瞬态热分析

合集下载

浅谈瞬态热力学分析在热电池设计中的应用

浅谈瞬态热力学分析在热电池设计中的应用

瞬态热力学分析的一般方程为:
是传导矩阵,包括热系数、对流系数、辐射系数
是比热矩阵,考虑系统内能的增加;
图1 表面温度云图
图2 最高点温度曲线
从以上结果看,采取基本温度防护措施的结构,最高点表面温度为244℃,大于要求的200℃,不能满足用户要求。

3.2 温度防护措施改进
为了进一步降低表面温度,将热电池与外部结构使用保温材料进行了隔离,避免了热电池的金属外壳与外结构金属框架之间的直接接触,降低了传热效率,并更换了外部结构中使用的保温材料。

同上,对其进行仿真分析,结果如图3、最高点温度如图4所示。

图3 表面温度云图(顶面)
图4 最高点温度曲线
从结果来看,改进后的结构表面最高温度为142.51℃,大大低于要求的200℃,完全可以满足用户要求。

 结束语
过高的表面温度会对导弹中装配的其他元器件造成影响。

瞬态热力学分析在结构的热设计、热防护中有着广泛的应用。

(下转第82页)。

瞬态热温度场分析

瞬态热温度场分析

ANSYS工程应用教程——热与电磁学篇47页-瞬态热温度场分析例1:有一长方形金属板,其几何形状及边界条件如图4—7所示。

其中,板的长度为15cm,宽度为5cm,板的中央为一半径为1cm的同孔。

板的初始温度为500℃,将其突然置于温度为20℃且对流换热系数为100W/m‘℃的流体介质中,试计算:1.第1s及第50s这两个时刻金属板内的温度分布情况。

2.金属板上四个质点的温度值在前50s内的变化情况。

3.整个金属板在前50s内的温度变化过程。

该金属板的基本材质属性如下:密度=5000Kx/m’比热容=200J/Kg K热传导率=5W/m KFinish $/ clear $/title,transient slab problem!进入前处理/prep7Et,1,plane55Mp,dens,1,5000Mp,kxx,1,5Mp,c,1,200Save!创建几何模型Rectng,0,0.15,0,0.05Pcirc,0.01,,0,360Agen,,2,,,0.075,0.025,,,,1Asba,1,2Save!划分网格Esize,0.0025Amesh,3Save!进入加载求解/soluAntype,trans !设定分析类型为瞬态分析Ic,all,temp,500 !为所有节点设置初始温度500度SaveLplotSfl,1,conv,100,, 20 !设定金属板外边界1-4的对流载荷Sfl,2,conv,100,,20Sfl,3,conv,100,,20Sfl,4,conv,100,,20/psf,conv,hcoe,2Time,50 !设定瞬态分析时间/制定载荷步的结束时间Kbc,1 !设定为阶越的载荷(载荷步是恒定的,如是随时间线性变化应用ramped——0)Autots,on !打开自动时间步长(求解过程中自动调整时间步长)Deltim,1,0.1,2.5 !设定时间步长为1(最小0.1最大2.5),载荷子步数nsubstTimint,on !打开时间积分,off为稳态热分析Outres,all,all !输出每个子步的所有结果到*.rth文件中(outpr将输出到*.Out文件中)Solve!进入后处理/post1Set,,,1,,1,, !载荷步m=1,子步,比例因子,0-读实数部分/1读虚数部分,时间点,,Plnsol,temp,,0, !该画面显示了在第1秒钟时金属板的温度分布状况Set,,,1,,50Plnsol,temp,,0 !该画面显示了在第50秒钟时金属板的温度分布状况!/post26Nsol,2,82,temp,,left-up !变量2,节点82(左上点),项目,,名字Plvar,2 !显示变量2!/post1 !查看金属板在前50秒内的温度变化过程Set,lastPlnsol,temp,Animate,10,0.5,,1,0,0,0 !捕捉的张数(默5),时间的推迟(默0.1),动画循环次数,自动缩放比!例(默0),用于动画的结果数据(默认0——目前载荷步),最小数据点,最大数据点Save/eof !退出正在读取的文件瞬态热温度场分析例2:一个半径为10mm,温度为90℃的钢球突然放入盛满了水的、完全绝热的边长为100mm的水箱中,水温度为20℃,如图7—5所示;。

Workbench瞬态热分析

Workbench瞬态热分析

Workbench瞬态热分析问题描述:将一个温度为900摄氏度的钢球放在空气中冷却,分别查看钢球和外部空气的温度变化。

分析类型:瞬态热分析分析平台:ANSYS Workbench 17.0分析人:技术邻一无所有就是打拼的理由研究模型:自定义一、引言结构热分析主要包括热传导、热对流、热辐射,热分析遵循热力学第一定律,即能量守恒。

