近世代数群的概念
第二章 近世代数简介
若理想子环的所有元素可由一个元素a的各
次幂或各次幂的线性组合生成,则称该理想子环 主理想子环,简称主理想
10
域(Field)
一个集合,二种运算
一般m 素数q
可能是零因子环 整环
子环( subring )
理想子环(强收敛性)
主理想(所有元素是一个元
素幂的线性组合)
9
若集合S是集合R的子集(S R), 判断(S ,+, ·)是(R ,+, ·) 子环的充要条件是 1. a、b S, a-b S。 2. a、b S, a b S。 上述条件1强调了子环中加法逆元的存在和封闭 性,条件2强调了乘法封闭性。 理想子环的充要条件是:
作为其根。换言之,若deg
i
(x)
=
(x-
20)
(x-
21)
(x-
(i (x))=
22 )…(x-
li,必有
) 2( li1 )
这里,deg(i (x) )= li m,本原元的共轭根系对
(2-4)
这里,
GCD表示最大公约数(Greatest Common Divisor)
推理
循环群中n阶元素的n次幂恒等于1
23
各次幂 k
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
的 多项式
多项式系数 m重
1
(0001)
(0010)
2
(0100)
3
(1000)
+1
(0011)
本原多项式 Primary Polynomials
近世代数简介
k
= i( x )
i 1
(2-4)
这里,
GCD表示最大公约数(Greatest Common Divisor)
推理
循环群中n阶元素的n次幂恒等于1
各次幂 k
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
的
多项式系数
多项式
m重
1
(0001)
(0010)
2
(0100)
多项式环Rq(x)g(x)
系数GF(q),模g(x)
g(x) 一般多项式:多项式环 m素数或合数,有限数环
PI(x) 既约多项式:多项式域(q元扩域)
q素数,整环
P(x) 本原多项式:域元素构成循环群
例2.8:剩余类环Rq(x) f(x) 中,q =2,f(x) = x3+x+1。若A(x)= x2+x+1、B(x)= x2+ 1 是 两个环元素,求A(x) B(x)是什么元素?该剩余类环至多由多少元素组成?
有限环(Ring)
一个有限集合,模m加,模m乘
一般m 素数q
可能是零因子环 整环
子环( subring )
理想子环(强收敛性)
主理想(所有元素是一个元
素幂的线性组合)
若集合S是集合R的子集(S R), 判断(S ,+, ·)是(R ,+, ·) 子环的充要条件是 1. a、b S, a-b S。 2. a、b S, a b S。 上述条件1强调了子环中加法逆元的存在和封闭 性,条件2强调了乘法封闭性。 理想子环的充要条件是:
元素的阶
15 / GCD(k,15)
1 15 15 5 15 3 5 15 15 5 3 15 5 15 15
近世代数课件-2-2_群的定义
2020/4/27
五. 有限群的特殊性
推论 一个非空有限集G 构成有限群的条件 : (1)存在G上的一个代数运算•; (2)运算 • 适合结合律; (3)运算 • 适合消去律.
2020/4/27五. 来自限群的特殊性2020/4/27
六、特殊群-Klein(克莱因)四元群
本节教学目的与要求: 记住群的定义,掌握群的基本性质和有限群的特殊性质,并
能熟练判定一个给定的代数系是否是群.
