. 并集:两个集合A和B的所有元素组成的集合。
4. 交集:两个集合A和B的公共元素组成的集合。
5. 补集:对于集合A,其在全集U中的补集是全集U中不属于A的元素组成的集合。
五、集合运算1. 并集运算(∪):A ∪ B = {x | x ∈ A 或x ∈ B}。
2. 交集运算(∩):A ∩ B = {x | x ∈ A 且 x ∈ B}。
3. 差集运算(-):A - B = {x | x ∈ A 且 x ∉ B}。
4. 补集运算(' 或 C):A' = {x | x ∉ A}。
六、特殊集合1. 有理数集:可以表示为两个整数比的数的集合。
2. 无理数集:不能表示为两个整数比的数的集合。
3. 自然数集:正整数的集合。
4. 整数集:正整数、负整数和零的集合。
5. 实数集:包括有理数和无理数的集合。
七、集合的简单性质1. 德摩根定律:(A ∪ B)' = A' ∩ B';(A ∩ B)' = A' ∪ B'。
2. 集合恒等式:A ∪ A' = U,A ∩ A' = ∅。
3. 子集性质:如果A ⊆ B 且 B ⊆ A,则A = B。
高一数学知识点总结(完整版)
![高一数学知识点总结(完整版)](https://img.taocdn.com/s3/m/776ca7ab0242a8956bece491.png)
高一数学知识总结必修一一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A 注意:B与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a 、b 属于Q)指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称&对数函数y=loga^x如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ; ○2 =NM a log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式 ab bc c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸; (3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高一年级数学《集合》知识点总结
![高一年级数学《集合》知识点总结](https://img.taocdn.com/s3/m/e63590f4d5bbfd0a7856732f.png)
高一年级数学《集合》知识点总结【一】一.知识归纳:1.集合的相关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存有x0∈B但x0A;记为AB(或,且)3)交集:A∩B={xx∈A且x∈B}4)并集:A∪B={xx∈A或x∈B}5)补集:CUA={xxA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握相关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.相关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:【例1】已知集合M={xx=m+,m∈Z},N={xx=,n∈Z},P={xx=,p∈Z},则M,N,P满足关系A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的共性与区别入手。
高一数学知识点归纳
![高一数学知识点归纳](https://img.taocdn.com/s3/m/a3f0d96c5b8102d276a20029bd64783e09127da4.png)
高一数学知识点归纳一、集合。
1. 集合的概念。
- 集合是由一些确定的、互不相同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体自然数组成的集合,用N={0,1,2,3,·s}表示(注意:人教版中0∈N)。
- 元素与集合的关系:如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
如A = {1,2,3}。
- 描述法:用集合所含元素的共同特征表示集合。
形式为{xp(x)},其中x是集合中的代表元素,p(x)是描述x的条件。
例如{xx是大于2的整数}。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记为A⊆ B。
