高一数学集合的基本运算1
高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
高一数学必修一集合的基本运算课件PPT
目标升华
回顾本节课你有什么收获? (1)两个定义:并集 A∪B={x|x∈A或x∈B}, 交集 A∩B={x|x∈A且x∈B}. (2)两种方法:数轴和Venn图. (3)几个性质:A∩A=A,A∪A=A,
A∩=,A∪=A; A∩B=B∩A,A∪B=B∪A.
当堂诊学
完成课本的P8-9页例4、5、6、7以及 P11页练习题1、2、3
1.我们之中的每个人都更 偏向于把心思花费在更能 影响自己切身利益的事情
上,你同意这个说法吗?
2.你曾经做过哪些努力,来让自己的教 学活动 显得对 学生有 意义?
3.在下面的教学活动中,你觉得哪种教 学方式 对学生 来说更 有意义
A.在课堂上,让学生在给定的句子里用下划线标记 出其中的名词
B.在课堂上,让学生自由造句,但不许在句子中出现 名词。
怎样的。 G.最后,让学生谈谈这个历史人物在历史上的作为
对我们现在的生活产生了哪些影响。 H.在课堂上,通过扔骰子给学生讲解概率论。
I.在课堂上,让学生利用概率论(和天气有关的)来规 划哪几个月的哪几周适合班级出游
03
现在,请写出四到五条你在当前教学中的实际经验。 写出五条你曾在课堂中使用过的教学方法,并努
图2
并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例2.已知x∈R,集合A={-3,x2,x+1},B={x-3,2x-1,
添加标题
5.理论上,这个会议的内容对你三十年 之后的 生活也 许会有 帮助。
高一数学集合的基本运算
例7 设平面内直线l1上的点的集合为L1, 直线l2上点 的集合为L2, 试用集合的运算表示l1,l2的位置关系.
解 : (1)直线l1,l2相交于一点P可表示为 L1 L2 {点P};
(2)直线l1 , l2平行可表示为 L1 L2 ;
1.1.3 集合的基本运算
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗? (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
1.并集
一般地,由所有属于集合A或属于集合B的元素所 组成的集合,称为集合A与B的并集,记作A∪B,(读作 “A并B”).即
一般地,由属于集合A且属于集合B的所有 元素组成的集合,称为A与B的交集,记作 A∩B,(读作“A交B”),即
A∩B={x|x∈A,且x∈B}.
例6 新华中学开运动会,设 A={x|x是新华中学高一年级参加百米赛跑的同学} B={x|x是新华中学高一年级参加跳高比赛的同学}, 求A∩B.
解:A∩B={x|x是新华中学高一年级既参加百米赛 跑又参加跳高比赛的同学}.
; 配资公司 配资公司
;
;
还是狮子,每当太阳升起之时,就毫不迟疑地向前奔跑。 ? 20、一头驴子不小心掉进一口枯井,它哀哀地叫着,期待着主人把它救上去。驴子的主人召集了数位亲邻出谋划策,大家确实想不出好的办法救助驴子,倒是认为,反正驴子已经老了,“人道毁灭”也不为过,况且这口枯井迟早也是 要填上的,于是人们开始拿起铲子,开始填井。当第一铲泥土落到枯井时,驴子叫得更加恐怖了,——它显然明白了主人的意图,又一铲落到枯井时,驴子出乎意料的安静了。人们发现:此后每一铲落到驴背上,驴子都在做一件令人吃惊的事情
集合的基本运算(第一课时课件)-高一数学备课精选课件(人教A版2019必修第一册)
集合C的元素既属于A,又属于B,则称C为A与B的交集.
3 交集
交 由两个集合A、B的公共部分组成的集合,叫这两个
集
的 集合的交集,记作A∩B
概
文字语言
念 即 A∩B={ x| x∈A 且 x∈B }
读作 A交B
符号语言
图 示
Venn图
A
B
A∩B
图形语言
练一练 已知A={2,4,6,8,10},B={3,5,8,12}, C={6,8}. 求:(1)A∩B ; (2)A∩(B∩C)
2. (1)已知A={x| x2-6x+8=0},B={x |x2-mx+4=0}, 且A∩B=B,
问
核
心
素 养
题
之
则实数m的取值范围是
.
(2)已知A={x|x2-6x+8<0}, B={x|(x-2a)(x-a-2)<0},且A∩B=B,
则实数a的取值范围是
.
数 据 分
(1)A={2, 4};由A∩B=B知B⊆A.
④A∪B=A
B⊆A .
练一练
已知A={ x | x2 > 1 },B={ x | x < a},若A∪B =A,
则实数a的取值范围是 a≤-1
.