一. 群的定义及常见的群 二. 群的4个等价定义 三. 一些特殊群的例子 四. 群的消去率性质 五. 有限群的特殊性 六. 特殊的群—Klein(克莱因)四元群
2020/4/27
一. 群的定义及常见的群
近世代数
第二章 群
近世代数的主要研究对象是各种各样的代数系, 即具有一些代数运算的集合。
群是具有一种代数运算的代数系,它是近世代数 中一个比较古老,而且内容丰富的重要分支,在数学、 物理、化学、计算机等自然科学的许多领域都有广泛 应用。
从本节开始,学习群的有关性质。
2020/4/27
2.2 群的定义
注:
2020/4/27
一.群的定义及常见的群
2020/4/27
一.群的定义及常见的群
注:
2020/4/27
二. 群的四个等价定义
2020/4/27
三. 几个特殊群的例子
2020/4/27
四. 群的消去率性质
注:
2020/4/27
五. 有限群的特殊性
推论 一个非空有限集G构成有限群的条件: 1存在G上的一个代数运算o;
2020/4/27
六、特殊群-Klein(克莱因)四元群
近世代数12群的概念
ae ea , a G ; (3)对于任意的 a G ,存在 bG ,使得
ab ba e , 则称 (G, ) 是一个群;不致混淆时,简称 G 是一个群.
2020/6/
数学与计算科学学院Company Logo
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
例 1 令 N , Z, Q , R 和C 依次表示正整数集、 整数集、有理数集、实数集和复数集.则 Z, Q ,R 和 C 关于加法分别构成交换群; N 关于加法不构成
群. Q \{0}, R \{0} 和C \{0}关于乘法分别构成交换
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
设 G 是一个群, a G .由于“ ”适合结合律,因
此对于任意的 nN , a 的 n 次幂 an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
第一章 群 论
2020/6/26
数学与计算科学学院
LOGO
目录
§1 代数运算 §2 群的概念 §3 子 群 §4 循环群 §5 正规子群与商群 §6 群的同构与同态 §7 有限群
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
定义 2.1 一个代数运算.若“ ”满足条件:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有
近世代数前两章知识总结
近世代数论文师范学院14级数学与应用数学2班景羡林学号:12147139213一、上半学期学习总结第一章基本概念1、集合的幕集:以集合A的一切子集为元素构成的集合,记为p(A)或2\ (含n个元素的集合的子集有2•个,即無集中的元素共有2,个)2、积(笛卡尔积):AXB={ (a, b) |aEA, b€B}叫A 与B 的积。
(AXBHBXA)3、A到B的对应法则0为A到E的映射u>①VxGA, x有象②Vxe A, x的象唯一@Vxe A, X的象在B中。
4、若A是含n个元素的集合,则A的映射共有涉个,一一映射共有n!个。
5、代数运算:一个AXB到D的映射叫做一个AXB到D的代数运算。
(。
为AXB到D的代数运算oV(a, b) GAXB, anb有意义,且aob唯一,属于D)。
6、满射:VyG A,设y=0 (x),求出x (x为y的函数),若x存在且xGA,则0为满射。
(4中的每一个元素都有原象);单射:Va, be A,若aHb,则0 (a) H0 (b)。
(元素不同象不同):一一映射:即单乂满。
(一一映射都有逆映射,若A与B间是一一映射,则A、B 有限且元素个数相同)7、一个A到A的映射叫做A的一个变换:有限集A的一个一一变换,叫做A的一个置换。
& 一个A到才的映射叫做一个对于代数运算。
申10来说的,A到才的同态映射,假如满足:Va, b€A, a-» b~*b则aob~*ao^ (运算的象二象的运算);A与力同态u>A与4存在同态满射0。
9、一个A到力的一一映射0,叫做一个对于代数运算。
和0来说的,A到4的同构映射。
(同构映射的逆映射也是同构映射)。
10、若R为法则,若R满足Va, bEA,要么aRb,要么龍乩唯一确定,则称R为A的元间的一个关系;集合A的元间的一个关系~叫做一个等价关系,假如满足①反射律(VaGA,有a〜a)②对称律③推移律111、A的一个分类即为A的一些子集41、金、…令满足:① A】U金U ...U A n =A.②如Ai4;=0 (iH j )(不相交)。
近世代数--群的概念
所以结合律成立.
(3) 对任意的 a,b Zm ,
a b a b b a b a,
所以交换律成立.
(4) 对任意的 a Zm ,
a 0 a 0 a,
且
0 a 0 a a,
的代表元的选取无关即可.设
a a ', b b ',
则
m | a a ', m | b b '.