传热即是热量传递,凡是有温差存在的地方,必然有热量的传递。

传热现象在现实生活中普遍存在,比如食物的加热,冷却,有相变存在的蒸发冷凝换热等。

热分析类型主要有稳态热分析和瞬态热分析。

稳态热分析中,我们只关心物体达到热平衡状态时的热力条件,而不关心达到这种状态所用的时间。

在稳态热分析中,任意节点的温度不随时间的变化而变化。

一般来说,在稳态热分析中所需要的唯一材料属性是热导率。

在瞬态热分析中,我们只关心模型的热力状态与时间的函数关系,比如对水的加热过程。

在瞬态热分析中,需要对材料赋予热导率,密度,比热容等材料属性及初始温度,求解时间和时间增量这些边界条件。

在装配体的热分析中,我们还要考虑到接触区域传热,由于接触面可能存在表面粗糙度,接触压力等情况存在,导致存在接触热阻。

接触面存在两种传热方式,一种是附体间的热传递,另一种是通过空隙层的热传导,但因为气体的热导率比较低,所以接触热阻不利于传热。

由于钢球散热与时间有关,我们选择瞬态热分析进行钢球的散热分析。

二、分析思路及流程在分析中,我们忽略空气的流动。

先进行稳态热分析,获得瞬态热分析的初始条件,然后将其传递到瞬态热分析中;在瞬态热分析中添加空气对流换热,来求解随时间变化的温度场。

分析流程如下图所示:三、模型建立及网格划分:由于选取模型比较简单,我们在DM中建立一个钢球,选择钢球的半径为30mm,然后在外侧包络一层空气,包络厚度选择30mm,由于模型是对称的,为了节省计算时间,减少计算量,选取1/4模型进行研究(也可以选取1/8)。

由于模型较为简单,网格采用自动划分,模型及网格如下图所示:四、边界条件施加及结果分析:因为该问题为瞬态热分析,我们需要先进行稳态热分析获得瞬态热分析所需要的初始条件,对钢球设置初始温度为900摄氏度,空气初始温度为22摄氏度,将稳态热分析的结果作为瞬态分析的初始条件,对空气对流换热系数为10W/m2K。

ansys稳态及瞬态热分析.ppt

ansys稳态及瞬态热分析.ppt
[K]{T}={Q} 式中: [K]为传导矩阵,包含导热系数、对流系数及辐射率和形状系
数; {T}为节点温度向量; {Q}为节点热流率向量,包含热生成; ANSYS利用模型几何参数、材料热性能参数以及所施加的边界 条件,生成[K] 、 {T}以及{Q} 。
2001年10月1日 2023/11/13
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
Guidelines Them-16
第五讲、瞬态传热
瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统 的温度、热流率、热边界条件以及系统内能随时间都有明显变化。 根据能量守恒原理,瞬态热平衡可以表达为(以矩阵形式表示):
[C]{T}+[K]{T}={Q}
式中: [K]为传导矩阵,包含导热系数、对流系数及辐射率和形状 系数; [C]为比热矩阵,考虑系统内能的增加; {T}为节点温度向量;
2001年10月1日 2023/11/13
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
Them-15
第四讲、稳态传热
如果系统的净热流率为0,即流入系统的热量加上系统自身产生的 热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳 态。在稳态热分析中任一节点的温度不随时间变化。稳态热分析 的能量平衡方程为(以矩阵形式表示)
2001年10月1日 2023/11/13
*ANSYS培训教程 – 版本 5.5 – XJTU MSSV By: Haich Gao (011001)
Guidelines Them-19
第八讲、热分析误差估计