3 交集
观察下列集合,A、B与C之间有什么关系? (1)A={ 4,3,5 }、 B={ 2,4,6 }与 C={ 4 }. (2)A={x│x是等腰三角形}、B={x│x是直角三角形}与
第一章 集合与常用逻辑用语
1.3.1 并集和交集
高中数学/人教A版/必修一
1.3.1 并集和交集
思维篇 素养篇
高一数学第一章《集合的基本运算--全集与补集》知识点归纳、例题解析及课时作业
3.2全集与补集学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn图.3.会求补集,并能解决一些集合综合运算的问题.知识点一全集思考老和尚问小和尚:“如果你前进是死,后退是亡,那你怎么办?”小和尚说:“我从旁边绕过去.”在这一故事中,老和尚设定的运动方向共有哪些?小和尚设定的运动方向共有哪些?答案老和尚设定的运动方向只有2个:前进,后退.小和尚偷换了前提:运动方向可以是四面八方任意方向.梳理(1)定义:在研究某些集合时,这些集合往往是某个给定集合的子集,这个给定的集合叫作全集,全集含有我们所要研究的这些集合的全部元素.(2)记法:全集通常记作U.知识点二补集思考实数集中,除掉大于1的数,剩下哪些数?答案剩下不大于1的数,用集合表示为{x∈R|x≤1}.梳理类型一求补集例1(1)若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于()A.{x|0<x<2} B.{x|0≤x<2}C.{x|0<x≤2} D.{x|0≤x≤2}答案 C解析∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2},故选C.(2)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.解根据题意可知,U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8},∁U B={1,2,7,8}.(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B,∁U(A∪B).解根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},∁U(A∪B)={x|x是直角三角形}.反思与感悟求集合的补集,需关注两处:一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图、数轴、坐标系来求解.跟踪训练1(1)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=________.答案{3,4,5}(2)已知集合U=R,A={x|x2-x-2≥0},则∁U A=________.答案{x|-1<x<2}(3)已知全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|xy>0},则∁U A=________.答案{(x,y)|xy≤0}类型二补集性质的应用命题角度1补集性质在集合运算中的应用例2已知A={0,2,4,6},∁U A={-1,-3,1,3},∁U B={-1,0,2},用列举法写出集合B.解∵A={0,2,4,6},∁U A={-1,-3,1,3},∴U={-3,-1,0,1,2,3,4,6}.而∁U B={-1,0,2},∴B=∁U(∁U B)={-3,1,3,4,6}.反思与感悟从Venn图的角度讲,A与∁U A就是圈内和圈外的问题,由于(∁U A)∩A=v,(∁A)∪A=U,所以可以借助圈内推知圈外,也可以反推.U跟踪训练2如图所示的V enn图中,A、B是非空集合,定义A*B表示阴影部分的集合.若A={x|0≤x≤2},B={y|y>1},则A*B=________________.答案 {x |0≤x ≤1或x >2}解析 A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥0}, 由图可得A *B =∁(A ∪B )(A ∩B )={x |0≤x ≤1或x >2}.命题角度2 补集性质在解题中的应用 例3 关于x 的方程:x 2+ax +1=0,① x 2+2x -a =0,② x 2+2ax +2=0,③若三个方程至少有一个有解,求实数a 的取值范围. 解 假设三个方程均无实根,则有⎩⎪⎨⎪⎧ Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,即⎩⎪⎨⎪⎧-2<a <2,a <-1,-2<a < 2.解得-2<a <-1,∴当a ≤-2或a ≥-1时,三个方程至少有一个方程有实根, 即a 的取值范围为{a |a ≤-2或a ≥-1}.反思与感悟 运用补集思想求参数取值范围的步骤:(1)把已知的条件否定,考虑反面问题;(2)求解反面问题对应的参数的取值范围;(3)求反面问题对应的参数的取值集合的补集. 跟踪训练3 若集合A ={x |ax 2+3x +2=0}中至多有一个元素,求实数a 的取值范围. 解 假设集合A 中含有2个元素, 即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,解得a <98且a ≠0,则集合A 中含有2个元素时, 实数a 的取值范围是{a |a <98且a ≠0}.在全集U =R 中,集合{a |a <98且a ≠0}的补集是{a |a ≥98或a =0},所以满足题意的实数a 的取值范围是{a |a ≥98或a =0}.类型三 集合的综合运算例4 (1)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )等于()A .{3}B .{4}C .{3,4}D .∅ 答案 A解析 ∵∁U (A ∪B )={4}, ∴A ∪B ={1,2,3},又∵B ={1,2},∴∁U B ={3,4}, A 中必有3,可以有1,2,一定没有4. ∴A ∩(∁U B )={3}.(2)已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪(∁R B )=R ,则实数a 的取值范围是________. 答案 {a |a ≥2}解析 ∵∁R B ={x |x <1或x >2}且A ∪(∁R B )=R , ∴{x |1≤x ≤2}⊆A ,∴a ≥2.反思与感悟 解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集混合运算可借助Venn 图,与不等式有关的可借助数轴.跟踪训练4 (1)已知集合U ={x ∈N |1≤x ≤9},A ∩B ={2,6},(∁U A )∩(∁U B )={1,3,7}, A ∩(∁U B )={4,9},则B 等于( ) A .{1,2,3,6,7} B .{2,5,6,8} C .{2,4,6,9} D .{2,4,5,6,8,9}答案 B解析 根据题意可以求得U ={1,2,3,4,5,6,7,8,9},画出Venn 图(如图所示),可得B ={2,5,6,8},故选B.(2)已知集合U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B).解如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},∴∁U A={x|x≤-2或3≤x≤4},∁U B={x|x<-3或2<x≤4}.A∩B={x|-2<x≤2},∴(∁U A)∪B={x|x≤2或3≤x≤4},A∩(∁U B)={x|2<x<3}.1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M等于()A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}答案 C2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4} B.{3,4}C.{3} D.{4}答案 D3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}答案 C4.设全集U=R,则下列集合运算结果为R的是()A.Z∪∁U N B.N∩∁U NC.∁U(∁U∅) D.∁U Q答案 A5.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N等于()A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}答案 B1.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.课时作业一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}答案 C解析∁U A={0,4},所以(∁U A)∪B={0,2,4},选C.2.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}答案 D解析如图,阴影部分为(∁U B)∩A,∴A={3,9}.3.