如果A⊆ B且A≠ B,则A是B的真子集,记为A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
- 空集:不含任何元素的集合,记为varnothing。
空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)x∈ A}叫做函数的值域。
2. 函数的表示法。
- 解析法:用数学表达式表示两个变量之间的对应关系,如y = 2x+1。
- 图象法:用图象表示两个变量之间的对应关系。
- 列表法:列出表格来表示两个变量之间的对应关系,如函数y=x^2,当x = - 2,-1,0,1,2时,对应的y值分别为4,1,0,1,4,可以列成表格。
高一数学集合知识点全总结
![高一数学集合知识点全总结](https://img.taocdn.com/s3/m/6419284bbfd5b9f3f90f76c66137ee06eff94e1f.png)
高一数学集合知识点全总结一、集合的概念集合是具有某种特定性质的事物的总体或类别。
集合中具体的元素称为集合的成员。
集合的表示方法有三种:列举法、描述法和集合的图示法。
1. 列举法:集合A = {a, b, c, d, e}2. 描述法:集合A = {x|x具有某种特定的性质}3. 图示法:通常用Venn图来表示,也可以用数轴、区间等形式表示。
二、集合的基本运算1. 并集设A和B是两个集合,A和B的并集,记作A∪B,是一个集合C,C中的元素是A和B 中所有元素的集合,即C={x | x∈A或x∈B}。
2. 交集设A和B是两个集合,A和B的交集,记作A∩B,是一个集合C,C中的元素是A和B 中共有元素的集合,即C={x | x∈A且x∈B}。
3. 差集设A和B是两个集合,A和B的差集,记作A-B,是一个集合C,C中的元素是属于A 但不属于B的所有元素的集合,即C={x | x∈A,x∉B}。
4. 补集A的补集,记作Ā,是一个集合C,C中的元素是不属于A的所有元素的集合,即C={x | x∈U,x∉A},其中U为全集。
5. 交叉并集设A和B是两个集合,A和B的交叉并集,记作A⊕B,是一个集合C,C中的元素是A 和B中所有元素的集合减去A和B的交集,即C={x | x∈A或x∈B,但x∉A∩B}。
6. 笛卡尔积对于两个集合A和B,在数学上,A和B的笛卡尔积,记作AxB,是一个集合C,C中的元素是由A和B中的每个元素按一定次序组成的。
写作C={(a,b)|a∈A,b∈B}以上的集合运算规则和公式需要通过具体的例题来进行练习和理解。
三、集合的关系1. 包含关系若集合A的每个元素都是集合B的元素,则A是B的子集,记作A⊆B或B⊇A。
特别地,空集是每个集合的子集。
2. 相等关系若集合A和B有相同的元素,则A等于B,记作A=B。
3. 差集和补集的关系若A⊆B,则A-B=BĀ。
四、集合论的重要定理1. 德摩根定理对于任意两个集合A和B,有以下两个等式成立:A∪B = AĀ∩BĀA∩B = AĀ∪BĀ2. 韦恩图定理对于任意三个集合A、B和C,有以下等式成立:A∪(B∩C) = (A∪B)∩(A∪C)A∩(B∪C) = (A∩B)∪(A∩C)3. 分配率对于任意三个集合A、B和C,有以下等式成立:A∪(B∩C) = (A∪B)∩(A∪C)A∩(B∪C) = (A∩B)∪(A∩C)以上定理是在集合论中非常重要的定理,需要通过具体的例题来进行理解和应用。
高一数学集合知识点总结3篇
![高一数学集合知识点总结3篇](https://img.taocdn.com/s3/m/37752050793e0912a21614791711cc7931b778c1.png)
高一数学集合知识点总结数学集合知识点总结(一)1. 集合的概念和符号集合是相同性质或特征的元素组成的整体,用大写字母表示,元素用小写字母表示,元素用逗号隔开,用花括号表示。
2. 元素和等价集合元素是集合中具体的对象;等价集合指具有相同元素的集合。
3. 子集和真子集若集合 A 中的任何元素均属于集合 B,则集合 A 是集合 B 的子集(A⊆B),反之则称集合 B 是集合 A 的超集;集合 A 不等于集合 B,则称 A 是 B 的真子集(A⊂B)。
4. 交集和并集有两个集合 A 和 B,A∩B 表示它们的交集,即两个集合中共有的元素组成的集合;A∪B 表示它们的并集,即两个集合中所有元素组成的集合。
5. 互异集合和全集互异集合即任何两个不同元素的集合都是互异的;全集指一个集合中的所有元素都属于某个范围或条件下的集合。
6. 补集设 U 为全集,A 为 U 的子集,则集合 A 的补集表示为 A',包含 U 中所有不属于 A 的元素。
