基于MATLAB(矩阵实验室)的倒立摆控制系统仿真

合集下载

基于matlab的一级倒立摆系统仿真研究

基于matlab的一级倒立摆系统仿真研究

第一章绪论1.1倒立摆系统的简介1.1.1倒立摆系统的研究背景及意义倒立摆系统的最初分析研究开始于二十世纪五十年代,是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机械系统,它的稳定控制是控制理论应用的一个典型范例[1]。

倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统的受到不确定因素的干扰。

通过对它的研究不仅可以解决控制中的理论问题,还将控制理论涉及的相关主要学科:机械、力学、数学、电学和计算机等综合应用。

在多种控制理论与方法的研究和应用中,特别是在工程中,存在一种可行性的实验问题,将其理论和方法得到有效的验证,倒立摆系统可以此提供一个从控制理论通过实践的桥梁。

近些年来,国内外不少专家、学者一直将它视为典型的研究对象,提出了很多控制方案,对倒立摆系统的稳定性和镇定问题进行了大量研究,都在试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和绝对不稳定系统的控制能力,其控制方法在军工、航天、机械人领域和一般工业过程中都有着广泛的用途,如精密仪器的加工、机器人行走过程中的平衡控制、火箭发射中的垂直度控制、导弹拦截控制、航空对接控制、卫星飞行中的姿态控制等方面均涉及到倒置问题。

因此,从控制这个角度上讲,对倒立摆的研究在理论和方法论上均有着深远意义。

倒立摆系统是一个典型的自不稳定系统,其中摆作为一个典型的振动和运动问题,可以抽象为许多问题来研究。

随着非线性科学的发展,以前的采用线性化方法来描述非线性的性质,固然无可非议,但这种方法是很有局限性,非线性的一些本质特征往往不是用线性的方法所能体现的。

非线性是造成混乱、无序或混沌的核心因素,造成混乱、无序或混沌并不意味着需要复杂的原因,简单的非线性就会产生非常的混乱、无序或混沌。

在倒立摆系统中含有极其丰富和复杂的动力学行为,如分叉、分形和混沌动力学,这方面的问题也值得去探讨和研究。

无论哪种类型的倒立摆系统都具有如下特性[2]:(1)非线性倒立摆是一个典型的非线性复杂系统。

matlab仿真毕设--倒立摆现代控制理论研究

matlab仿真毕设--倒立摆现代控制理论研究

内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:倒立摆现代控制理论研究倒立摆现代控制理论研究摘要倒立摆系统是一个复杂的非线性、强耦合、多变量和自不稳定系统。

在控制工程中,它能有效地反映诸如可镇定性、鲁棒性、随动性以及跟踪性等许多控制中的关键问题,是检验各种控制方法的理想工具。

理论是工程的先导,它对倒立摆系统的控制研究具有重要的工程背景,单级倒立摆与火箭的飞行有关,二级倒立摆与双足机器人的行走有相似性,日常生活中的任何重心在上,支点在下的问题都与倒立摆的控制有极大的相似性,所以对倒立摆的稳定控制有重大的现实意义。

迄今,人们已经利用古典控制理论、现代控制理论及多重智能控制理论实现了多种倒立摆系统的稳定控制[5]。

倒立摆的控制方法有很多,如状态反馈控制,经典PID控制,神经网络控制,遗传算法控制,自适应控制,模糊控制等。

其控制方法已经在军工、航天、机器人和一般工业过程等领域得到了应用。

因此对倒立摆系统的控制研究具有重要的理论和现实意义,成为控制领域中经久不衰的研究课题。

本文是应用线性系统理论中的极点配置、线性二次型最优(LQR)和状态观测器等知识,设计了倒立摆系统线性化模型的控制器,通过MA TLAB仿真,研究其正确性和有效性。

通过分析仿真结果,我们知道了,状态反馈控制可以使倒立摆系统很好的控制在稳定状态,并具有良好的鲁棒性。

关键词:倒立摆;现代控制;Matlab仿真;Modern Control Theory Of Inverted PendulumAbstractInverted pendulum system is a complex nonlinear and strongly coupled,multi-variable and unstable system since.In control engineering,it can effectively reflect such stabilization,robustness,with the mobility of control and tracking,and many other key issue,It is the test ideal for a variety of control methods.Theory is the project leader,inverted pendulum control system also has important engineering research background,inverted pendulum with single-stage related torocket for the flight,Inverted pendulum and biped walking robot similar nature in any life in the center of gravity,the fulcrum in the next issue with the inverted pendulum control has a great similarity,so the stability control of inverted pendulum significant practical significance.So far,it has been the use of classical control theory,modern control theory and control theory of multiple intelligence to achieve a variety of inverted pendulum system stability control[5].Inverted pendulum control methods there are many,such as the state feedback control,the classic PID control,neural network control,genetic algorithm control,adaptive control,fuzzy control.The control method has been in military,aerospace,robotics and general industrial processes and other areas have been intended use.Therefore,the control of inverted pendulum system research has important theoretical and practical significance,of becoming enduring research topics in the field.This is the application of the theory of linear systems pole placement,linear quadratic optimal (LQR) and the state observer of such knowledge,the design of the linear inverted pendulum model of the controller,through simulation to study the correctness and effective sex.By analyzing the results of MATLAB simulation,state feedback control can make a goodcontrol of inverted pendulum system in a stable state,and has good robustness,stability control features.Key words: Inverted pendulum;Modern control;Matlab simulation;目录摘要 (I)Abstract (II)第一章绪论 (1)1.1倒立摆系统模型简介 (1)1.2倒立摆研究的背景与意义 (2)1.3国内外研究现状、水平和发展趋势 (3)1.3.1倒立摆和控制理论的发展 (3)1.3.2倒立摆的控制方法 (4)1.3.3倒立摆的发展趋势 (5)1.4本论文的主要工作介绍 (6)第二章一级倒立摆的数学模型建立及其性能分析 (7)2.1 系统的组成 (7)2.2 一级倒立摆数学模型的建立 (8)2.2.1 数学模型的建立 (8)2.2.2 系统的结构参数 (9)2.2.3 用牛顿力学方法来建立系统的数学模型 (9)2.2.4 一级倒立摆的性能分析[7] (13)2.3 本章小结 (15)第三章现代控制理论在倒立摆控制中的应用 (16)3.1 自动控制理论的发展历程 (16)3.2 经典控制理论 (18)3.2.1 PID控制现状 (18)3.2.2 PID控制的基本原理 (18)3.2.3 常用PID数字控制系统 (20)3.3 现代控制理论 (21)3.3.1 极点配置[11] (22)3.3.2 线性二次型最优的控制理论[7,8] (24)3.3.3 加权矩阵的选取 (26)3.3.4 状态观测器[7] (26)3.4 本章小结 (29)第四章MA TLAB仿真技术 (30)4.1 仿真软件——Matlab简介 (30)4.1.1 MA TLAB的优势 (30)4.2 Simulink简介 (32)4.3 S-函数简介 (33)4.3.1 用M文件创建S-函数 (34)4.4 倒立摆仿真模块的建立 (36)4.5 本章小结 (37)第五章一级倒立摆线性模型系统的仿真 (38)5.1 倒立摆控制器结构选择 (38)5.2 一级倒立摆线性模型系统仿真 (38)5.2.1 Simulink仿真 (42)5.3 本章小结 (46)结束语 (48)参考文献 (49)附录A (51)致谢 (53)第一章绪论1.1倒立摆系统模型简介倒立摆控制系统是一个复杂的、不稳定的、非线性的系统,是进行控制理论教学及开展各种控制实验的理想实验平台,但它并不是我们想象的那样抽象,其实在我们日常生活中就有很多这样的例子。