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( ) A .0或2 B .0 C .1或2 D .2答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.4.图中的阴影部分表示的集合是( )A .A ∩(∁UB ) B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )答案 B解析 阴影部分表示集合B 与集合A 的补集的交集. 因此阴影部分所表示的集合为B ∩(∁U A ).5.已知U 为全集,集合M ,N ⊆U ,若M ∩N =N ,则( ) A .∁U N ⊆∁U M B .M ⊆∁U N C .∁U M ⊆∁U N D .∁U N ⊆M 答案 C解析 由M ∩N =N 知N ⊆M .∴∁U M ⊆∁U N .6.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A 等于( ) A .∅ B .{2} C .{5} D .{2,5} 答案 B解析 因为A ={x ∈N |x ≤-5或x ≥5}, 所以∁U A ={x ∈N |2≤x <5},故∁U A ={2}. 二、填空题7.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=______,(∁U A )∩(∁U B )=________.答案 {x |0<x <1} {x |0<x <1}解析A∪B={x|x≤0或x≥1},∁U(A∪B)={x|0<x<1}.∁U A={x|x>0},∁U B={x|x<1},∴(∁A)∩(∁U B)={x|0<x<1}.U8.若全集U={(x,y)|x∈R,y∈R},A={(x,y)|x>0,y>0},则点(-1,1)________∁U A.(填“∈”或“∉”)答案∈解析显然(-1,1)∈U,且(-1,1)∉A,∴(-1,1)∈∁U A.9.设U=R,已知集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是________.答案{a|a≤1}解析∁U A={x|x≤1},∵(∁U A)∪B=R,∴B⊇{x|x>1},∴a≤1.10.若集合A={x|0≤x≤2},B={x|x<0或x>1},则图中阴影部分所表示的集合为________.答案{x|x≤1或x>2}解析如图,设U=A∪B=R,A∩B={x|1<x≤2},∴阴影部分为∁U(A∩B)={x|x≤1或x>2}.三、解答题11.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.解∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x |0<x <1或2<x <3}⊆B . 借助于数轴可得B =A ∪{x |0<x <1或2<x <3}={x |0<x <3}.12.已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,求实数m 的值.解 A ={-1,2},B ∩(∁U A )=∅等价于B ⊆A . 当m =0时,B =∅⊆A ; 当m ≠0时,B ={-1m}.∴-1m =-1或-1m =2,即m =1或m =-12.综上,m 的值为0,1,-12.13.设全集为R ,A ={x |3<x <7},B ={x |4<x <10}. (1)求∁R (A ∪B )及(∁R A )∩B ;(2)若C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围. 解 (1)∵A ∪B ={x |3<x <10}, ∴∁R (A ∪B )={x |x ≤3或x ≥10}. 又∵∁R A ={x |x ≤3或x ≥7}, ∴(∁R A )∩B ={x |7≤x <10}. (2)∵A ∩C =A ,∴A ⊆C .∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3⇒⎩⎨⎧a ≥3,a ≤7⇒3≤a ≤7.∴a 的取值范围为{a |3≤a ≤7}. 四、探究与拓展14.如图,已知I 是全集,A ,B ,C 是它的子集,则阴影部分所表示的集合是( )A .(∁I A ∩B )∩C B .(∁I B ∪A )∩C C .(A ∩B )∩(∁I C )D .(A ∩∁I B )∩C 答案 D解析 由题图可知阴影部分中的元素属于A ,不属于B ,属于C ,则阴影部分表示的集合是(A ∩∁I B )∩C .15.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M ={(x ,y )|y -3x -2=1},P ={(x ,y )|y ≠x +1},求∁U (M ∪P ).解 集合M 表示的是直线y =x +1上除去点(2,3)的所有点,集合P 表示的是不在直线y =x +1上的所有点,显然M ∪P 表示的是平面内除去点(2,3)的所有点,故∁U (M ∪P )={(2,3)}.。
高一数学集合的基本运算1
我们留下了宝贵的财富。离开合作,人就不能生存,也不能生活,更不能成长。 12.材料作文:生活中的“是” 阅读下面的文字,按要求作文。 有两个人去爬山,其中一个人说:“我比你有经验,我走在前面,你在后面可以看我怎么做。” 于是他就走在前面,可是他一不小心掉进了一个大约有两 百五十英尺深的大洞里,另外一个人向下面喊:“你还好吗?” “不好!我的两只手都跌断了。” “那么,用你的脚爬上来。” “我的两只脚也跌断了。” “那么就用你的牙齿爬上来。” 于是,他就用他的牙齿往上爬。当他快爬到洞口的时候,另一个人又向下面喊:“你还好吗?” 他回答说: “是……”随着他的回答声,他又掉下去了。 阅读寓言,领悟寓意,写一篇800字的文章。 要求:自定立意,自拟标题,自选文体,贴近生活。不得抄袭,书写工整。 写作导引: 寓言是虚构的,故事是夸张的,但是,优秀的寓言所蕴涵的寓意一定是符合实际的,它是能准确体现生活中的真善美, 或者揭示假恶丑的。这则寓言中的“用牙齿往上爬”虽然是虚构的,但主人公勇敢面对困境的态度与在艰难中努力求生的精神是真的。虽然,他在快到洞口时,因张口回答朋友的询问而又掉入大洞这样的情节在生活中不大可能有,但生活中因一时的大意,不经意的失误而导致“功亏一篑”的事例却 比比皆是。行文时,最好能从生活的实际出发构思写作,或写人叙事,或议论说理,力图切入点小而开掘深。 13.命题作文:路标 阅读下面的文字,按要求作文。 “路标”一词,《现代汉语词典》里有两个义项:①交通标志;②队伍行动时沿路所做的联络标志。 请根据你自己的感受和认识,以 “路标”为题写一篇文章,文体不限,不少于800字。 写作导引: 看到“路标”一词,我们就应想到:这一概念可实可虚,可以仅仅从表象含义来写,但这样就会显得肤浅狭窄;而如果运用象征手法来拓展题目的容量,文章就会写得深刻丰富。我们每个人都在自己的人生道路上不断前进,有“路 标”在指引着我们。路标可以是人,也可以是物、事;可以是现实生活中的,也可以是臆想中的。一个人、一句话、一件事、一件物品、一个微笑、一份记忆、一种精神、一个梦想……只要他(它)们在我们的人生道路上起到了一定的积极作用,体现了相应的价值,都可以看作是“路标”。我们不
1.3集合的基本运算(第1课时)课件高一上学期数学人教A版
新知探究5:集合中元素的个数
问题3 某校先举办了一次田径运动会,某班有8名同学参赛,又
举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛 的有3人.这个班两次运动会都参加的同学共有多少名?
所以,这个班两次运动会都参加的同 学共有17名.
A
B
参加田径
参加球类
运动会 A∩B 运动会
3
5
9
新知探究5:集合中元素的个数
典例解析 例2 设A={4, 5, 6, 8},B={3, 5, 7, 8},求A∩B.
解: A∩B= {4, 5, 6, 8}∩{3, 5, 7, 8}={5, 8}. 【变式2】设集合A={x|-1<x<2},B={x|1<x<3},求A∩B.
解:A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}. 可以在数轴上表示交集,如下图:
复习回顾
上节课我们学习了哪些主要内容?
1.概念: 子集、集合相等、真子集、空集
2.性质: (1)空集是任何集合的子集, ∅ A.
(2)空集是任何非空集合的真子集, ∅ A(A ≠ ∅).
(3)任何一个集合是它本身的子集,A A.
(4)含n个元素的集合的子集数为 2n;
非空子集数为 2n - 1; 真子集数为 2n - 1 ; 非空真子集数为 2n - 2 .
A -1 0
B
1A∩B 2
3
典例解析
例3 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,
试用集合的运算表示l1,l2的位置关系.