ansys瞬态热分析教程及实例

ansys瞬态热分析教程及实例

大家好
QUST
18
自动时间步长选项 命令:AUTOTS GUI:Main Menu > Solution > Analysis Type
> Sol'n Controls 打开后求解过程中将自动调整时间步长。
大家好
QUST
19
时间积分选项 命令:TIMINT GUI:Main Menu > Solution > Load Step
QUST
6
大家好
5. 瞬态传热分析
均匀初始温度:如果整个模
型的初始温度为均匀且非0
2
,使用下列菜单指定:
3 4 1
QUST
7
大家好
1
2 3
5. 瞬态传热分析
非均匀的初始温度
如果模型的初始温度分布
已知但不均匀,使用这些
菜单将初始条件施加在特
4
定节点上
5
QUST
8
大家好
5. 瞬态传热分析
ANSYS 瞬态传热分析的主要步骤 1.建立有限元模型 2.施加载荷并求解 3.求解 4.查看分析结果
QUST
5
大家好
5. 瞬态传热分析
在瞬态分析中,载荷步和子步的定义与非线性稳态分 析十分类似。载荷定义的每个载荷步的终点,并可以 随时间阶跃或渐进的施加。
每个载荷步的求解是在子步上得到。子步长根据时间 积分步长得到。
自动时间步 (ATS) 同样适用于瞬态分析,可以简化 ITS选择。 ITS选择将影响到瞬态分析的精度和非线性收敛性 (如果存在)。
Restart
大家好
QUST
10条件分为两种情况:其一, 初始温度场已知;其二,初始温度场未知。

ansys_热分析_瞬态_稳态

ansys_热分析_瞬态_稳态

Guidelines
目录 (续)
第三章 稳态传热分析 一、稳态传热的定义 二、热分析的单元 三、ANSYS稳态热分析的基本过程 练习 第四章 瞬态传热分析 一、瞬态传热分析的定义 二、瞬态热分析的单元及命令 三、ANSYS瞬态热分析的主要步骤
1、建模 2、加载求解 3、后处理
四、相变问题 练习
Guidelines
系数; [C]为比热矩阵,考虑系统内能的增加; {T}为节点温度向量; { }为温度对时间的导数;
{TQ}为节点热流率向量,包含热生成。
Guidelines
第六讲、线性与非线性
如果有下列情况产生,则为非线性热分析: ①、材料热性能随温度变化,如K(T),C(T)等; ②、边界条件随温度变化,如h(T)等; ③、含有非线性单元; ④、考虑辐射传热 非线性热分析的热平衡矩阵方程为:
第三讲、热传递的方式
Definition
3、热辐射
热辐射指物体发射电磁能,并被其它物体吸收转变为热的热 量交换过程。物体温度越高,单位时间辐射的热量越多。 热传导和热对流都需要有传热介质,而热辐射无须任何 介质。实质上,在真空中的热辐射效率最高。
在工程中通常考虑两个或两个以上物体之间的辐射,系统中 每个物体同时辐射并吸收热量。它们之间的净热量传递 可以用斯蒂芬 —波尔兹曼方程来计算: q=εσA1F12(T14T24),式中q为热流率, ε为辐射率(黑度), σ为斯蒂芬 -波尔兹曼常数,约为5.67×10-8W/m2.K4,A1为辐射面1 的面积,F12为由辐射面1到辐射面2的形状系数,T1为辐 射面1的绝对温度,T2为辐射面2的绝对温度。由上式可 以看出,包含热辐射的热分析是高度非线性的。
线性: LINK32
两维二节点热传导单元

Ansys-第33例瞬态热分析实例一水箱

Ansys-第33例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。

33.1概述热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。

33.1.1 瞬态热分析的定义瞬态热分析用于计算系统随时间变化的温度场和其他热参数。

一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。

33.1.2 嚼态热分析的步骤瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。

1.建模瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。

注意:瞬态热分析必须定义材料的导热系数、密度和比热。

2.施加载荷和求解(1)指定分析类型,Main Menu→Solution→Analysis Type→New Analysis,选择Transient。

(2)获得瞬态热分析的初始条件。

定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu→Solution→Define Loads→Apply→Thermal→Temperature命令施加的温度在整个瞬态热分析过程中均不变,应注意二者的区别。

定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads →Apply→Initial Condit'n→Define即IC命令施加。

非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。

该稳态分析与一般的稳态分析相同。

注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts →Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步,Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step。

ANSYS热分析指南——ANSYS瞬态热分析

ANSYS热分析指南——ANSYS瞬态热分析

4.1瞬态传热的定义ANSYS/Multiphysics , ANSYS/Mechanical, ANSYS/FLOTRANANSYS/Professional 这些产品支持瞬态热分析。

瞬态热分析用于计算一个系统 的随时间变化的温度场及其它热参数。

在工程上一般用瞬态热分析计算温度场, 并将之作为热载荷进行应力分析。

许多传热应用一热处理问题,喷管,引擎堵塞, 管路系统,压力容器等,都包含瞬态热分析。

瞬态热分析的基本步骤与稳态热分析类似。

主要的区别是瞬态热分析中的载 荷是随时间变化的。

为了表达随时间变化的载荷,可使用提供的函数工具描述载 荷〜时间曲线并将该函数作为载荷施加(请参考《ANSYS Basic Porcedures Guide 》中的“施加函数边界条件载荷”),或将载荷〜时间曲线分为载荷步。

