离心机半径、转速换算表
离心机转速换算公式(rpm与g)
离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。
请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。
笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。
它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。
我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。
由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。
F=mω2rω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量相对离心力Relative centrifugal force (RCF)RCF 就是实际离心力转化为重力加速度的倍数g为重力加速度(9.80665m/s2)同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r/min来表示。
3、分离因素计算公式:RCF=F离心力/F重力= mωˆ2r/mg= ωˆ2r/g= (2*π*r/r*rpm)ˆ2*r/g =(2*π* rpm)ˆ2*r/g =(2*π)ˆ2/g * rpm^2* r注:rpm应折换成转/秒,r转换成m=(2*π/60)ˆ2/g * rpm^2* r/100=1.119 x 10-5 x (rpm)^2 x r 换算后,rpm为r/min,r为cm例如:直径1000mm,转速1000转/分的离心机,分离因素为:RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8=104.72^2*0.5/9.8=560在有关离心机的实验中,RCF(relative centrifugal field)表示相对离心场,以重力加速度g (980.66cm/s2)的倍数来表示;rpm(revolution per minute,或r/min)表示离心机每分钟的转数。
离心机转速换算公式(rpm与g)
离心机转速换算公式(rpm与g)离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。
请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。
笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。
它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。
我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。
由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。
F=mω2rω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量相对离心力Relative centrifugal force (RCF)RCF 就是实际离心力转化为重力加速度的倍数g为重力加速度(9.80665m/s2)同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r /min来表示。
3、分离因素计算公式:RCF=F离心力/F重力= mωˆ2r/mg=ωˆ2r/g= (2*π*r/r*rpm)ˆ2*r/g =(2*π* rpm)ˆ2*r/g =(2*π)ˆ2/g * rpm^2* r 注:rpm应折换成转/秒,r转换成m=(2*π/60)ˆ2/g * rpm^2* r/100=1.119 x 10-5 x (rpm)^2 x r 换算后,rpm为r/min,r为cm例如:直径1000mm,转速1000转/分的离心机,分离因素为:RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8=104.72^2*0.5/9.8=560在有关离心机的实验中,RCF(relative centrifugal field)表示相对离心场,以重力加速度g(980.66cm/s2)的倍数来表示;rpm(revolution per minute,或r/min)表示离心机每分钟的转数。
离心机之离心力G和转速RPM之间的换算
离心原理:当含有细小颗粒的悬浮液静置不动时,由于重力场的作用使得悬浮的颗粒逐渐下沉。
粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。
微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。
象红血球大小的颗粒,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。
此外,物质在介质中沉降时还伴随有扩散现象。
扩散是无条件的绝对的。
扩散与物质的质量成反比,颗粒越小扩散越严重。
而沉降是相对的,有条件的,要受到外力才能运动。
沉降与物体重量成正比,颗粒越大沉降越快。
对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。
因为颗粒越小沉降越慢,而扩散现象则越严重。
所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。
离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
离心力(F)的大小取决于离心转头的角速度(ˉ,r/min)和物质颗粒距离心轴的距离(r,cm)。
它们的关系是:F=ˉ2 R为方便起见,F常用相对离心力也就是地心引力的倍数表示。
即把F值除以重力加速度g (约等于s2 )得到离心力是重力的多少倍,称作多少个g。
例如离心机转头平均半径是6cm,当转速是60 000 r/min时,离心力是240 000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。