解:合.
l1(l2)
(1)相交:L1∩L2={点P} (2)平行:L1∩L2=Ø
人教新课标版数学高一必修1学案集合的基本运算(一)
1.1.3集合的基本运算(一)1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自主探究能力.3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.2.一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B(读作“A交B”),即A∩B={x|x∈A,且x∈B}.3.A∩A=__A__,A∪A=__A__,A∩∅=__∅__,A∪∅=A.4.若A⊆B,则A∩B=__A__,A∪B=__B__.5.A∩B⊆A,A∩B⊆B,A⊆A∪B,A∩B⊆A∪B.对点讲练求两个集合的交集与并集【例1】求下列两个集合的并集和交集.(1)A={1,2,3,4,5},B={-1,0,1,2,3};(2)A={x|x<-2},B={x|x>-5}.解(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)结合数轴(如图所示)得:A∪B=R,A∩B={x|-5<x<-2}.规律方法求两个集合的交集、并集依据它们的定义,借用Venn图或结合数轴分析两个集合的元素的分布情况,有利于准确写出交集、并集.变式迁移1(1)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于() A.{x|x>-2} B.{x|x>-1} C.{x|-2<x<-1} D.{x|-1<x<2} (2)若将(1)中A改为A={x|x>a},求A∪B,A∩B.(1)答案 A解析画出数轴,故A∪B={x|x>-2}.(2)解如图所示,当a<-2时,A∪B=A,A∩B={x|-2<x<2};当-2≤a<2时,A∪B={x|x>-2},A∩B={x|a<x<2};当a≥2时,A∪B={x|-2<x<2或x>a},A∩B=∅.已知集合的交集、并集求参数【例2】已知A={x|2a≤x≤a+3},B={x|x<-1或x>5}.(1)若A∩B=∅,求a的取值范围;(2)若A∪B=R,求a的取值范围.解(1)由A∩B=∅,①若A=∅,有2a>a+3,∴a>3.②若A≠∅,如图:∴⎩⎪⎨⎪⎧2a≥-1a+3≤52a≤a+3,解得-12≤a≤2.综上所述,a的取值范围是{a|-12≤a≤2或a>3}.(2)由A ∪B =R ,如图所示,∴⎩⎪⎨⎪⎧2a ≤-1a +3≥5,解得a ∈∅. 规律方法 出现交集为空集的情形,应首先考虑集合中有没有空集,即分类讨论.其次,与不等式有关的集合的交、并运算中,数轴分析法直观清晰,应重点考虑. 变式迁移2 已知集合A ={x |2<x <4},B ={x |a <x <3a }. (1)若A ∩B =∅,试求a 的取值范围; (2)若A ∩B ={x |3<x <4},试求a 的取值范围. 解 (1)如图,有两类情况,一类是B ≠∅⇒a >0. 此时,又分两种情况:①B 在A 的左边,如图B 所示; ②B 在A 的右边,如图B ′所示.B 或B ′位置均使A ∩B =∅成立, 即3a ≤2或a ≥4,解得0<a ≤23,或a ≥4.另一类是B =∅,即a ≤0时,显然A ∩B =∅成立. 综上所述,a 的取值范围是{a |a ≤23,或a ≥4}.(2)因为A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图所示:集合B 若要符合题意,显然有a =3,此时B ={x |3<x <9},所以a =3为所求.交集、并集性质的运用【例3】 已知集合A ={x |1<ax <2},B ={x ||x |<1},且满足A ∪B =B ,求实数a 的取值范围.解 ∵A ∪B =B ,∴A ⊆B . (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a .∵A ⊆B ,∴⎩⎨⎧ 1a≥-12a ≤1∴a ≥2.(3)当a <0时,A =⎩⎨⎧⎭⎬⎫x |2a <x <1a .∵A ⊆B ,∴⎩⎨⎧2a≥-11a ≤1∴a ≤-2.综合(1)(2)(3)知,a 的取值范围是 {a |a ≤-2或a =0或a ≥2}.规律方法 明确A ∩B =B 和A ∪B =B 的含义,根据问题的需要,将A ∩B =B 和A ∪B =B 转化为等价的关系式B ⊆A 和A ⊆B 是解决本题的关键.另外在B ⊆A 时易忽视B =∅时的情况.变式迁移3 设集合A ={-2},B ={x |ax +1=0,a ∈R },若A ∩B =B ,求a 的值. 解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅, ∴B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0. 当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.1.A ∪B 的定义中“或”的意义与通常所说的“非此即彼”有原则的区别,它们是“相容”的.求A ∪B 时,相同的元素在集合中只出现一次.2.A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B ,这两个性质非常重要.另外,在解决有条件A ⊆B 的集合问题时,不要忽视A =∅的情况.课时作业一、选择题 1.设集合A ={x |-5≤x <1},B ={x |x ≤2},则A ∩B 等于( ) A .{x |-5≤x <1} B .{x |-5≤x ≤2} C .{x |x <1} D .{x |x ≤2} 答案 A2.下列四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆B ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 答案 C解析 ②③④正确.3.设A ={x |1≤x ≤3},B ={x |x <0或x ≥2},则A ∪B 等于( ) A .{x |x <0或x ≥1} B .{x |x <0或x ≥3} C .{x |x <0或x ≥2} D .{x |2≤x ≤3} 答案 A解析 结合数轴知A ∪B ={x |x <0或x ≥1}.4.已知A ={x |x ≤-1或x ≥3},B ={x |a <x <4},若A ∪B =R ,则实数a 的取值范围是( ) A .3≤a <4 B .-1<a <4 C .a ≤-1 D .a <-1 答案 C解析 结合数轴知答案C 正确.5.满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A.1 B.2 C.3 D.4答案 B解析由已知得M={2,3}或{1,2,3},共2个.二、填空题6.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=________.答案{(2,1)}7.设集合A={x|-1≤x<2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围为________.答案a≥-1解析由A∩B≠∅,借助于数轴知a≥-1.8.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.答案-4解析如图所示,可知a=1,b=6,2a-b=-4.三、解答题9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.解∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±6.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.解A={1,2},∵A∪B=A,∴B⊆A,集合B有两种情况:B=∅或B≠∅.(1)B=∅时,方程x2-4x+a=0无实数根,∴Δ=16-4a<0,∴a>4.(2)B≠∅时,当Δ=0时,a=4,B={2}⊆A满足条件;当Δ>0时,若1,2是方程x2-4x+a=0的根,由根与系数的关系知矛盾,无解,∴a=4.综上,a的取值范围是a≥4.【探究驿站】11.求满足P∪Q={1,2}的集合P,Q共有多少组?解可采用列举法:当P=∅时,Q={1,2};当P={1}时,Q={2},{1,2};当P={2}时,Q={1},{1,2};当P={1,2}时,Q=∅,{1},{2},{1,2},∴一共有9组.。
集合的基本运算课件-高一上学期数学人教A版(2019)必修第一册
(3)若A∩B=A,求a的取值范围.
若⋃ = ,则 ⊆ ;
若 ∩ = ,则 ⊆ .
变式1.已知集合A={x|2<x<4},B={x|a<x<3a,且a>0},若⋂ = ∅,求实数的
取值范围.