载荷〜时间曲线中的每一个拐点为一个载荷步,如下图所示:图4-1用荷载步定义时变荷载对于每一个载荷步,必须定义载荷值及时间值,同时还需定义其它载荷步选 项,如:载荷步为渐变或阶跃、自动时间步长等,定义完一个载荷步的所有信息 后,将其写为载荷步文件,最后利用载荷步文件统一求解。

本章对一个铸件的分 析的实例对此有进一步说明。

4.2瞬态热分析中使用的单元和命令瞬态热分析中使用的单元与稳态热分析相同,第三章对单元有简单的描述。

要了解每个单元的详细说明,请参阅《 ANSYS Eleme nt Refere nee 》。

要了解每 个命令的详细功能,请参阅《ANSYS Comma nds Refere nce 。

4.3瞬态热分析的过程瞬态热分析的过程为:建模施加荷载并求解ANSYS 热分析指南(第四章) 第四章瞬态热分析Load▲ Stepped (KBCJ) ■SteppedSteady<state analysis在后处理中查看结果以下的内容将讲述瞬态分析的基本步骤,由于并不是每个瞬态分析的过程都一致,因此本书先对整个过程进行了一般的讲解,再进行实例的分析。

ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态热模拟基本步骤基于ANSYS 9。

0一、稳态分析从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。

其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:(3-1)=0+-q q q流入生成流出在稳态分析中,任一节点的温度不随时间变化.基本步骤:(为简单起见,按照软件的菜单逐级介绍)1、选择分析类型点击Preferences菜单,出现对话框1。

对话框1我们主要针对的是热分析的模拟,所以选择Thermal.这样做的目的是为了使后面的菜单中只有热分析相关的选项.2、定义单元类型GUI:Preprocessor>Element Type〉Add/Edit/Delete 出现对话框2对话框2点击Add,出现对话框3对话框3在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。

对于三维模型,多选择SLOID87:六节点四面体单元。

3、选择温度单位默认一般都是国际单位制,温度为开尔文(K).如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units选择需要的温度单位。

4、定义材料属性对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。

GUI: Preprocessor〉Material Props> Material Models 出现对话框4对话框4一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5.对话框5若要设定材料的热导率随温度变化,主要针对半导体材料。

则需要点击对话框5中的Add Temperature选项,设置不同温度点对应的热导率,当然温度点越多,模拟结果越准确.设置完毕后,可以点击Graph按钮,软件会生成热导率随温度变化的曲线。

对话框5中,Material菜单,New Model选项,添加多种材料的热参数。

技术类《反应堆热工水力》第5章(反应堆瞬态热工分析)

技术类《反应堆热工水力》第5章(反应堆瞬态热工分析)

2.一回路压力边界:即一回路的设备、管道
和辅助管道的外壳,将一回路的冷却剂包容
在规定的流动场所内
3.安全壳:包容一回路破裂释放出的
放射性物质
24
瞬态分析的任务
反应堆瞬态分析的核心任务
预计各种运行瞬变故障和事故工况下,反应堆以及热力系统内运行工况和热
力参数的变化过程和变化幅度,为各道安全屏障的设计提供依据,确保各道
屏障不受破坏,并以此来确定运行参数允许变化的最大范围和反应堆保护系
统动作的安全定值。
反应堆整个输热系统各个设备都是相互关联的,任何一个环节发生变化都
会引起整个系统参数相应地变化。
在进行瞬态分析时,要通过各种方程对系统中的热工水力现象、以及各环
节之间的联系进行数学描述,最终要获得系统各部分内的工况和参数的变化
13
系统瞬态分析的数学模型
漂移流模型的特点
➢在热力学平衡的假设条件下,建立在两相平均速度场基础上的模型。
➢该模型提出漂移速度概念:两相以某混合速度流动时,蒸汽相对于混合速
度有一个向前(在向上流)或向后(在向下流)的漂移速度,液体则有一个
反向的漂移速度。
➢在空泡份额问题上,必须同时考虑气液两相之间的滑移以及流速在流通截
675℃)。
(4)包壳材料的最大允许应变要低于预计燃料包壳发生破损时的应变值。经验表明包
壳的应变不能超过1%。
(5)包壳内部的气体压力要始终低于一回路的名义压力,以防止增大和出现DNB(偏离
核态沸腾)对包壳发生鼓胀。
(6)燃料包壳应力应低于它的屈服压力。
37
电厂运行极限参数
对稀有事故或极限事故规定的极限参数
t
kc
r
t
kc