7. 幂集幂集是指一个集合的所有子集构成的集合,记为 P(A)。
8. 集合的运算规律交换律:A∪B=B∪A;A∩B=B∩A结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C)分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)德摩根定律:(A∪B)'=A'∩B';(A∩B)'=A'∪B'以上就是数学集合知识点的一些基础概念和运算规律,接下来将讲解集合的相关性质和常用定理。
数学集合知识点总结(二)1. 集合的数学运算性质交换律:A∪B=B∪A;A∩B=B∩A结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C)分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)德摩根定律:(A∪B)'=A'∩B';(A∩B)'=A'∪B'2. 集合的常用定理定理1:若 A⊆B,B⊆A,则 A=B。
高一数学集合知识点总结
![高一数学集合知识点总结](https://img.taocdn.com/s3/m/5683ec004431b90d6c85c7ae.png)
高一数学集合知识点总结一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性: ①.元素的确定性; ②.元素的互异性; ③.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 4、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345} 2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a 属于集合A 记作a∈A ,相反,a不属于集合A 记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2} 二、集合间的基本关系 1.“包含”关系子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B或集合B不包含集合A记作A B 或B A 2. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学集合知识点总结
![高一数学集合知识点总结](https://img.taocdn.com/s3/m/b21cf87a68eae009581b6bd97f1922791688be1f.png)
高一数学集合知识点总结一、集合的基本概念1. 集合是由元素组成的整体,元素是集合的构成要素。
2. 集合的表示方法:列举法和描述法。
3. 集合的基本运算:并集、交集、差集和补集。
二、集合的性质及运算规律1. 交换律:A∪B = B∪A,A∩B = B∩A。
2. 结合律:(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。
3. 分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) = (A∩B)∪(A∩C)。
4. 幂等律:A∪A = A,A∩A = A。
5. 吸收律:A∪(A∩B) = A,A∩(A∪B) = A。
6. 对偶律:(A∪B)' = A'∩B',(A∩B)' = A'∪B'。
三、集合的关系和判断1. 包含关系:子集和真子集。
- 子集:若集合A中的每个元素都属于集合B,则A是B的子集,记作A⊆B。
- 真子集:若A是B的子集且A≠B,则A是B的真子集,记作A⊂B。
2. 相等关系:两个集合A和B相等,当且仅当A是B的子集且B是A的子集,记作A=B。
3. 元素关系:属于和不属于。
- 属于:若元素a是集合A的元素,则记作a∈A。
- 不属于:若元素a不是集合A的元素,则记作a∉A。
4. 判断问题:- 空集:空集是任何集合的子集。
- 空集的子集:空集是任何集合的子集。
- 空集与非空集的关系:空集不是任何非空集的子集。
四、集合的应用1. 集合的应用于元素的归类和分类问题。
2. 集合的应用于概率问题,如事件的集合、样本空间等。
3. 集合的应用于数学推理和证明,如集合的运算规律的证明。
五、常见问题及解答1. 如何用集合表示一个范围?- 使用描述法:例如,表示大于1小于10的整数集合可以表示为{x | 1 < x < 10}。
2. 如何求两个集合的并集、交集、差集和补集?- 并集:将两个集合中的元素合并在一起,并去除重复的元素。
高一数学集合知识点