因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。
同样的转速,半径大一倍,离心力(g值)也大一倍。
转速(r/min)和离心力(g值)之间的关系可用下式换算:G=×(10^-5)×R×[rpm]2G为离心力,一般以g(重力加速度)的倍数来表示;10-5即:10的负五次方;[rpm]2即:转速的平方;R为半径,单位为厘米。
离心机转数(rm)与相对离心力(RCF)的换算
离心机转数(r/m)与相对离心力(RCF)的换算
图离心机转数与离心力的列线图
r为离心机头的半径(角头),或离心管中轴底部内壁到离心机转轴中心的距离(甩平头),单位为厘米。
r/m (rpm)为离心机每分钟的转速。
RCF为相对离心力,以地心引力即重力加速度的倍数来表示,一般用g (或数字×g)表示。
图离心机转数与离心力的列线图是由下述公式计算而来的:
RCF = 1.119 × 10-5× r × (r/m)2
将离心机转数换算为离心力时,首先,在r标尺上取已知的半径和r/m标尺上取已知的离心机转数,然后,将这两点间划一条直线,在图中间RCF标尺上的交叉点即为相应离心力数值。
注意,若已知转数值处于r/m标尺的右边,则应读取RCF标尺右边的数值。
同样,转数值处于r/m标尺左边,则读取RCF标尺左边的数值。
离心机转数与离心力的换算
离心机转数与离心力的换算r为离心机转轴中心与离心套管底部内壁的距离;rpm(revolution per minute)为离心机每分钟的转数;RCF(relative eentrifugal force)为相对离心力,以地心引力,即重力加速度的倍数来表示,一般用g表示。
利用下表,已知离心机r和g就可求出rpm;反之,r和rpm已知,也可求出g。
例如,在r标尺上取已知的r半径值和在g标尺上取已知相对离心力值,这两点间线的沿长线在rpm标尺的交叉点即为rpm。
注意,若已知的g值处于g标尺的右边,则应读取rpm标尺的右边数值,否则反之。
g和rpm也可通过下边公式来换算:RCF=1.119×105×rx(rpm)2离心机的离心力g和转速r/min 如何换算离心力Centrifugal force (F)离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。
请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。
笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。
它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。
我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。
由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。
F=mω2rω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量相对离心力 Relative centrifugal force (RCF)RCF 就是实际离心力转化为重力加速度的倍数g为重力加速度(9.80665m/s2)同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r/min来表示。
3、分离因素计算公式:RCF=F离心力/F重力= mω?2r/mg= ω?2r/g= (2*π*r/r*rpm) ?2*r/g 注:rpm应折换成转/秒例如:直径1000mm,转速1000转/分的离心机,分离因素为:RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8=104.72^2*0.5/9.8=560。
离心机之离心力G和转速RPM之间的换算
离心机之离心力G和转速RPM之间的换算离心原理:当含有细小颗粒的悬浮液静置不动时,由于重力场的作用使得悬浮的颗粒逐渐下沉。
粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。
微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。
象红血球大小的颗粒,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。
此外,物质在介质中沉降时还伴随有扩散现象。
扩散是无条件的绝对的。
扩散与物质的质量成反比,颗粒越小扩散越严重。
而沉降是相对的,有条件的,要受到外力才能运动。
沉降与物体重量成正比,颗粒越大沉降越快。
对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。
因为颗粒越小沉降越慢,而扩散现象则越严重。
所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。
离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
离心力(F)的大小取决于离心转头的角速度(ˉ,r/min)和物质颗粒距离心轴的距离(r,cm)。
它们的关系是:F=ˉ2 R为方便起见,F常用相对离心力也就是地心引力的倍数表示。
即把F值除以重力加速度g (约等于9.8m/s2 )得到离心力是重力的多少倍,称作多少个g。
例如离心机转头平均半径是6cm,当转速是60 000 r/min 时,离心力是240 000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。
因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。
同样的转速,半径大一倍,离心力(g值)也大一倍。
转速(r/min)和离心力(g值)之间的关系可用下式换算:G=1.11×(10^-5)×R×[rpm]2G为离心力,一般以g(重力加速度)的倍数来表示;10-5即:10的负五次方;[rpm]2即:转速的平方;R为半径,单位为厘米。
离心机之离心力G和转速RPM之间的换算
离心机之离心力G和转速RPM之间的换算离心原理:当含有细小颗粒的悬浮液静置不动时,由于重力场的作用使得悬浮的颗粒逐渐下沉。
粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。
微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。
象红血球大小的颗粒,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。
此外,物质在介质中沉降时还伴随有扩散现象。
扩散是无条件的绝对的。
扩散与物质的质量成反比,颗粒越小扩散越严重。
而沉降是相对的,有条件的,要受到外力才能运动。
沉降与物体重量成正比,颗粒越大沉降越快。
对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。
因为颗粒越小沉降越慢,而扩散现象则越严重。
所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。
离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
离心力(F)的大小取决于离心转头的角速度(ˉ,r/min)和物质颗粒距离心轴的距离(r,cm)。
它们的关系是:F=ˉ2 R为方便起见,F常用相对离心力也就是地心引力的倍数表示。
即把F值除以重力加速度g (约等于9.8m/s2 )得到离心力是重力的多少倍,称作多少个g。
例如离心机转头平均半径是6cm,当转速是60 000 r/min 时,离心力是240 000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。
因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。
同样的转速,半径大一倍,离心力(g值)也大一倍。
转速(r/min)和离心力(g值)之间的关系可用下式换算:G=1.11×(10^-5)×R×[rpm]2G为离心力,一般以g(重力加速度)的倍数来表示;10-5即:10的负五次方;[rpm]2即:转速的平方;R为半径,单位为厘米。
离心机之离心力G和转速RPM之间的换算
离心机之离心力G和转速RPM之间的换算离心原理:当含有细小颗粒的悬浮液静置不动时,由于重力场的作用使得悬浮的颗粒逐渐下沉。
粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。
微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。
象红血球大小的颗粒,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。
此外,物质在介质中沉降时还伴随有扩散现象。
扩散是无条件的绝对的。
扩散与物质的质量成反比,颗粒越小扩散越严重。
而沉降是相对的,有条件的,要受到外力才能运动。
沉降与物体重量成正比,颗粒越大沉降越快。
对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。
因为颗粒越小沉降越慢,而扩散现象则越严重。
所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。
离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
离心力(F)的大小取决于离心转头的角速度(ˉ,r/min)和物质颗粒距离心轴的距离(r,cm)。
它们的关系是:F=ˉ2 R为方便起见,F常用相对离心力也就是地心引力的倍数表示。
即把F值除以重力加速度g (约等于s2 )得到离心力是重力的多少倍,称作多少个g。
例如离心机转头平均半径是6cm,当转速是60 000 r/min时,离心力是240 000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。
因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。
同样的转速,半径大一倍,离心力(g值)也大一倍。
转速(r/min)和离心力(g值)之间的关系可用下式换算:G=×(10^-5)×R×[rp m]2G为离心力,一般以g(重力加速度)的倍数来表示;10-5即:10的负五次方;[rpm]2即:转速的平方;R为半径,单位为厘米。
离心机转速rpm与g换算公式
离心机转速rpm与g换算公式
在有关离心机的实验中,标准的指示样本离心条件应该是用RCF(relative cent rifugal field)来衡量, 而在实际大家实验过程中, 往往习惯用rmp即每分钟转速来表示. 为了更好的对二者进行换算,特总结下文.
RCF即表示相对离心场,以重力加速度g(980.66cm/s2)的倍数来表示;rpm(r evolution per minute,或r/min)表示离心机每分钟的转数。
rmp与g之间的换算公式为:
RCF = 1.119× 10-5 × (rpm)2× r
其中r 表示离心机转轴中心与离心管中心的距离(如下图所示),单位为cm。
由于离心管的位置由转子(rotor)决定,因此r 必须由查阅相关转子的参数而得。
RCF 与rmp 的换算也可以经由下表直接读出,方法是在下图标尺上取已知的r 半径值和在RCF 标尺上取已知相对离心力值,这两点间线的沿长线在rpm标尺的交点即为所要换算的值。
反之亦然。
离心机及rpm单位与g(RCF)单位的换算介绍
关于离心机及rpm单位与g(RCF)单位的换算离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。
当含有细小颗粒的悬浮液静置不动时,由于重力场的作用使得悬浮的颗粒逐渐下沉。
粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。
微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。
象红血球大小的颗粒,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。
此外,物质在介质中沉降时还伴随有扩散现象。
扩散是无条件的绝对的。
扩散与物质的质量成反比,颗粒越小扩散越严重。
而沉降是相对的,有条件的,要受到外力才能运动。
沉降与物体重量成正比,颗粒越大沉降越快。