变式2.已知集合A={x|2 ≤x< + 3},B={x|x<−1,或x>5},求下列条件下实数的取
R ∪ ,R ∩ ,
∩ , ∪ .
训练2.(教材P13练习1)已知={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},求
∩ , ∩ , ∪ .
例3.设集合={|+ ≥ 0},={| − 2 < < 4},全集U=R,且( )∩B=∅,
1.并集:⋃ = | ∈ , 或 ∈ ;
2.交集:⋂ = | ∈ , 且 ∈ .
3.集合运算结果与集合间基本关系的互相转换:
⋃ = ⇔ ⋂பைடு நூலகம் = ⇔ ⊆
重要思想方法:数形结合(数轴、韦恩图)
第一章 集合与常用逻辑用语
1.3 集合的基本运算
(1) ∈ | − 2 2 − 3 = 0 = 2
例1.(1)已知集合={−1,1,3,5},={0,1,3,4,6},则 ∪ =______.
(2)已知集合={| − 3 < ≤ 5}, ={| < −2或 > 5},={| < −5或 > 4}
则�� ∪ ∪ =______________.
观察
观察下面的集合,说出集合与集合, 之间的关系吗?
新高一数学教案(8) 集合的基本运算(1)
新高一数学教案(8)集合的基本运算(1)教学目标1.理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.教学重点集合的交集与并集、补集的概念.教学难点集合的基本运算.教学过程一、【哲理小故事】高傲的马一个富人有一匹高大的马。
他让人给这匹骏马套上一副金质的笼头,安上一只昂贵的装饰华丽的鞍子,并披上了一条上面织有金线的丝毯。
这马眼睁睁地看着主人让人替他打扮得如此漂亮,不由得心花怒放和盛气凌人起来。
一天,这马被紧紧地拴着,他使劲挣脱了笼头,然后嘶鸣着从那里冲了出去。
这时候有一头驴子朝他迎面走来,他背上正驮着沉甸甸的口袋,两条腿一步一步慢腾腾地往前迈。
马咀嚼着,满嘴冒着白沫,一边从很远的地方就开始叫道:“让开!是谁教你如此没礼貌的,居然看到一匹像我这样的马还不赶快让路?滚开,不然的话我揍你,把你揍死了,还要把你从这儿拖开!”驴子怕得要命,连忙让开了一条路,一点儿也不敢吭声。
马横冲直撞地跑了过去,从灌木丛间飞快地穿行而过。
可是在冲过灌木丛时,他的蹄冠受伤了;于是,从此以后再也不需要他当坐骑了。
主人把他身上的金笼头和漂亮的鞍子取了下来,卖给了一个车夫。
从这天起,他必须从早到晚拉车。
不久,驴子看见他在拉车,便说道:“你好,朋友!你这是怎么搞的?你那只金笼头,那条金丝毯都哪儿去了?我怎么没看见它们?原来如此,亲爱的朋友,世界上这种情况是常有的:骄傲自大必将要受到惩罚。
”当幸福达到顶端的时候,不幸往往也已经站在门前;得意的时候千万别忘乎所以!二、【趣味课程导入】我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?三、【基础知识梳理】1.并集:一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A 与B的并集(Union).记作:A∪B 读作:“A并B”即:A∪B={x|x∈A,或x∈B}注:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)2.交集:一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection).记作:A∩B读作:“A交B”即:A∩B={x|∈A,且x∈B}注:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合.U UA B1,1,2,3},B= x≤,B=3}7.设全集U=R ,M={x|x.≥1}, N ={x|0≤x<5},则(C U M )∪(C U N )为( )A 、{x|x≥0}B 、{x|x<1 或x≥5}C 、{x|x≤1或x≥5}D 、{x| x 〈0或x≥5 }8.如果S ={x ∈N |x <6},A ={1,2,3},B ={2,4,5},那么(S A)∪(S B)= .9.设{}是锐角三角形x x A =,{}是钝角三角形x x B =,求A ∪B 、A B .10.已知集合A ={1,3,5},B ={1,2,12-x },若A ∪B ={1,2,3,5},求x 及A∩B.11.已知集合}.{},42{a x x B x x A >=≤≤= 若a A B A 求,= 的取值范围.。
高一数学集合的基本运算
一、全集与补集
在不同范围研究同一个问题,可能有 不同的结果。
如方程(x-2)(x2-3)=0的解集
在有理数范围内只有一个解,即 A={x∈Q|(x-2)(x2-3)=0}={2}, 在实数范围内有三个解 2, 即 :B={x∈R|(x2)(x2-3)=0}={2, 3, 3 }。
例4.学校先举办了一次田径运动 会,某班有8名同学参赛,又举办了一 次球类运动会,这个班有12名学生参 赛,两次运动会都参赛的有3人,两次 运动会中,这个班共有多少名同学参 赛?
探索:
对有限集A,B,C你能发现card(A∪B∪C), card(A), card(B), card(C), card(A∩B), card(A∩C), card(C∩B), card(A∩B∩C)之 间的关系吗?
二、集合中元素的个数
用card来表示有限集A中的元素个数. 如:A={a,b,c} 则card(A)=3
问题:
学校小卖部进了两次货,第一次进的货是 圆珠笔,钢笔,橡皮,笔记本,方便面,汽水共6 种,第二次进的货是圆珠笔,铅笔,火腿肠,方 便面共4种,两次一共进了几种货物?
公式:
card(A∪B)=card(A)+card(B)-card(A∩B)
利用Venn图: card(A∪B∪C)=card(A)+ card(B)+ card(C) - card(A∩B)- card(A∩C)- card(C∩B)+ card(A∩B∩C)
B
A
A∩B A∩B∩C A∩C C B∩C
作业布置
1.教材P12 9,10 B组 4 2 补.某班有学生55人,其中音乐爱好 者34人,体育爱好者43人,还有4人既 不爱好体育也不爱好音乐,班级中既爱 好体育又爱好音乐的有多少人?
高中数学(人教B版)必修第一册:集合的基本运算【精品课件】
可以表示为:
{(x,y) | y=0}∩{(x,y) | x=0}={(0,0)}.
从定义可以看出,A∩B表示由集合A,B按照指定的法则构造出
一个新集合,因此“交”可以看成集合之间的一种运算,通常称为
交集运算.
交集运算具有以下性质,对于任意两个集合A,B,都有:
sF=M,
sM=F.
例如,如果U={1,2,3,4,5,6},A={1,3,5},则
UA={2,4,6}.
