七年级数学下册《相交线与平行线》教学设计

合集下载

七年级下册《相交线与平行线》教案优秀范文五篇

七年级下册《相交线与平行线》教案优秀范文五篇

七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。

今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。

七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。

这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。

学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。

二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。

因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。

人教版七年级数学下册相交线与平行线《平行线的性质(第4课时)》示范教学设计

人教版七年级数学下册相交线与平行线《平行线的性质(第4课时)》示范教学设计

平行线的性质(第4课时)教学目标1.了解定理与证明的概念,理解定理可以作为继续推理的依据.2.初步接触逻辑推理的形式,知道逻辑推理的根据主要有已知、定义、定理、基本事实等,理解证明中的每一步都要有根据.3.掌握利用反例来判断一个命题是假命题的方法.教学重点理解证明的必要性和证明的过程步步有根据.教学难点理解什么是证明,填写一些证明的关键步骤和根据.教学过程新课导入【问题】说出两个我们学过的基本事实.【师生活动】学生独立回答,教师引导补充.【答案】如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.【问题】说出两个经过推理得到的真命题.【师生活动】学生思考,教师补充,并回顾是经过怎样的推理得到的.【答案】“对顶角相等”.推理过程如下:因为∠2与∠3互补,∠4与∠3互补(邻补角的定义),所以∠2=∠4(同角的补角相等).“内错角相等,两直线平行”.推理过程如下:因为∠2=∠3,而∠3=∠1,所以∠1=∠2,即同位角相等.从而a∥b.【设计意图】从学生已知的真命题出发,为下文探究定理的概念做准备.新知探究一、探究学习【新知】一些命题,如“对顶角相等”“内错角相等,两直线平行”等,它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.【问题】推理过程又称为什么呢?【师生活动】教师引导,学生思考.【新知】在很多情况下,一个命题的正确性需要经过推理才能做出判断,这个推理过程叫做证明.【问题】推理和证明有区别吗?(先不作答,带着疑问继续探究.)【设计意图】由已经过推理证实的真命题引出定理和证明的概念,让学生更容易理解和记忆,最后给出的问题又能引导学生在后面的学习探究中深入思考推理和证明的本质.【思考】判断下列命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.【分析】题设:在同一平面内,一条直线垂直于两条平行线中的一条.结论:这条直线也垂直于两条平行线中的另一条.画出图形如下:已知:如图,直线b∥c,a⊥b.求证:a⊥c.分析:【问题】在下面证明命题的过程中,尝试把推理的根据填到括号内.证明:∵a⊥b(已知),∴∠1=90°(垂直的定义).又b∥c(__________),∴∠1=∠2(________________________).∴∠2=∠1=90°(等量代换).∴a⊥c(_________________).【师生活动】教师引导,小组讨论,然后找学生代表回答.【答案】已知两直线平行,同位角相等垂直的定义【新知】证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.【归纳】推理和证明是有区别的,推理是证明过程中的组成部分.命题1是真命题.【设计意图】通过证明该定理,了解逻辑推理的形式.【思考】判断下列命题的真假.命题2:相等的角是对顶角.【分析】题设:两个角相等.结论:这两个角互为对顶角.对顶角:∠1与∠3,∠2与∠4位置关系:有公共顶点,两边分别互为反向延长线.【答案】反例:OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.反例:∠1=∠2,但∠1与∠2不是对顶角.【归纳】命题2是假命题.【师生活动】教师追问:真命题需要通过推理才能做出判断,那么,怎么判断一个命题是假命题呢?小组讨论,然后学生代表回答.【新知】判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.二、典例精讲【例1】在下面的括号内,填上推理的依据.已知:如图,∠A+∠B=180°.求证:∠C+∠D=180°.证明:∵∠A+∠B=180°,∴AD∥BC(__________________________).∴∠C+∠D=180°(__________________________).【答案】同旁内角互补,两直线平行两直线平行,同旁内角互补【归纳】注明的理由主要是依据的性质、定理、基本事实等,而“已知”式的理由可以不注明.【设计意图】检验学生对证明的步骤以及推理的根据的掌握情况.【例2】命题“同位角相等”是真命题吗?如果是,说出理由;如果不是,请举出反例.【答案】解:不是,反例如图所示,∠1和∠2是同位角,但∠1≠∠2.【归纳】举反例是判断一个命题是假命题的常用方法,举反例的问题在生活中也常用到.【设计意图】检验学生对通过举反例判断一个命题是假命题的方法的掌握情况.课堂小结板书设计一、定理的概念二、证明的概念及过程三、通过举反例判断假命题课后任务完成教材第23页习题5.3第6题.。