对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。
因为颗粒越小沉降越慢,而扩散现象则越严重。
所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。
离心技术在生物科学,特别是在生物化学和分子生物学研究领域,已得到十分广泛的应用,每个生物化学和分子生物学实验室都要装备多种型式的离心机。
离心技术主要用于各种生物样品的分离和制备,生物样品悬浮液在高速旋转下,由于巨大的离心力作用,使悬浮的微小颗粒(细胞器、生物大分子的沉淀等)以一定的速度沉降,从而与溶液得以分离,而沉降速度取决于颗粒的质量、大小和密度。
基本原理:当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“F”由下式定义,即:F = m&S226;a = m&S226;ω2 r a —粒子旋转的加速度, m —沉降粒子的有效质量,ω—粒子旋转的角速度, r—粒子的旋转半径( cm )。
通常离心力常用地球引力的倍数来表示,因而称为相对离心力“ RCF ”。
离心机半径、转速换算表
RCF=11 .2×R×(r/min
/1000)2
RCF=(rpm/10 00)
2*R*1.11 8
rpm=POWE R(RCF/R/ 1.118)*1 000 RCF:离心力rpm:转速R:离心半径
离心机分离因素计算公式1、分离因素的含义:
在同一萃取体系内两种溶质在同样条件下分配系数的比值。
分离因素愈大(或愈小),说明两种溶质分离效果愈好,分离因素等于1,这两种溶质就分不开了。
离心机上的分离2、影响分离因素的主要因素:
离心力Centrif ugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。
请看下面的说明:向心力使物体受到指向一个中心点的吸引、
F=m ω2r
ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量
相对离心力Relativ e centrif ugal force (RCF)
RCF 就是实际离心力转化为重力加速度的倍数
g为重力加速度(9.8066 5m/s2)
同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n 或
r/min)表示:一般情况下,低速离心时常以r/min来表示。
3、分离因素计算公式:
RCF=F 离心力/F重力= mωˆ2r/mg=ωˆ2r/g=(2*π*r/r*rp m) ˆ
2*r/g 注:rpm应折换成转/秒
例如:直径1000m m,转速1000转/分的离心机,分离因素为:RCF(10 00)=(2* 3.1415* 16.667) ^2*0.5/ 9.8
=104.72 ^2*0.5/ 9.8
=560。
离心机转速换算公式(rpm与g)
离心机转速换算公式(rpm与g)离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。
请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。
笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。
它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。
我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。
由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。
F=mω2rω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量相对离心力Relative centrifugal force (RCF)RCF 就是实际离心力转化为重力加速度的倍数g为重力加速度(9.80665m/s2)同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r /min来表示。
3、分离因素计算公式:RCF=F离心力/F重力= mωˆ2r/mg=ωˆ2r/g= (2*π*r/r*rpm)ˆ2*r/g =(2*π* rpm)ˆ2*r/g =(2*π)ˆ2/g * rpm^2* r 注:rpm应折换成转/秒,r转换成m=(2*π/60)ˆ2/g * rpm^2* r/100=1.119 x 10-5 x (rpm)^2 x r 换算后,rpm为r/min,r为cm例如:直径1000mm,转速1000转/分的离心机,分离因素为:RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8=104.72^2*0.5/9.8=560在有关离心机的实验中,RCF(relative centrifugal field)表示相对离心场,以重力加速度g(980.66cm/s2)的倍数来表示;rpm(revolution per minute,或r/min)表示离心机每分钟的转数。
离心机之离心力g和转速rpm之间的换算
离心机之离心力G和转速rpm的换算离心原理:当含有细小颗粒的悬浮液静置时,由于重力场的作用使得悬浮的颗粒逐渐下沉。
粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。
微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。
如红细胞,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。
(浮力) 此外,物质在介质中沉降时还伴随有扩散现象。
扩散是无条件的绝对的。
扩散与物质的质量成反比,颗粒越小扩散越严重。
而沉降是相对的,有条件的,要受到外力才能运动。
沉降与物体质量成正比,颗粒越大沉降越快。
对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。
因为颗粒越小沉降越慢,而扩散现象则越严重,故需利用离心机产生强大的离心力,才能迫使这些微粒克服扩散沉降。
(扩散)离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
