避雷针计算书

合集下载

(整理)避雷针计算书

(整理)避雷针计算书

一、风荷载计算:避雷针整体高度为m 820992321>=++=++m H H H 取2=z β94023⨯ϕ管径为H015.00617.042.035.01d 220z >=⨯⨯=ϖμ 取6.0=s μmKN d z s z k /18.042.035.016.020=⨯⨯⨯⨯==ϖμμβϖ92992⨯φ管径为H015.00391.0299.035.025.1d 220z >=⨯⨯=ϖμ 取6.0=s μmKN d z s z k /16.0299.035.035.16.020=⨯⨯⨯⨯==ϖμμβϖm H 21=(避雷针针尖)采用570x φ。

风荷载统一取m KN k /2.0=ϖ采用MIDAS 对该20m 避雷针建模,将风荷载以集中活荷载作用于每段杆件中点。

应力:2/40106813015.1407000001110618500mm N W M A N X n =⨯+=+γ<280mm N <f=2152mm N按《变电所建筑结构设计技术规定》(NDGJ 96-92)10.2.2条规定,管壁应力不宜超过280mm N(在荷载标准值作用下)。

满足要求。

二、挠度:独立避雷针挠度:H/100=20000/100=200mm环形构件受弯强度设计值: 受弯:02.177********380607.4494020==<==f t D02.17721538060380602.3392990==<==f t D受压:11221524100241007.4494020==<==f t D 11221524100241002.3394020==<==f t D2/215mm N f f c b ==长度系数: ==•=000215.00000863.012211H H I I K 0.4 12.10000863.016.22000215.0102112211=⨯⨯=•••=•I N I N H H η12.32=μ 37.31=μ 57.200140900012.32222=⨯=⨯=i H μλ6.2956.102900037.31111=⨯=⨯=i H μλ轴心受压稳定系数:215.005.220600021514.357.2002>=•=•=E f y n πλλ 215.004.320600021514.36.2951>=•=•=Ef y n πλλ ()()⎥⎦⎤⎢⎣⎡-+++++=222322322421n nn n n nλλλααλλααλϕ查《变电构架设计手册》表A-2得:300.0,965.032==αα 18.12=ϕ 1.11=ϕ 弯矩作用下钢管截面整体稳定:()9299⨯φ钢管:()22'1.1/λπEA N Ey ===⨯⨯⨯)6.2951.1/(820020600014.322173276.2()9299/215/1.282.173276100008.0157713015.117000000182001.110000)8.01(22'⨯=≤=⎪⎭⎫ ⎝⎛-⨯⨯⨯+⨯=-+φγβϕmm N f mm N N N W M AN EYx x xmx满足要求()9402⨯φ钢管:()22'1.1/λπEA N Ey ===⨯⨯⨯)57.2001.1/(872320600014.322400375.7()9402/215/507.400375222008.01106813015.15700000011110618.122200)8.01(22'⨯=≤=⎪⎭⎫ ⎝⎛-⨯⨯⨯+⨯=-+φγβϕmm N f mm N N N W M AN EYx x xmx满足要求压弯构件局部稳定计算:()9299⨯φ钢管1143.02151009.862822991017215820010000462<=⨯⨯⨯⨯+⨯=+b c If MC Af N ()9402⨯φ钢管1262.02151037.2146924021057215872322200462<=⨯⨯⨯⨯+⨯=+b c If MC Af N 满足要求 挠度计算:采用midas gen 计算,避雷针在风荷载作用下且考虑重力二阶效应,顶点位移△<H/100 满足要求。

用折线法滚球法对避雷针保护范围计算

用折线法滚球法对避雷针保护范围计算

避雷针的保护范围计算在避雷针保护范围的计算方法中,“折线法”是比较成熟的方法。

近几年来, 国标中规定的“滚球法”也开始得到同行的认同。

下面分别介绍计算过程。

一、 折线法1,1单支避雷针h 为避雷针的高度(m );h x 为被保护物体的高度(m );r x 为在高度为h x 的水平面上的保护半径(m 针离设备至少5m避雷针在地面上的保护半径为r=1.5h在被保护高度h x 当h x ≥ h /2 r x =(h -h x )×p =h a ×p当h x <h /2 r x =(1.5h -2h x )×p p —高度影响系数 h ≤ 30m 时,p =1 ;30<h ≤ 120 m 时1.2两只避雷针1.2.1两支避雷针高度相同随着所要求保护的范围增大。

单支避雷针的高度要升高,但如果所要求保护的范围比较狭长(如长方形),就不宜用太高的单支避雷针,这时可以采用两支较矮的避雷针采用两针后,外侧的保护范围与单针保护范围的确定方法相同,针的内侧部分的确定方法为:令D 为两针间距离;2b x 等于在高度为h x 水平面上保护范围的最小宽度,它位于两针的连接线的中点,即距每针的距离为D/2。

b x=1.5(h o—h x ) 两针间距离与针高之比D/h 不宜大于5h o 为两针间保护范围上部边缘最低点的高度(m)h o=h ‐D/7p 当D=7p ×h a 时, b x=01.2.1两支避雷针高度不同俩针外侧的保护范围仍按单针的方法确定,俩针内侧的保护范围:先作出较高针的保护范围的边界,之后由较低针的针顶部作一条与地面平行线,这两者的交点对地面作垂线,将此垂线看作一假想避雷针,再作它与较低针的保护范围,这样2和3就是相当于俩根等高避雷针的保护范围。

图中 f=D1/7p1.2.3三支或四支避雷针的保护范围可以两两当作两只避雷针确定保护范围二、 滚球法所谓“滚球法”(roll‐ball method),就是选择一个半径为hr(滚球半径)的球体,沿需要防护直击雷的部位滚动,如果球体只接触到避雷针(线)或避雷针(线)与地面,而不触及需要保护的部位,则该部位就在避雷针(线)的保护范围之内。

避雷针保护范围计算

避雷针保护范围计算

注:k——校正系数,在一般情况下取1,在下列情况下取相应数值:位于旷野孤立的 建筑物取2;金属屋面的砖木结构建筑物取1.7;位于河边、湖边、山坡下或山地中土壤 电阻率较小处、地下水露头处、土山顶部、山谷风口等处的建筑物,以 及特别潮湿的 建筑物取1.5; 三类: 二类:
①N≥0.012次/a,且N≤0.06次/a的部、省 ①N≥0.06次/a的部、省级办公建筑物 级办公建筑物及其它重要或人员密集的公 及其它重要或人员密集的公共 共场所; 建筑。 ②N≥0.06次/a,且N≤0.3次/a的住宅、办公楼一 ②N≥0.3次/a的住宅、办公楼等一般 般建筑物; 民用建筑物。 ③N≥0.06次/a的一般性工业建筑。
建(构)筑物年预计雷击次数计算表
N=kNgAe Ng=0.1Td 雷暴日Td=73.9次/a Ae=[LW+2(L+W)*(200H-H2)0.5+π H(200-H)]*10-6 当高度(H)小于100m时等效面积(Ae)计算结果 雷击次数 N = 雷击密度 Ng= 扩大宽度 D= 等效面积 Ae= 0.072277201 7.39 35.46477125 0.009780406 高 长 宽 H= L= W= 6.5 54 16 1
系数 k=
当高度(H)大于100m时等效面积(Ae)计算结果 N=kNgAe Ng=0.1Td 雷击次数 N = 雷击密度 Ng= 扩大宽度 D= 等效面积 Ae= 0.035923991 7.85342731 ———— 0.004574307 雷暴日Td=88次/a Ae=[LW+H(L+W)+π H2/4]*10-6 高 H= 12.7 长 L= 70 宽 W= 24 系数 k= 1

防雷接地计算书

防雷接地计算书

工程设计计算书110kV变电站工程施工图设计阶段工程代号: B1481S 专业:电气计算项目:防雷接地计算书主任工程师:组长:主要设计人:校核:计算:防雷计算一. 避雷针的保护半径计算单支避雷针的保护范围当5h .0h x <时,P )2h 5h .1(r x x -=式中: x r —避雷在 水平面上的保护半径h —避雷针高度x h —被保护物的高度mP —高度影响系数, 1;P 30m,h =≤当h m ≥120>30m 时,h p 5.5=;#1,#2,#5独立避雷针高度为24米,站内#3架构避雷针高度为26米,站内#4架构避雷针高度为26米(此避雷针为二期),全站取被保护物高度为10米。

(1) 对于#1,#2避雷针,当10h x =m 时,5h .0h x <P )2h 5h .1(r x x -= 1)102245.1(⨯⨯-⨯=16m =(2)对于#3避雷针,当10h x =m 时,5h .0h x <P )2h 5h .1(r x x -=1)102625.1(⨯⨯-⨯==19m(3)对于#5避雷针,当5h x =m 时,5h .0h x <P )2h 5h .1(r x x -=1)52425.1(⨯⨯-⨯==26m二. 两支避雷针的保护范围1 两支等高避雷针的保护范围:(1) 两针外侧的保护范围按单支避雷针计算:(2) 两针间的保护最低点高度O h 按下式计算:7PD h h o -= 式中:O h —两针间保护范围上部边缘最低点高度,m ;D —两避雷针间的距离,m ;(3) 两针间x h 水平面上保护范围的一侧最小宽度x b 按下式计算: 当o x h 21h ≥时, )h h (b x o x -= 当o x h 21h < x o x h 2h 5.1b -=2 两支不等高避雷针的保护范围(1)两针外侧的保护范围分别按单支避雷针的计算方法确定。