注意,此时UA仍是U的一个子集,因此U(UA)也是有意
义的,此例中的U(UA)={1,3,5}=A.
事实上,给定全集U及其任意一个子集A,补集运算具有如下
性质:
A∪(UA)=U;
英语成绩低于70分的所有同学组成的集合为N,
需要去参加意见征求会的同学组成的集合为P,
可以看出,集合P中的元素,要么属于集合M,要么属于集合
N.
一般地,给定两个集合A,B,由这两个集合的所有元素组成的
集合,称为A与B的并集,记作A∪B,读作“A并B”.
两个集合的并集可用图(1)或(2)所示的阴影部分形象地表
可以看出,集合S 中的元素既属于集合P,又属于集合M.
一般地,给定两个集合A,B,由既属于A又属于B的所有元素
(即A和B的公共元素)组成的集合,称为A与B的交集,记作A∩B,
读作“A交B ”.两个集合的交集可用下图所示的阴影部分形象地表
示.
因此,上述情境与问题中的集合满足P∩M=S.
例如,{1,2,3,4,5}∩{3,4,5,6,8}={3,4,5};
A∪B=A,试求实数m的取值范围.
解析:∵A∪B=A,∴B⊆A.
高一数学集合的基本运算
本课小结
1.交集与并集的概念 2.全集与补集的概念 3.交集与并集的性质
={x|-1<x<3}
2.交集
考察下列各个集合,你能说出集合A,B与集合C 之间的关系吗?
(1)A={2,4,6,8,10}, B={3,5,8,12} ,C={8};
(2) A={x|x是新华中学2004年9月在校的女同学}, B={x|x是新华中学2004年9月入学的高一级同学}, C={x|x是新华中学2004年9月入学的高一级女同 学}.
2.设A {4,2a 1, a2}, B {a 5,1 a,9},已知A B {9},求a的值, 并求出A B.
解得a 3且A B {8,4,4,7,9}
解: A B {9}, 9 A 所以a2 9或2a 1 9, 解得a 3或a 5 当a 3时,A {9,5,4}, B {2,2,9}, B中元素违 背了互异性,舍去. 当a 3时,A {9,7,4}, B {8,4,9}, A B {9} 满足题意,故A B {7,4,8,4,9}. 当a 5时,A {25,9,4}, B {0,4,9},此时A B {4,9},与A B {9}矛盾,故舍去. 综上所述,a 3且A B {7,4,8,4,9}.
A∪B={x|x∈A,或x∈B}
例4 设A={4,5,6,8}, B={3,5,7,8},求A∪B.
解: A∪B={4,5,6,8} ∪ {3,5,7,8} ={3,4,5,6,7,8}
例5 设集合A={x|-1<x<2},集合B={x|1<x<3} 求A∪B. 解: A∪B={x|-1<x<2} ∪ {x|1<x<3}
3. 已知全集U={1,2,3,4,5}, 非空集A={xU|x2-5x+q=0}, 求CUA及q的值。
高一数学集合的基本运算1
例5.设集合A={-4,2m-1,m2},B={9,m-5,1m},又A∩B={9}, 求实数m的值.
课堂练习
教材P11练习T1~3.
课堂小结
1. 理解两个集合交集与并集的概念 bb和性质. 2. 求两个集合的交集与并集,常用 bbb数轴法和图示法. 3.注意灵活、准确地运用性质解题; 4. 注意对字母要进行讨论 .
作业布置
1.教材P12 A组6,7,8 B组3 2 补.P={a2,a+2,-3}, Q={a-2,2a+1,a2+1},P ∩Q={-3}, 求 a.
;
/心理学 生理学 生物力学 步态分析
ekn625ach
这时,我的母亲还在一个劲儿地唠叨,“小荷„„听奶奶的话,咱不读薄屎(博士)了,找个工作替你爸挣钱„„再找 个对象,结了婚生个胖小子就安顿下来了„„你看,我们村的王大妮和你一般大,不是小学也没念完,现如今„„孩子 都满街跑了,你看你„„上起学来还没完没了了。” “娘——,这不是小荷,是范教授的女儿。”我向母亲解释着。 母亲仔细地打量了一番,摇着头自言自语地说:“不可能的事,难道这世上真有长得一模一样的人吗?„„” “姑妈——”范教授握着母亲的手说,“姑妈„„你还记得我吧,我是山娃子啊„„” 母亲摸着范教授的脸,看了又看,老泪纵横地说:“山娃子„„亏你还记得我这个姑妈„„” 范教授用手帕一边给母亲擦泪一边说:“二十年了,我终于有机会回趟老家了„„” 母亲喃喃自语地唠叨着,“怪不得跟小荷长得一模一样„„怪不得跟小荷长得一摸一样„„” “傻子——,快去告诉肖燕我们家来贵客了。”我怕母亲说出不得体的话,急忙岔开了话题吩咐起傻子。 傻子答应一声,便朝示范园里跑去。 我招呼大家屋里坐下,顺便给小荷打了个电话,告诉她范教授来了。 母亲拉着侄儿侄媳的手坐在他俩人中间,指着墙上放大的全家福,看了又看,嘴里不住地唠叨着:“一点不差„„一点 不差„„跟照片上的一模一样„„” “山娃子啊,这些年来多亏你照顾小荷。这孩子随她爸性格倔强,凡事都认个死理,不碰南墙不回头„„都二十四的 大闺女了还不嫁人,说什么„„要去国外读薄屎(博士)„„怎么这学问越读越臭了?你们来的正好,替姑妈好好劝劝 她„„” 母亲的话惹得大家啼笑皆非。 范教授按了按鼻梁上的眼镜,有条不紊地解释道:“姑妈,说起来很惭愧,我根本就不知道她是姑妈家的孩子,我们也 没有特别的关照她。但是„„这孩子太优秀了,出国深造是学校的安排。我这次回老家是校领导让我来了解一下小荷的 家庭情况,顺便看看我的姑妈。” “幸亏来的人是你,换了别人还不知捅出什么漏子来„„山娃啊,你是最了解你姑爹这个家的,三代为农,从不欺男 霸女„„姑妈求你回去跟领导好好说说,看在你姑妈这么一大把年纪的份上,千万别把我的孙女发配到外国去„„” 面对着糊里糊涂的老人,堂堂的一位大学教授也一时束手无策,不知道究竟怎样才能解释得清楚。 我沏好了茶,端给母亲一杯,耐心地说:“表哥的意思是说,咱家小荷是好样的,出国念书是件好事。” 母亲伸着大拇指,学着我的姿势自言自语地说:“咱家小荷是好样的,出国念书是件好事„„” 母亲突然指着我和范教授质问道:“你们分明是在合伙骗我这老婆子!是好事怎么不让你的女儿去?亏你还是个大学教 授,难道你的女儿不优秀吗?„„” “这„„”范教授被母亲责问的面红耳赤。 我只好赶紧打圆场,“娘——,你这是说哪儿的话„„人各有长短,娇娇也有她的长处„„” “是啊„„奶奶,娇娇妹妹可是校园里有名的交际花,她的舞蹈是最棒的!”不知什么时候小荷已站在了身后,她不 失时机地来到奶奶身边。
高一数学集合的基本运算1
五 知识强化
练习1 已知A={x|x是等腰三角形},B={x|x是直角三 角形},求A∩B,A∪B.