离心力(F)的大小取决于离心转头的角速度(w,r/min)和物质颗粒距离心轴的距离(r,cm)。
它们的关系是:F=rw^2为方便起见,F常用相对离心力也就是地心引力的倍数表示。
即把F值除以重力加速度g (约等于9.8m/s2 )得到离心力是重力的多少倍,称作多少个g。
例如离心机转头平均半径是6cm,当转速是60 000 r/min时,离心力=0.06*6000^2/9.8=220 000×g,表示此时作用在被离心物质上的离心力是日常地心引力的22万倍。
因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。
同样的转速,半径大一倍,离心力(g值)也大一倍。
转速(r/min)和离心力(g值)之间的关系可用下式换算:G=1.11×(10^-5)×R×[rpm]2G为离心力,一般以g(重力加速度)的倍数来表示;10-5即:10的负五次方;[rpm]2即:转速的平方;R为半径,单位为厘米。
离心机之离心力G和转速RPM之间的换算
离心机之离心力G和转速RPM之间的换算离心原理:当含有细小颗粒的悬浮液静置不动时,由于重力场的作用使得悬浮的颗粒逐渐下沉。
粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。
微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。
象红血球大小的颗粒,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。
此外,物质在介质中沉降时还伴随有扩散现象。
扩散是无条件的绝对的。
扩散与物质的质量成反比,颗粒越小扩散越严重。
而沉降是相对的,有条件的,要受到外力才能运动。
沉降与物体重量成正比,颗粒越大沉降越快。
对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。
因为颗粒越小沉降越慢,而扩散现象则越严重。
所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。
离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
离心力(F)的大小取决于离心转头的角速度(ˉ,r/min)和物质颗粒距离心轴的距离(r,cm)。
它们的关系是:F=ˉ2 R为方便起见,F常用相对离心力也就是地心引力的倍数表示。
即把F值除以重力加速度g (约等于9.8m/s2 )得到离心力是重力的多少倍,称作多少个g。
例如离心机转头平均半径是6cm,当转速是60 000 r/min 时,离心力是240 000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。
因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。
同样的转速,半径大一倍,离心力(g值)也大一倍。
转速(r/min)和离心力(g值)之间的关系可用下式换算:G=1.11×(10^-5)×R×[rpm]2G为离心力,一般以g(重力加速度)的倍数来表示;10-5即:10的负五次方;[rpm]2即:转速的平方;R为半径,单位为厘米。
离心机转速换算公式(rpm与g)
离心机转速换算公式(rpm与g)离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。
请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。
笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。
它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。
我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。
由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。
F=mω2rω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量相对离心力Relative centrifugal force (RCF)RCF 就是实际离心力转化为重力加速度的倍数g为重力加速度(9.80665m/s2)同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r /min来表示。
3、分离因素计算公式:RCF=F离心力/F重力= mωˆ2r/mg=ωˆ2r/g= (2*π*r/r*rpm)ˆ2*r/g =(2*π* rpm)ˆ2*r/g =(2*π)ˆ2/g * rpm^2* r 注:rpm应折换成转/秒,r转换成m=(2*π/60)ˆ2/g * rpm^2* r/100=1.119 x 10-5 x (rpm)^2 x r 换算后,rpm为r/min,r为cm例如:直径1000mm,转速1000转/分的离心机,分离因素为:RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8=104.72^2*0.5/9.8=560在有关离心机的实验中,RCF(relative centrifugal field)表示相对离心场,以重力加速度g(980.66cm/s2)的倍数来表示;rpm(revolution per minute,或r/min)表示离心机每分钟的转数。
离心机之离心力G和转速RPM之间的换算
离心机之离心力G和转速rpm的换算离心原理:当含有细小颗粒的悬浮液静置时,由于重力场的作用使得悬浮的颗粒逐渐下沉。
粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。
微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。
如红细胞,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。
(浮力) 此外,物质在介质中沉降时还伴随有扩散现象。
扩散是无条件的绝对的。
扩散与物质的质量成反比,颗粒越小扩散越严重。
而沉降是相对的,有条件的,要受到外力才能运动。