相交线与平行线全章教案

相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。

2. 能够识别和判断直线之间的相交与平行关系。

3. 掌握平行线的性质及推论。

教学内容:1. 相交线的定义及特点。

2. 平行线的定义及特点。

3. 平行线的性质及推论。

教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。

2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。

3. 引导学生通过观察和思考,总结出平行线的性质及推论。

作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。

2. 请学生总结平行线的性质及推论,并加以证明。

第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。

2. 能够运用相交线的性质解决实际问题。

教学内容:1. 相交线的性质。

2. 相交线的判定方法。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。

2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。

作业布置:1. 请学生运用相交线的性质,解决一些实际问题。

2. 请学生总结相交线的判定方法,并加以证明。

第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。

2. 能够运用平行线的性质解决实际问题。

教学内容:1. 平行线的性质。

2. 平行线的判定方法。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。

2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。

作业布置:1. 请学生运用平行线的性质,解决一些实际问题。

2. 请学生总结平行线的判定方法,并加以证明。

第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。

2. 能够运用平行线的性质解决实际问题。

教学内容:1. 平行线的应用方法。

2. 实际问题解决。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。

2. 提供一些实际问题,让学生运用平行线的性质解决。

第5章相交线与平行线大单元教学设计人教版七年级数学下册

第5章相交线与平行线大单元教学设计人教版七年级数学下册

单元目标
下,能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们对知识迁移能 力不强,推理能力还需进一步培养。 (一)教学目标
1.理解对顶角、邻补角的概念,识别同位角、内错角、同旁内角,探索并掌握对顶角 相等的性质。
2.理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。理解点 到直线的距离的意义,能度量点到直线的距离。掌握基本事实:过一点有且只有一条直线 与已知直线垂直。
线的距离的概念,能度 角器过一点画已知 垂线
量点到直线的距离.掌 直线的垂线,会用格
握垂线的性质.
尺量点到直线的距
2.通过观察、思考、探 离
究 等活动 归纳 出垂线 3.掌握垂线的性质,
的概念和性质,并利用 并能利用垂线的性
所学知识进行说理,体 质解决问题
会从一般到特殊的方
法,提高逻辑思维能
力.通过利用垂线的性
平面内两条直线的位置关系是“图形与几何”所要研究的基本问题,本章在学生已 有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究了两条直线相 交的情形,探究了两条直线相交所成的角的位置和大小关系,给出了邻补角和对顶角概 念,得出了“对顶角相等”的结论。垂直作为两条直线相交的特殊情形,在生活中有着 广泛的应用,与它有关的概念和结论也是学习“平面直角坐标系”的直接基础,本章对 垂直的情形进行了专门的研究,探索得出了“过一点有且只有一条直线与已知直线垂 直”“垂线段最短”等结论,并给出点到直线的距离的概念,为学习在平面直角坐标系 中确定点的坐标打下基础。接下来研究了两条直线被第三条直线所截的情形,给出了同 位角、内错角、同旁内角的概念,为接下来研究平行作准备。对于平面内两条直线平行 的位置关系,首先引入一个基本事实(平行公理),即过直线外一点有且只有一条直线与 已知直线平行,以此为出发点探讨平行线的判定和平行线的性质,对于平行线的判定, 教科书首先结合推三角尺画平行线的方法给出“同位角相等,两直线平行”,并由此推 理得出“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。平行线的性质 也是类似,即通过探究得出性质 1,再由性质 1 推理得出性质 2 和性质 3。接下来对命 题、命题的构成、直假命题、定理作了简单介绍,使学生初步接触有关形式逻辑的概念 和术语,并以“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂 直于另一条直线”为例,介绍了什么是证明。在最后一节安排了有关平移的内容,图形 的变化是“图形与几何”领域中一块重要的内容,通过将图形的平移、旋转折叠等活 动。使图形动起来,有助于在运动变化的过程中发现图形不变的几何性质,因此图形的 变化是研究几何问题、发现几何结论的有效工具。平移的内容一方面是将其作为平行线 的一个应用,另一方面引入平移,可以尽早渗透图形变化的思想,使学生尽早接触利用 平移分析和解决问题的方法。在“平移”一节中,教科书首先给出几个美丽图案,分析 这些图案的共同特点,由此引出图形的平移,接着通过一个“探究”栏目让学生画雪 人,体会动手平移的过程,再观察两个相邻的雪人,分析它们之间对应点连线的位置和 长短关系,发现平移的基本性质,给出了平移的概念,最后学习利用平移设计图案和分 析解决实际生活中的问题。

北师大版七年级下第二章相交线与平行线全章教案

北师大版七年级下第二章相交线与平行线全章教案

课 题第二章 相交线与平行线1、两条直线的位置关系(第1课时)教 学 目 标1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。

2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。

3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。

教学重、难点1. 2.教 学 过 程 教 学 内 容可根据学生实际增减内容 第一环节 走进生活 引入课题 活动内容一:两条直线的位置关系1. 巩固练习:教师展示下列图片,学生快速回答:2.1—1 2.1—2 结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 和 . 2.定义分别为: 。

问题1:在2.1—1中,直线m 和n 的关系是 ;a 和b 是 ;a 和n 是 。

问题2:在2,1—2你能提出哪些问题?第二环节 动手实践 探究新知动手实践一m nab请先画一画:两条直线直线和,交于点O,再回答下列问题..问题1:观察2.1—4:∠1和∠2的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义。

问题2:剪子可以看成图2.1—4,那么剪子在剪东西的过程中,∠1和∠2还保持相等吗?∠3和∠4呢?你有何结论? 问题3:下列各图中,∠1和∠2是对顶角的是( )问题4:如图2.1—6所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?动手实践二补角定义:一般地,如果两个角的和是1800,那么称这两个角互为补角( ) 余角定义:如果两个角的和是900,那么称这两个角互为余角( ) 动手实践三打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,与交于点O ,∠∠900,∠1=∠2小组合作交流,解决下列问题:在图2.1—8中 问题1:哪些角互为补角?哪些角互为余角?1 2 1 2 1 212A B CD 注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。

人教版 七年级下册数学第五章:相交线与平行线 平行线教案设计

人教版 七年级下册数学第五章:相交线与平行线 平行线教案设计

平行线一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论;●掌握平行线的判定方法与平行线的性质,运用所学的知识,判定两条直线是否平行。

用作图工具画平行线,从而学习如何进行简单的推理论证;●理解两条平行线的距离的概念;●什么是命题,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论。

重点难点:●重点:平行线的判定及性质,平移变换。

●难点:平行线的判定和性质的联系与区别;推理能力的培养;平移变换的理解及应用。

学习策略:●通过观察、思考、探究等活动归纳出平行线的概念和性质,借助练习熟悉“说理”和“简单推理”的过程,从而加深理解并熟练掌握本节内容。

二、学习与应用“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

知识回顾---复习学习新知识之前,看看你的知识贮备过关了吗?(一)两条直线被第三条直线截成的八个角中共有对同位角,对内错角,对同旁内角。

(二)同位角特征:截线旁,被截两线的方向。

内错角特征:截线旁,被截两线之间。

同旁内角特征:截线旁,被截两线之间。

知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习,请在虚线部分填写预习内容,在实线部分填写课堂学习内容。

课堂笔记或者其知识点一:平行线的概念及表示方法在同一平面内,不相交的两条直线叫做。

通常用“”表示平行,如图1中,直线AB与CD平行,记作,如果用l,m表示这两条直线,那么直线l与直线m平行,记作。

要点诠释:(1)平行线必须满足两个条件:①,②,但要注意直线的特点是可以向__方无限延长,在平面内只能画出有限长,如下图2中直线a,b看上去不相交,但当把它们看作无限长之后会发现它们其实是相交的,因此直线a,b不平行,从平行线的定义中,我们还可以学习到这样的知识:在同一平面内,不重合的两条直线的位置关系有两种:①,②。