于是 m | (a a ') (b b ') (a b) (a ' b '),
m | (a a ')b (b b ')a ' (ab) (a 'b ').
从而
a b a ' b ', ab a 'b'. 所以+与 都是Zm上的代数运算.
的逆元记作 a, 并称a为 a 的负元.
2.习惯上,只有当群为交换群时,才用“+” 来表 示群的运算,并称这个运算为加法,把运算的 结果叫做和,同时称这样的群为加群.相应地, 将 不是加群的群称为乘群,并把乘群的运算叫做乘法, 运算的结果叫做积.在运算过程中,乘群的运算符号 通常省略不写.今后,如不作特别声明,我们总假定 群的运算是乘法.当然, 所有关于乘群的结论对加群 也成立(必要时, 作一些相关的记号和术语上改变).
a b b a e. 则称 G关于运算“ ”构成一个群(group),记作 (G,) .在不致引起混淆的情况下, 也G称为群.
注 1.(G2)中的元素 e 称为群 G的单位元
(unit element)或恒等元(identity);
近世代数课件群的概念
ab ba e , 则称 (G, ) 是一个群;不致混淆时,简称 G 是一个群.
§2 群的概念
当 (G, ) 是一个群时,我们就称 G 关于“ ”构成一 个群.
设 (G, ) 是一个群. 若“ ”适合交换律,则称 (G, ) 是交换群或 Abel 群. 若 G 是有限集,则称 (G, ) 是有限群.若 G 是无限集,则 称 (G, ) 是无限群.当 (G, ) 是有限群时,如 G 是由 n 个不同的 元素构成集合,我们就说群 (G, ) 的阶为 n ,记作 | G | n .当 (G, ) 是 无限 群时,我们就说群 (G, ) 的 阶为无 限 大,记作 |G|.
此对于任意的 nN , a 的 n 次幂an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有
§2 群的概念
上述的幂的性质应改称为倍元的性质:对于任 意的 a, b G 和 m, n Z ,总有
Ⅰ. (na) (n)a ; Ⅱ. ma na (m n)a ; Ⅲ. n(ma) (mn)a ; Ⅳ. n(a b) na nb .
§2 群的概念
定义 2.4 设 A 是一个非空集合. A 到 A 的映射又称为 A 的变换.特别地, A 到 A 的双射又称为 A 的一一变换; A 到 A 的单位映射又称 为 A 的单位变换. A 的一个一一变换 f 作为映射时的 逆映射 f 1 称为变换 f 的逆变换. 令 X 表示 A 的所有变换构成的集合.我们定义 X 上的乘法“ ”如下:对于任意的 f , g X ,
近世代数--群的概念
1 = m∏ 1 − . pi t =1
s
* 例10 具体写出 Z 5 中任意两个个元素的乘积以
及每一个元素的逆元素.易知 Z = {1 , 2. 3, 4}.
* 5
直接计算,可得 表1.2.1
1⋅1 = 1 2 ⋅1 = 2 3 ⋅1 = 3 4 ⋅1 = 4
{
}
U 的阶等于 (2) 由初等数论可知(参见[1]), ( m)
φ ( m) 这里 φ (m) 是欧拉函数.如果
r m = p1r1 p22 L psrs ,
其中 p1 , p2 ,L, ps 为的 m 不同素因子,那么
r r φ (m) = ( p1r − p1r −1 )( p2 − p2 −1 )( psr − psr −1 )
所以1是U ( m) 的单位元.