基于MATLAB的一级倒立摆控制系统仿真与设计

基于MATLAB的一级倒立摆控制系统仿真与设计

基于MATLAB的一级倒立摆控制系统仿真与设计一级倒立摆是一个经典的控制系统问题,它由一根杆子和一个在杆子顶端平衡的质点组成。

杆子通过一个固定的轴连接到一个电机,电机可以通过施加力来控制杆子的平衡。

设计一个控制系统来实现对一级倒立摆的稳定控制是一个重要的研究课题。

在这篇文章中,我们将介绍基于MATLAB的一级倒立摆控制系统仿真与设计。

我们将首先介绍一级倒立摆的数学模型,并根据模型设计一个反馈控制器。

然后,我们将使用MATLAB来进行仿真,评估控制系统的性能。

一级倒立摆的数学模型可以通过牛顿第二定律得到。

假设杆子是一个质点,其运动方程可以表示为:ml²θ''(t) = mgl sin(θ(t)) - T(t)其中m是质点的质量,l是杆子的长度,g是重力加速度,θ(t)是杆子相对于竖直方向的偏角,T(t)是电机施加的瞬时力。

为了设计一个稳定的控制系统,我们可以使用PID控制器,其控制输入可以表示为:T(t) = Kp(θd(t) - θ(t)) + Ki∫(θd(t) - θ(t))dt +Kd(θd'(t) - θ'(t))其中Kp,Ki和Kd分别是比例,积分和微分增益,θd(t)是我们期望的杆子偏角,θ'(t)是杆子的角速度。

在MATLAB中,我们可以使用Simulink来建模和仿真一级倒立摆的控制系统。

我们可以进行以下步骤来进行仿真:1. 建立一级倒立摆的模型。

在Simulink中,我们可以使用Mass-Spring-Damper模块来建立质点的运动模型,并使用Rotational Motion 库提供的Block来建立杆子的旋转模型。

2. 设计反馈控制器。

我们可以使用PID Controller模块来设计PID 控制器,并调整增益参数以实现系统的稳定性和性能要求。

3. 对控制系统进行仿真。

通过在MATLAB中运行Simulink模型,我们可以观察控制系统的响应,并评估系统的稳定性和性能。

基于MATLAB的一级倒立摆控制系统仿真与设计

基于MATLAB的一级倒立摆控制系统仿真与设计

《控制系统分析与综合》任务书题目:基于MATLAB的一级倒立摆控制系统仿真分析与设计要求:对给定直线倒立摆系统模型,首先利用matlab对系统进行根轨迹、bode 图或能控性分析,然后根据控制系统设计指标进行相应控制器设计,在matlab 仿真环境下得到控制器参数,再将其写入实际倒立摆控制系统中,观察实际控制效果,进行控制参数的适当调整。

任务:1、超前校正控制器设计设计指标:调整时间t s=0.5s (2%) ;最大超调量δp≤10%设计步骤:先对传递函数模型进行根轨迹分析,讨论原系统的稳定性等,然后利用sisotool设计超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

2、滞后超前校正控制器设计设计指标:系统的静态位置误差常数为10,相位裕量为500,增益裕量等于或大于10 分贝。

设计步骤:先对传递函数模型进行bode图分析,讨论原系统的稳定性等,然后利用sisotool设计滞后超前校正控制器,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

3、PID控制设计指标:调整时间t s尽量小;最大超调量δp≤10%设计步骤:先在matlab/simulink下构建PID仿真控制系统,依照PID参数整定原则进行系统校正,仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

4、状态空间极点配置控制设计指标:要求系统具有较短的调整时间(约3秒)和合适的阻尼(阻尼比ζ= 0.5-0.7)。

设计步骤:先对系统进行能控性分析,然后根据设计要求选择期望极点(考虑主导极点),编程求出反馈矩阵K,进行系统仿真。

仿真满足设计要求后,再在实际系统中运行测试控制效果,观察分析实际控制现象,进行参数微调。

设计报告要求:报告提供如下内容1 封面2 目录3 正文(1)任务书(2)分别对四个设计任务按照系统分析、控制器仿真设计、实际系统运行分析形成报告4 收获、体会5 参考文献格式要求:题目小三,宋体加粗目录、正文、小标题均为小四宋体,其中标题加粗。