人教版七年级数学下册相交线与平行线《相交线(第1课时)》示范教学设计

人教版七年级数学下册相交线与平行线《相交线(第1课时)》示范教学设计

相交线(第1课时)教学目标1.理解邻补角和对顶角的概念.2.掌握“对顶角相等”的性质.教学重点“对顶角相等”的性质.教学难点能正确辨认两条相交直线所形成的邻补角和对顶角,能推出“对顶角相等”的性质.教学过程新课导入如图,观察剪刀剪开布片过程中有关角的变化.可以发现,握紧剪刀的把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片.如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题.【设计意图】从现实生活中发现并提出简单的数学问题吸引学生的注意,同时为得出两条直线相交所成角的关系提供生活背景.新知探究一、探究学习【问题】如图,任意画两条相交的直线,形成四个角,∠1和∠2有怎样的位置关系?∠l和∠3呢?【师生活动】教师引导学生从角的定义出发,分别说出∠1与∠2,∠1与∠3的位置关系.在学生直观地感知到两个角有“相邻”“相对”的关系时,引导学生用几何语言准确表达,进而得到“邻补角”“对顶角”的定义.【答案】∠1和∠2有一条公共边OC,它们的另一边互为反向延长线.∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线.【追问】分别量一下各个角的度数,∠1和∠2的度数有什么关系?∠1和∠3呢?【师生活动】学生用量角器量出各个角的度数,从而发现它们之间的数量关系.【答案】∠1=50°,∠2=130°,∠3=50°,∠4=130°.∠1+∠2=180°,∠1=∠3.还可以得到:∠3+∠4=180°,∠2=∠4.【追问】在剪刀把手之间的角变化的过程中,各个角之间的关系还保持吗?为什么?【答案】各个角之间的关系仍保持.理由:由图知∠1+∠2=∠2+∠3=180°,所以∠1=∠3.同理可得∠2=∠4.【设计意图】让学生充分经历动手操作、独立思考的探究过程,并且在这一过程中,渗透由特殊到一般的研究问题的方法,使学生经历从实验几何到论证几何的过渡.二、新知精讲【新知】两个角有公共顶点和一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.如下图中的∠1和∠2,∠2和∠3,∠3和∠4,∠4和∠1都互为邻补角.【特别提醒】1.邻补角互补.2.互为邻补角的两个角满足:(1)有公共顶点和一条公共边;(2)另一边互为反向延长线.3.邻补角是成对出现的,单独一个角或两个以上的角不能互为邻补角.4.邻补角的两种类型:(1)由两条直线相交形成;(2)由一条直线和一条端点在该直线上的射线形成,如图中的∠1和∠2.【新知】两个角有公共顶点,且它们的两边分别互为反向延长线,具有这种位置关系的两个角,互为对顶角.如下图中的∠1和∠3,∠2和∠4都互为对顶角.【思考】如图,可以得到对顶角的什么性质?【师生活动】教师引导学生对图形进行观察分析,可以得到:∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.【答案】对顶角的性质:对顶角相等.【特别提醒】1.两条直线相交是形成对顶角的前提条件.2.两直线相交,对顶角有2对.【动图】观察动图,直观地感受“对顶角相等”.三、典例精讲【例1】如图,直线AB,CD,EF相交于一点O,请找出∠COF的邻补角.【师生活动】学生组内讨论,解答本题,教师提问.【答案】解:∠COF的邻补角有∠DOF和∠COE.【归纳】两步寻找邻补角:第1步:固定角的一边;第2步:将另一边反向延长.由固定边和另一边的反向延长线组成的角就是原角的邻补角.【设计意图】通过寻找邻补角,考查学生对邻补角定义的掌握情况,同时总结出寻找邻补角的步骤.【例2】下列四个图形中,∠1与∠2互为对顶角的是().A.B.C.D.【师生活动】教师引导学生对各选项进行分析:选项A,D,均有一边不互为反向延长线,故不是对顶角;选项B,有一边不互为反向延长线,且两角没有公共顶点,故不是对顶角;选项C,符合对顶角的概念.【答案】C【归纳】抓住两特征,判断两角是否互为对顶角:(1)两角有公共顶点;(2)两角的两边分别互为反向延长线.同时具有以上两个特征的角互为对顶角,二者缺一不可.【方法总结】反向延长法:找一个角的对顶角时,分别反向延长这个角的两边,以这两条反向延长线为边的角即原角的对顶角.【设计意图】考查学生对对顶角定义的掌握情况,知道在判断是否为对顶角的时候可以使用反向延长法.【例3】如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.【师生活动】学生独立完成计算,组内交流对计算结果进行纠错.【答案】解:由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.【例4】如图,直线AB,CD,EF两两相交,∠1=2∠3,∠2=80°,求∠4的度数.【师生活动】学生对图形中的各角进行分析:∠1与∠2互为对顶角,∠3与∠4互为邻补角.先根据∠1与∠2的关系及∠1与∠3的关系,∠2=80°,求出∠1及∠3的度数,再根据∠3与∠4的关系求出∠4的度数.【答案】解:因为∠1和∠2互为对顶角,所以∠1=∠2=80°.又因为∠1=2∠3,所以∠3=12∠1=40°.因为∠3和∠4互为邻补角,所以∠4=180°-∠3=140°.【归纳】在运用邻补角及对顶角的概念和性质解决问题时,要牢记邻补角互补,对顶角相等.【设计意图】例3和例4考查学生使用邻补角和对顶角的性质对角度进行计算,巩固学生对这两种角的性质的掌握.课堂小结板书设计一、邻补角的概念及性质二、对顶角的概念及性质课后任务完成教材第3页练习.。

相交线与平行线教案

相交线与平行线教案

相交线与平行线教案一、教学目标知识与技能:1. 学生能够理解相交线与平行线的概念。

2. 学生能够识别和绘制相交线与平行线。

3. 学生能够运用相交线与平行线的性质解决实际问题。

过程与方法:1. 学生通过观察、实验和思考,培养观察能力和逻辑思维能力。

2. 学生通过合作交流,提高沟通能力和团队合作能力。

情感态度价值观:1. 学生培养对几何学的兴趣和好奇心。

2. 学生培养解决问题、勇于尝试的精神。

二、教学重点与难点重点:1. 相交线与平行线的概念及性质。

2. 相交线与平行线的绘制方法。

难点:1. 相交线与平行线的判断与证明。

2. 相交线与平行线在实际问题中的应用。

三、教学准备教师准备:1. 教学PPT或黑板。

2. 相交线与平行线的图片或实物。

3. 练习题和答案。

学生准备:1. 笔记本和笔。

2. 学习几何的基础知识。

四、教学过程1. 导入:教师通过展示相交线与平行线的图片或实物,引导学生观察和思考,激发学生的兴趣。

2. 新课导入:教师简要介绍相交线与平行线的概念,并提出问题,引导学生思考。

3. 知识讲解:教师详细讲解相交线与平行线的性质和绘制方法,并通过示例进行演示。

4. 课堂练习:教师给出练习题,学生独立完成,教师批改并给予反馈。

5. 小组讨论:学生分组讨论相交线与平行线在实际问题中的应用,分享解题思路和方法。

五、作业布置1. 完成课后练习题。

2. 绘制相交线与平行线的图形,并写上对应的性质。

六、教学拓展1. 教师引导学生思考:除了平面上的相交线与平行线,还有哪些情况下的相交线与平行线?例如,在空间中,直线与平面的相交线与平行线。

2. 教师给出一些实际问题,引导学生运用相交线与平行线的知识进行解决,并分享解题过程和答案。

七、课堂小结1. 教师引导学生回顾本节课所学的相交线与平行线的概念、性质和应用。

2. 学生分享自己在课堂上的收获和感受。

八、课后反思1. 教师布置课后反思题目,要求学生思考自己在课堂上的表现、学习效果以及需要改进的地方。

初中数学_《相交线与平行线》教学设计学情分析教材分析课后反思

初中数学_《相交线与平行线》教学设计学情分析教材分析课后反思

相交线与平行线回顾与反思知识与技能目标:1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化。

2.在丰富的情景中,抽象出平行线、相交线等基本几何模型,从而进一步熟悉和掌握几何语言,能用语言说明几何图形。

过程与方法目标:1.经历把现实物体抽象成几何对象(点、线、面等)的数学化过程.2.在探究说理过程中,锻炼学生的语言表达能力以及逻辑思维能力。

3.通过多个角度去思考问题,既提高学生的识图能力,又可以开阔思维,提高分析问题、解决问题的能力。

情感态度价值观:1. 感受数学来源于生活又服务于生活,激发学习数学的乐趣.2.通过一题多变,一题多解,多解归一的练习,让学生学会挖掘题目资源,用发展的眼光看问题,观察运动中的异同,揭示知识间内在联系。