避雷针保护计算书

避雷针保护计算书
X=4,Y=3,b=0.760
X=3,Y=4,c=0.860
X=4,Y=4,d=0.720
插值运算:
d1=(b-a)*(x-X)+a=(0.760-0.900)*(3.934-3)+0.900=0.769
d2=(d-c)*(x-X)+c=(0.720-0.860)*(3.934-3)+0.860=0.729
x=dDist/ha/p=59.9/18.8/1.000=3.197
y=hx/h*10=4/22.8*10=1.758
查bx曲线:
X=3,Y=1,a=1.080
X=4,Y=1,b=0.900
X=3,Y=2,c=0.990
X=4,Y=2,d=0.830
插值运算:
d1=(b-a)*(x-X)+a=(0.900-1.080)*(3.197-3)+1.080=1.045
d2=(d-c)*(x-X)+c=(0.830-0.990)*(3.197-3)+0.990=0.958
d3=(d1-d2)*(Y-y)+d1=(1.045-0.958)*(1-1.758)+1.045=0.979
bx=d3*ha*p=0.979*18.8*1.000=18.4m
避雷针名称: 2#-3#
d3=(d1-d2)*(Y-y)+d1=(0.770-0.730)*(3-3.297)+0.770=0.758
bx=d3*ha*p=0.758*15.3*1.000=11.6m
避雷针保护高度hx: 4m
ha=22.8-4=18.8m
rx=(1.5*h - 2*hx)*P=(1.5*22.8 - 2*4)*1.000=26.1m

避雷针计算书

避雷针计算书

一、风荷载计算:避雷针整体高度为m 820992321>=++=++m H H H 取2=z β 94023⨯ϕ管径为H015.00617.042.035.01d 220z >=⨯⨯=ϖμ 取6.0=s μm KN d z s z k /18.042.035.016.020=⨯⨯⨯⨯==ϖμμβϖ92992⨯φ管径为H015.00391.0299.035.025.1d 220z >=⨯⨯=ϖμ 取6.0=s μm KN d z s z k /16.0299.035.035.16.020=⨯⨯⨯⨯==ϖμμβϖm H 21=(避雷针针尖)采用570x φ。

风荷载统一取m KN k /2.0=ϖ采用MIDAS 对该20m 避雷针建模,将风荷载以集中活荷载作用于每段杆件中点。

应力:2/40106813015.1407000001110618500mm N W M A N X n =⨯+=+γ<280mm N <f=2152mm N 按《变电所建筑结构设计技术规定》(NDGJ 96-92)10.2.2条规定,管壁应力不宜超过280mm N (在荷载标准值作用下)。

满足要求。

二、挠度:独立避雷针挠度:H/100=20000/100=200mm环形构件受弯强度设计值: 受弯:02.17721538060380607.4494020==<==f t D02.17721538060380602.3392990==<==f t D受压:11221524100241007.4494020==<==f t D 11221524100241002.3394020==<==f t D2/215mm N f f c b ==长度系数:==•=000215.00000863.012211H H I I K 0.4 12.10000863.016.22000215.010*******=⨯⨯=•••=•I N I N H H η 12.32=μ 37.31=μ57.200140900012.32222=⨯=⨯=i H μλ 6.2956.102900037.31111=⨯=⨯=i H μλ 轴心受压稳定系数:215.005.220600021514.357.2002>=•=•=E f y n πλλ 215.004.320600021514.36.2951>=•=•=E f yn πλλ ()()⎥⎦⎤⎢⎣⎡-+++++=222322322421n n n n n n λλλααλλααλϕ 查《变电构架设计手册》表A-2得:300.0,965.032==αα18.12=ϕ 1.11=ϕ弯矩作用下钢管截面整体稳定:()9299⨯φ钢管:()22'1.1/λπEA N Ey ===⨯⨯⨯)6.2951.1/(820020600014.322173276.2()9299/215/1.282.173276100008.0157713015.117000000182001.110000)8.01(22'⨯=≤=⎪⎭⎫ ⎝⎛-⨯⨯⨯+⨯=-+φγβϕmm N f mm N N NW M A N EY x x xmx 满足要求()9402⨯φ钢管:()22'1.1/λπEA N Ey ===⨯⨯⨯)57.2001.1/(872320600014.322400375.7()9402/215/507.400375222008.01106813015.15700000011110618.122200)8.01(22'⨯=≤=⎪⎭⎫ ⎝⎛-⨯⨯⨯+⨯=-+φγβϕmm N f mm N N NW M A N EY x x xmx 满足要求压弯构件局部稳定计算:()9299⨯φ钢管1143.02151009.862822991017215820010000462<=⨯⨯⨯⨯+⨯=+b c If MC Af N ()9402⨯φ钢管1262.02151037.2146924021057215872322200462<=⨯⨯⨯⨯+⨯=+b c If MC Af N 满足要求挠度计算:采用midas gen 计算,避雷针在风荷载作用下且考虑重力二阶效应,顶点位移△<H/100 满足要求。

避雷针计算书

避雷针计算书

一、风荷载计算:避雷针整体高度为m 820992321>=++=++m H H H 取2=z β 94023⨯ϕ管径为H015.00617.042.035.01d 220z >=⨯⨯=ϖμ 取6.0=s μm KN d z s z k /18.042.035.016.020=⨯⨯⨯⨯==ϖμμβϖ92992⨯φ管径为H015.00391.0299.035.025.1d 220z >=⨯⨯=ϖμ 取6.0=s μm KN d z s z k /16.0299.035.035.16.020=⨯⨯⨯⨯==ϖμμβϖm H 21=(避雷针针尖)采用570x φ。

风荷载统一取m KN k /2.0=ϖ采用MIDAS 对该20m 避雷针建模,将风荷载以集中活荷载作用于每段杆件中点。

应力:2/40106813015.1407000001110618500mm N W M A N X n =⨯+=+γ<280mm N <f=2152mm N 按《变电所建筑结构设计技术规定》(NDGJ 96-92)10.2.2条规定,管壁应力不宜超过280mm N (在荷载标准值作用下)。

满足要求。

二、挠度:独立避雷针挠度:H/100=20000/100=200mm环形构件受弯强度设计值: 受弯:02.17721538060380607.4494020==<==f t D02.17721538060380602.3392990==<==f t D受压:11221524100241007.4494020==<==f t D 11221524100241002.3394020==<==f t D2/215mm N f f c b ==长度系数:==•=000215.00000863.012211H H I I K 0.4 12.10000863.016.22000215.010*******=⨯⨯=•••=•I N I N H H η 12.32=μ 37.31=μ57.200140900012.32222=⨯=⨯=i H μλ 6.2956.102900037.31111=⨯=⨯=i H μλ 轴心受压稳定系数:215.005.220600021514.357.2002>=•=•=E f y n πλλ 215.004.320600021514.36.2951>=•=•=E f yn πλλ ()()⎥⎦⎤⎢⎣⎡-+++++=222322322421n n n n n n λλλααλλααλϕ 查《变电构架设计手册》表A-2得:300.0,965.032==αα18.12=ϕ 1.11=ϕ弯矩作用下钢管截面整体稳定:()9299⨯φ钢管:()22'1.1/λπEA N Ey ===⨯⨯⨯)6.2951.1/(820020600014.322173276.2()9299/215/1.282.173276100008.0157713015.117000000182001.110000)8.01(22'⨯=≤=⎪⎭⎫ ⎝⎛-⨯⨯⨯+⨯=-+φγβϕmm N f mm N N NW M A N EY x x xmx 满足要求()9402⨯φ钢管:()22'1.1/λπEA N Ey ===⨯⨯⨯)57.2001.1/(872320600014.322400375.7()9402/215/507.400375222008.01106813015.15700000011110618.122200)8.01(22'⨯=≤=⎪⎭⎫ ⎝⎛-⨯⨯⨯+⨯=-+φγβϕmm N f mm N N NW M A N EY x x xmx 满足要求压弯构件局部稳定计算:()9299⨯φ钢管1143.02151009.862822991017215820010000462<=⨯⨯⨯⨯+⨯=+b c If MC Af N ()9402⨯φ钢管1262.02151037.2146924021057215872322200462<=⨯⨯⨯⨯+⨯=+b c If MC Af N 满足要求挠度计算:采用midas gen 计算,避雷针在风荷载作用下且考虑重力二阶效应,顶点位移△<H/100 满足要求。

避雷针计算

避雷针计算

端撑截面惯性矩Ix、Iy(mm4)
端撑截面模量Wx、Wy(mm3)
端撑柱截面回转半径ix、iy(mm)
弹性模量E(N/mm2)
端撑长度L(mm)
端撑轴力N(kN)













x
x
y
弯矩作用平面内长细比 x
y
截面类型 稳定系数 x
截面塑性发展系数 x 截面塑性发展系数 y
绕Z轴端弯矩 M 2z(kN.m) 绕Z轴端弯矩 M 1z(kN.m)
等效弯矩系数 (t 使产生同向曲率)
弯矩作用平面内稳定 (N/mm2)
b
地线柱强度 (N/mm2)
所用钢材屈服强度fy(N/mm2) 判断是否满足(σ<=fy,满足) 受压局部稳定强度fc(N/mm2) 受弯局部稳定强度fb(N/mm2)
环形构件压弯局部稳定计算
判断是否满足( N MC 1满足)
弯矩标准值Mwk4(kN.m)
轴力标准值Nk4(kN) y
截面塑性发展系数 M M M M m 2 1 1 2 t z z y y
x
y
x
b
强度 (N/mm2)
x x y
判断是否满足(σ<=80,满足)
Φ300×8钢管部分
外径D(mm) 壁厚t(mm) 截面积A(mm2) 截面惯性矩Ix、Iy(mm4) 截面模量Wx、Wy(mm3) 长度h5(m) 风荷载标准值Fwk5(kN/m)
地线柱长度L(mm)
地线柱轴力N(kN)