基于matlab的倒立摆模糊控制课程设计报告

基于matlab的倒立摆模糊控制课程设计报告

智能控制理论及应用课程设计报告题目:基于matlab的倒立摆模糊控制院系:西北民族大学电气工程学院专业班级:10级自动化(3)班学生姓名:蔡余敏学号:P101813455指导教师:刁晨2013.10基于MATLAB的倒立摆模糊控制作者:蔡余敏指导老师:刁晨摘要:倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

本文主要针对较为简单的单级倒立摆控制系统而进行的设计分析。

通过建立微分方程模型,求出相关参数,设计出对应的模糊控制器,并运用MATLAB软件进行系统模型的软件仿真,从而达到预定控制效果。

目前,一级倒立摆的研究成果应用于火箭发射推进器和控制卫星的飞行状态等航空航天领域。

关键词:单级倒立摆;微分方程;模糊控制;MATLAB仿真1背景分析倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

正是由于倒立摆系统的特殊性,许多不同领域的专家学者在检验新提出理论的正确性和实际可行性时,都将倒立摆系统作为实验测试平台。

再将经过测试后的控制理论和控制方法应用到更为广泛的领域中去。

现代控制理论已经在工业生产过程、军事科学、航空航天等许多方面都取得了成功的应用。

例如极小值原理可以用来解决某些最优控制问题;利用卡尔曼滤波器可以对具有有色噪声的系统进行状态估计;预测控制理论可以对大滞后过程进行有效的控制。

但是它们都有一个基本的要求:需要建立被控对象的精确数学模型。

基于MATLAB的旋转倒立摆建模和控制仿真

基于MATLAB的旋转倒立摆建模和控制仿真

倒立摆系统作为一个被控对象具有非线性、强耦合、欠驱动、不稳定等典型特点,因此一直被研究者视为研究控制理论的理想平台,其作为控制实验平台具有简单、便于操作、实验效果直观等诸多优点。

倒立摆具有很多形式,如直线倒立摆、旋转倒立摆、轮式移动倒立摆等等。

其中,旋转倒立摆本体结构仅由旋臂和摆杆组成,具有结构简单、空间布置紧凑的优点,非常适合控制方案的研究,因此得到了研究者们广泛的关注[1-2]。

文献[3]介绍了直线一级倒立摆的建模过程,并基于MATLAB 进行了仿真分析;文献[4]通过建立倒立摆的数学模型,采用MATLAB 研究了倒立摆控制算法及仿真。

在倒立摆建模、仿真和研究中大多数研究者常用理论建模方法,也可以利用SimMechanics 搭建三维可视化模型仿真;文献[5]使用SimMechanics 工具箱建立旋转倒立摆物理模型,通过极点配置、PD 控制和基于线性二次型控制实现了倒立摆的平衡控制;文献[6]通过设计的全状态观反馈控制器来实现单极旋转倒立摆SimMechanics 模型控制,表明了SimMechanics 可用于不稳定的非线性系统;文献[7]通过单级倒立摆SimMechanics 仿真,研究了Bang-Bang 控制和LQR 控制对倒立摆的自起摆和平衡控制;文献[8]基于Sim⁃Mechanics 建立了直线六级倒立摆模型,并基于LRQ 设计状态反馈器进行了仿真控制分析。

本文首先采用Lagrange 方法建立了旋转倒立摆的动力学模型,在获得了旋转倒立摆动力学微分方程后建立了s-func⁃tion 仿真模型;然后,本文采用SimMechanics 建立了旋转的可视化动力学模型。

针对两种动力学模型,采用同一个PID 控制器进行了控制,从控制结果可以看出两种模型的响应曲线完全一致,这两种模型相互印证了各自的正确性。

1旋转倒立摆系统的动力学建模旋转倒立摆是由旋臂和摆杆构成的系统,如图1所示,旋臂绕固定中心旋转(角度记为θ)带动摆杆运动,摆杆可以绕旋臂自由转动,角度记为α。

基于MATLAB矩阵实验室的倒立摆控制系统仿真

基于MATLAB矩阵实验室的倒立摆控制系统仿真

基于MATLAB矩阵实验室的倒立摆控制系统仿真基于MATLAB的倒立摆控制系统仿真摘要自动控制原理(包括经典部分和现代部分)是电气信息工程学院学生的一门必修专业基础课,课程中的一些概念相对比较抽象,如系统的稳定性、可控性、收敛速度和抗干扰能力等。

倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,它是一个理想的教学实验设备,许多抽象的控制概念都能够经过倒立摆直观地表现出来。

本文以一级倒立摆为被控对象,用经典控制理论设计控制器(PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,经过MATLAB仿真软件的方法来实现。

关键词:一级倒立摆 PID控制器极点配置Inverted pendulum controlling systemsimulation based on the MATLABABSTRACTAutomatic control theory (including classical parts and modern parts) is a compulsory specialized fundamental course of the students majored in electrical engineering. Some of the curriculum concept is relatively abstract, such as the stability, controllability, convergence rate and the anti-interference ability of system. Inverted pendulum system is a typical nonlinear, strong coupling, multivariable and unstable system. It is an ideal teaching experimental equipment as a controlled object, by which many abstract control concepts can be came out directly. This paper chose first-order inverted pendulum as the controlled object. First, the PID controller was designed with classical control theory. Then pole-assignment method was discussed with modern control theory. At last, the effectness of the two methods was verified by MATLAB simulation software.KEY WORDS: First-order inverted pendulum PID controller pole-assignment。

用Matlab完成倒立摆系统的分析与综合

用Matlab完成倒立摆系统的分析与综合

现代控制理论用Matlab 完成倒立摆系统的分析与综合2013/5/23 Thursday 学号:**********杨 博用Matlab 完成倒立摆系统的分析与综合一、实验要求1、熟悉非线性系统数学模型的建立过程。