一、教学过程分析本节课设计了六个教学环节:第一环节:创设情境;第二环节:归纳总结;第三环节:知识应用;第四环节:拓展升华;第五环节:纵向延伸;第六小节:查缺补漏。

第一环节:创设情境活动内容:教师提出问题:同学们认识这个标志么?生:(反应异常激烈)认识,是大众汽车的标志。

师:你们知道它的含义么?(同学陷入了思考。

)一个同学举手,有些迟疑地说:“我看它象由三个V组成,是不是表示他们这个品牌必胜、必胜、必胜?老师高兴地赞扬:你真棒,跟设计师想的一样!(另一名同学小声说):真的假的?我还觉得上面是V,下面是W呢!老师:哎呀,你也很厉害。

V和W是当时德国大众汽车公司名称的字母缩写。

是BD EBC 标志的另一重含义。

歪打正着的同学得意地笑了。

其他同学也跟着笑了。

老师乘胜追击:看到这个标志还想到什么?同学有些不知所云,老师再问:你们不觉得这个设计师几何学得特别棒么?他用几何中最简单、最基本的图形,就完成了汽车史上赫赫有名的设计。

同学恍然大悟,频频点头。

活动目的:兴趣是最好的老师,而复习课却往往比较枯燥无味。

在这里,以同学们几乎天天见的大众标志为数学情境引入,是为了让同学感受到数学就在我们身边,她不神秘,却应用广泛。

七年级数学下册《相交线与平行线》教案

七年级数学下册《相交线与平行线》教案

七年级数学下册《相交线与平行线》教案教案:相交线与平行线教学目标:1. 掌握相交线、平行线的概念和判断方法。

2. 熟练应用相交线与平行线的性质解决实际问题。

3. 培养学生的逻辑思维和分析能力。

教学重点:1. 掌握相交线与平行线的性质和判断方法。

2. 能够灵活运用相关知识解决实际问题。

教学难点:1. 准确判断相交线与平行线的方法。

2. 能够利用相交线与平行线的性质解决实际问题。

教学准备:1. 教材:七年级数学下册《相交线与平行线》。

2. 多媒体课件和相关教学工具。

教学步骤:步骤一:导入新知识(10分钟)1. 利用多媒体课件或实际物件引导学生观察相交线和平行线的例子,帮助学生理解相交线与平行线的概念。

2. 提问学生:如何判断两条线是否相交?如何判断两条线是否平行?步骤二:讲解相交线与平行线的性质(15分钟)1. 通过多媒体课件或示意图,讲解相交线与平行线的性质,包括相交线的特点、平行线的特点以及相交线和平行线之间的关系。

2. 强调重要概念:对顶角、同位角、内错角。

步骤三:例题讲解(25分钟)1. 请学生打开教材,找到相关知识点的例题。

2. 逐步讲解例题的解题思路和方法,引导学生掌握判断相交线与平行线的具体性质和运用方法。

步骤四:练习与讨论(20分钟)1. 让学生独立完成教材中的练习题,然后与同桌讨论答案。

2. 引导学生在讨论中互相纠错,解决疑惑,提高对概念的理解和应用能力。

步骤五:巩固与拓展(10分钟)1. 提供一些拓展问题,让学生运用所学知识解答,鼓励学生灵活运用。

2. 强调相交线与平行线的重要性和实际应用。

步骤六:小结与作业布置(5分钟)1. 小结相交线与平行线的性质和判断方法。

2. 布置课后作业,巩固所学知识。

教学反思:本节课通过观察、讲解和练习等多种方式,帮助学生掌握相交线与平行线的概念和性质,并能够灵活运用所学知识解决实际问题。

在教学过程中,可以采用多媒体课件和实物示例等方式,增加趣味性和直观性,提高学生的学习兴趣和积极性。

人教版初中数学七年级下册《第五章相交线与平行线》全章教学设计

人教版初中数学七年级下册《第五章相交线与平行线》全章教学设计

优质资料欢迎下载第五章相交线与平行线第五章第一节相交线第五章第一节第一课时教学目标1.通过动手观察、操作、推断、交流等数学活动 , 进一步发展空间观念 , 培养识图能力、推理能力和有条理表达能力 .2.在具体情境中了解邻补角、对顶角 , 能找出图形中的一个角的邻补角和对顶角 , 理解对顶角相等 , 并能运用它解决一些问题 .重点、难点重点 : 邻补角、对顶角的概念 , 对顶角性质与应用 .难点 : 理解对顶角相等的性质的探索.教学手段与方法师生共同探讨教学准备三角尺课件教学过程一、读一读 , 看一看教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片 , 阅读其中的文字 .师生共同总结 : 我们生活的世界中, 蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征 , 相交线的一种特殊形式即垂直 , 垂线的性质 , 研究平行线的性质和平行的判定以及图形的平移问题 .二、观察剪刀剪布的过程, 引入两条相交直线所成的角教师出示一块布片和一把剪刀, 表演剪刀剪布过程 , 提出问题 : 剪布时 , 用力握紧把手 , 引发了什么变化 ?进而使什么也发生了变化?学生观察、思想、回答, 得出 :握紧把手时 , 随着两个把手之间的角逐渐变小 , 剪刀刃之间的角边相应变小 . 如果改变用力方向 , 随着两个把手之间的角逐渐变大 , 剪刀刃之间的角也相应变大 .教师点评 : 如果把剪刀的构造看作两条相交的直线, 以上就关系到两条相交直线所成的角的问题, 本节课就是探讨两条相交线所成的角及其特征 .三、认识邻补角和对顶角, 探索对顶角性质1.学生画直线 AB、CD相交于点 O,并说出图中 4 个角 , 两两相配共能组成几对角 ? 各对角的位置关系如何?根据不同的位置怎么将它们C B分类 ?OA D(1)学生思考并在小组内交流, 全班交流 .当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达, 如:∠AOC和∠ BOC有一条公共边 OC,它们的另一边互为反向延长线 .∠AOC和∠ BOD有公共的顶点 O,而是∠ AOC的两边分别是∠BOD两边的反向延长线 .2.学生用量角器分别量一量各个角的度数 , 以发现各类角的度数有什么关系 , 学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等 .3.学生根据观察和度量完成下表 :两直线相交所形成的角分类位置关系数量关系134AOD教师再提问 : 如果改变∠ AOC的大小 , 会改变它与其它角的位置关系和数量关系吗 ?4.概括形成邻补角、对顶角概念 .(1)师生共同定义邻补角、对顶角 .有一条公共边 , 而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线 , 那么这两个角叫对顶角.(2)初步应用 .练习 1: 下列说法 , 你同意吗 ?如果错误 , 如何订正 .①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.②邻补角可看成是平角被过它顶点的一条射线分成的两个角.③邻补角是互补的两个角, 互补的两个角也是邻补角?5.对顶角性质 .(1)教师让学生说一说在学习对顶角概念后 , 结果实际操作获得直观体验发现了什么 ?并说明理由 .(2)教师把说理过程 , 规范地板书 :在图 1 中, ∠AOC的邻补角是∠ BOC和∠ AOD,所以∠ AOC与∠ BOC 互补 , ∠AOC与∠ AOD 互补 , 根据“同角的补角相等”, 可以得出∠AOD=∠BOC,类似地有∠ AOC=∠BOD.教师板书对顶角性质 : 对顶角相等 .强调对顶角概念与对顶角性质不能混淆:对顶角的概念是确定二角的位置关系 , 对顶角性质是确定为对顶角的两角的数量关系.(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象 .四、巩固运用1. 例: 如图 , 直线 a,b 相交 , ∠1=40°, 求∠ 2, ∠3, ∠43的度2数 .a14b 教学时 , 教师先让学生辨让未知角与已知角的关系, 用指出通过什么途径去求这些未知角的度数的, 然后板书出规范的求解过程.2.练习 :(1)课本 P5练习.(2)补充 : 判断下列图中是否存在对顶角 .11122221五、作业课本 P9.1,2,P10.7,8.垂线第五章第一节第二课时教学目标一、素质教育目标(一)知识教学点1.使学生掌握垂线的概念。