![高一数学集合知识点](https://img.taocdn.com/s3/m/0be2a618866fb84ae45c8da3.png)
1.1集合1.1.1集合的含义与表示一、集合的含义集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元,是具有某种特定性质的事物的总体.关键词:确定的、总体【特征】确定性、无序性、互异性、【表示方法】列举法、描述法、图示法.二、元素与集合关系得判断【知识点的认识】一般地,我们把研究对象称为元素,把一些元素组成的总体称为集合,简称集.元素一般用小写字母a,b,c表示,集合一般用大写字母 A,B,C表示,两者之间的关系是属于与不属于关系,符号表示如:a∈A或a∉A.【命题方向】元素与集合之间的关系命题方向有二,一是验证元素是否是集合的元素;二是知元素是集合的元素,根据集合的属性求出相关的参数.【解题方法点拨】如题型一:已知A是偶数集,试判断a=2b2+4b,b∈N是否是集合的元素?方法点拨:因为偶数都可以写成整数2倍的形式,故解决本题的方法就是看元素a能否变成数的2倍的形式.三、集合的确定性、互异性、无序性【知识点的认识】集合中元素具有确定性、互异性、无序性三大特征.(1)确定性:集合中的元素是确定的,即任何一个对象都说明它是或者不是某个集合的元素,两种情况必居其一且仅居其一,不会模棱两可,例如“著名科学家”,“与2接近的数”等都不能组成一个集合.(2)互异性:一个给定的集合中,元素互不相同,就是在同一集合中不能出现相同的元素.例如不能写成{1,1,2},应写成{1,2}.(3)无序性:集合中的元素,不分先后,没有如何顺序.例如{1,2,3}与{3,2,1}是相同的集合,也是相等的两个集合.【解题方法点拨】解答判断型题目,注意元素必须满足三个特性;一般利用分类讨论逐一研究,转化为函数与方程的思想,解答问题,结果需要回代验证,元素不许重复.【命题方向】本部分内容属于了解性内容,但是近几年高考中基本考查选择题或填空题,试题多以集合相等,含参数的集合的讨论为主.四、集合的分类【知识点的认识】集合的分类主要依集合中元素个数的多少来划分,有限集和无限集两种.有限集元素个数是确定的,元素个数有限个,可以利用列举法或描述法表示;无限集元素个数是无限的,只能利用描述法表示.【解题方法点拨】从集合的元素个数直接判断.【命题方向】这一考点,是了解内容,会考多以选择题判断为主,高考多与集合之间的关系联合命题.五、集合的表示法【知识点的认识】1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法.{1,2,3,…},注意元素之间用逗号分开.2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法.即:{x|P}(x 为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}3.图示法(Venn图):为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合.4.自然语言(不常用).【解题方法点拨】在掌握基本知识的基础上,(例如方程的解,不等式的解法等等),初步利用数形结合思想解答问题,例如数轴的应用,Venn图的应用,通过转化思想解答.注意解题过程中注意元素的属性的不同,例如:{x|2x-1>0}表示实数x的范围;{(x,y)|y-2x=0}表示方程的解或点的坐标.【命题方向】本考点是考试命题常考内容,多在选择题,填空题值出现,可以与集合的基本关系,不等式,简易逻辑,立体几何,线性规划,概率等知识相结合.1.1.2集合间的基本关系一、子集与真子集【知识点的认识】子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset).记作:A⊆B(或B⊇A).而真子集是对于子集来说的.真子集定义:如果集合A⊆B,但存在元素x∈B,且元素x不属于集合A,我们称集合A是集合B的真子集.也就是说如果集合A的所有元素同时都是集合 B 的元素,则称 A 是 B 的子集,若 B 中有一个元素,而A 中没有,且A 是 B 的子集,则称 A 是 B 的真子集,注①空集是所有集合的子集②所有集合都是其本身的子集③空集是任何非空集合的真子集例如:所有亚洲国家的集合是地球上所有国家的集合的真子集.所有的自然数的集合是所有整数的集合的真子集.{1,3}⊂{1,2,3,4}{1,2,3,4}⊆{1,2,3,4}真子集和子集的区别子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等;注意集合的元素是要用大括号括起来的“{}”,如{1,2},{a,b,g};另外,{1,2}的子集有:空集,{1},{2},{1,2}.