2、非线性数学模型的近似线性化。

3、判断系统的能控性及能观性。

4、学习利用MATLAB 来分析系统的能观性、能控性和稳定性(Lyapunov 第一法)。

5、掌握状态反馈极点配置控制,并能用MATLAB 仿真软件进行控制算法的仿真验证与分析。

二、实验原理底座导轨摆杆XFϕl图1 一级倒立摆系统模型 图2 小车水平方向受力分析图3 摆杆垂直方向的受力分析Pb ẋ N F小车水平方向受力: Mẍ+bẋ+N =F摆杆水平方向受力:2(sin )2d N m x l dtθ=+即: N =mẍ+mlθcos θ−mlθsin θ得第一个运动方程:(M +m )ẍ+bẋ+mlθcos θ−mlθsin θ=F摆杆垂直方向受力:2(cos )2d P mg m l dtθ-=力矩平衡方程:−Pl sin θ−Nl cos θ=Iθ=+θπφ,cos cos φ=-sin sin φθ=-第二个运动方程:(I +ml 2)θ+mgl sin θ=−mlẍcos θ 两个运动方程化简得:{(I +ml 2)ϕ−mgl∅=mlẍ(M +m )ẍ+bẋ−mlϕ=u拉普拉斯变换得:222()()()()22()()()()()I ml s s mgl s mlX s sM m X s s bX s s ml s s U s ⎧+Φ-Φ=⎪⎨⎪++-Φ=⎩三、实验内容1、一级直线倒立摆传递函数的建立 摆杆输出角度和电机作用力的传递函数为:2()2()()()432ml s s qU s b I ml mgl M m bmgls s s sq q q⋅Φ=+++⋅-⋅-⋅ 其中22[()()()]q M m I ml ml =++-2、一级直线倒立摆状态空间方程的建立求解可得ẍ、ϕ,整理后得到系统的状态空间方程为:010002222()00222()()()00010()00222()()()x x I ml b m gl I ml x xI M m Mml I M m Mml I M m Mml umlbmgl M m ml I M m Mml I M m Mml I M m Mml φφφφ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++++++⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥++++++⎣⎦⎣⎦1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦3、MATLAB 仿真要求 ➢ 求出状态空间表达式矩阵。

基于Matlab的一级倒立摆模型的仿真

基于Matlab的一级倒立摆模型的仿真

(以论文、报告等形式考核专用)二○○九~二○○一零学年度第 2 学期课程编号课程名称计算机控制系统主讲教师李东评分学号姓名专业年级2007级光电工程学院测控技术与仪器教师评语:题目:一级倒立摆模型的仿真一、倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

故其研究意义广泛。

二、倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车铰接相连。

由经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。

在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型分析过程如下:如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。

当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。

现对小车和细杆摆分别进行隔离受力分析:(1)对小车有: F-F’sinθ=Mx’’(a)(2)对小球有:水平方向上运动为 x+lsinθ故水平方向受力为 F’sinθ= m(x+lsinθ)’’=m(x’+lcosθθ’)’= mx’’+mlcosθθ’’-mlsinθ(θ’)^2 (b)由(a)、(b)两式得 F= (M+m)x’’+mlcosθθ’’-mlsinθ(θ’)^2 <1>小球垂直方向上位移为 lcosθ故受力为F’cosθ-mg=m(lcosθ)’’=-ml θ’’sin θ-ml cos θ(θ’)^2 即 F ’cos θ=mg-ml θ’’sin θ-ml cos θ(θ’)^2 (c ) 由(b )、(c )两式得cos θx ’’ =gsin θ- l θ’’ <2>故可得以下运动方程组:F= (M+m)x ’’ +mlcos θθ’’-mlsin θ(θ’)^2cos θx ’’ =gsin θ- l θ’’以上方程组为非线性方程组,故需做如下线性化处理:32sin ,cos 13!2!θθθθθ≈-≈-当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’’≈0 故线性化后运动方程组简化为 F= (M+m)x ’’ +ml θ’’ x ’’ =g θ- l θ’’下面进行系统状态空间方程的求解:以摆角θ、角速度θ’、小车位移x 、加速度x ’为系统状态变量,Y 为输出,F 为输入即X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡x'x 'θθ Y=⎥⎦⎤⎢⎣⎡x θ=⎥⎦⎤⎢⎣⎡31x x由线性化后运动方程组得 x1’=θ’=x2 x2’=''θ=()Mlg m M +x1-Ml1 F X3’ =x ’=x4 x4’=x ’’=-Mmg x1+M 1 F故空间状态方程如下:X ’=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+0010000000010MmgMlg m M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-M Ml 1010 FY= ⎥⎦⎤⎢⎣⎡31x x =⎥⎦⎤⎢⎣⎡01000001 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + 0⨯F 用MATLAB 将状态方程转化成传递函数,取M=2kg m=0.1kg l=0.5m 代入得 >>A=[0 1 0 0;20.58 0 0 0;0 0 0 1;-0.49 0 0 0] >>B=[0;-1;0;0.5] >>C=[1 0 0 0;0 0 1 0] >>D=[0;0]>> [num,den]=ss2tf(A,B,C,D,1); >> [num,den]=ss2tf(A,B,C,D,1) num =0 -0.0000 -1.0000 0 0 0 -0.0000 0.5000 -0.0000 -9.8000den =1.0000 0 -20.5800 0 0由上可以得出角度 对力F 的传递函数:位移X 对外力F 的传递函数:58.201)()(2--=Φs s F s 24258.208.95.0)()(s s s s F s X --=三、用MATLAB 的Simulink 仿真系统进行建模1、没校正之前的θ-F 控制系统由于未加进控制环节,故系统输出发散2、加进控制环节,实现时域的稳定控制给系统加入PID 控制,设置系统稳定值为0,给系统一个初始干扰冲击信号 采用试凑法不断调整PID 参数,使系统达到所需的控制效果 当系统Kp=-100,Ti=Td=0时输出如下:Transfer Fcn-s 2s +-20.58s 42ScopePulseGeneratorConstant 1Transfer Fcn-1s +-20.582ScopePulseGeneratorIntegrator1s Gain 3-40Gain 11Gain -K-Derivative du/dt Constant不断地调整参数,最后得到稳定的响应 Kp=-1000,Ti=1,Td=-40时可见调整好参数后,系统基本达到稳定,净差基本为0,超调较小,响应时间较小。