初中数学《相交线与平行线》单元教学设计以及思维导图

初中数学《相交线与平行线》单元教学设计以及思维导图
在教学过程中教师精心设计一些带有启发性和思考性的问题,诱导学生 去解决问题,教师适时的运用多媒体化静为动,激发学生探求知识的欲望, 逐步引导学生积极主动的去探索问题,从而培养了学生的思维能力.在学法 上以“问题情境----数学模型----求解模型”为主要线索,让学生在数学活 动中通过相互间的合作与交流解决问题,从而掌握知识. 主题单元规划思维导图(说明:将主题单元规划的思维导图导出为 jpeg 文 件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操 作见《2013 学员教师远程研修手册》。)
1.会识别余角、补角、对顶角,掌握对顶角、补(余)角的性质,并会
利用其性质进行计算.
2.理解垂线、垂线段、点到直线的距离等概念,会用三角板或量角器
过一点画已知直线的垂线,掌握垂线的性质.
3.理解三线八角的意义,能在不同的图形中识别出同位角、内错角和同
旁内角.
4.进一步理解、掌握平5.能用尺规作一个角等于已知角.
1、 两直线相交想成了些什么角?有什么特点?
2、 主题单元
3、 问题设计
4、
两直线垂直有哪些特点? 怎样画已知直线的平行线? 有哪些条件可以判定两直线平行?
5、 两直线平行具有什么样的特点?
专题一:两直线的位置关系 ( 2 课时)
专题二:平移的判定 专题划分
专题三:平移的性质
主题单元学习概述 相交线与平行线是七年级教学的重要内容之一,是后续学习三角形、四
边形的基础,学会用几何语言进行简单的推理.学生在这一章中主要要了解 平行线性质,经历了探索平行线平行的条件的过程,理解了平行线的条件和 平行线的性质的区别与联系,运用这些知识解决了一些相关的实际问题.
专题主要是按照知识之间的联系来进行,先介绍相交线,在介绍平行线,

人教版七年级数学下册《第五章相交线和平行线复习》教学设计

人教版七年级数学下册《第五章相交线和平行线复习》教学设计

《第五章相交线与平行线复习》教学设计一、教学内容人教版七年级数学下册《第五章相交线与平行线》复习课。

二、学情分析学生在学完本单元知识后,对某些知识可能还存在一些不同程度的问题。

比如,基础知识似懂非懂、不能在解题中准确应用所学知识等等。

问题比较集中的可能会是垂线的存在、唯一性及平行公理的限制条件的理解、平行线的判定定理和性质定理的区分及综合应用等方面,教师应注意学生出现问题比较集中的知识点,教学中作重点突破。

三、教学目标知识与能力:了解本单元的知识点及其之间的关系;复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和性质进行简单的推理或计算;能用直尺、三角板画垂线和平行线;加深理解推理证明,提高学生分析问题、解决问题的能力。

过程与方法:在参与猜想、观察、实验、综合实践等活动的过程中,形成从特殊到一般的思维方式,了解数学知识是来源于实践,应用于实践的,了解数形结合思想,数学建模思想.情感态度与价值观:认识数学严谨、抽象和应用广泛的特点,体会数学的应用价值,激发学习图形与几何的兴趣.四、教学重点:对本单元的知识结构进行梳理,使学生掌握本单元的知识体系,理解各知识点之间的关联,会利用相交线和平行线的有关知识解决问题。

五、教学难点:会灵活应用本单元知识解决综合性问题;证明题会分析、推理,会写出严谨的解答推理过程。

六、教学方法:引导启发法、讨论交流法七、教学准备:任务单、幻灯片、知识卡片八、教学过程(一)、本章知识点梳理(1、用八开纸书写本章知识思维导图,利用投影仪展示书写优秀的作品。

2、利用知识贴片将本章知识点进行系统归纳,由教师动手归纳操作,其他学生注意观察,并及时提出质疑。

)教师活动:展示优秀作品,引导学生将本章知识以思维导图的形式进行梳理。

启发、引导学生探索,自然导入新课。

学生活动:学生欣赏优秀作品,积极思考并参与知识系统归纳。

设计意图:利用投影仪展示自己的作品,调动学生的兴趣,采用知识贴片激发学生的思维,为复习旧知识及本节课的学习做铺垫。

初中数学《相交线与平行线》大单元教学设计

初中数学《相交线与平行线》大单元教学设计

同位角的定义
如图,具有∠1与∠2这样位置关系的
角称为同位角.
C
3
E 1
请找出图中其他的同位角.
7
5
D
42
∠3与∠4、∠5与∠6、∠7与∠8 你能说出同位角的特征吗?
A
8 F6
B
探究新知
b
a
b
a
ba
1
2
c
1
2
c
12 c
当∠1>∠2 时 (1)
当∠1=∠2时 (2)
当∠1<∠2时 (3)
上图是木条转动过程中的3种情况,你 发现木条 a 与木条 b 的位置关系发生了什 么变化?木条 a 何时与木条 b 平行?