真子集有:空集,{1},{2}.一般来说,真子集是在所有子集中去掉空集和它本身,所以对于含有n个(n不等于0)元素的集合而言,它的子集就有2n个;真子集就有2n-2.但空集属特殊情况,它只有一个子集,没有真子集.【解题方法点拨】注意真子集和子集的区别,不可混为一谈,A⊆B,并且A⊆B 时,有A=B,但是A⊂B,并且B⊂A,是不能同时成立的;子集个数的求法,空集与自身是不可忽视的.【命题方向】本考点要求理解,高考会考中多以选择题、填空题为主,曾经考查子集个数问题,常常与集合的运算,概率,函数的基本性质结合命题.二、集合的包含关系及其应用【知识点的认识】如果集合A中的任意一个元素都是集合B的元素,那么集合A 叫做集合B的子集;A⊆B;如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,即A⊂B;如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,那么我们就说集合A等于集合B,即A=B.【解题方法点拨】1.按照子集包含元素个数从少到多排列.2.注意观察两个集合的公共元素,以及各自的特殊元素.3.可以利用集合的特征性质来判断两个集合之间的关系.4.有时借助数轴,平面直角坐标系,韦恩图等数形结合等方法.【命题方向】通常命题的方式是小题,直接求解或判断两个或两个以上的集合的关系,可以与函数的定义域,三角函数的解集,子集的个数,简易逻辑等知识相结合命题.三、集合的相等【知识点的认识】(1)若集合A与集合B的元素相同,则称集合A等于集合B.(2)对集合A和集合B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B.就是如果A⊆B,同时B⊆A,那么就说这两个集合相等,记作 A=B.(3)对于两个有限数集A=B,则这两个有限数集 A、B中的元素全部相同,由此可推出如下性质:①两个集合的元素个数相等;②两个集合的元素之和相等;③两个集合的元素之积相等.由此知,以上叙述实质是一致的,只是表达方式不同而已.上述概念是判断或证明两个集合相等的依据.【解题方法点拨】集合A 与集合B相等,是指A 的每一个元素都在B 中,而且B中的每一个元素都在A中.解题时往往只解答一个问题,忽视另一个问题;解题后注意集合满足元素的互异性.【命题方向】通常是判断两个集合是不是同一个集合;利用相等集合求出变量的值;与集合的运算相联系,也可能与函数的定义域、值域联系命题,多以小题选择题与填空题的形式出现,有时出现在大题的一小问.四、集合中元素个数的最值【知识点的认识】【命题方向】【解题方法点拨】求集合中元素个数的最大(小)值问题的方法通常有:类分法、构造法、反证法、一般问题特殊化、特殊问题一般化等.需要注意的是,有时一道题需要综合运用几种方法才能解决.五、空集的定义、性质及运算【知识点的认识】空集的定义:不含任何元素的集合称为空集.记作∅.空集的性质:空集是一切集合的子集.空集不是没有;它是内部没有元素的集合,而集合是存在的.这通常是初学者的一个难理解点.将集合想象成一个装有其元素的袋子的想法或许会有帮助;袋子可能是空的,但袋子本身确实是存在的.例如:{x|x2+1=0,x∈R}=∅.虽然有x的表达式,但方程中根本就没有这样的实数x使得方程成立,所以方程的解集是空集.空集是任何集合的子集,是任何非空集合的真子集.【解题方法点拨】解答与空集有关的问题,例如集合A∩B=B⇔B⊆A,实际上包含3种情况:①B=∅;②B⊂A且B≠∅;③B=A;往往遗漏B是∅的情形,所以老师们在讲解这一部分内容或题目时,总是说“空集优先的原则”,就是首先考虑空集.【命题方向】一般情况下,多与集合的基本运算联合命题,是学生容易疏忽、出错的地方,考查分析问题解决问题的细心程度,难度不大,可以在选择题、填空题、简答题中出现.1.1.3集合的基本运算一、并集及其运算【知识点的认识】由所有属于集合A或属于集合B的元素的组成的集合叫做A与B的并集,记作A ∪B.符号语言:A∪B={x|x∈A或x∈B}.图形语言:.A∪B实际理解为:①x仅是A中元素;②x仅是B中的元素;③x是A且是B中的元素.运算形状:①A∪B=B∪A.②A∪∅=A.③A∪A=A.④A∪B⊇A,A∪B⊇B.⑤A∪B=B⇔A⊆B.⑥A∪B=∅,两个集合都是空集.⑦A∪(CUA)=U.⑧CU(A∪B)=(CUA)∩(CUB).【解题方法点拨】解答并集问题,需要注意并集中:“或”与“所有”的理解.不能把“或”与“且”混用;注意并集中元素的互异性.不能重复.