避雷针保护范围计算书

避雷针保护范围计算书

避雷针保护范围计算书一、单支避雷针保护半径对于#1﹑#2﹑#3,#4单个避雷针,h=30m,其保护半径均如下:当保护高度h x<h/2 时 r x =(1.5h-2h x).p (p=1)∴ h x =10m 时 r x=(1.5×30-2×10)=25m∴ h x =7.3m 时 r x=(1.5×30-2×7.3)=30.4m∴ h x =6m 时 r x=(1.5×30-2×6)=33m二、双支避雷针保护宽度该变电所每支避雷针的对地高度均为30m,均按双支等高避雷针来进行计算保护宽度。

对于等高双支避雷针:h0=h-D/7P (∵ h≤30m ∴ P=1);当 h x≥h0/2时 b x=(h0-h x)当 h x<h0/2时 b x=(1.5h0-2h x)1. 对于#1﹑#2避雷针,等高h=30m,D1,2=45m, h0=h-D1,2/7=23.6m保护高度h x=10m 时 b x1,2=(1.5h0-2h x)=15.4m保护高度h x=7.3m时 b x1,2=(1.5h0-2h x)=20.8m保护高度h x=6m 时 b x1,2=(1.5h0-2h x)=23.4m2. 对于#2﹑#3避雷针,等高h=30m,D2,3=49.1m, h0=h-D2,3/7=23m保护高度h x=10m 时 b x2,3=(1.5h0-2h x)=14.5m保护高度h x=7.3m 时 b x2,3=(1.5h0-2h x)=20m保护高度h x=6m 时 b x2,3=(1.5h0-2h x)=22.5m3. 对于#3﹑#4避雷针,等高h=30m,D3,4=46.6m, h0=h-D3,4/7=19m保护高度h x=10m 时 b x3,4=(h0-h x)=9m保护高度h x=7.3m 时 b x3,4=(1.5h0-2h x)=13.9m保护高度h x=6m 时 b x3,4=(1.5h0-2h x)=16.5m4. 对于#1﹑#4避雷针,等高h=30m,D2,4=82.12m, h0=h-D2,4/7=23.3m保护高度h x=10m 时 b x2,4=(1.5h0-2h x)=8.3m保护高度h x=7.3m 时 b x2,4=(1.5h0-2h x)=12.9m保护高度h x=6m 时 b x2,4=(1.5h0-2h x)=15.5m5. 对于#1﹑#3避雷针,等高h=30m,D2,4=63.8m, h0=h-D2,4/7=20.9m保护高度h x=10m 时 b x2,4=(1.5h0-2h x)=11.3m保护高度h x=7.3m 时 b x2,4=(1.5h0-2h x)=16.7m保护高度h x=6m 时 b x2,4=(1.5h0-2h x)=19.3m6. 对于#2﹑#4避雷针,等高h=30m,D2,4=64.7m, h0=h-D2,4/7=20.8m保护高度h x=10m 时 b x2,4=(1.5h0-2h x)=11.1m保护高度h x=7.3m 时 b x2,4=(1.5h0-2h x)=16.5m保护高度h x=6m 时 b x2,4=(1.5h0-2h x)=19.1m三. 结论:本变电所任意2只避雷针标高之差均<3 m,所以任意一只避雷针的等效高度均>27m,同时由以上计算结果可知,图号为B-03避雷针保护范围中4根等高避雷针所划分三角形的任何一边都在要求的保护高度下都小于临界值,所以必然能满足保护宽度b x>0 m,所以4根避雷针所围成的区域内的配电装置都在保护范围之内。

滚球法避雷针保护半径计算书

滚球法避雷针保护半径计算书

滚球法避雷针保护半径计算书计算时间:2013-06-24设 计 单位:陕西雷特防雷工程有限公司工 程:留坝县桑园坝水电站炸药库防雷工程计 算 者:陶强一、架设独立单针保护:【计算依据】GB50057-2012《建筑物防雷设计规范》【已知条件】建筑物防雷类型 = 雷管库、雷管发放室(第一类防雷建筑物) 滚球半径hr = 30.00 (m)避雷针的高度h = 30.00 (m)被保护物高度hx = 3.00 (m)【计算公式及过程】炸药库均属于一类建筑物,其接地冲击电阻(Ri )不大于10欧姆建筑物保护高度hx =3米预选独立避雷针高度h=30米(一类防雷建筑物避雷针最大高度)hx=3m 时,需要的保护半径r :r=√(3+4+3.4+6)2+(4.2+4) 2r=18.42米)2()2(x r x r x h h h h h h r ---== 30.00 - 13.08= 16.92<18.42 (m)【计算结果】 避雷针在hx 高度xx'平面上的保护半径rx = 16.92 m 建筑物在3米高度上需要保护的范围为18.42米,由于,16.92米<18.42米,所以无法架设一支独立避雷针进行保护;二、架设独立等高双针保护:【计算依据】GB50057-2012《建筑物防雷设计规范》【已知条件】建筑物防雷类型 =雷管库、雷管发放室(第一类防雷建筑物)滚球半径hr = 30.00 (m )两针之间的距离D = 12.00 (m )第一根针的高度h1 = 15.00 (m )第二根针的高度h2 = 15.00 (m )被保护物高度hx = 3.00 (m )【计算公式及过程】)/2D D h h )h (h (2h D 2222121r 1++--== (2*30.00(15.00 - 15.00) - 15.00*15.00 + 15.00*15.00 + 12.00*12.00) / 2*12.00= 6.00 (m)12D -D D == 12.00 - 6.00= 6.00 (m)211r 10D )h (2h h b --== 25.28 (m)211r 12r r 0)h (2h h h h h D +---== 30.00 - 16.16= 13.84 (m))h (2h h )h (2h h b x r x 0r 0x ---== 25.28 - 13.08= 12.20 (m)【计算结果】保护范围D1 = 6.00 m保护范围D2 = 6.00 m地面最小保护宽度b0 = 25.28 mhx 高最小保护宽度bx = 12.20 m架设双支等高独立避雷针,两支避雷针高度设为15米,在hx 高度xx'平面上的保护半径rx = 6.0 m ,建筑物在3米高度上需要保护的范围为,4.1米、4.2米,但是库房上面有电源线通过,且距离避雷针较近,一旦刮大风,电源线可能会碰触到避雷针,因此该库房无法通过架设独立避雷针进行保护;。

物理fname避雷针保护范围计算1

物理fname避雷针保护范围计算1

第一类防雷建筑物
30
≤5×5或≤6×4
第二类防雷建筑物
45
≤10×10或≤12×8
第三类防雷建筑物
60
≤20×20或≤24×16
半径45米的滚球在建筑物上的移动轨迹
一、单支避雷针的保护范围
当避雷针的高度h≤hr(滚球半径)时:
(1)距地面处作一平行于地面的平行线;
(2)以针尖为圆心,hr为半径,作弧线交于平
计算楼顶上的避 雷针保护范围时,由 于楼顶的尺寸限制不 可能象地面一样无限 延伸,常常计算结果 可能会造成滚球并未 被避雷针和楼顶撑起, 而是悬在半空,不符 合滚球法定义。
当接闪器在“地面上保护范围的截面”的 外周线触及接地金属物、其它接闪器时, 各图的保护范围均适用于这些接闪器。所 需断面的保护范围当接地金属物、其它接 闪器是处在外周线之内且位于被保护部位 的边沿时,应按以下方法确定所需断面的 保护范围:
h 避雷针高度。
解方程得避雷针高度为:h=9m。
第二计算方法: 电梯房和被保护的卫星天线同样高4米,且电梯机
房顶也有避雷带和大楼避雷带相连接。因此把电梯房顶 的屋面当作地面来计算。 按照单支避雷针的计算公式:
Rx= h (2hr-h) - hx(2hr-hx)
其中:hr 滚球半径,第二类防雷建筑物取hr=45m。 r0 避雷针在hx高度上的保护半径,是卫星天线到电 梯机房的距离rx =8m。 h 避雷针高度。
C、E点位于两针间的垂直平分线上。在地面每侧的
最小保护宽度bo按下式计算:
(3-3)
在AOB轴线上,距中心线任一距离x处,其在保护 范围上边线上的保护高度hx按下式确定:
(3-4)
两针间AEBC内的保护范围,ACO部分的保护范围按以下方法确 定:在任一保护高度hx和C点所处的垂直平面上,在F点上以hx