ANSYS workbench稳态及瞬态热分析

ANSYS workbench稳态及瞬态热分析

b. 网格控制:在Details of “Mesh ” 中单击sizing,size function选择 Proximity and Curvature(临近 以及曲率)选项
c. 选中Mesh,单击鼠标右键
→Generate Mesh
c
1
稳态热分析实例
划分网格 e. 对于曲面模型使用Proximity and Curvature(临近以及曲率)网格控制会
k导热系数(W/(m·℃)),q二次导数为热流密度(W/m^2)
1
热分析简介
基本的传热方式:热传导、热对流、热辐射、相变 2. 热对流(Convection) 对流是指温度不同的各个部分流体之间发生相对运动所引起的热量传递方 式。 热对流满足牛顿冷却方程:
q" h(Ts Tb)
q"为热流密度; h为物质的对流传热系数 ; TS是固体的表面温度; Tb为周围流体温度。
(续)
1
流程简介ቤተ መጻሕፍቲ ባይዱ
材料属性
1
流程简介
装配体与接触
•对于复杂的装配体模型,如果零件初始不接触将不会互相传热
•如果初始有接触就会发生传热
•对于不同的接触类型,将会决定接触面以及目标面之间是否会发生热量传递。 可以利用pinball调整模型可能出现的 间隙,如下表所示:
接触类型
•节点位于Pinball 内:
Mechanical。选中模型树 Geometry 下模型1 2. 在Detail of “1”中,展开Material选 项,单击Assignment后三角 3. 在下拉菜单中选择Copper Alloy
1
稳态热分析实例
划分网格 a. 首先使用程序自动划分网格,查

第12讲 ANSYS瞬态热分析

第12讲 ANSYS瞬态热分析
本讲介绍瞬态传热分析的知识,通过学习, 本讲介绍瞬态传热分析的知识,通过学习,使大家了 解瞬态传热分析,并能对简单的问题进行求解。 解瞬态传热分析,并能对简单的问题进行求解。
瞬态分析步骤
建模 加载求解 后处理
瞬态热分析步骤一: 建模
· 确定jobname、title、units, 进入PREP7; 确定jobname、title、 进入PREP7
瞬态热分析步骤二:加载求解
· 写入载荷步文件: 写入载荷步文件:
Command: Command: LSWRITE GUI: GUI: Main Menu> Preprocessor>Loads>Write LS File 或先求解: 或先求解: Command: Command: SOLVE GUI: GUI: Main Menu> Solution>Solve>Current LS 注意: 在第二载荷步中 , 要删去所有设定的温度 , 除 注意 : 在第二载荷步中, 要删去所有设定的温度, 非这些节点的温度在瞬态分析与稳态分析相同。 非这些节点的温度在瞬态分析与稳态分析相同。
瞬态热分析步骤二:加载求解
b、获得瞬态热分析的初始条件 ①、定义均匀温度场 如果已知模型的起始温度是均匀的, 如果已知模型的起始温度是均匀的,可设定所有节点初始温度 Command: Command: TUNIF GUI: GUI: Main Menu> Solution>-Loads->Settings>Uniform Temp Solution>-Loads-
瞬态热分析步骤二:加载求解
如果载荷在这个载荷步是恒定的,需要设为阶越选项; 如果载荷在这个载荷步是恒定的,需要设为阶越选项;如果载荷 值随时间线性变化,则要设定为渐变选项: 值随时间线性变化,则要设定为渐变选项: Command: Command: KBC GUI: GUI: Main Menu> Solution>-Load Step Opts-> Time/Frequenc > Solution>OptsTime and Substps

(瞬态)热分析例题5

(瞬态)热分析例题5

热处理是保证制造业产品的内在质量,提高其使用性能和可靠性的重要环节。

传统的热处理是一种依靠经验型技术实现的热处理,经验型的技术很难溶人以信息化为主导的先进制造技术之中。

因此迫切需要将热处理改造为基于知识的热处理技术,从而减弱热处理信息化在制造业中的瓶颈问题。

对热处理过程的计算机模拟是保证热处理信息化的关键。

金属切削刀具是制造业中最基本的生产要素,丝锥则属于金切刀具中复杂刀具的一种,对其热处理过程的计算机模拟一旦有所突破,将会最终带动整个刀具制造行业,从而影响到整个制造业的热处理信息化进程。