【命题方向】掌握并集的表示法,会求两个集合的并集,命题通常以选择题、填空题为主,也可以与函数的定义域,值域联合命题.二、交集及其运算【知识点的认识】由所有属于集合A且属于集合B的元素的所有元素组成的集合叫做A与B的交集,记作A∩B.符号语言:A∩B={x|x∈A,且x∈B}.图形语言:.A∩B实际理解为:x是A且是B中的相同的所有元素.当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.运算形状:①A∩B=B∩A.②A∩∅=∅.③A∩A=A.④A∩B⊆A,A∩B⊆B.⑤A∩B=A⇔A⊆B.⑥A∩B=∅,两个集合没有相同元素.⑦A∩(CUA)=∅.⑧CU(A∩B)=(CUA)∪(CUB).【解题方法点拨】解答交集问题,需要注意交集中:“且”与“所有”的理解.不能把“或”与“且”混用;求交集的方法是:①有限集找相同;②无限集用数轴、韦恩图.【命题方向】掌握交集的表示法,会求两个集合的交集.命题通常以选择题、填空题为主,也可以与函数的定义域,值域,函数的单调性、复合函数的单调性等联合命题.三、补集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作CUA,即CUA={x|x∈U,且x∉A}.其图形表示如图所示的Venn图..【解题方法点拨】常用数轴以及韦恩图帮助分析解答,补集常用于对立事件,否命题,反证法.【命题方向】通常情况下以小题出现,高考中直接求解补集的选择题,有时出现在简易逻辑中,也可以与函数的定义域、值域,不等式的解集相结合命题,也可以在恒成立中出现.四、全集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).全集是相对概念,元素个数可以是有限的,也可以是无限的.例如{1,2};R;Q 等等.【解题方法点拨】注意审题,可以借助数轴韦恩图解答.【命题方向】本考点属于理解,常出现的类型有直接求出全集,利用全集求解子集的个数,集合在参数的范围等问题,难度属于容易题.五、交、并、补集的混合运算【知识点的认识】集合交换律A∩B=B∩A,A∪B=B∪A.集合结合律(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C).集合分配律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A ∪C).集合的摩根律 Cu(A∩B)=CuA∪CuB,Cu(A∪B)=CuA∩CuB.集合吸收律A∪(A∩B)=A,A∩(A∪B)=A.集合求补律A∪CuA=U,A∩CuA=Φ.【解题方法点拨】直接利用交集、并集、全集、补集的定义或运算性质,借助数轴或韦恩图直接解答.【命题方向】理解交集、并集、补集的混合运算,每年高考一般都是单独命题,一道选择题或填空题,属于基础题.六、Venn图表达集合的关系及运算【知识点的认识】用平面上一条封闭曲线的内部来代表集合,这个图形就叫做Venn图(韦恩图).集合中图形语言具有直观形象的特点,将集合问题图形化,利用Venn图的直观性,可以深刻理解集合的有关概念、运算公式,而且有助于显示集合间的关系.运算公式:card(A∪B)=card(A)+card(B)-card(A∩B)的推广形式:card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(A∩C)+card(A∩B∩C),或利用Venn图解决.公式不易记住,用Venn图来解决比较简洁、直观、明了.【解题方法点拨】在解题时,弄清元素与集合的隶属关系以及集合之间的包含关系,结合题目应很好地使用Venn图表达集合的关系及运算,利用直观图示帮助我们理解抽象概念.Venn图解题,就必须能正确理解题目中的集合之间的运算及关系并用图形准确表示出来.【命题方向】一般情况涉及Venn图的交集、并集、补集的简单运算,也可以与信息迁移,应用性开放问题.也可以联系实际命题.。
高一数学集合的知识点归纳总结
![高一数学集合的知识点归纳总结](https://img.taocdn.com/s3/m/a0fbb9ebc67da26925c52cc58bd63186bceb92c0.png)
高一数学集合的知识点归纳总结一、集合的概念和表示集合是由一些确定的、互不相同的对象组成的整体,这些对象称为集合的元素。
集合的表示方法有三种:描述法、列举法和等价关系法。
二、集合的运算1. 并集:表示由两个或多个集合中所有的元素组成的集合,记作A∪B。
2. 交集:表示两个或多个集合中共有的元素组成的集合,记作A∩B。
3. 差集:表示一个集合中除去与另一个集合共有的元素之外的元素组成的集合,记作A-B。