条件

线
的 性 两直线平 行

性质
线的关系
平 行
同位角相等
线

内错角相等
判 定 同旁内角互补
判定
角的关系
结论 同位角相 等
内错角相等
同旁内角互补
角的关系
两直线平行
线的关系

区行
线

的 性


和 平

联线 的
判 系定



两直线平行
请注意:
性质
{1.同位角相等 2.内错角相等 判定 3.同旁内角互补
专题2:平行线的判定和性质(4课时)
探究发现(补角和余角的性质)
打台球时,选择适当的方向,用白球击打红球,反弹
后的红球会直接入袋,此时∠1=∠2,将图7-3抽象成
图7-4,ON与DC交于点O,∠DON=∠CON=900,∠1=∠2.
D

七年级下册《相交线与平行线》教案

七年级下册《相交线与平行线》教案

七年级下册《相交线与平行线》教案七年级下册《相交线与平行线》教案1在本次活动中,教师应重点关注:(1)学生从简单的具体实物抽象出相交线、平行线的能力.(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.(3)学生学习数学的兴趣.教师出示剪刀图片,提出问题.学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.教师提出问题.学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.在本次活动中,教师应关注:(1)学生画出两条相交线的几何图形,用语言准确描述.(2)学生能否从角的位置关系上对角进行分类.(3)学生是否能够正确区分邻补角、对顶角.(4)学生参与数学学习活动的主动性,敢于发表个人观点.《相交线与平行线》单元测试题25.如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D(1)假设点C恰在EF上,如图1,那么∠DBA=_________(2)将A点向左移动,其它条件不变,如图2,那么(1)中的结论还成立吗?假设成立,证明你的结论;假设不成立,说明你的理由(3)假设将题目条件“∠ACB=90°〞,改为:“∠ACB=120°〞,其它条件不变,那么∠DBA=_________(直接写出结果,不必证明)《第五章相交线与平行线》单元测试题一、选择题(每题3分,共30分)1、如图1,直线a,b相交于点O,假设∠1等于40°,那么∠2等于()A.50°B.60°C.140°D.160°七年级下册《相交线与平行线》教案2教学目标1、理解相交线、邻补角、对顶角的概念;2、理解对顶角相等的性质.3、通过对顶角性质的推理过程,提高推理和逻辑思维能力;4、通过变式图形的识图训练,提高识图能力。

人教版七年级数学下册相交线与平行线《相交线(第3课时)》示范教学设计

人教版七年级数学下册相交线与平行线《相交线(第3课时)》示范教学设计

相交线(第3课时)教学目标1.理解同位角、内错角、同旁内角的概念.2.能从图形中识别同位角、内错角、同旁内角.教学重点理解同位角、内错角、同旁内角的概念.教学难点能从图形中识别同位角、内错角、同旁内角.教学过程新课导入前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线与两条直线分别相交的情形.如图,直线AB,CD与EF相交(也可以说两条直线AB,CD被第三条直线EF所截),构成八个角.我们看那些没有公共顶点的两个角的关系.【设计意图】结合图形,发现与前面学过的邻补角、对顶角具有不同位置关系的角,明确研究对象.新知探究一、探究学习【问题】先看图中的∠1和∠5,它们具有什么位置关系?你能进行概括吗?【师生活动】教师引导学生结合图形对这两个角的位置关系进行分析,找出两者的共同点,进行概括.【答案】∠1和∠5这两个角分别在直线AB,CD的同一方(上方),并且都在直线EF 的同侧(右侧).【新知】如果两个角满足以下位置关系:(1)两个角分别在两条被截直线的同一方;(2)两个角都在截线的同一侧,那么这两个角叫做同位角.如上图中的∠1和∠5.【提醒】(1)同位角中的“同”可理解为“相同”,“位”可理解为“位置”,即具有相同位置的角.(2)一定要分清“截线”与“被截直线”.【思考】上图中,∠2和∠6是同位角吗?图中还有没有其他的同位角?若有,请指出来.【师生活动】学生结合前面给出的同位角的概念,得出答案:∠2和∠6是同位角.图中其他同位角:∠3和∠7,∠4和∠8.【设计意图】借助具体的两个角,结合图形,帮助学生理解同位角的概念.【问题】∠3和∠5,∠3和∠6具有怎样的位置关系?请分别进行描述.【师生活动】仿照前面对同位角位置关系的描述,学生独立对这两对角的位置关系进行概括,教师进行指导补充.【答案】∠3和∠5这两个角都在直线AB,CD之间,并且分别在直线EF两侧(∠3在直线EF左侧,∠5在直线EF右侧).∠3和∠6也都在直线AB,CD之间,但它们在直线EF的同一旁(左侧).【新知】如果两个角满足以下位置关系:(1)两个角都在两条被截直线之间;(2)两个角分别在截线的两侧,那么这两个角叫做内错角.如上图中的∠3和∠5.【提醒】内错角中的“内”可理解为“两条被截直线之间”,“错”可理解为“交错”,即截线的两侧.【新知】如果两个角满足以下位置关系:(1)两个角都在两条被截直线之间;(2)两个角都在截线的同侧,那么这两个角叫做同旁内角.如上图中的∠3和∠6.【提醒】同旁内角中的“同旁”可理解为“截线的同侧”,“内”可理解为“两条被截直线之间”.【追问】上图中,还有没有其他的内错角与同旁内角?若有,请指出来.【师生活动】教师引导学生结合内错角和同旁内角的概念,得出答案.内错角:∠4和∠6;同旁内角:∠4和∠5.【设计意图】通过对两对角的位置关系进行分析比对,得出内错角和同旁内角的概念.二、典例精讲【例1】下列选项中,∠1和∠2是同位角的是().A.B.C.D.【师生活动】教师引导学生结合同位角的概念,对四个选项进行分析,得出结论:只有选项D中的∠1和∠2是两条直线被第三条直线所截形成的,且符合同位角的特征.【答案】D【归纳】判断两个角是否为同位角:(1)形成两个角的线只能有三条,即两条直线被第三条直线所截;(2)两个角不具有公共的顶点,两个角位于截线的同旁,被截直线的同侧.【设计意图】考查学生对同位角概念的掌握程度,让学生知道如何判断两个角是否为同位角.【例2】在图中找出∠1的内错角.【师生活动】结合内错角的概念,学生独立对图形进行分析,找到∠1的内错角.【答案】解:∠1的内错角有两个,分别为∠CGB,∠FGB.【归纳】三步寻找某个角的内错角:第1步:找到这个角的两边;第2步:添加这个角的两边之外的第三边寻找基本图形,即弄清哪条直线是截线,哪两条直线是被截直线;第3步:进行判断,即满足在两条被截直线之间,且在截线的两侧的两个角是内错角,否则不是.【设计意图】考查学生对内错角概念的掌握程度,同时指导学生如何通过三步寻找某个角的内错角.【例3】在图中找出∠A的同旁内角.【师生活动】学生独立解决问题,教师提问.【答案】解:∠A的同旁内角有三个,分别为∠ACD,∠ACB,∠B.【归纳】找某个角的同旁内角的方法:第1步:找到这个角的两边;第2步:添加这个角的两边之外的第三边寻找基本图形,即弄清哪条直线是截线,哪两条直线是被截直线;第3步:进行判断,即满足在两条被截直线之间,且在截线的同侧的两个角是同旁内角,否则不是.【设计意图】巩固学生对同旁内角概念的掌握程度,同时让学生掌握寻找某个角的同旁内角的方法.【例4】如图,直线DE,BC被直线AB所截.(1)∠1和∠2,∠1和∠3,∠1和∠4各是什么位置关系的角?(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?【师生活动】学生组内交流解决,教师巡视纠错.【答案】答:(1)∠1和∠2是内错角,∠l和∠3是同旁内角,∠l和∠4是同位角.(2)如果∠1=∠4,由对顶角相等,得∠2=∠4,那么∠1=∠2.因为∠4和∠3互补,即∠4+∠3=180°,又因为∠1=∠4,所以∠l+∠3=180°,即∠1和∠3互补.【归纳】找同位角、内错角、同旁内角的口诀:一看三线;二找截线;三根据位置来分辨.【设计意图】对同位角、内错角、同旁内角进行综合考查,在复习了概念的同时也涉及了角度的计算.课堂小结板书设计一、同位角的概念二、内错角的概念三、同旁内角的概念课后任务完成教材第7页练习第1~2题.。