滚球法避雷针保护半径计算书

滚球法避雷针保护半径计算书

滚球法避雷针保护半径计算书计算时间:2013-06-24设 计 单位:陕西雷特防雷工程有限公司工 程:留坝县桑园坝水电站炸药库防雷工程计 算 者:陶强一、架设独立单针保护:【计算依据】GB50057-2012《建筑物防雷设计规范》【已知条件】建筑物防雷类型 = 雷管库、雷管发放室(第一类防雷建筑物) 滚球半径hr = 30.00 (m)避雷针的高度h = 30.00 (m)被保护物高度hx = 3.00 (m)【计算公式及过程】炸药库均属于一类建筑物,其接地冲击电阻(Ri )不大于10欧姆建筑物保护高度hx =3米预选独立避雷针高度h=30米(一类防雷建筑物避雷针最大高度)hx=3m 时,需要的保护半径r :r=√(3+4+3.4+6)2+(4.2+4) 2r=18.42米)2()2(x r x r x h h h h h h r ---== 30.00 - 13.08= 16.92<18.42 (m)【计算结果】 避雷针在hx 高度xx'平面上的保护半径rx = 16.92 m 建筑物在3米高度上需要保护的范围为18.42米,由于,16.92米<18.42米,所以无法架设一支独立避雷针进行保护;二、架设独立等高双针保护:【计算依据】GB50057-2012《建筑物防雷设计规范》【已知条件】建筑物防雷类型 =雷管库、雷管发放室(第一类防雷建筑物)滚球半径hr = 30.00 (m )两针之间的距离D = 12.00 (m )第一根针的高度h1 = 15.00 (m )第二根针的高度h2 = 15.00 (m )被保护物高度hx = 3.00 (m )【计算公式及过程】)/2D D h h )h (h (2h D 2222121r 1++--== (2*30.00(15.00 - 15.00) - 15.00*15.00 + 15.00*15.00 + 12.00*12.00) / 2*12.00= 6.00 (m)12D -D D == 12.00 - 6.00= 6.00 (m)211r 10D )h (2h h b --== 25.28 (m)211r 12r r 0)h (2h h h h h D +---== 30.00 - 16.16= 13.84 (m))h (2h h )h (2h h b x r x 0r 0x ---== 25.28 - 13.08= 12.20 (m)【计算结果】保护范围D1 = 6.00 m保护范围D2 = 6.00 m地面最小保护宽度b0 = 25.28 mhx 高最小保护宽度bx = 12.20 m架设双支等高独立避雷针,两支避雷针高度设为15米,在hx 高度xx'平面上的保护半径rx = 6.0 m ,建筑物在3米高度上需要保护的范围为,4.1米、4.2米,但是库房上面有电源线通过,且距离避雷针较近,一旦刮大风,电源线可能会碰触到避雷针,因此该库房无法通过架设独立避雷针进行保护;。

25米独立避雷针计算

25米独立避雷针计算

独立避雷针计算书1.工程设计条件1.1 工程基本资料工程名称:避雷针施工地点:建设单位:设计单位:设计人:-变电站级别: p220KV分析程序: SAP2000 v01.2 构架基本资料排架类型: 构架1.2.1 柱Z1:类型: 单根柱,避雷针高度:25.0m1.3 荷载资料荷载资料信息如下所示:地震信息:抗震烈度: 6(0.05g)度抗震等级: 四级场地土类别: II类最大地震影响系数: 0.04阻尼比: 0.02场地特征周期: 0.35地震力放大系数: 1结构重要性系数: 1风荷载信息:基本风压W0: 0.4地面粗糙度: B类温度信息:夏季安装:最低日计算平均气温下运行的温度作用效应,计算温差: Δt=-40°;最大风条件下运行的温度作用效应,计算温差: Δt=-30°1.3.1 电器专业提供的荷载资料2.基本构件统计2.1 杆件类型统计2.1.1 柱Z1,类型Z-1杆件统计2.2 材料汇总表Q235的总质量为18.80kg的总质量为2058.56kg3.模型简图图1 模型简图4.导荷载过程4.1 荷载模式定义G k——结构自重及其他恒载效应标准值;W k——大风气象条件下作用于构架或导线上的风荷载效应标准值(导线风荷载作用方向与导线垂直);W10k——对应风速10m/s时作用于构架和导线上的风荷载效应标准值(导线风荷载作用方向与导线垂直);D11k——大风气象条件下的导线荷载效应标准值,对应结构风压取W k;D12k——覆冰有风气象条件下的导线荷载效应标准值,对应结构风压取W10k;D13k——最低气温条件下的导线荷载效应标准值,对应结构风压取W10k;D21k——安装工况的导线荷载效应标准值,对应结构风压取W10k;D22k——安装气象条件下非紧线相的导线荷载效应标准值,对应结构风压取W10k;D31k——三相同时上人停电检修时的导线荷载效应标准值(仅考虑母线),对应结构风压取W10k;D32k——检修工况的导线荷载效应标准值,对应结构风压取W10k;Δt50——冬季安装,最高日计算平均气温下运行的温度作用效应,计算温差Δt=50°;Δt-40——夏季安装,最低日计算平均气温下运行的温度作用效应,计算温差Δt=-40°;Δt35——冬季安装,最大风条件下运行的温度作用效应,计算温差Δt=35°;Δt-30——夏季安装,最大风条件下运行的温度作用效应,计算温差Δt=-30°;E k——地震作用效应标准值;F k——偶然工况下导线荷载作用效应标准值;其中:W k和E k按方向细分为W kx、W ky、E kx、E ky、E kz;4.2 荷载计算4.2.1 风荷载计算基本风压ω0=0.4kPa地面粗糙度为B类风速10m/s时风压ω10=v21600=1021600= 0.0625kPa风速10m/s时风荷载标准值W10k= ω10ω0W k =0.06250.4W k = 0.156W k4.2.1.1 柱Z1风荷载计算:主体结构:下段柱杆件:1)风振系数,按单杆悬臂柱结构计算:βz=1.72)高度系数,高度0.05m,查(DL/T5457-2012)表4.4.2-4:μz=13)体型系数:柱(独立杆结构)形状为圆钢d=0.53m,且μzω0d² = 0.112,按(DL/T5457-2012)表4.4.2-1取值,μs=0.6风荷载:∴Wk=βz×μs×μz×ω0=1.7×0.6×1×0.4=0.408kN/m²单根构件承担风荷载,所以qWkX=qWkY=Wk×D(直径)=0.408×0.53=0.216kN/m4.2.2 导线荷载计算4.2.2.1 导线荷载表4.3 荷载组合4.3.1 运行工况4.3.1.1 大风工况4.3.1.2 覆冰有风工况4.3.1.3 温度作用工况4.3.2 检修工况4.3.3 地震作用效应组合4.3.4 正常使用极限状态组合5.荷载简图图1. X向风荷载荷载简图图3. 最大风速D11k荷载简图图7. 非紧线相D22k荷载简图图9. 单相检修D32k荷载简图6.总体分析结果6.1 结构自振周期6.2 振型简图振型简图请用户自动手动添加6.3 支座反力6.3.1 柱Z1支座反力:7.杆件分析(设计)结果输出7.1 柱Z1计算结果:7.1.1 应力比7.1.2 控制内力7.1.3 挠度验算平面内:在标准组合NormCom23下,Z1柱顶最大平面内位移为U max=0mm挠度Δ=Umax/H=0/100=3.552E-005<1/100=1.000E-002,满足要求平面外:在标准组合NormCom21下,Z1柱顶最大平面外位移为U max=0mm挠度Δ=Umax/H=0/100=3.552E-005<1/100=1.000E-002,满足要求8.特殊杆件设计校核8.1 柱Z1主杆设计验算:8.1.1 主杆1杆件Frame_1设计验算:8.1.1.1 截面O530X10特性:环形截面:EQ D\S\do(0)=530mm,t=10mm 面积:A=16336.3mm 2惯性矩:I x =552370528.32mm 4,I y =552370528.32mm 4抗弯刚度:W x =I x /(Max(t2,t2b)/2)=2084417.09mm 3,W y =I y /y max =2084417.09mm 3 回转半径:i x =I x /A=183.9mm ,i y =I y /A=183.9mm 8.1.1.2钢材材质:材质:Q235钢材的抗拉、抗压和抗弯强度设计值:f =215N/mm2 弹性模量:Es =210000N/mm28.1.1.3 局部稳定验算:D/t =530/10=53≤100(235/fy)=100×(235/235)=100 ∴钢管的局部稳定满足要求。

避雷针计算书

避雷针计算书

两支等高避雷针保护半径计算 (hx <h0/2)
避雷针编号 #2-#3 #4-#3 #3-#1 建筑高度 两针间保护最低点的高度 hx (m) ho/2 (m) ho (m) 10 27.91 13.95 10 27.91 13.95 27.91 5.5 13.95 27.91 7.3 13.95
两支不等高避雷针保护半径计算 (hr <h)
建筑高度 两针间保护最低点的高度 避雷针编号 hx (m) #3-#1(40/25) #4-#1(40/25) 10 10 5.5 5.5 13.5 ho/2 (m) 9.30 9.30 9.30 9.30 9.30 ho (m) 18.59 18.59 18.59 18.59 18.59 D(m) 44.863 44.863 44.863 44.863 44.863 h (m) 25 25 25 25 25 p 1.00 1.00 1.00 1.00 1.00 半径ro (m) 37.50 37.50 37.50 37.50 37.50 两支不等高避雷针间距 避雷针高度 高度影响系数 地面保护
两支避雷针保护半径计算 (h0/2<h)
避雷针编号 #2-#1 #2-#1 #2-#1 #2-#2 建筑高度 两针间保护最低点的高度 hx (m) 13.5 8.5 7.3 5.4 ho/2 (m) 8.93 8.93 8.93 8.93 ho (m) 17.86 17.86 17.86 17.86 两只避雷针间距 D(m) 50 50 50 50 两只避雷针间距 D(m) 73.6 73.6 73.6 73.6 避雷针高度 h (m) 25 25 25 25 避雷针高度 h (m) 40 40 40 40 高度影响系数 p 1.00 1.00 1.00 1.00 高度影响系数 p 0.87 0.87 0.87 0.87 地面保护 半径ro (m) 37.50 37.50 37.50 37.50 地面保护 半径ro (m) 52.18 52.18 52.18 52.18