基于MATLAB编程的倒立摆实验的实现

基于MATLAB编程的倒立摆实验的实现
路 而 非集 中 在 编 程 环 节 ,需 要 一 种 直 观 性 和 操 作 性 都 非
常好 的 编 程 工 具 。 MA T L AB软 件 恰 恰 在 这 两 个 方 面 具 有 突 出 的优 点 ,
图 1 倒 立 摆 示 意 图
目前 ,国 外 的控 制 等 相 关课 程 都将 其 作 为 一 种 标 准 的 工 图 中 O为 x坐 标 轴 原 点 ,也 即 设 定 的 小 车 运 动 的 具 编 写进 教 材 并 应 用 到 教 学 中 ,而 我 国 在 此 方 面 的课 程 正 方 向 , 为 小 车 位 移 。 0为 倒 立 摆 偏 离 平 衡 位 置 的 偏 改 革 还显 得 不 足 ,尤其 在 本科 生 的 教 学 中涉 及 的仍 然 很 移量 ,单 位 取 弧度 。o为 小 车 运 动 加 速 度 ,正 方 向与 坐
和倒 立 摆 的 偏 移 量 。在 本 实 验 中 , 尽 管 小 车 的 行 程
除 了 可 以对 算 法进 行仿 真 外 ,还 可 以利 用 MA T L A B 有 限 ,但 我 们 并 不 控 制 小 车 的位 移 ,只 关 心倒 立 摆 的输 实 现 对 算 法 的模 块 化 编 程 。其 具 体 实 现 与传 统 c语 言 编 出偏 移 量 。
程 的方 法 有 很 大 的不 同 ,它 已经 脱 离 了逐 行 书 写 程 序 代 对 其 进 行 受 力 分 析 ,在 小 车 运 动 中 ,倒 立 摆 受 到 两 码 的方 式 。类 似 利 用 S i mu l i n k模 块 进 行 仿 真 ,它 只需 通 个 力 :一 为 自身 的 重 力 Mg,一 为 小 车 运 动 对 倒 立 摆 产 过 模 块 搭 建 来 实 现 算 法 编 程 ,相 比 逐 行 书 写 代 码 的 方 生 的 惯 性 力 Ma ,其 方 向与 小 车 加 速 度 方 向相 反 。 式 ,其 算 法 结 构 更 清 晰 , 出错 概 率 大 幅下 降 ,最 主 要 的 根据牛顿运动定律 : 是 将 仿 真 与 实 验 紧 密 的 联 系 起 来 ,缩 短 了 编 程 时 间 ,可 以使 学 生 有 更 多 的精 力 对 实 验 的整 体 进 行 把 握 并 对 算 法

毕业设计(论文)-基于matlab的一级倒立摆控制器设计与仿真[管理资料]

毕业设计(论文)-基于matlab的一级倒立摆控制器设计与仿真[管理资料]

摘要倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的高阶不稳定系统,它是检验各种新型控制理论和方法有效性的典型装置。

近年来,许多学者对倒立摆系统进行广泛地研究。

本文研究了直线一级倒立摆的控制问题。

首先阐述了倒立摆系统控制的研究发展过程和现状,接着介绍了倒立摆系统的结构并详细推导了一级倒立摆的数学模型。

本文分别用极点配置、LQR最优控制设计了不同的控制器,极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足要求的瞬态和稳态性能指标。

最优控制理论主要是依据庞特里亚金的极值原理,通过对性能指标的优化寻找可以使目标极小的控制器。

若取状态变量的二次型函数的积分做为系统的性能指标,则称为线性系统二次型性能指标的最优控制。

通过比较和MATLAB仿真,验证了所设计的控制器的有效性、稳定性和抗干扰性。

关键词:单级倒立摆;MATLAB;控制器设计;极点配置;LQRABSTRACTInverted pendulum is a typical multi-variable, non-linear, strong coupling and rapid movement of high-end system instability, It is testing various new control theory and methods of the effectiveness of the typical devices. In recent years, many scholars of the inverted pendulum extensive study.In this paper, a straight two inverted pendulum control on the inverted pendulum control of the development process and the status quo, then introduced the inverted pendulum system and the detailed structure of the two inverted pendulum is derived a mathematical model. In this paper, with pole placement, LQR optimal control design a different controller, By comparing and MATLAB simulation, verified the effectiveness ,stability and anti-jamming of the controller.Pole-zero configuration can configure the closed-loop system poles of multi-variable system in the desired position, by designing of the state feedback controller,so that to make the system meets the requirements of the transient and steady state performance indicators.Optimal control theory is mainly based on the Pontryagin maximum principle, by the optimization of the performance indicators to find the minimal goal of the taking the integral of the quadratic function of state variables as the system of performance indicators, called the as the linear quadratic performance index of optimal control.Key words : Single stage Inverted pendulum; MATLAB; Controller design; Zero-pole ; LQR目录摘要 (1)ABSTRACT (2)1 绪论 0控制理论的发展 0倒立摆系统简介及其研究意义 0倒立摆研究的发展现状及其主要控制方法 (1)研究目标 (2)2 直线一阶倒立摆数学模型的建立 (4)倒立摆系统的物理结构与建模 (4)系统参数设定 (7)系统能控性与能观性 (8)3 极点配置控制方案的设计 (9)极点配置理论 (9)极点配置算法 (10)极点配置控制方案的设计 (11)4 线性二次型最优控制(LQR)方案的设计 (15)最优控制的起源和发展 (15)线性二次型最优控制原理 (15)最优控制矩阵的设计 (18)5 控制系统的MATLAB仿真 (22)MATLAB软件介绍 (22)极点配置控制方案的仿真 (23)线性二次型最优控制(LQR)方案的仿真 (26)干扰条件下控制系统的仿真 (27)S函数模拟动画设计 (28) (31)6 总结与展望 (32)参考文献 (35)致谢 (36)附录 (37)1 绪论控制理论的发展控制理论发展至今已有100多年的历史,随着现代科学技术的发展,它的应用也越来越广泛。

基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】

基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】

1 绪论1.1倒立摆系统简介倒立摆系统是一种很常见的又和人们的生活密切相关的系统,它深刻揭示了自然界一种基本规律,即自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。