由于淬火过程直接影响到刀具的最终使用性能,而且属于热处理过程中温度和应力变化最大的一个环节,组织变化复杂,所以以此作为研究的依据。

热处理过程还具有“瞬息万变”的特性,欲实时获取某瞬时、某特定冷却条件下的温度场、应力场分布情况,在现有的测试手段、试验方法以及测试仪器下还显得难度较大。

随着计算机软、硬件水平的提高,伴随着数值计算方法、计算传热学、热弹塑性理论、相变动力学、计算流体力学等学科的同步跟进,对于丝锥的淬火过程计算机模拟已成为可行、可靠的技术手段。

1 淬火过程计算机模拟的客观依据计算机模拟只是一种手段,其模拟结果的可靠程度要通过试验或现行热处理工艺进行检验。

此处严格按照某工具厂M24丝锥淬火工艺规程进行:对于W9Mo3Cr4V材料制成的丝锥,加热过程采用在400℃、800℃、1200℃三级加热,每个温度保温20min,然后以90S的时间用盐浴冷却的方式降至室温。

2 淬火过程计算机模拟的理论依据该问题属于瞬态热分析问题。

与丝锥相接触的硝盐水溶液的温度和换热系数是已知的,所以该问题属于第三类边界条件的问题。

第三类边界条件是指与物体相接触的流体介质的温度和换热系数a均为已知,这样物体与流体介质之间的换热量就为已知。

用公式表示为其中:和α可以是常数,也可以是随时间和空间变化的函数。

又由于材料温度将在一个较大的温度区间变化,材料热性能随温度变化的非线性因素不能忽略,因此该问题属于比较复杂的瞬态非线性热分析问题。

瞬态热分析实例(二维)

瞬态热分析实例(二维)

模型[1]热传导问题:如图,110R cm =,220R cm =,密度为36000/kg m ,比热容为220/()J kg K ⋅,热传导率为6/()W m K ⋅,初始温度为300℃,突然放入30℃的液体中冷却,这种液体对流换热系数2120/()h W m K =⋅。

计算:(1)第1秒和第60秒这两个时刻温度分布情况;(2)内外边在60秒内温度变化。

1.设置环境① 设置分析模块。

本例是温度分布分析,所以只需要选择热分析模块,这样就可以把结构分析模块、电磁场分析模块和流体分析模块的菜单都过滤掉。

设置如图② 设置单位在命令行输入“/units,SI ”,SI 为设定为国际单位制。

必须注意:[1] 秦宇.ANSYS 11.0基础与实例教程[M]. 北京,化学工业出版社,2009:318-330ANSYS程序不会为你的分析假定一个单位制,除了磁场分析以外,你可以使用任何单位制,只要你能保证你输入的所有数据都是按照这个单位制进行的。

也就是说,单位制在所有输入数据中应该保持一致。

使用/UNITS命令,你可以在ANSYS数据库中进行标记来表示你使用的单位制。

但是请注意,这个命令并不将一个单位转化为另一个。

它仅仅只作为对分析的一个评论记录。

什么意思呢?就是/UNITS只是个标记,告诉别人程序的单位制,即使程序中没有使用这种单位制,它也不能将这种单位制转化为自己标记的那个单位制。

所以,如果你要让ANSYS的单位为国际单位制,你在输入物理量之前,先将所有的物理量转换为国际单位制,如:原先你的图纸上均为毫米,比如一个矩形截面尺寸是400mm*500mm,那么,你在建模之前先转化为0.4m*0.5m然后输入的长度为0.4和0.5,ANSYS只知道你输入的是0.4和0.5,它不知道你的单位是什么。

2.定义单元类型和材料属性①选择单元类型。

如图:我们选择【Quad 4node 55】即选择了PLANE55单元。

下面介绍一下PLANE55单元,我们直接从ANSYS帮助文档中摘录。

热设计 瞬态分析

热设计 瞬态分析

收敛准则:采用稳态收敛准则
因瞬态计算包括非稳态项在内,故时间 步的划分同网格的划分一样,都会对计 算的误差起影响,同网格一样,时间步 也必须足够密到能够描述所发生的变化
最好采用收敛准则: Monitor Point Convergence For Temperature
.
瞬态分析的收敛性
总功耗=稳态功耗值 * Transient F
收敛准则=稳态功耗值/200 !!!!!
例:某总功耗为200*F(t)W,设定方法如下两种: 1)稳态功耗值=200, F(t)=X[0,1],收敛准则为1W 2)稳态功耗值=1, F(t)=X[0,200],收敛准则为0.005W
注意:在瞬态分析中,如果某一时间步上的计算没有良好的 收敛,则计算的误差会累积到以后时间步的计算当中。
kA
经验公式:开机经过5*TC时间后,固体大致达到热平衡。
.
瞬态特性
时间常数的求解方法:t时刻一固体的温度值 估计公式,可借助该公式求解TC:
160.00 1.00 0.90
rature T-Ts/Tamb-Ts Exp Curve fit
T Ts exp(t / tc ) Tamb Ts
T:器件的t时刻点温度;
TS:器件的稳态温度; Tamb:环境温度
140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00 0 50 100 150 200 y=e
2 -0.05x
0.80 0.70 0.60 0.50 0.40
R =1
0.30 0.20 0.10 0.00 250
1)初场(优先级较initial variables小) Global System Settings的功能 2)边界条件(优先级较ambient小) 3)浮升力、辐射计算基准
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.8.2 菜单操作过程4.8.2.1 设置分析标题1、选择“Utility Menu>File>Change Jobname”,输入文件名Transient1。