避雷针计算书

避雷针计算书

避雷针计算一.设计条件:1.计算依据《钢结构设计规范》GB50017-2003《变电站建筑结构设计技术规定》NDGJ96-92《建筑地基基础设计规范》GB 50007-2002《建筑结构荷载规范》GB 50009-2001(2006年版)《建筑抗震设计规范》GB 50011-2008《变电构架设计手册》2.独立避雷针荷载计算:H=35m,第一段高度h1=7300mm,采用钢管Φ580/Φ490x10,平均直径Φ535,N=9.5 kN第二段高度h2=7000mm,采用钢管Φ490/Φ390x8,平均直径Φ440,N=6 kN第三段高度h3=7000mm,采用钢管Φ390/Φ290x7,平均直径Φ340,N=5 kN第四段高度h4=7000mm,采用钢管Φ290/Φ190x6,平均直径Φ240,N=2.5 kN第五段高度h5=2400mm,采用钢管Φ152x4,N=0.5 kN第六段高度h6=1950mm,采用钢管Φ133x4,N=0.4 kN第七段高度h7=1600mm,采用钢管Φ114x4,N=0.3 kN第八段高度h5=1050mm,采用钢管Φ95x3,N=0.2 kN按各段高度及外径求得加权平均外径为:D=(7300×535+7000×440+7000×340+7000×240+2400×152+1950×133+1600×114+1050×95)÷(7300+7000×3+2400+1950+1600+1050)=339mm(实际取用364mm偏于安全)风荷载计算:按《建筑结构荷载规范》(GB 50009-2001)(2006版)查得ω0=0.60kN/m2,风荷载标准值:ωk=βz.μs.μz.ω0风振系数:单钢管柱(h>8m),βz=2.0风压高度变化系数μz:h=35m查《建筑结构荷载规范》(GB 50009-2001)表7.2.1(B类)插值得:μz=1.42+(1.56-1.42)×5÷(40-30)=1.49风荷载体型系数μs:μzω0.d2=1.49×0.60×0.3642=0.118>0.015,取μs=+0.6ωk=βz.μs.μz.ω0=2.0×0.6×1.49×0.60=1.073kN/m2作用于各段钢管的风荷载标准值:第一段钢管Φ580/Φ490x10,q1=ωk xD=1.073×0.535=0.574 kN/m第二段钢管Φ490/Φ390x8,q2=ωk xD=1.073×0.44=0.472 kN/m第三段钢管Φ390/Φ290x8,q3=ωk xD=1.073×0.34=0.365kN/m第四段钢管Φ290/Φ190x6,q4=ωk xD=1.073×0.24=0.258 kN/m第五段钢管Φ152x4,q5=ωk xD=1.073×0.152=0.163 kN/m第六段钢管Φ133x4,q6=ωk xD=1.073×0.133=0.143 kN/m第七段钢管Φ114x4,q7=ωk xD=1.073×0.114=0.122 kN/m第八段钢管Φ95x3,q8=ωk xD=1.073×0.095=0.102 kN/m二、内力分析各段钢管底风荷载标准值:1)剪力第八段钢管Q k8=0.102×1.05=0.107 kN第七段钢管Q k7=0.107+0.122×1.60=0.107+0.195=0.302 kN第六段钢管Q k6=0.302+0.143×1.95=0.302+0.279=0.581 kN第五段钢管Q k5=0.581+0.163×2.40=0.581+0.391=0.972 kN第四段钢管Q k4=0.972+0.258×7=0.972+1.806=2.778 kN第三段钢管Q k3=2.778+0.365×7=2.778+2.555=5.333 kN第二段钢管Q k2=5.333+0.472×7=5.333+3.304=8.637 kN第一段钢管Q k1=8.637+0.574×7.3=8.637+4.19=12.827 kN2)弯矩第八段钢管M k8=0.5×1.05×0.107=0.056 kNm第七段钢管M k7=0.056+0.107×1.6+0.5×1.6×0.195=0.056+0.171+0.156=0.383 kNm 第六段钢管M k6=0.056+0.107×(1.6+1.95)+0.156+0.195×1.95+0.5×1.95×0.279=0.056+0.38+0.156+0.38+0.272=1.244 kNm第五段钢管M k5=0.056+0.107×(1.6+1.95+2.40)+0.156+0.195×(1.95+2.40)+0.272+0.279×2.40+0.5×2.4×0.391=0.056+0.637+0.156+0.85+0.272+0.67+0.469=3.574 kNm 第四段钢管M k4=0.056+0.107×(1.6+1.95+2.40+7)+0.156+0.195×(1.95+2.40+7)+0.272+0.279×(2.40+7)+ 0.469+0.391×7+0.5×7×1.806=0.056+1.386+0.156+2.213+0.272+2.623+0.469+2.734+6.321=16.23 kNm第三段钢管M k3=0.056+0.107×(1.6+1.95+2.40+7+7)+0.156+0.195×(1.95+2.40+7+7)+0.272+0.279×(2.40+7+7)+ 0.469+0.391×(7+7)+6.321+1.806×7+0.5×7×2.555=0.056+2.135+0.156+3.578+0.272+4.576+0.469+5.474+6.321+12.642+8.943=44.622 kNm第二段钢管M k2=0.056+0.107×(1.6+1.95+2.40+7+7+7)+0.156+0.195×(1.95+2.40+7+7+7)+0.272+0.279×(2.40+7+7+7)+ 0.469+0.391×(7+7+7)+6.321+1.806×(7+7)+8.943+2.555×7+0.5×7×3.304=0.056+2.884+0.156+4.943+0.272+6.529+0.469+8.211+6.321+25.284+8.943+17.885+11.564=95.517 kNm第一段钢管M k1=0.056+0.107×(1.6+1.95+2.40+7+7+7+7.3)+0.156+0.195×(1.95+2.40+7+7+7+7.3)+0.272+0.279×(2.40+7+7+7+7.3)+ 0.469+0.391×(7+7+7+7.3)+6.321+1.806×(7+7+7.3)+8.943+2.555×(7+7.3)+11.564+3.304×7.3+0.5×7.3×4.19=0.056+3.665+0.156+6.367+0.272+8.565+0.469+11.065+6.321+38.468+8.943+36.537+11.564+24.119+15.294=171.862 kNm3)轴力第八段钢管N k8=0.2kN第七段钢管N k7=0.2+0.3=0.5kN第六段钢管N k6=0.5+0.4=0.9kN第五段钢管N k5=0.9+0.5=1.4kN第四段钢管N k4=1.4+2.5=3.9kN第三段钢管N k3=3.9+5=8.9kN第二段钢管N k2=8.9+6=14.9kN第一段钢管N k1=14.9+9.5=24.4kN三、钢管截面特性计算(按平均截面计算)第一段钢管Φ580/Φ490x10, 平均直径Φ535的截面特性W x=W y=π(d4-d41)/(32d)=3.141592×(5354-5154)÷(32×535)=2125061.3mm3 i x=i y=(d2+d21)0.5/4=(5352+5152)0.5÷4=185.7mm185.8A=π(d2-d21) /4=3.141592×(5352-5152) ÷4=16493.3 mm2第二段钢管Φ490/Φ390x8, 平均直径Φ440的截面特性I x=I y=π(d4-d41)/64=3.141592×(4404-4244)÷64=253366931.8mm4W x=W y=π(d4-d41)/(32d)=3.141592×(4404-4244)÷(32×440)=1151667.9mm3 i x=i y=(d2+d21)0.5/4=(4402+4242)0.5÷4=152.8mmA=π(d2-d21) /4=3.141592×(4402-4242) ÷4=10857.3 mm2第三段钢管Φ390/Φ290x8, 平均直径Φ340的截面特性I x=I y=π(d4-d41)/64=3.141592×(3404-3244)÷64=115031326.3mm4W x=W y=π(d4-d41)/(32d)=3.141592×(3404-3244)÷(32×340)=676654.9mm3 i x=i y=(d2+d21)0.5/4=(3402+3242)0.5÷4=117.4mmA=π(d2-d21) /4=3.141592×(3402-3242) ÷4=8344.1 mm2第四段钢管Φ290/Φ190x6, 平均直径Φ340的截面特性I x=I y=π(d4-d41)/64=3.141592×(2404-2284)÷64=30209536.1mm4W x=W y=π(d4-d41)/(32d)=3.141592×(2404-2284)÷(32×240)=251746.1mm3 i x=i y=(d2+d21)0.5/4=(2402+2282)0.5÷4=82.8mmA=π(d2-d21) /4=3.141592×(2402-2242) ÷4=5830.8 mm2第五段钢管Φ152×4截面特性I x=I y=π(d4-d41)/64=3.141592×(1524-1444)÷64=5095913.6mm4W x=W y=π(d4-d41)/(32d)=3.141592×(1524-1444)÷(32×152)=67051.5mm3 i x=i y=(d2+d21)0.5/4=(1522+1442)0.5÷4=52.3mmA=π(d2-d21) /4=3.141592×(1522-1442) ÷4=1859.8 mm2第六段钢管Φ133x4截面特性I x=I y=π(d4-d41)/64=3.141592×(1334-1254)÷64=3375252.6mm4W x=W y=π(d4-d41)/(32d)=3.141592×(1334-1254)÷(32x133)=50755.7mm3i x=i y=(d2+d21)0.5/4=(1332+1252)0.5÷4=45.6mmA=π(d2-d21) /4=3.141592×(1332-1252) ÷4=1621 mm2第七段钢管Φ114x4截面特性W x=W y=π(d4-d41)/(32d)=3.141592×(1144-1064)÷(32×114)=36728mm3i x=i