七年级下册相交线与平行线单元教学计划

七年级下册相交线与平行线单元教学计划

七年级下册相交线与平行线单元教学计划全文共3篇示例,供读者参考七年级下册相交线与平行线单元教学计划篇1一、学情分析:大部分学生学习目的比较明确,学习态度端正,能自觉完成学习任务,还有一大部分学生受基础和习惯的影响分析问题和解决问题的能力不强,学习上欠主动,存在着粗心大意现象。

对于这些学生,今后在教学中加强辅导,逐步让他们养成良好的学习习惯,提高学习能力。

二、教材分析第五章、相交线与平行线:本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。

本章重点:垂线的概念和平行线的判定与性质。

本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。

第六章、平面直角坐标系:本章主要内容是平面直角坐标系及其简单的应用。

本章重点:平面直角坐标系的理解与建立及点的坐标的确定。

本章难点:平面直角坐标系中坐标及点的位置的确定。

第七章、三角形:本章主要学习与三角形有关的线段、角及多边形的内角和等内容。

本章重点:三角形有关线段、角及多边形的`内角和的性质与应用。

本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。

第八章、二元一次方程组:本章主要学习二元一次议程(组)及其解的概念和解法与应用。

本章重点:二元一次方程组的解法及实际应用。

本章难点:列二元一次方程组解决实际问题。

第九章、不等式与不等式组:本章主要内容是一元一次不等式(组)的解法及简单应用。

本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。

本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。

第十章、数据的收集、整理与描述:本章主要学习收集、整理和分析数据,并根据数据对调查对象作出正确的描述。

本章重点:调查的意义、特点及分类,利用扇形图、频数分布直方图和频数拆线图描述数据。

本章难点:绘制数据统计图及如何利用各种统计图对调查对象作出正确的描述。

人教版七年级数学下册相交线与平行线《平行线的性质(第1课时)》示范教学设计

人教版七年级数学下册相交线与平行线《平行线的性质(第1课时)》示范教学设计

平行线的性质(第1课时)教学目标1.理解平行线的性质.2.经历平行线性质的探究过程,从中体会研究几何图形的一般方法.教学重点掌握平行线的性质.教学难点平行线的性质的探究过程.教学过程新课导入利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角又各有什么关系呢?这就是我们要学习的平行线的性质.类似于研究平行线的判定,我们先来研究两条直线平行时,它们被第三条直线截得的同位角的关系.【设计意图】复习上节课所学的平行线的三种判定方法,引入探究课题,有意识地让学生回顾上节课内容,为后面类比研究平行线判定的过程来构建平行线性质的研究过程作好铺垫.新知探究一、探究学习【问题】画两条平行线a∥b,然后,画一条截线c与这两条平行线相交,度量所形成的八个角的度数,把结果填入下表:【师生活动】学生独立画出图形,并对角度进行度量,完成表格.【答案】画出图形如下:完成表格:【问题】∠1,∠2,…,∠8中,哪些是同位角?它们的度数之间有什么关系?由此猜想两条平行线被第三条直线截得的同位角有什么关系.【师生活动】在学生探究过程中,教师关注学生对同位角的标记是否准确,能否正确对角度进行度量,并鼓励学生独立完成猜想.【答案】同位角有:∠1和∠5,∠2和∠6,∠4和∠8,∠3和∠7.每对同位角的度数都相等.猜想:两条平行线被第三条直线所截,同位角相等.【追问】再任意画一条截线d,同样度量并比较各对同位角的度数,你的猜想还成立吗?【师生活动】教师引导学生随意画出另一条截线,对前面的猜想进行验证.【答案】画出图形,并标记出各角:任意画一条截线d,得到各对同位角为:∠1′和∠5′,∠2′和∠6′,∠3′和∠7′,∠4′和∠8′.经度量,∠1′=∠5′=∠3′=∠7′=70°,∠2′=∠6′=∠4′=∠8′=110°.所以猜想成立.【新知】用文字语言和符号语言分别概括发现的结论:一般地,平行线具有如下性质.性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.符号语言:∵AB∥CD,∴∠1=∠2.【动图】仔细观察下面的动图,巩固对平行线的性质1的掌握.【设计意图】让学生充分经历动手操作,独立思考,合作交流,验证猜想的探究过程,并且在这一过程中,锻炼学生由图形语言转化为文字语言、文字语言转化为符号语言的归纳能力和表达能力,为后面学习平行线的其他性质打下基础.【问题】上一节,我们利用“同位角相等,两直线平行”推出了“内错角相等,两直线平行”.类似地,你能由性质1,根据下图,推出两条平行线被第三条直线截得的内错角之间的关系吗?【师生活动】教师引导学生结合平行线的判定,作出猜想:∠1=∠2.【追问】怎样验证猜想?【师生活动】教师给出要验证的问题:已知直线a∥b,c是截线.试说明∠1=∠2.引导学生写出推理过程,并分析是否正确.【答案】解:∵a∥b,∴∠3=∠2(两直线平行,同位角相等).又∵∠1=∠3(对顶角相等),∴∠1=∠2.【追问】类比性质1,能用文字语言和符号语言分别对得出的结论进行表述吗?【答案】性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.符号语言:∵AB∥CD,∴∠1=∠2.【动图】仔细观察下面的动图,巩固对平行线的性质2的掌握.【设计意图】在教师的引导下逐步构建研究思路,循序渐进地引导学生思考,从“说理”向“简单推理”过渡.【问题】由“两直线平行,同位角相等”,我们可以推出平行线关于同旁内角的什么性质?【师生活动】教师引导学生结合图形及前面学习的性质1进行探究,并鼓励学生独立得到猜想:∠2+∠4=180°,并让学生把要说明的问题转化为数学语言:如图,已知直线a ∥b,c是截线.试说明∠4+∠2=180°,然后完成解答.【答案】解:∵a∥b,∴∠3=∠2(两直线平行,同位角相等).∵∠3+∠4=180°,∴∠4+∠2=180°.【追问】类比性质1,2,能用文字语言和符号语言分别对得出的结论进行表述吗?【答案】性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.符号语言:∵AB∥CD,∴∠1+∠2=180°.【动图】仔细观察下面的动图,巩固对平行线的性质3的掌握.【总结】同位角相等、内错角相等、同旁内角互补都是平行线特有的性质,切不可忽略“两直线平行”这一前提条件.当两条直线不平行时,同位角、内错角就不相等,同旁内角也不互补.【设计意图】逐步培养学生的推理能力,使学生初步养成言之有据的习惯,从而能进行简单的推理.二、典例精讲【例1】如图,直线l与直线a,b相交,若a∥b,∠1=70°,则∠2的度数是多少?【师生活动】教师引导学生用前面学过的平行线的三个性质解答本题.【答案】解法一:∵∠1与∠3互为邻补角,∴∠3=180°-∠1=110°.又∵a∥b,∴∠2=∠3=110°(两直线平行,内错角相等).解法二:∵∠1与∠4互为邻补角,∴∠4=180°-∠1=110°.又∵a∥b,∴∠2=∠4=110°(两直线平行,同位角相等).解法三:∵∠1与∠5互为对顶角,∴∠5=∠1=70°.又∵a∥b,∴∠2=180°-∠5=110°(两直线平行,同旁内角互补).【归纳】当题目的已知条件中出现两直线平行时,要考虑到平行线的性质,从而将直线的位置关系转化为角的数量关系.应用平行线的性质解题时要辨析清楚“三线八角”,并将它们的关系记准确.【设计意图】帮助学生巩固平行线的性质、及文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.【例2】如图,已知∠1=108°,∠2=72°,∠3=60°,试求∠4的度数.【师生活动】学生独立解决,教师巡视纠错.【答案】解:∵∠1+∠2=108°+72°=180°,∴a∥b(同旁内角互补,两直线平行).∴∠4=∠3=60°(两直线平行,同位角相等).【归纳】几何中,图形之间的“位置关系”一般都与某些“数量关系”有着内在联系.由角的相等或互补关系,得到两条直线平行的结论是判定方法;而由两条直线平行,得到角相等或互补关系的结论是平行线性质的应用.【设计意图】考查学生是否掌握平行线的判定与性质之间的区别和联系,知道在涉及到相关角度或平行时如何入手解决.课堂小结板书设计一、平行线的性质1二、平行线的性质2三、平行线的性质3课后任务完成教材第20页练习第1题.。