倒立摆系统是一个非线性,强耦合,多变量和自然不稳定的系统。

它是由沿导轨运动的小车和通过转轴固定在小车上的摆杆组成的。

在导轨一端装有用来测量小车位移的电位计,摆体与小车之间由轴承连接,并在连接处安置电位器用来测量摆的角度。

小车可沿一笔直的有界轨道向左或向右运动,同时摆可在垂直平面内自由运动。

直流电机通过传送带拖动小车的运动,从而使倒立摆稳定竖立在垂直位置。

图1.1一级倒立摆装置简图由图1.1中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆体组成。

导轨的一端固定有位置传感器,通过与之共轴的轮盘转动可以测量出沿导轨由图中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆运动的小车位移;小车通过轴承连接摆体,并在小车与摆体的连接处固定有共轴角度传感器,用以测量摆体的角度信号;并通过微分电路得到相应的速度和角速度信号;导轨的另一端固定有直流永磁力矩电机,直流电机通过传送带驱动小车沿导轨运动,在小车沿导轨左右运动的过程中将力传送到摆杆以实现整个系统的平衡。

倒立摆的种类很多,有悬挂式倒立摆、平行式倒立摆、和球平衡式倒立摆;倒立摆的级数可以是一级,二级,乃至更多级。

控制方法也是多种,可以通过模糊控制,智能控制,PID控制,LQR控制等来实现倒立摆的动态平衡,本文介绍的是状态反馈极点配置方法来实现一级倒立摆的控制。

1.2倒立摆的控制规律当前,倒立摆的控制规律可总结如下:(1)状态反馈H控制[1],通过对倒立摆物理模型的分析,建立倒立摆的动力学模型,然后使用状态空间理论推导出状态方程和输出方程,应用状态反馈和Kalnian滤波相结合的方法,实现对倒立摆的控制。

(2)利用云模型[2-3]实现对倒立摆的控制,用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。

基于MATLAB的倒立摆最优控制设计和仿真

基于MATLAB的倒立摆最优控制设计和仿真
I NTE LLG E N T RO BO T
《 智能机器人》 O c t o b e r . 2 0 1 6 L l _ 二 1
J : MAT L AB 的倒 摆妓优控制 没计 仿典
广州海洋工程有限公司 姜洪发
摘 要 : 本 文通过 对单级倒 立摆控制 系统研 究和分析 ,采用 了线性二 次型最优控制 的方法 ,通过改 变二 次型
址 优控 f ; J J 设 汁 仿 r
( 4 ) 传送带与皮带轮之 间相互无滑动 ,并且传送带 是实
时 的:
车 垂直之 间 的夹角 0、摆 杆 的运 动速 度 、小 车的移 动位 置 和小车 的移动 速度 。将 上述 单级倒 立摆 的运动 系统 方程
( 5)各组件摩擦力 和阻尼对系统的影响可忽略 不计 ,除 导轨与滑块之 间的摩擦力和摆杆转动轴承 的摩擦力除外 。 设摆 杆与小 车垂 直位置之 间 的角度 为 0,倒 立摆 摆杆 的
± : 。




篆( z + c s i n o ) = H
,L

( 4 )
3倒立摆 系 统能 控性 分析
f + ) , +
摆杆 重心进行垂直运动时可表示为 :


、J
篆f c 0 s 0 = m 9
警 — H


系统具有 良好的能控性是进行系统控制器设计 的前提条件 。 根据 系统的状态方程和能控性 的矩阵方程 M= 【 B A B… A 。 B ] ,在 MA T L A B软件 中调用 矩阵可控 性指令 c t r b来进行该 系统可控
如网 1 所 示 为
本 文通过对单级倒立摆控 制系统进

基于MATLAB(矩阵实验室)的倒立摆控制系统仿真

基于MATLAB(矩阵实验室)的倒立摆控制系统仿真

基于MATLAB(矩阵实验室)的倒立摆控制系统仿真基于MATLAB的倒立摆控制系统仿真摘要自动控制原理(包括经典部分和现代部分)是电气信息工程学院学生的一门必修专业基础课,课程中的一些概念相对比较抽象,如系统的稳定性、可控性、收敛速度和抗干扰能力等。

倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,它是一个理想的教学实验设备,许多抽象的控制概念都可以通过倒立摆直观地表现出来。

本文以一级倒立摆为被控对象,用经典控制理论设计控制器(PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,通过MATLAB仿真软件的方法来实现。

关键词:一级倒立摆PID控制器极点配置Inverted pendulum controlling systemsimulation based on the MATLABABSTRACTAutomatic control theory (including classical parts and modern parts) is a compulsory specialized fundamental course of the students majored in electrical engineering. Some of the curriculum concept is relatively abstract, such as the stability, controllability, convergence rate and the anti-interference ability of system. Inverted pendulum system is a typical nonlinear, strong coupling, multivariable and unstable system. It is an ideal teaching experimental equipment as a controlled object, by which many abstract control concepts can be came out directly. This paper chose first-order inverted pendulum as the controlled object. First, the PID controller was designed with classical control theory. Then pole-assignment method was discussed with modern control theory. At last, the effectness of the two methods wasverified by MATLAB simulation software.KEY WORDS: First-order inverted pendulum PID controller pole-assignment目录摘要 (I)ABSTRACT .............................................................. I I 1 绪论 (1)1.1倒立摆的控制方法 (1)1.2 MATLAB/Simulink简介 (2)1.3 主要内容 (3)2一级倒立摆 (3)2.1 实验设备简介 (3)3直线一级倒立摆的数学模型 (4)3.1直线一级倒立摆数学模型的推导 (4)微分方程模型 (7)传递函数模型 (7)状态空间数学模型 (8)3.2系统阶跃响应分析 (11)4 直线一级倒立摆PID控制器设计 (14)4.1 PID控制分析 (14)4.2PID控制参数设定及MATLAB仿真 (17)5直线一级倒立摆状态空间极点配置控制器设计 (21)5.1 状态空间分析 (22)5.2极点配置及MATLAB仿真 (23)6总结 (28)致谢 (28)参考文献 (30)1 绪论倒立摆起源于20世纪50年代,是一个典型的非线性、高阶次、多变量、强耦合、不稳定的动态系统,能有效地反映诸如稳定性、鲁棒性等许多控制中的关键问题,是检验各种控制理论的理想模型。