y=(d2+d21)0.5/4=(1142+1062)0.5÷4=38.9mmA=π(d2-d21) /4=3.141592×(1142-1062) ÷4=1382.3 mm2第八段钢管Φ95x3截面特性I x=I y=π(d4-d41)/64=3.141592×(954-894)÷64=918345.5mm4W x=W y=π(d4-d41)/(32d)=3.141592×(954-894)÷(32×95)=193333.6mm3i x=i y=(d2+d21)0.5/4=(952+892)0.5÷4=32.5mmA=π(d2-d21) /4=3.141592×(952-892) ÷4=867.1mm2四、强度验算第一段钢管N/A+M x/(γx W x)=1.2×24.4×1000÷16493.3+1.4×171.862×1000000÷(1.15×2125061.3)=1.78+98.46=100.24N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)=24.4×1000÷16493.3-1.4×171.862×1000000÷(1.15×2125061.3) =1.48-98.46=-96.98N/m m2<215×0.7=150.5 N/mm2第二段钢管N/A+M x/(γx W x)=1.2×14.9×1000÷10857.3 +1.4×95.517 ×1000000÷(1.15×1151667.9)=1.65+100.97=102.61N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 14.9×1000÷10857.3 -95.517 ×1000000÷(1.15×1151667.9)=1.37-72.12=-70.75N/m m2<215×0.7=150.5 N/mm2第三段钢管N/A+M x/(γx W x)= 1.2×8.9×1000÷8344.1 +1.4×44.622 ×1000000÷(1.15×676654.9)=1.28+80.28=81.56N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 8.9×1000÷8344.1 -44.622×1000000÷(1.15×676654.9)=1.07-57.34=-56.27N/m m2<215×0.7=150.5 N/mm2第四段钢管N/A+M x/(γx W x)= 1.2×3.9×1000÷5830.8 +1.4×16.23×1000000÷(1.15×251746.1) =0.8+78.48=79.28N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 3.9×1000÷5830.8 -16.23×1000000÷(1.15×251746.1)=0.67-56.06=-55.39N/m m2<215×0.7=150.5 N/mm2第五段钢管N/A+M x/(γx W x)= 1.2×1.4×1000÷1859.8 +1.4×3.574×1000000÷(1.15×67051.5) =0.9+64.89=65.79N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 1.4×1000÷1859.8-1.4×3.574×1000000÷(1.15×67051.5)=0.75-64.89=-64.14N/m m2<215×0.7=150.5 N/mm2第六段钢管N/A+M x/(γx W x)= 1.2×0.9×1000÷1621+1.4×1.244×1000000÷(1.15×50755.7)=0.67+29.84=30.51N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 0.9×1000÷1621-1.4×1.244×1000000÷(1.15×50755.7)=0.56-29.84=-29.28N/m m2<215×0.7=150.5 N/mm2第七段钢管N/A+M x/(γx W x)= 1.2×0.5×1000÷1382.3+1.4×0.383×1000000÷(1.15×36728)=0.43+12.69=13.12N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 0.5×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.36-12.69=-12.33N/m m2<215×0.7=150.5 N/mm2第八段钢管设计值作用下:N/A+M x/(γx W x)= 1.2×0.2×1000÷1382.3+1.4×0.383×1000000÷(1.15×36728)=0.17+12.69=12.86N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 0.2×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.14-12.69=-12.55N/m m2<215×0.7=150.5 N/mm2设计值作用下:N/A+M x/(γx W x)= 1.2×0.2×1000÷1382.3+0.383×1000000÷(1.15×36728)=0.17+9.07=9.24N/mm2<80 N/mm2N/A-M x/(γx W x)= 0.2×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.14-12.69=-12.55N/mm2<80 N/mm2五、稳定性验算第一段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+95.517÷171.862=1.556注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.556×7300÷185.7=61.17<150,查得x φ=0.8158147131)17.61.116493.3/(1206000141592.3)1.1/(2222'=⨯⨯⨯==x Ex EA N λπmkN m kN N N W M A N Ex x x x mx /215/92.10074.9818.2)8147131244002.18.01(2125061.315.11000000862.1710.14.13.16493815.0244002.1)8.01(φ'1x <=+=⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/43.8125.7918.22125061.30.11000000862.1710.14.17.03.16493815.0244002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 第二段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+44.622÷95.517=1.467注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.467x7000÷152.8=67.21<150,查得x φ=0.7854442507)21.67 /(1.110857.3206000141592.3)1.1/(2222'=⨯⨯⨯==x Ex EA N λπmkN m kN N N W M A N Ex x x x mx /215/4.1033.10110.2)4442507149002.18.01(1151667.915.11000000 95.5170.14.1 10857.3785.0149002.1)8.01(φ'1x <=+=⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/37.8327.8110.29.15166710.11000000517.950.14.17.03.10857785.0149002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 第三段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+16.23/44.622=1.36注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.36x7000÷117.4=81.09<150,查得x φ=0.7042345411)09.81 /(1.18344.1206000141592.3)1.1/(2222'=⨯⨯⨯==xEx EA N λπ mkN m kN N N W M A N Ex x x x mx /215/39.8257.8082.1)234541189002.18.01(9.76654615.11000000 622.440.14.1 1.3448704.089002.1)8.01(φ'1x <=+=⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/42.666.6482.19.6766540.11000000622.440.14.17.01.8344704.089002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 第四段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+3.574÷16.23=1.22注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.22x7000÷82.8=103.14<150,查得x φ=0.563102222'104.3)563.0 /(1.18.8305206000141592.3)1.1/(⨯=⨯⨯⨯==x Ex EA N λπmkN m kN N N W M A N Ex x x x mx /215/91.7948.7843.1)104.339002.18.01(1.25174615.11000000 23.160.14.18.5830563.039002.1)8.01(φ10'1x <=+=⨯⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/37.6418.6319.11.2517460.1100000023.160.14.17.08.5830563.039002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 根据上述结构计算,第五、第六、第七、第八段平面内及平面外都满足要求。