4. 互补集:表示对于给定的全集U,与某个给定集合A中的元素不相同的元素所组成的集合,记作A'。
三、集合的性质1. 互斥性:两个集合没有共同的元素,即A∩B=∅。
2. 全集性:某个给定集合A的所有元素都是全集U的元素,即A⊆U。
3. 空集性:一个集合中没有任何元素,记作∅。
4. 幂集性:一个集合的所有子集所组成的集合称为幂集,记作P(A)。
四、集合的关系和判定1. 包含关系:若A中的每一个元素都是B中的元素,则称A是B的子集,记作A⊆B。
2. 相等关系:若A是B的子集且B是A的子集,则称A和B相等,记作A=B。
3. 真包含关系:若A是B的真子集(A不等于B),则称A真包含于B,记作A⊂B。
4. 子集数量关系:若集合A和集合B都是有限集合,且A的元素个数小于B的元素个数,则称A的元素个数少于B的元素个数,记作|A|<|B|。
五、常见的数学符号和概念1. 自然数集:{1, 2, 3, 4, ...},用符号N表示。
2. 整数集:{..., -3, -2, -1, 0, 1, 2, 3, ...},用符号Z表示。
3. 有理数集:用两个整数的比表示的数的集合,用符号Q表示。
4. 实数集:包含有理数和无理数的集合,用符号R表示。
5. 空集:没有任何元素的集合,用符号∅表示。
六、集合的应用1. 排列组合:通过对集合的操作和排列组合的方法,可以解决一些计数问题。
2. 概率论:集合论是概率论的重要基础,通过集合的运算和性质,可以推导出概率计算的公式。
高一数学集合知识点归纳
![高一数学集合知识点归纳](https://img.taocdn.com/s3/m/c40febb8900ef12d2af90242a8956bec0975a585.png)
一、集合的概念1. 集合的定义:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
2. 集合的表示方法:集合通常用大写字母表示,如A、B、C等,元素用小写字母表示,如a、b、c等。
3. 集合的分类:有限集和无限集。
有限集中元素的个数是有限的,无限集中元素的个数是无限的。
二、集合的基本运算1. 并集:两个集合A和B的并集是指包含A和B中所有元素的集合,记作A∪B。
2. 交集:两个集合A和B的交集是指既属于A又属于B的元素组成的集合,记作A∩B。
3. 差集:两个集合A和B的差集是指属于A但不属于B的元素组成的集合,记作A-B。
4. 补集:一个集合A的补集是指不属于A的所有元素的集合,记作A'或A^c。
5. 幂集:一个集合的所有子集构成的集合称为该集合的幂集,记作P(A)。
三、集合的性质1. 互异性:一个集合中的元素都是不同的。
2. 无序性:一个集合中的元素没有固定的顺序。
3. 确定性:一个元素要么属于某个集合,要么不属于该集合。
4. 空集:不包含任何元素的集合称为空集,记作∅。
5. 全集:包含所有元素的集合称为全集,记作U。
6. 子集:如果一个集合的所有元素都属于另一个集合,那么这个集合称为另一个集合的子集。
7. 真子集:如果一个集合的所有元素都属于另一个集合,但这个集合本身不是另一个集合,那么这个集合称为另一个集合的真子集。
8. 相等集:如果两个集合的元素完全相同,那么这两个集合称为相等集。
9. 空集是任意集合的子集。
10. 空集是任意非空集合的真子集。
四、集合的关系1. 包含关系:一个集合A包含另一个集合B,记作A⊆B。
2. 相等关系:两个集合A和B的元素完全相同,记作A=B。
3. 不相等关系:两个集合A和B的元素不完全相同,记作A≠B。
4. 子集关系:一个集合A是另一个集合B的子集,记作A⊆B。
5. 真子集关系:一个集合A是另一个集合B的真子集,记作A⊆B且A≠B。
6. 相等关系与包含关系的关系:如果两个集合相等,那么它们一定相互包含;如果两个集合相互包含,那么它们不一定相等。
高一关于集合的全部知识点
![高一关于集合的全部知识点](https://img.taocdn.com/s3/m/8232b853c4da50e2524de518964bcf84b9d52de3.png)
高一关于集合的全部知识点1. 集合的定义和表示方式集合是由一些确定的元素构成的整体。
通常用大写字母A、B、C...来表示集合,集合中的元素用小写字母a、b、c...表示,并用大括号{}将元素列在一起表示集合。
2. 集合的基本运算(1) 并集:如果元素x属于集合A或者属于集合B,则称x属于集合A并B,表示为A∪B。
(2) 交集:如果元素x既属于集合A又属于集合B,则称x属于集合A交B,表示为A∩B。
(3) 差集:集合A减去集合B,记作A-B,表示包含A中元素但不包含B中元素的集合。
