基于MATLAB(矩阵实验室)的倒立摆控制系统仿真
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB(矩阵实验室)的倒立摆控制系统仿真
摘要
自动控制原理(包括经典部分和现代部分)是电气信息工程学院学生的一门必修专业基础课,课程中的一些概念相对比较抽象,如系统的稳定性、可控性、收敛速度和抗干扰能力等。倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,它是一个理想的教学实验设备,许多抽象的控制概念都可以通过倒立摆直观地表现出来。本文以一级倒立摆为被控对象,用经典控制理论设计控制器(PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,通过MATLAB仿真软件的方法来实现。
关键词:一级倒立摆PID控制器极点配置
Inverted pendulum controlling system
simulation based on the MATLAB
ABSTRACT
Automatic control theory (including classical parts and modern parts) is a compulsory specialized fundamental course of the students majored in electrical engineering. Some of the curriculum concept is relatively abstract, such as the stability, controllability, convergence rate and the anti-interference ability of system. Inverted pendulum system is a typical nonlinear, strong coupling, multivariable and unstable system. It is an ideal teaching experimental equipment as a controlled object, by which many abstract control concepts can be came out directly. This paper chose first-order inverted pendulum as the controlled object. First, the PID controller was designed with classical control theory. Then pole-assignment method was discussed with modern control theory. At last, the effectness of the two methods was verified by MATLAB simulation software.
KEY WORDS: First-order inverted pendulum PID controller pole-assignment
目录
摘要..................................................................................................................................... I ABSTRACT............................................................................................................................ II 1 绪论 (1)
1.1倒立摆的控制方法 (1)
1.2 MATLAB/Simulink简介 (2)
1.3 主要内容 (3)
2一级倒立摆 (3)
2.1 实验设备简介 (3)
3直线一级倒立摆的数学模型 (4)
3.1直线一级倒立摆数学模型的推导 (4)
3.1.1 微分方程模型 (6)
3.1.2 传递函数模型 (7)
3.1.3 状态空间数学模型 (8)
3.2系统阶跃响应分析 (10)
4 直线一级倒立摆PID控制器设计 (14)
4.1 PID控制分析 (14)
4.2PID控制参数设定及MATLAB仿真 (17)
5直线一级倒立摆状态空间极点配置控制器设计 (20)
5.1 状态空间分析 (21)
5.2极点配置及MATLAB仿真 (22)
6总结 (26)
致谢 (27)
参考文献 (28)
1 绪论
倒立摆起源于20世纪50年代,是一个典型的非线性、高阶次、多变量、强耦合、不稳定的动态系统,能有效地反映诸如稳定性、鲁棒性等许多控制中的关键问题,是检验各种控制理论的理想模型。很多被控对象都可以抽象成为倒立摆模型,在很多领域有着广泛的应用,如机器人,航天领域等。它不但是验证现代控制理论方法的典型实验装置,而且其控制方法和思路对处理一般工业过程亦有广泛的用途。倒立摆常规的控制算法如LQR在倒立摆的控制中已被广泛采用,模糊控制作为一种智能控制的方法,在一定程度上模仿了人的控制,它不需要有准确的控制对象模型,作为一种非线性智能控制方法,已在多变量、时变、非线性系统的控制中发挥了重要的作用。人们已利用多种控制策略实现了一至四级倒立摆系统的稳定控制。对于倒立摆系统的稳定控制,具有重要的理论意义和重要的工程实践意义。事实上,人们一直在试图寻找不同的控制方法来实现对倒立摆的控制,以便检查或说明该方法对严重非线性和绝对不稳定系统的控制能力。
1.1 倒立摆的控制方法
(1)线性理论控制方法
将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型,然后再利用各种线性系统控制器设计方法,得到期望的控制器。PID 控制、状态反馈控制、LQR控制算法是其典型代表。这类方法对于一、二级倒立摆(线性化误差较小、模型较简单)控制时,可以解决常规倒立摆的稳定控制问题。但对于像非线性较强、模型较复杂的多变量系统(三、四级以及多级倒立摆)线性系统设计方法的局限性就十分明显,这就要求采用更有效的方法来进行合理的设计。
(2)预测控制和变结构控制方法
由于线性控制理论与倒立摆系统多变量、非线性之间的矛盾,使人们意识到针对多变量、非线性对象,采用具有非线性特性的多变量控制解决多变量、非线性的必由之路。人们先后开展了预测控制、变结构控制和自适应控制的研究。
(3)智能控制方法