25米独立避雷针计算

25米独立避雷针计算

独立避雷针计算书1.工程设计条件1.1 工程基本资料工程名称:避雷针施工地点:建设单位:设计单位:设计人:-变电站级别: p220KV分析程序: SAP2000 v01.2 构架基本资料排架类型: 构架1.2.1 柱Z1:类型: 单根柱,避雷针高度:25.0m1.3 荷载资料荷载资料信息如下所示:地震信息:抗震烈度: 6(0.05g)度抗震等级: 四级场地土类别: II类最大地震影响系数: 0.04阻尼比: 0.02场地特征周期: 0.35地震力放大系数: 1结构重要性系数: 1风荷载信息:基本风压W0: 0.4地面粗糙度: B类温度信息:夏季安装:最低日计算平均气温下运行的温度作用效应,计算温差: Δt=-40°;最大风条件下运行的温度作用效应,计算温差: Δt=-30°1.3.1 电器专业提供的荷载资料2.基本构件统计2.1 杆件类型统计2.1.1 柱Z1,类型Z-1杆件统计2.2 材料汇总表Q235的总质量为18.80kg的总质量为2058.56kg3.模型简图图1 模型简图4.导荷载过程4.1 荷载模式定义G k——结构自重及其他恒载效应标准值;W k——大风气象条件下作用于构架或导线上的风荷载效应标准值(导线风荷载作用方向与导线垂直);W10k——对应风速10m/s时作用于构架和导线上的风荷载效应标准值(导线风荷载作用方向与导线垂直);D11k——大风气象条件下的导线荷载效应标准值,对应结构风压取W k;D12k——覆冰有风气象条件下的导线荷载效应标准值,对应结构风压取W10k;D13k——最低气温条件下的导线荷载效应标准值,对应结构风压取W10k;D21k——安装工况的导线荷载效应标准值,对应结构风压取W10k;D22k——安装气象条件下非紧线相的导线荷载效应标准值,对应结构风压取W10k;D31k——三相同时上人停电检修时的导线荷载效应标准值(仅考虑母线),对应结构风压取W10k;D32k——检修工况的导线荷载效应标准值,对应结构风压取W10k;Δt50——冬季安装,最高日计算平均气温下运行的温度作用效应,计算温差Δt=50°;Δt-40——夏季安装,最低日计算平均气温下运行的温度作用效应,计算温差Δt=-40°;Δt35——冬季安装,最大风条件下运行的温度作用效应,计算温差Δt=35°;Δt-30——夏季安装,最大风条件下运行的温度作用效应,计算温差Δt=-30°;E k——地震作用效应标准值;F k——偶然工况下导线荷载作用效应标准值;其中:W k和E k按方向细分为W kx、W ky、E kx、E ky、E kz;4.2 荷载计算4.2.1 风荷载计算基本风压ω0=0.4kPa地面粗糙度为B类风速10m/s时风压ω10=v21600=1021600= 0.0625kPa风速10m/s时风荷载标准值W10k= ω10ω0W k =0.06250.4W k = 0.156W k4.2.1.1 柱Z1风荷载计算:主体结构:下段柱杆件:1)风振系数,按单杆悬臂柱结构计算:βz=1.72)高度系数,高度0.05m,查(DL/T5457-2012)表4.4.2-4:μz=13)体型系数:柱(独立杆结构)形状为圆钢d=0.53m,且μzω0d² = 0.112,按(DL/T5457-2012)表4.4.2-1取值,μs=0.6风荷载:∴Wk=βz×μs×μz×ω0=1.7×0.6×1×0.4=0.408kN/m²单根构件承担风荷载,所以qWkX=qWkY=Wk×D(直径)=0.408×0.53=0.216kN/m4.2.2 导线荷载计算4.2.2.1 导线荷载表4.3 荷载组合4.3.1 运行工况4.3.1.1 大风工况4.3.1.2 覆冰有风工况4.3.1.3 温度作用工况4.3.2 检修工况4.3.3 地震作用效应组合4.3.4 正常使用极限状态组合5.荷载简图图1. X向风荷载荷载简图图3. 最大风速D11k荷载简图图7. 非紧线相D22k荷载简图图9. 单相检修D32k荷载简图6.总体分析结果6.1 结构自振周期6.2 振型简图振型简图请用户自动手动添加6.3 支座反力6.3.1 柱Z1支座反力:7.杆件分析(设计)结果输出7.1 柱Z1计算结果:7.1.1 应力比7.1.2 控制内力7.1.3 挠度验算平面内:在标准组合NormCom23下,Z1柱顶最大平面内位移为U max=0mm挠度Δ=Umax/H=0/100=3.552E-005<1/100=1.000E-002,满足要求平面外:在标准组合NormCom21下,Z1柱顶最大平面外位移为U max=0mm挠度Δ=Umax/H=0/100=3.552E-005<1/100=1.000E-002,满足要求8.特殊杆件设计校核8.1 柱Z1主杆设计验算:8.1.1 主杆1杆件Frame_1设计验算:8.1.1.1 截面O530X10特性:环形截面:EQ D\S\do(0)=530mm,t=10mm 面积:A=16336.3mm 2惯性矩:I x =552370528.32mm 4,I y =552370528.32mm 4抗弯刚度:W x =I x /(Max(t2,t2b)/2)=2084417.09mm 3,W y =I y /y max =2084417.09mm 3 回转半径:i x =I x /A=183.9mm ,i y =I y /A=183.9mm 8.1.1.2钢材材质:材质:Q235钢材的抗拉、抗压和抗弯强度设计值:f =215N/mm2 弹性模量:Es =210000N/mm28.1.1.3 局部稳定验算:D/t =530/10=53≤100(235/fy)=100×(235/235)=100 ∴钢管的局部稳定满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