2、选择“Utility Menu>File>Change Title”输入Thermal Transient Exercise 1。

4.8.2.2 定义单元类型1、选择“Main Menu>Preprocessor”,进入前处理。

2、选择“Main Menu>Preprocesor>Element Type>Add/Edit/Delete”。

选择热平面单元plane77。

4.8.2.3 定义材料属性1、选择“Main Menu>Preprocessor>Material Props>Material Models”,在弹出的材料定义窗口中顺序双击Thermal选项。

2、点击Conductivity,Isotropic,在KXX框中输入383;点击Density,在DENS框中输入8898;点击Specific Heat,在C框中输入390。

3、在材料定义窗口中选择Material>New Model,定义第二种材料。

4、点击Conductivity,Isotropic,在KXX框中输入70;点击Density,在DENS框中输入7833;点击Specific Heat,在C框中输入448。

5、在材料定义窗口中选择Material>New Model,定义第三种材料。

6、点击Conductivity,Isotropic,在KXX框中输入.61;点击Density,在DENS框中输入996;点击Specific Heat,在C框中输入4185。

4.8.2.4 创建几何模型1、选择“Main Menu>Preprocessor>-Modeling->Create>-Areas->Retangle>By Dimensions”,输入X1=0, Y1=0, X2=0.6, Y2=0.5, 点击Apply;输入X1=0.15, Y1=0.225, X2= 0.225, Y2=0.27, 点击Apply;输入X1=0.6-0.2-0.058, Y1=0.225, X2=0.6-0.2, Y2=0.225+0.044, 选择OK。

2、选择“Main Menu>Preprocessor>-Modeling->Operate>Booleans>Overlap”,选择Pick All。

3、选择“Utility Menu>Plotctrls>Numbering>Areas, on”。

4、选择“Utility Menu>Plot>Areas”。

4.8.2.5 划分网格1、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料1。

2、选择“Main Menu>Preprocessor>Meshing->Size Cntrls->-Manualsize->-Global->Size”,输入单元大小0.02。

3、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选择铜块。

4、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料2。

5、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选择铁块。

6、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料3。

7、选择“Main Menu>Preprocessor>Meshing->Size Cntrls->-Manualsize->-Global->Size”,输入单元大小0.05。

8、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Free”,选择水箱。

9、选择“Utility Menu>Plot>Area”。

4.8.2.6 进行稳态分析设置初始条件1、选择“Main Menu>Solution>-Analysis Type->New Analysis”,选择Transient,定义为瞬态分析。

2、选择“Main Menu>Solution>-Load Step Opts>Time/Frenquenc>Time Integration”,将TIMINT设定为 off,首先进行稳态分析。

(关闭瞬态效应)3、选择“Main Menu>Solution>-Load Step Opts>Time/Frenquenc>Time-Time Step”,设定TIME为0.01、DELTIM也为0.014、选择“Utility Menu: Select>Entities”,在对话框中自上而下依次选择:Elements,By Attributes,Material num,在“Min, Max”框中输入3,选择From Full,点击APPLY;选择选择Nodes,Attached to, Element,点击OK。

5、选择“Main Menu>Solution>-Loads->Apply>-Thermal->Temperature>On Nodes”,选择Pick All, 输入20。

6、选择“Utility Menu: Select>Entities”,在对话框中自上而下依次选择:Elements,By Attributes,Material num,在“Min, Max”框中输入2,选择From Full,点击APPLY;选择选择Nodes,Attached to, Element,点击OK。

7、选择“Main Menu>Solution>-Loads->Apply>-Thermal->Temperature>On Nodes”,选择Pick All, 输入80。

8、选择“Utility Menu>Select>Entities”,在对话框中自上而下依次选择:Elements,By Attributes,Material num,在“Min, Max”框中输入1,选择From Full,点击APPLY;选择选择Nodes,Attached to, Element,点击OK。