倒立摆仿真及实验报告

倒立摆仿真及实验报告

倒立摆仿真及实验报告倒立摆是一种经典的机械系统,它具有丰富的动力学特性,在控制理论和工程应用中得到广泛研究和应用。

本文将对倒立摆的仿真及实验进行详细介绍,并给出相关结果和分析。

1.倒立摆的仿真模型倒立摆的运动可以用以下动力学方程表示:ml^2θ'' + mgl sin(θ) = u - cθ' - Iθ'其中,m是摆杆的质量,l是摆杆的长度,θ是摆杆与垂直方向的夹角,u是外力输入,c是摩擦系数,I是摆杆的转动惯量,g是重力加速度。

为了实现对倒立摆的仿真,我们借助MATLAB/Simulink软件,建立了倒立摆的仿真模型。

模型包括两个部分:倒立摆的动力学模型和控制器。

倒立摆的动力学模型采用上述动力学方程进行描述。

控制器采用经典的PID控制器,其中比例系数Kp、积分系数Ki和微分系数Kd分别用于角度误差的比例、积分和微分控制。

2.倒立摆的仿真结果采用上述模型进行仿真,我们可以得到倒立摆的运动轨迹和角度响应等结果。

根据参数的不同取值,我们可以观察倒立摆的不同运动特性。

首先,我们观察了倒立摆的自由运动。

设置初始条件为摆杆静止且在平衡位置上方一个小角度的偏离。

在没有外力输入的情况下,倒立摆经过一段时间的摆动后最终回到平衡位置,这个过程中摆杆的角度和角速度都发生了变化。

接下来,我们考虑了加入PID控制器后的倒立摆。

设置初始条件为摆杆位于平衡位置上方,并施加一个恒定的外力。

通过调节PID控制器的参数,我们可以使倒立摆保持在平衡位置上方,实现倒立的稳定控制。

当外力发生变化时,控制器能够及时响应并调整摆杆的角度,使其再次回到平衡位置。

3.倒立摆的实验研究为了验证倒立摆的仿真结果,我们进行了实验研究。

实验中,我们采用了具有传感器的倒立摆装置,并连接到PC上进行实时数据采集和控制。

首先,我们对倒立摆进行了辨识。

通过在实验中施加一系列不同的外力输入,我们得到了倒立摆的自由运动数据。

通过对数据进行处理和分析,我们获得了倒立摆的动力学参数。

基于Matlab GUI的倒立摆系统仿真平台设计

基于Matlab GUI的倒立摆系统仿真平台设计

现代电子技术Modern Electronics TechniqueSep.2022Vol.45No.182022年9月15日第45卷第18期0引言倒立摆系统是一个非线性、强耦合、自然不稳定系统,是“自动控制原理”的典型控制系统[1]。

该控制系统常被用来验证控制算法在应用中的正确性及可行性[2⁃4]。

倒立摆系统可通过极点配置[5⁃8],以及LQR [9⁃12]设计控制器。

本文通过Matlab GUI 编程设计的倒立摆仿真系统,实现了一级倒立摆的极点配置,以及LQR 控制器的仿真。

该系统通过设置倒立摆参数、配置极点及LQR 参数,可以计算出系统状态参数、状态反馈矩阵等,并显示DOI :10.16652/j.issn.1004⁃373x.2022.18.028引用格式:陈梅,王健,宗广灯.基于Matlab GUI 的倒立摆系统仿真平台设计[J].现代电子技术,2022,45(18):143⁃147.基于Matlab GUI 的倒立摆系统仿真平台设计陈梅1,王健2,宗广灯1(1.曲阜师范大学工学院,山东日照276826;2.山东水利职业学院经济管理系,山东日照276826)摘要:倒立摆系统是“自动控制原理”课程中的典型控制系统,极点配置及LQR 是常用的控制器设计方法。

极点配置是通过设置极点确定状态反馈矩阵,LQR 是通过设置L ,Q 参数确定最优反馈矩阵。

为了快速确定倒立摆系统的反馈矩阵及闭环反馈系统,文中通过Matlab GUI 编程设计一种倒立摆系统仿真平台。

该仿真系统通过设置倒立摆的参数,可直接确定系统状态方程;通过对系统进行极点设置和L ,Q 参数设置,可直接求出相应的系统状态反馈矩阵;设置三种不同的输入信号,则能够显示对应的响应曲线图。

所设计的倒立摆仿真平台具有图形化的界面,操作方便、应用灵活,可以根据设置系统的不同参数自动求解相应的系统状态参数,并直观地显示其对应的响应曲线。

该仿真平台可用于课堂教学及实验教学中,以加深学生对倒立摆系统控制的理解,提高学生分析和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于MATLAB(矩阵实验室)的倒立摆控制系统仿真摘要自动控制原理(包括经典部分和现代部分)是电气信息工程学院学生的一门必修专业基础课,课程中的一些概念相对比较抽象,如系统的稳定性、可控性、收敛速度和抗干扰能力等。

倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,它是一个理想的教学实验设备,许多抽象的控制概念都可以通过倒立摆直观地表现出来。

本文以一级倒立摆为被控对象,用经典控制理论设计控制器(PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,通过MATLAB仿真软件的方法来实现。