湘教版七年级数学下《第四章相交线与平行线》教案

湘教版七年级数学下《第四章相交线与平行线》教案
(2)电梯和靶子在运动的过程中,它们的形状和大小发生变化了吗?
2.平移的概 念
从上述问题中归纳:把图形上 所有的点都按同一方向移动相同的距离叫作平移.
3.上例中的平 移中的对应点A与A′,B与B′等等,原来的图形叫作原像,在新位置的图形叫作该图形在平移下的像.
4.平移的特点:平移不改变图形的形状和大小.平移还不改变直线的方向.
(3)两条直线被第三条直线所截,如果有一对同旁内角互补,那么另一对同旁内角也互补,并且同位角相等,内错角也相等.
三、实效训练:
1.练习P77练习第3题
2.如图:下列各对角是什么角,它们是由ቤተ መጻሕፍቲ ባይዱ
哪两条直线被哪条直线所截形成的?
①∠2和∠3②∠1和∠4③∠1和∠3
2、如图,填写理由
已知:∠1=∠2
∵∠2=∠4( )
教学过程:
一、问题情境
1.两条直线相交后产生了几个角?每两个角之间的关系是什么?
2.三条直线之间也可以有什么样的位置关系?
上节课是对相交的两条直线所形成的四个角进行研究,今天我们就对三条直线相交后形成的八个角进行研究,简称为:三线八角
二、新课学习
1.讲解同位角、内错角、同旁内角的概念
同位角:我们把具有∠1和∠5这种位置关系的一对角叫做同位角.(∠1和∠5分别在直线AB和CD的同一方向,并且都在直线EF的同侧)
2.如右图,三条直线AB,CD,EF相交于一点O,∠AOD的对顶角是_____,
∠AOC的邻补角是_______,若∠AOC=50°,则∠BOD=______,
∠COB=_______,∠AOE+∠DOB+∠COF=_____.
3.如图,直线AB,CD相交于O,OE平分∠AOC,若∠AOD-∠DOB=50°, 求∠EOB的度数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(封面)
七年级数学下册《相交线与平行线》教学
设计
授课学科:
授课年级:
授课教师:
授课时间:
XX学校
教材所处的地位及作用:
本节是人教版七年级下册第五章第一节的内容,本节内容是在小学已经掌握了两条直线相交的有关知识的基础上,进一步探究、学习邻补角、对顶角的有关定义、性质及应用。

它是本章中起到承前启后的作用。

教学目标
1、理解相交线、邻补角、对顶角的概念;
2、理解对顶角相等的性质.
3、通过对顶角性质的推理过程,提高推理和逻辑思维能力;
4、通过变式图形的识图训练,提高识图能力。

重点:邻补角、对顶角的概念,对顶角性质与应用。

难点:理解对顶角相等的性质。

一、情景诱导
教师在轻松欢快的音乐中演示第五章章首图片为主体的多媒体课件。

学生欣赏图片(多媒体投影汕头大桥的图片、围棋的棋盘),阅读其中的文字。

师生共同总结:同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行线,桥的侧面有许多相交线段组成的图案;围棋的纵线相互平行,横线相互平行,纵线和横线相交。

这些都给我们以相交线、平行线的形象。

在我们生活的中,蕴涵着大量的相交线和平行线。

那么两条直线相交形成哪些角?这些角又有什么特征?本节我们一起来学习相交
线所成的角及
它们的关系。

教师板书:5.1.1相交线
教师出示一块纸片和一把剪刀,表演剪刀剪纸过程,提出问题:剪纸时,用力握紧把手, 把手
引发了什么变化?进而使剪刀刃也发生了什么变化?
二、探究指导
探究提纲(请同学们利用8分钟时间自学课本第2页至第3页练习以前的部分,并完成探究提纲)
1、请你画直线AB、CD相交于点O,并说出图中4个角两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
2、你用量角器分别量一量各个角的度数,发现“相邻”关系的两角_____,“对顶”关系的两角_______。

请同桌比赛说说邻补角和对顶角的定义,并快速写下来。

3、对顶角有何性质?并用一句话叙述。

4、对顶角性质证明:(学生独立写出已知,求证并证明)
已知:
求证:
三、展示归纳
1、找有问题的学生逐题汇报。

老师板书。

2、发动学生评价,完善。

3、教师画龙点睛地强调。

相关文档
最新文档