9、选择“Main Menu>Solution>-Loads->Apply>-Thermal->Temperature>On Nodes”,选择Pick All, 输入70。

10、选择“Utility Menu>Select Everything”。

11、Main Menu>Solution>-Solve->Current LS”。

4.8.2.7 进行瞬态分析1、选择“Main Menu>Solution>-Load Step Opts>Time/Frenquenc>Time-Time Step”,设定TIME=3600, DELTIM=26, 最小、最大时间步长分别为2, 200, 将Autots设置为ON。

2、选择“Main Menu>Solution>-Load Step Opts>Time/Frenquenc>Time Integration”,将TIMINT设置为ON。

3、选择“Main Menu>Solution>-Loads->Delete>-Thermal->Temperature>On Nodes”,选择Pick All,删除稳态分析定义的节点温度。

4、选择“Main Menu>Solution>-Load Step Opts>Output Ctrls->DB/Results”,选择Every Substeps。

5、选择“Main Menu>Solution>-Solve->Current LS”。

4.8.2.8 后处理1、选择“Main Menu>TimeHist PostPro”,进入POST26。

2、选择“Main Menu>TimeHist PostPro>Define Variables”,点击Add,选择Solution summary,点击OK,在User specified label框中输入dtime,选择Solution Items和Step Time,点击OK定义子步时间为2号变量。

3、选择“Main Menu>TimeHist PostPro>Define Variables”,点击Add,选择Nodalresult,点击OK,在User specified label框中输入T_Copper,在Node number框中输入node(0.1875,0.2475,0),点击OK定义3号变量。

同理可以定义其他节点解。

4、选择“Main Menu>TimeHist PostPro>Graph Virables”,输入变量代号,显示各变量随时间变化的曲线。

5、选择“Main Menu>General Postproc”,进入POST1。

6、选择“Main Menu>General Postproc>-Read Results->Last set”。

7、选择“Main Menu>General Postproc>Plot result>Nodal Solution”,选择temperature。

4.8.3 等效的命令流方法/filename,transient1/title, Thermal Transient Exercise 1!进入前处理/prep7et,1,plane77 ! 定义单元类型mp,kxx,1,383 ! 定义材料热性能参数mp,dens,1,8889 !1~铜,2~铁,3~水mp,c,1,390mp,kxx,2,70mp,dens,2,7837mp,c,2,448mp,kxx,3,0.61mp,dens,3,996mp,c,3,4185!创建几何实体rectnag,0,0.6,0,0.5rectang,0.15,0.225,0.225,0.27rectang,0.6-0.2-0.058,0.6-0.2,0.225,0.225+0.044aovlap,all !布尔操作/pnum,area,1aplot!划分网格aatt,1,1,1eshape,2esize,0.02amesh,2aatt,2,1,1amesh,3aatt,3,1,1eshape,3esize,0.05amesh,4/pnum,mat,1eplot!加载求解/soluantype,transtimint,off !先作稳态分析,确定初始条件time,0.01 !设定只有一个子步的时间很小的载荷步deltim,0.01esel,s,mat,,3nsle,sd,all,temp,20esel,s,mat,,2nsle,sd,all,temp,80esel,s,mat,,1nsle,sd,all,temp,70allselsolve !得到初始温度分布!进行瞬态分析time,3600timint,on !打开时间积分deltim,26,2,200 !设置时间步长,最大及最小时间步长autots,on !打开自动时间步长ddelet,all,temp !删除稳态分析中定义的节点温度outres,all,1 !将每个子步的值写入数据库文件solvefinishsave!进入POST26后处理/post26solu,2,dtime,,dtime !2~每一子步采用的时间步长nsol,3,node(0.1875,0.2475,0),temp,,T_Copper !3~铜块的中心点nsol,4,node(0.371,0.247,0),temp,,T_Iron !4~铁块的中心点nsol,5,node(30,0,0),temp,,T_H2O_Bot !5~水箱的底部nsol,6,node(30,50,0),temp,,T_H2O_Top !6~水箱的顶部nsol,7,node(0,25,0),temp,,T_H2O_Left !7~水箱的左部nsol,8,node(60,25,0),temp,,T_H2O_Right !8~水箱的右部Plvar,2plvar,3,4,5,6,7,8!进入POST1后处理/post1 !设置为最后一个载荷子步set,lastesel,s,mat,,1nsle,splnsol,tempesel,s,mat,,2nsle,splnsol,tempfinish。

相关文档
最新文档