关键词:一级倒立摆PID控制器极点配置Inverted pendulum controlling systemsimulation based on the MATLABABSTRACTAutomatic control theory (including classical parts and modern parts) is a compulsory specialized fundamental course of the students majored in electrical engineering. Some of the curriculum concept is relatively abstract, such as the stability, controllability, convergence rate and the anti-interference ability of system. Inverted pendulum system is a typical nonlinear, strong coupling, multivariable and unstable system. It is an ideal teaching experimental equipment as a controlled object, by which many abstract control concepts can be came out directly. This paper chose first-order inverted pendulum as the controlled object. First, the PID controller was designed with classical control theory. Then pole-assignment method was discussed with modern control theory. At last, the effectness of the two methods was verified by MATLAB simulation software.KEY WORDS: First-order inverted pendulum PID controller pole-assignment目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1倒立摆的控制方法 (1)1.2 MATLAB/Simulink简介 (2)1.3 主要内容 (3)2一级倒立摆 (3)2.1 实验设备简介 (3)3直线一级倒立摆的数学模型 (4)3.1直线一级倒立摆数学模型的推导 (4)3.1.1 微分方程模型 (6)3.1.2 传递函数模型 (7)3.1.3 状态空间数学模型 (8)3.2系统阶跃响应分析 (10)4 直线一级倒立摆PID控制器设计 (14)4.1 PID控制分析 (14)4.2PID控制参数设定及MATLAB仿真 (17)5直线一级倒立摆状态空间极点配置控制器设计 (20)5.1 状态空间分析 (21)5.2极点配置及MATLAB仿真 (22)6总结 (26)致谢 (27)参考文献 (28)1 绪论倒立摆起源于20世纪50年代,是一个典型的非线性、高阶次、多变量、强耦合、不稳定的动态系统,能有效地反映诸如稳定性、鲁棒性等许多控制中的关键问题,是检验各种控制理论的理想模型。

很多被控对象都可以抽象成为倒立摆模型,在很多领域有着广泛的应用,如机器人,航天领域等。

它不但是验证现代控制理论方法的典型实验装置,而且其控制方法和思路对处理一般工业过程亦有广泛的用途。

倒立摆常规的控制算法如LQR在倒立摆的控制中已被广泛采用,模糊控制作为一种智能控制的方法,在一定程度上模仿了人的控制,它不需要有准确的控制对象模型,作为一种非线性智能控制方法,已在多变量、时变、非线性系统的控制中发挥了重要的作用。

人们已利用多种控制策略实现了一至四级倒立摆系统的稳定控制。

对于倒立摆系统的稳定控制,具有重要的理论意义和重要的工程实践意义。

事实上,人们一直在试图寻找不同的控制方法来实现对倒立摆的控制,以便检查或说明该方法对严重非线性和绝对不稳定系统的控制能力。

1.1 倒立摆的控制方法(1)线性理论控制方法将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型,然后再利用各种线性系统控制器设计方法,得到期望的控制器。

PID 控制、状态反馈控制、LQR控制算法是其典型代表。

这类方法对于一、二级倒立摆(线性化误差较小、模型较简单)控制时,可以解决常规倒立摆的稳定控制问题。

但对于像非线性较强、模型较复杂的多变量系统(三、四级以及多级倒立摆)线性系统设计方法的局限性就十分明显,这就要求采用更有效的方法来进行合理的设计。

(2)预测控制和变结构控制方法由于线性控制理论与倒立摆系统多变量、非线性之间的矛盾,使人们意识到针对多变量、非线性对象,采用具有非线性特性的多变量控制解决多变量、非线性的必由之路。

人们先后开展了预测控制、变结构控制和自适应控制的研究。

(3)智能控制方法在倒立摆系统中用到的智能控制方法主要有神经网络控制、模糊控制、仿人智能控制、拟人智能控制和云模型控制等。

(4)鲁棒控制方法虽然,目前对倒立摆系统的控制策略有如此之多,而且有许多控制策略都对倒立摆进行了稳定控制,但大多数都没考虑倒立摆系统本身的大量不确定因素和外界干扰,目前对不确定倒立摆系统的鲁棒控制问题进行了研究并取得了一系列成果。

1.2 MATLAB/Simulink简介在科学研究和工程应用中,为了克服一般语言对大量的数学运算,尤其当涉及到矩阵运算时编制程序复杂、调试麻烦等困难,美国Math Works软件公司于1967年构思并开发了矩阵实验室(Matrix Laboratory ,MATLAB)软件包。

经过不断更新和扩充,该公司于1984年推出MATLAB的正式版,特别是1992年推出具有跨时代意义的MATLAB 4.0版,并于1993年推出其微机版,以配合当时日益流行的Microsoft Windows操作系统。

截止到2005年,该公司先后推出了MATLAB 4.x、MATLAB 6.x,以及MATLAB 7.x等版本,该软件的应用范围越来越广。

MATLAB以它的“语言”化的数值计算,强大的矩阵处理及绘图功能,以及灵活的可扩充性和产业化的开发思路,很快就为自动控制界的研究人员所瞩目。

目前,在自动控制、图像处理、语言处理、信号分析、振动原理、优化设计、时序分析和系统建模等领域广泛应用。

1990年,Math Works软件公司为MATLAB提供了新的控制系统图形化模型输入与仿真工具Simulink。

Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。

在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。

Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。

同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。

Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。

为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。

Simulink&reg是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。

对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink 提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。

构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。

Simulink与MATLAB&reg紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。

另外,模型输入与仿真环境Simulink更使MATLAB为控制系统的仿真与在CAD 中的应用开辟了崭新的局面,使MATLAB成为目前国际上最流行的控制系统计算机辅助设计的软件工具。

MATLAB不仅流行于控制界,在生物医学工程、语言处理、图像信号处理、雷达工程、信号分析,以及计算机技术等行业中也都广泛应用。

1.3 主要内容本文以一级倒立摆为被控对象,用古典控制理论设计控制器(PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,包括三方面的内容:(1)建立直线一级倒立摆的线性化数学模型;(2)倒立摆系统的PID控制器设计、MATLAB仿真;(3)倒立摆系统的状态空间极点配置控制器设计、MATLAB仿真。

2 一级倒立摆2.1 实验设备简介一级倒立摆系统的结构示意图如图2-1所示。

图2-1 一阶倒立摆结构示意图系统组成框图如图2-2所示。

图2-2 一级倒立摆系统组成框图系统是由计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分组成的闭环系统。

光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,摆杆的角度、角速度信号由光电码盘2反馈给运动控制卡。

计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带,带动小车运动,保持摆杆平衡。

相关文档
最新文档