避雷针计算一.设计条件:1.计算依据《钢结构设计规范》GB50017-2003《变电站建筑结构设计技术规定》NDGJ96-92《建筑地基基础设计规范》GB 50007-2002《建筑结构荷载规范》GB 50009-2001(2006年版)《建筑抗震设计规范》GB 50011-2008《变电构架设计手册》2.独立避雷针荷载计算:H=35m,第一段高度h1=7300mm,采用钢管Φ580/Φ490x10,平均直径Φ535,N=9.5 kN第二段高度h2=7000mm,采用钢管Φ490/Φ390x8,平均直径Φ440,N=6 kN第三段高度h3=7000mm,采用钢管Φ390/Φ290x7,平均直径Φ340,N=5 kN第四段高度h4=7000mm,采用钢管Φ290/Φ190x6,平均直径Φ240,N=2.5 kN第五段高度h5=2400mm,采用钢管Φ152x4,N=0.5 kN第六段高度h6=1950mm,采用钢管Φ133x4,N=0.4 kN第七段高度h7=1600mm,采用钢管Φ114x4,N=0.3 kN第八段高度h5=1050mm,采用钢管Φ95x3,N=0.2 kN按各段高度及外径求得加权平均外径为:D=(7300×535+7000×440+7000×340+7000×240+2400×152+1950×133+1600×114+1050×95)÷(7300+7000×3+2400+1950+1600+1050)=339mm(实际取用364mm偏于安全)风荷载计算:按《建筑结构荷载规范》(GB 50009-2001)(2006版)查得ω0=0.60kN/m2,风荷载标准值:ωk=βz.μs.μz.ω0风振系数:单钢管柱(h>8m),βz=2.0风压高度变化系数μz:h=35m查《建筑结构荷载规范》(GB 50009-2001)表7.2.1(B类)插值得:μz=1.42+(1.56-1.42)×5÷(40-30)=1.49风荷载体型系数μs:μzω0.d2=1.49×0.60×0.3642=0.118>0.015,取μs=+0.6ωk=βz.μs.μz.ω0=2.0×0.6×1.49×0.60=1.073kN/m2作用于各段钢管的风荷载标准值:第一段钢管Φ580/Φ490x10,q1=ωk xD=1.073×0.535=0.574 kN/m第二段钢管Φ490/Φ390x8,q2=ωk xD=1.073×0.44=0.472 kN/m第三段钢管Φ390/Φ290x8,q3=ωk xD=1.073×0.34=0.365kN/m第四段钢管Φ290/Φ190x6,q4=ωk xD=1.073×0.24=0.258 kN/m第五段钢管Φ152x4,q5=ωk xD=1.073×0.152=0.163 kN/m第六段钢管Φ133x4,q6=ωk xD=1.073×0.133=0.143 kN/m第七段钢管Φ114x4,q7=ωk xD=1.073×0.114=0.122 kN/m第八段钢管Φ95x3,q8=ωk xD=1.073×0.095=0.102 kN/m二、内力分析各段钢管底风荷载标准值:1)剪力第八段钢管Q k8=0.102×1.05=0.107 kN第七段钢管Q k7=0.107+0.122×1.60=0.107+0.195=0.302 kN第六段钢管Q k6=0.302+0.143×1.95=0.302+0.279=0.581 kN第五段钢管Q k5=0.581+0.163×2.40=0.581+0.391=0.972 kN第四段钢管Q k4=0.972+0.258×7=0.972+1.806=2.778 kN第三段钢管Q k3=2.778+0.365×7=2.778+2.555=5.333 kN第二段钢管Q k2=5.333+0.472×7=5.333+3.304=8.637 kN第一段钢管Q k1=8.637+0.574×7.3=8.637+4.19=12.827 kN2)弯矩第八段钢管M k8=0.5×1.05×0.107=0.056 kNm第七段钢管M k7=0.056+0.107×1.6+0.5×1.6×0.195=0.056+0.171+0.156=0.383 kNm 第六段钢管M k6=0.056+0.107×(1.6+1.95)+0.156+0.195×1.95+0.5×1.95×0.279=0.056+0.38+0.156+0.38+0.272=1.244 kNm第五段钢管M k5=0.056+0.107×(1.6+1.95+2.40)+0.156+0.195×(1.95+2.40)+0.272+0.279×2.40+0.5×2.4×0.391=0.056+0.637+0.156+0.85+0.272+0.67+0.469=3.574 kNm 第四段钢管M k4=0.056+0.107×(1.6+1.95+2.40+7)+0.156+0.195×(1.95+2.40+7)+0.272+0.279×(2.40+7)+ 0.469+0.391×7+0.5×7×1.806=0.056+1.386+0.156+2.213+0.272+2.623+0.469+2.734+6.321=16.23 kNm第三段钢管M k3=0.056+0.107×(1.6+1.95+2.40+7+7)+0.156+0.195×(1.95+2.40+7+7)+0.272+0.279×(2.40+7+7)+ 0.469+0.391×(7+7)+6.321+1.806×7+0.5×7×2.555=0.056+2.135+0.156+3.578+0.272+4.576+0.469+5.474+6.321+12.642+8.943=44.622 kNm第二段钢管M k2=0.056+0.107×(1.6+1.95+2.40+7+7+7)+0.156+0.195×(1.95+2.40+7+7+7)+0.272+0.279×(2.40+7+7+7)+ 0.469+0.391×(7+7+7)+6.321+1.806×(7+7)+8.943+2.555×7+0.5×7×3.304=0.056+2.884+0.156+4.943+0.272+6.529+0.469+8.211+6.321+25.284+8.943+17.885+11.564=95.517 kNm第一段钢管M k1=0.056+0.107×(1.6+1.95+2.40+7+7+7+7.3)+0.156+0.195×(1.95+2.40+7+7+7+7.3)+0.272+0.279×(2.40+7+7+7+7.3)+ 0.469+0.391×(7+7+7+7.3)+6.321+1.806×(7+7+7.3)+8.943+2.555×(7+7.3)+11.564+3.304×7.3+0.5×7.3×4.19=0.056+3.665+0.156+6.367+0.272+8.565+0.469+11.065+6.321+38.468+8.943+36.537+11.564+24.119+15.294=171.862 kNm3)轴力第八段钢管N k8=0.2kN第七段钢管N k7=0.2+0.3=0.5kN第六段钢管N k6=0.5+0.4=0.9kN第五段钢管N k5=0.9+0.5=1.4kN第四段钢管N k4=1.4+2.5=3.9kN第三段钢管N k3=3.9+5=8.9kN第二段钢管N k2=8.9+6=14.9kN第一段钢管N k1=14.9+9.5=24.4kN三、钢管截面特性计算(按平均截面计算)第一段钢管Φ580/Φ490x10, 平均直径Φ535的截面特性W x=W y=π(d4-d41)/(32d)=3.141592×(5354-5154)÷(32×535)=2125061.3mm3 i x=i y=(d2+d21)0.5/4=(5352+5152)0.5÷4=185.7mm185.8A=π(d2-d21) /4=3.141592×(5352-5152) ÷4=16493.3 mm2第二段钢管Φ490/Φ390x8, 平均直径Φ440的截面特性I x=I y=π(d4-d41)/64=3.141592×(4404-4244)÷64=253366931.8mm4W x=W y=π(d4-d41)/(32d)=3.141592×(4404-4244)÷(32×440)=1151667.9mm3 i x=i y=(d2+d21)0.5/4=(4402+4242)0.5÷4=152.8mmA=π(d2-d21) /4=3.141592×(4402-4242) ÷4=10857.3 mm2第三段钢管Φ390/Φ290x8, 平均直径Φ340的截面特性I x=I y=π(d4-d41)/64=3.141592×(3404-3244)÷64=115031326.3mm4W x=W y=π(d4-d41)/(32d)=3.141592×(3404-3244)÷(32×340)=676654.9mm3 i x=i y=(d2+d21)0.5/4=(3402+3242)0.5÷4=117.4mmA=π(d2-d21) /4=3.141592×(3402-3242) ÷4=8344.1 mm2第四段钢管Φ290/Φ190x6, 平均直径Φ340的截面特性I x=I y=π(d4-d41)/64=3.141592×(2404-2284)÷64=30209536.1mm4W x=W y=π(d4-d41)/(32d)=3.141592×(2404-2284)÷(32×240)=251746.1mm3 i x=i y=(d2+d21)0.5/4=(2402+2282)0.5÷4=82.8mmA=π(d2-d21) /4=3.141592×(2402-2242) ÷4=5830.8 mm2第五段钢管Φ152×4截面特性I x=I y=π(d4-d41)/64=3.141592×(1524-1444)÷64=5095913.6mm4W x=W y=π(d4-d41)/(32d)=3.141592×(1524-1444)÷(32×152)=67051.5mm3 i x=i y=(d2+d21)0.5/4=(1522+1442)0.5÷4=52.3mmA=π(d2-d21) /4=3.141592×(1522-1442) ÷4=1859.8 mm2第六段钢管Φ133x4截面特性I x=I y=π(d4-d41)/64=3.141592×(1334-1254)÷64=3375252.6mm4W x=W y=π(d4-d41)/(32d)=3.141592×(1334-1254)÷(32x133)=50755.7mm3i x=i y=(d2+d21)0.5/4=(1332+1252)0.5÷4=45.6mmA=π(d2-d21) /4=3.141592×(1332-1252) ÷4=1621 mm2第七段钢管Φ114x4截面特性W x=W y=π(d4-d41)/(32d)=3.141592×(1144-1064)÷(32×114)=36728mm3i x=i y=(d2+d21)0.5/4=(1142+1062)0.5÷4=38.9mmA=π(d2-d21) /4=3.141592×(1142-1062) ÷4=1382.3 mm2第八段钢管Φ95x3截面特性I x=I y=π(d4-d41)/64=3.141592×(954-894)÷64=918345.5mm4W x=W y=π(d4-d41)/(32d)=3.141592×(954-894)÷(32×95)=193333.6mm3i x=i y=(d2+d21)0.5/4=(952+892)0.5÷4=32.5mmA=π(d2-d21) /4=3.141592×(952-892) ÷4=867.1mm2四、强度验算第一段钢管N/A+M x/(γx W x)=1.2×24.4×1000÷16493.3+1.4×171.862×1000000÷(1.15×2125061.3)=1.78+98.46=100.24N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)=24.4×1000÷16493.3-1.4×171.862×1000000÷(1.15×2125061.3) =1.48-98.46=-96.98N/m m2<215×0.7=150.5 N/mm2第二段钢管N/A+M x/(γx W x)=1.2×14.9×1000÷10857.3 +1.4×95.517 ×1000000÷(1.15×1151667.9)=1.65+100.97=102.61N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 14.9×1000÷10857.3 -95.517 ×1000000÷(1.15×1151667.9)=1.37-72.12=-70.75N/m m2<215×0.7=150.5 N/mm2第三段钢管N/A+M x/(γx W x)= 1.2×8.9×1000÷8344.1 +1.4×44.622 ×1000000÷(1.15×676654.9)=1.28+80.28=81.56N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 8.9×1000÷8344.1 -44.622×1000000÷(1.15×676654.9)=1.07-57.34=-56.27N/m m2<215×0.7=150.5 N/mm2第四段钢管N/A+M x/(γx W x)= 1.2×3.9×1000÷5830.8 +1.4×16.23×1000000÷(1.15×251746.1) =0.8+78.48=79.28N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 3.9×1000÷5830.8 -16.23×1000000÷(1.15×251746.1)=0.67-56.06=-55.39N/m m2<215×0.7=150.5 N/mm2第五段钢管N/A+M x/(γx W x)= 1.2×1.4×1000÷1859.8 +1.4×3.574×1000000÷(1.15×67051.5) =0.9+64.89=65.79N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 1.4×1000÷1859.8-1.4×3.574×1000000÷(1.15×67051.5)=0.75-64.89=-64.14N/m m2<215×0.7=150.5 N/mm2第六段钢管N/A+M x/(γx W x)= 1.2×0.9×1000÷1621+1.4×1.244×1000000÷(1.15×50755.7)=0.67+29.84=30.51N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 0.9×1000÷1621-1.4×1.244×1000000÷(1.15×50755.7)=0.56-29.84=-29.28N/m m2<215×0.7=150.5 N/mm2第七段钢管N/A+M x/(γx W x)= 1.2×0.5×1000÷1382.3+1.4×0.383×1000000÷(1.15×36728)=0.43+12.69=13.12N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 0.5×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.36-12.69=-12.33N/m m2<215×0.7=150.5 N/mm2第八段钢管设计值作用下:N/A+M x/(γx W x)= 1.2×0.2×1000÷1382.3+1.4×0.383×1000000÷(1.15×36728)=0.17+12.69=12.86N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 0.2×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.14-12.69=-12.55N/m m2<215×0.7=150.5 N/mm2设计值作用下:N/A+M x/(γx W x)= 1.2×0.2×1000÷1382.3+0.383×1000000÷(1.15×36728)=0.17+9.07=9.24N/mm2<80 N/mm2N/A-M x/(γx W x)= 0.2×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.14-12.69=-12.55N/mm2<80 N/mm2五、稳定性验算第一段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+95.517÷171.862=1.556注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.556×7300÷185.7=61.17<150,查得x φ=0.8158147131)17.61.116493.3/(1206000141592.3)1.1/(2222'=⨯⨯⨯==x Ex EA N λπmkN m kN N N W M A N Ex x x x mx /215/92.10074.9818.2)8147131244002.18.01(2125061.315.11000000862.1710.14.13.16493815.0244002.1)8.01(φ'1x <=+=⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/43.8125.7918.22125061.30.11000000862.1710.14.17.03.16493815.0244002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 第二段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+44.622÷95.517=1.467注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.467x7000÷152.8=67.21<150,查得x φ=0.7854442507)21.67 /(1.110857.3206000141592.3)1.1/(2222'=⨯⨯⨯==x Ex EA N λπmkN m kN N N W M A N Ex x x x mx /215/4.1033.10110.2)4442507149002.18.01(1151667.915.11000000 95.5170.14.1 10857.3785.0149002.1)8.01(φ'1x <=+=⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/37.8327.8110.29.15166710.11000000517.950.14.17.03.10857785.0149002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 第三段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+16.23/44.622=1.36注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.36x7000÷117.4=81.09<150,查得x φ=0.7042345411)09.81 /(1.18344.1206000141592.3)1.1/(2222'=⨯⨯⨯==xEx EA N λπ mkN m kN N N W M A N Ex x x x mx /215/39.8257.8082.1)234541189002.18.01(9.76654615.11000000 622.440.14.1 1.3448704.089002.1)8.01(φ'1x <=+=⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/42.666.6482.19.6766540.11000000622.440.14.17.01.8344704.089002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 第四段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+3.574÷16.23=1.22注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.22x7000÷82.8=103.14<150,查得x φ=0.563102222'104.3)563.0 /(1.18.8305206000141592.3)1.1/(⨯=⨯⨯⨯==x Ex EA N λπmkN m kN N N W M A N Ex x x x mx /215/91.7948.7843.1)104.339002.18.01(1.25174615.11000000 23.160.14.18.5830563.039002.1)8.01(φ10'1x <=+=⨯⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/37.6418.6319.11.2517460.1100000023.160.14.17.08.5830563.039002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 根据上述结构计算,第五、第六、第七、第八段平面内及平面外都满足要求。

相关文档
最新文档