答: A∩B ={x|x是等腰直角三角形}, A∪B ={x|x是等腰三角形或是直角三角形}
练习2 A={x|x2-4x-5=0},B={x|x2=1},求A∩B, A∪B.
答: A∩B ={-1}, A∪B ={-1,1,5}
成的集合,称为集合A与B的并集(union set),记作
A∪B(读作“A并B”),即 A∪B={x|x∈A,或x∈B}.
可用Venn图表示:
2.交集
一般地,由属于集合A且属于集合B的所有元素
组成的集合,称为A与B的交集(intersection
set),记作A∩B(读作“A交B”),即 A∩B={x|x∈A且x∈B}.
知识铺垫 们不得不用万能钥匙试试,实在不行再另想办法.院里虽然有树,奈何那些树离屋子有段距离,攀爬不到.“其实咱们有三个人,不用这么小心吧?”一人兴奋道,音量压得极低,“深山老林の,老周家一向睡得沉,她们喊破喉咙也没人听得见.”不如硬闯.只要堵上嘴,俩妞只能任人摆布.三人不由自 主地脑补一系列动作片,顿时猥琐地窃笑起来.“药呢?可别丢了.”“放心,丢不了.”双手猛搓恨不得立马飞进屋里.他们今晚过来既要财,也要人.以前最想上余文凤家の两个女儿,她们如花似玉,公认の大美人,可惜人家里财大气粗沾不得.而云岭村偏僻,居然有人不知天高地厚独自跑来隐居, 都说高校生书读得越多人越傻,果然如此.顶多完事后马上离开本省躲几天,等风声过了再回来.说不定根本不用躲,女人多半胆小怕事,更怕别人知道自己の丑事,一般是打碎牙根和血吞了.嘻,正好带了收听可以拍照,以后天天来.三人躲在屋里想入非非,垂涎三尺.“可是雄哥,门都加了门栓我们 进不去.”忽然有人想起关键问题来,“不如这样,咱弄点声音出来...”从外边突破不了,就让她们从里边出来.只要门一开...嘻嘻,两只小绵羊只能任人宰割.于是,三人探头出来瞄瞄,见楼上灯一直没有亮,估计睡着了.“你,去那边学猫叫,我俩在门口守着.”一人发号施令,另外两人负责执行. 女生对弱小动物最有爱心了,尤其是小猫咪,正好诱她们出来.打定主意,三人正要出去,忽然闻到一股清香味,淡淡の,特别好闻.念头方落,他们停止动作,脑子变得迟钝转不过弯来,目光痴痴傻傻の.与此同时,外边不知怎の刮起一阵怪风,呼地将两扇木门吹得呯呯响.吹得三人稍微清醒了些,明明 心惊胆寒,却全身麻痹不听使唤,整个人像浮在水里般昏昏沉沉.小屋の门开着,一缕清冷の月光透进来,缓缓地,门口出现一道人影.那人影是个女の,她裙袂迎风起,长发飘飘,悄无声息地来到门口.在外边站了一会儿,一只惨白の裸足慢慢抬起,跨过门槛...正当三人吓得心肝提到嘴边时,下一刻, 那只脚消失了.门口处空荡荡の.半梦半醒の三人头皮一阵发麻,那个,这个,是幻影吧?其中一人张了张嘴想说什么,可是说不出来.他们不约而同地想起,这间小屋原本是屋主周定邦用来安置先祖灵位の,也不知他有没放过...越想越惊悚,三人浑身直冒冷汗,遍体生寒.不由得心中默念:阿弥陀佛, 阿弥陀佛,佛菩萨保佑,他们一时鬼迷心窍才干出这事,其实本性善良...千错万错,求保佑,求搭救,求眼前の一切皆是幻影.陡然间背后一凉,三人同时察觉身后有东西,不禁全身一僵.想哭,想拔腿就跑,可身体动弹不得只能干瞪眼.呼~,异常清晰の一下呼吸响在耳边,仿佛近在咫尺,三人吓得双目
高中数学人教A版必修第一册1.3.1集合的基本运算(交集与并集)
5.新知探索(二)下列关系式成立(1)源自 ∪ = ;(2) ∪ = .
并集的运算性质:
⊆ ( ∪ ); ⊆ ( ∪ );
∪ = ; ∪ = ∪ ;
∪ = ⇔ ⊆ , ∪ = .
6.新知探索(三)
问题3:视察下面的集合,集合,与集合之间有什么关系?
同学}.
例4.设平面内直线1 上的点的集合为1 ,直线2 上点的集合为2 ,试用集
合的运算表示1 ,2 的位置关系.
解:平面内直线1 ,2 可能有三种位置关系,
即相交于一点、平行或重合.
(1)直线1 ,2 相交于一点可表示为1 ∩ 2 = {点};
(2)直线1 ,2 平行可表示为1 ∩ 2 = ;
例3.立德中学开运动会,设
= {|是立德中学高一年级参加百米赛跑的同学},
百米
跳高
= {|是立德中学高一年级参加跳高比赛的同学},求⋂.
解: ∩ 就是立德中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组
成的集合.
所以, ∩ = {|是立德中学高一年级中那些既参加百米赛跑又参加跳高比赛的
在上述两个问题中,集合,与集合之间都具有这样一种关系:
集合是由所有属于集合或属于集合的元素组成的.
3.概念生成(1)
一般地,由所有属于集合或属于集合的元素组
可用图表示.
成的集合,称为集合与的并集,
记为 ∪ (读作“并”),
即 ∪ = {| ∈ ,或 ∈ }
(1)两个集合之间有哪些关系,你能举例说明吗?