沉降与物体质量成正比,颗粒越大沉降越快。
对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。
因为颗粒越小沉降越慢,而扩散现象则越严重,故需利用离心机产生强大的离心力,才能迫使这些微粒克服扩散沉降。
(扩散)离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
离心力(F)的大小取决于离心转头的角速度(w,r/min)和物质颗粒距离心轴的距离(r,cm)。
它们的关系是:F=rw^2为方便起见,F常用相对离心力也就是地心引力的倍数表示。
即把F值除以重力加速度g (约等于9.8m/s2 )得到离心力是重力的多少倍,称作多少个g。
例如离心机转头平均半径是6cm,当转速是60 000 r/min时,离心力=0.06*6000^2/9.8=220 000×g,表示此时作用在被离心物质上的离心力是日常地心引力的22万倍。
因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。
同样的转速,半径大一倍,离心力(g值)也大一倍。
转速(r/min)和离心力(g值)之间的关系可用下式换算:G=1.11×(10^-5)×R×[rpm]2G为离心力,一般以g(重力加速度)的倍数来表示;10-5即:10的负五次方;[rpm]2即:转速的平方;R为半径,单位为厘米。
关于离心机及rpm单位与g(RCF)单位的换算
关于离心机及rpm单位与g(RCF)单位的换算离心技术在生物科学,特别是在生物化学和分子生物学研究领域,已得到十分广泛的应用,每个生物化学和分子生物学实验室都要装备多种型式的离心机。
离心技术主要用于各种生物样品的分离和制备,生物样品悬浮液在高速旋转下,由于巨大的离心力作用,使悬浮的微小颗粒(细胞器、生物大分子的沉淀等)以一定的速度沉降,从而与溶液得以分离,而沉降速度取决于颗粒的质量、大小和密度。
基本原理:当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“F”由下式定义,即:F = m&S226;a = m&S226;ω2 ra — 粒子旋转的加速度, m — 沉降粒子的有效质量,ω—粒子旋转的角速度, r—粒子的旋转半径( cm )。
通常离心力常用地球引力的倍数来表示,因而称为相对离心力“ RCF ”。
或者用数字乘“g”来表示,例如25000×g,则表示相对离心力为25000。
相对离心力是指在离心场中,作用于颗粒的离心力相当于地球重力的倍数,单位是重力加速度“g”(980cm/sec2),此时“RCF”相对离心力可用下式计算:∴19×10-5×(rpm)2 rRCF = 1.1( rpm — revolutions per minute每分钟转数,r/min )由上式可见,只要给出旋转半径r,则RCF和rpm之间可以相互换算。
但是由于转头的形状及结构的差异,使每台离心机的离心管,从管口至管底的各点与旋转轴之间的距离是不一样的,所以在计算是规定旋转半径均用平均半径“ra v”代替:ra v=( r min+rmax) / 2一般情况下,低速离心时常以转速“rpm”来表示,高速离心时则以“g” 表示。
计算颗粒的相对离心力时,应注意离心管与旋转轴中心的距离“r”不同,即沉降颗粒在离心管中所处位置不同,则所受离心力也不同。
因此在报告超离心条件时,通常总是用地心引力的倍数“×g”代替每分钟转数“rpm”,因为它可以真实地反映颗粒在离心管内不同位置的离心力及其动态变化。
离心力单位
离心力单位
离心力G和转速RPM之间的换算其换算公式如下:
G=1.11×10^(-5)×R×(rpm)^2
其中,G为离心力,一般以g(重力加速度)的倍数来表示。
10^(-5) 即10的负五次方,(rpm)^2转速的平方,R为半径,单位为
厘米。
例如,离心半径为10厘米,转速为8000RPM,其离心力为:
G=1.11*10(-5)*10*(8000)2=7104
即离心力为7104g.
而当离心力为8000g 时,其转速应为:8489即约为8500rpm。
扩展资料
可将离心机分为以下几种型式:
1、常速离心机
Fr≤3500(一般为600~1200),这种离心机的转速较低,直径较大。
2、高速离心机
Fr=3500~50000,这种离心机的转速较高,一般转鼓直径较小,而长
度较长。
3、超高速离心机
Fr>50000,由于转速很高(50000r/min以上),所以转鼓做成细长管式。
分离因素Fr是指物料在离心力场中所受的离心力,与物料在重力场中所受到的重力之比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RCF=11 .2×R×(r/min
/1000)2
RCF=(rpm/10 00)
2*R*1.11 8
rpm=POWE R(RCF/R/ 1.118)*1 000 RCF:离心力rpm:转速R:离心半径
离心机分离因素计算公式1、分离因素的含义:
在同一萃取体系内两种溶质在同样条件下分配系数的比值。
分离因素愈大(或愈小),说明两种溶质分离效果愈好,分离因素等于1,这两种溶质就分不开了。
离心机上的分离2、影响分离因素的主要因素:
离心力Centrif ugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。
请看下面的说明:向心力使物体受到指向一个中心点的吸引、
F=m ω2r
ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量
相对离心力Relativ e centrif ugal force (RCF)
RCF 就是实际离心力转化为重力加速度的倍数
g为重力加速度(9.8066 5m/s2)
同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n 或
r/min)表示:一般情况下,低速离心时常以r/min来表示。
3、分离因素计算公式:
RCF=F 离心力/F重力= mωˆ2r/mg=ωˆ2r/g=(2*π*r/r*rp m) ˆ
2*r/g 注:rpm应折换成转/秒
例如:直径1000m m,转速1000转/分的离心机,分离因素为:RCF(10 00)=(2* 3.1415* 16.667) ^2*0.5/ 9.8
=104.72 ^2*0.5/ 9.8
=560。