(4) 互斥:如果集合A和集合B没有共同的元素,即A∩B=∅,则称集合A和集合B互斥。
3. 集合的性质(1) 互补律:A∪A' = U,U为全集,即任何集合与其补集的并集是全集。
(2) 运算交换律:A∪B = B∪A,A∩B = B∩A。
(3) 运算结合律:(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。
(4) 运算分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) =(A∩B)∪(A∩C)。
(5) 元素个数:集合中元素的个数称为该集合的基数,用符号n(A)表示。
4. 子集与真子集(1) 子集:如果集合A的所有元素都属于集合B,则集合A是集合B的子集,记作A⊆B。
(2) 真子集:如果集合A是集合B的子集,并且集合B中还存在集合A没有的元素,则称集合A是集合B的真子集,记作A⊂B。
5. 集合的应用(1) 定理证明:在数学中,集合论是许多定理的基础。
通过集合的交、并、差等运算,可以进行定理的推导和证明。
(2) 数学分析:集合的应用广泛存在于数学分析中,如极限理论、序列和级数的性质等都可以通过集合概念进行描述和分析。
(3) 概率统计:在概率论和统计学中,集合论是重要的工具,用于描述样本空间、事件等概念,进而计算概率和进行统计分析。
总结:高一关于集合的全部知识点包括集合的定义和表示方式、集合的基本运算包括并集、交集、差集和互斥、集合的性质包括互补律、运算交换律、运算结合律、运算分配律和元素个数、子集与真子集的概念以及集合的应用于数学定理证明、数学分析和概率统计等领域。
高一必修一数学集合知识点总结
![高一必修一数学集合知识点总结](https://img.taocdn.com/s3/m/c969ac5cb0717fd5370cdc90.png)
一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素确实定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比拟它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于〞的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?Rx-3>2}或{xx-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{xx2=-5}二、集合间的根本关系1.“包含〞关系—子集注意:有两种可能(1)A是B的一局部,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等〞关系(5≥5,且5≤5,那么5=5)实例:设A={xx2-1=0}B={-1,1}“元素相同〞结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合知识点归纳及典型例题
一、知识点:
本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
在进行集合间的运算时要注意使用Venn图。
本章知识结构
1、集合的概念
教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义
有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”
的关系。
几个常用数集N、N*、N+、Z、Q、R要记牢。
3、集合的表示方法
(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:
①元素不太多的有限集,如{0,1,8}
②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)
③呈现一定规律的无限集,如{1,2,3,…,n,…}
●注意a与{a}的区别
●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。
4、集合之间的关系
●注意区分“从属”关系与“包含”关系
“从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn图描述集合之间的关系是基本要求。
●注意辨清Φ与{Φ}两种关系。
5、集合的运算
集合运算的过程,是一个创造新的集合的过程。
在这里,我们学习了三种创造新集合的方式:交集、并集和补集。
一方面,我们应该严格把握它们的运算规则。
同时,我们还要掌握它们的运算性质
二、典型例题。