(2)集合的基本关系有哪些性质?我们是如何发现这些性质的?
(3)我们研究了哪个特殊集合?你能举例说明吗?
(4)“属于”与“包含”有什么区分?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.已知A = {x | x 3x + 2 = 0}, B = {x | x ax + a 1 = 0}
2 2
若A ∪ B = A, 求实数a的值.
4.设集合 = {x | 2 < x < 1}∪{x | x > 1}, B = {x | a ≤ x ≤ b} A 若A∪ B = {x | x > 2}, A∩ B = {x | 1 < x ≤ 3},求a, b的值 .
1.并集 并集
一般地,由所有属于集合A或属于集合B的元素所 组成的集合,称为集合A与B的并集,记作A∪B,(读作 "A并B").即 A∪B={x|x∈A,或x∈B}
例4 设A={4,5,6,8}, B {3,5,7,8} ={3,4,5,6,7,8}
(解得a = 3且A ∪ B = {8,4,4,7,9})
解: A ∩ B = {9},∴ 9 ∈ A ∵ 所以a = 9或2a 1 = 9, 解得a = ±3或a = 5
2
当a = 3时,A = {9,5,4}, B = {2,2,9}, B中元素违 背了互异性,舍去. 当a = 3时,A = {9,7,4}, B = {8,4,9}, A ∩ B = {9} 满足题意,故A ∪ B = {7,4,8,4,9}. 当a = 5时,A = {25,9,4}, B = {0,4,9}, 此时A ∩ B = {4,9}, 与A ∩ B = {9}矛盾,故舍去. 综上所述,a = 3且A ∪ B = {7,4,8,4,9}.
5.反馈演练 反馈演练
1.已知A = {x | x px 2 = 0}, B = {x | x + qx + r = 0}
2 2
且A ∪ B = {2,1,5}, A ∩ B = {2}, 求p, q, r的值.
(解得 : p = 1, q = 3, r = 10)
2.设A = {4,2a 1, a 2 }, B = {a 5,1 a,9}, 已知A ∩ B = {9}, 求a的值, 并求出A ∪ B.
3.并集与交集的性质
(1) A ∩ A = A (2) A ∩ = (3) A ∩ B = B ∩ A (4) A ∩ B A, A ∩ B B (5) A B 则 A ∩ B = A
(1) A∪ A = A (2) A∪ = A (3) A∪ B = B ∪ A (4) A A∪ B, B A∪ B, A∩ B A∪ B (5) A B则A∪ B = B
例7 设平面内直线l1上的点的集合为L1 , 直线l2 上点 的集合为L2 , 试用集合的运算表示l1 , l2的位置关系.
解 : (1)直线l1 , l2 相交于一点P可表示为 L1 ∩ L2 = {点P}; (2)直线l1 , l2 平行可表示为 L1 ∩ L2 = ; (3)直线l1 , l2 重合可表示为 L1 ∩ L2 = L1 = L2 .
4.补集
一般地,如果一个集合含有我们所研究问题中 所涉的所有元素,那么就称这个集合为全集,通常 记作U. 对于一个集合A,由全集U中不属于A的所有元 素组成的集合称为集合A相对于全集U的补集,简 称为集合A的补集.
记作CU A = {x | x ∈ U , 且x A}
补集可用Venn图表示为:
一般地,由属于集合A且属于集合B的所有 元素组成的集合,称为A与B的交集,记作 A∩B,(读作"A交B"),即 A∩B={x|x∈A,且x∈B}.
例6 新华中学开运动会,设 A={x|x是新华中学高一年级参加百米赛跑的同学} B={x|x是新华中学高一年级参加跳高比赛的同学}, 求A∩B. 解:A∩B={x|x是新华中学高一年级既参加百米赛 跑又参加跳高比赛的同学}.
本课小结
1.交集与并集的概念 2.全集与补集的概念 3.交集与并集的性质
�
例5 设集合A={x|-1<x<2},集合B={x|1<x<3} 5 A={x|-1<x<2}, B={x|1<x<3} 求A∪B.
解: A∪B={x|-1<x<2} ∪ {x|1<x<3}
={x|-1<x<3}
2.交集 交集
考察下列各个集合,你能说出集合 与集合C 考察下列各个集合 你能说出集合A,B与集合 你能说出集合 与集合 之间的关系吗? 之间的关系吗 (1)A={2,4,6,8,10}, B={3,5,8,12} ,C={8}; (2) A={x|x是新华中学2008年9月在校的女同学}, B={x|x是新华中学2008年9月入学的高一级同学}, C={x|x是新华中学2008年9月入学的高一级女同 学}.
U A CUA
例8 设U={x|x是小于9的正整数},A={1,2,3} B={3,4,5,6},求CUA,CUB.
解:根据题意可知,U={1,2,3,4,5,6,7,8}, 所以 CUA={4,5,6,7,8} CUB={1,2,7,8} .
例9 设全集U={x|x是三角形},A={x|x是锐 角三角形},B={x|x是钝角三角形} 求A∩B,CU(A∪B).
解 : 根据三角形的分类可知 A ∩ B = , CU ( A ∪ B ) = {x | x直角三角形}. A ∪ B = {x | x是锐角三角形或钝角三角形},
练习:判断正误
(1)若U={四边形},A={梯形}, 则CUA={平行四边形} (2)若U是全集,且AB,则CUACUB (3)若U={1,2,3},A=U,则CUA=φ 2. 设集合A={|2a-1|,2},B={2,3,a2+2a-3} 且CBA={5},求实数a的值. 已知全集U={1 U={1, 5}, 3. 已知全集U={1,2,3,4,5}, 非空集A={x A={x∈ 5x+q=0}, 非空集A={x∈U|x2-5x+q=0}, 的值. 求CUA及q的值.
(解得a = 1, b = 3)
∵ 解: A = {1,2}, A ∪ B = A, ∴B A ∴ B ≠ 或B = {1}或B = {2}或B = {1,2}. 当B ≠ 时, < 0, a不存在. = 0 当B = {1}时, ∴a = 2 1 a + a 1 = 0 = 0 当B = {2}时, ∴ a不存在 4 2a + a 1 = 0 1 + 2 = a 当B = {1 2}时, , ∴a = 3 1× 2 = a 1 综上所述,a = 2或a = 3.
1.1.3 集合的基本运算
考察下列各个集合,你能说出集合 与集合 考察下列各个集合 你能说出集合C与集合 你能说出集合 与集合A,B 之间的关系吗? 之间的关系吗 (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6} (2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.