(4) 对任意的 a ∈ U ( m), ,有( a, m) = 1 , 由整数的性质可知,存在 u , v ∈ Z ,使au + mv = 1, 显然(u , m) = 1, 所以 u ∈ U ( m) ,且
a ⋅ u = au = au + mv = 1 , (因m | mv) u ⋅ a = ua = au = 1,
2.习惯上,只有当群为交换群时,才用“+” 来表 示群的运算,并称这个运算为加法 加法,把运算的 加法 结果叫做和,同时称这样的群为加群 和 加群.相应地, 将 加群 不是加群的群称为乘群 乘群,并把乘群的运算叫做乘法 乘法, 乘群 乘法 运算的结果叫做积.在运算过程中,乘群的运算符号 积 通常省略不写.今后,如不作特别声明,我们总假定 群的运算是乘法.当然, 所有关于乘群的结论对加群 也成立(必要时, 作一些相关的记号和术语上改变).
近世代数讲义之第2章 群x
� a = a −1 + a − 2 , a −1 = 4 − a .
至此,根据群的定义知道, Z 关于运算 � 确构成一个群. 另外,根据群的性质,我们易知群有如下等价的定义. 定义 1.1' 若代数体系 {G; �} 满足以下条件,那么称 G 关于运算“ � ”是群: (1)运算“ � ”满足结合律: a � (b � c) = ( a � b) � c , ∀a, b, c ∈ G ; (2) G 有单位元素 e : e � a
( a � b ) � c = ( a + b − 2) � c = a + b − 2 + c − 2 = a + (b + c − 2 ) − 2 = a + (b � c ) − 2 = a � (b � c )
(3)找单位元 e .若 a = e � a = e + a − 2 ,则 e = 2 . (4)对 ∀a ∈ Z ,找逆元 a . 2 = e = a
−1 −1
- 23 -
第二章 群
证明 (1) ⇒ ( 2) ⇒ (3) 是显然的,现在证明 (3) ⇒ (1) . 因为 H 是 G 的非空子集,所以对于 a ∈ H ,由(3)有 e = aa ∈ H ,即 H 有单位元.又对于任 意 a ∈ H ,有 a
−1 −1
= ea −1 ∈ H ,即 H 中的任意元素有逆元,所以 H 是 G 的子群.
第二章 群
第二章 群
本章我们讨论具有一个运算的代数体系——群的结构和性质.
第 1 节 群的概念和性质
定义 1.1 若代数体系 {G; �} 满足以下条件,那么称 G 关于运算“ � ”是群: (1)对于 G 中任意元素 a, b, c ,有 a � (b � c) = (a � b) � c ; (2)在 G 中存在元素 e ,对任意 a ∈ G ,有 e � a = a ; (3)对 G 中任意元素 a ,存在 b ∈ G ,使得 b � a = e . 一般地,称群 G 是乘法群,并简记 a � b 为 ab .特别地,若群 G 的运算“ � ”还满足交换律( ,则称 G 是加群或交换群(Abel 群) ,并用 a + b 表示 a � b . ab = ba , ∀a, b ∈ G ) 定义 1.2 我们称群 G 所含元素的个数为群 G 的阶数,记为 G .如果 G < ∞ ,则称 G 是有限群, 否则称 G 是无限群. 例 1.1 有理数集合关于数的通常加法运算构成 Abel 群.整数集合关于数的加法运算是 Abel 群, 常称 {Z; +} 为整数加群. Z n 关于加法运算是 Abel 群,常称 {Z n; +} 为剩余类加群(参看第一章第 4 节中有关运算的规定). {Q ; +} 是无限群. {Z n; +} 是有限群,阶数为 n . +} 和 {Z; 注意, Q , Z 和 Z n 关于乘法运算都不是群,因为 Q , Z 中的数 0 及 Z n 中的元素 0 不满足群的 定义条件(3). 例 1.2 证明: {Z p
近世代数课件(全)--2-1 群的定义
3.群的乘法适合消去律:
ab ac b c
ba ca b c
ab ac a ab a ac
1
1
eb ec b c
2012-9-19
二、群的性质及等价判定方法 定理1 群中 1.左逆元也是右逆元(逆元); 2.左单位元也是右单位元(单位元);
3.群的乘法适合消去律:
G
G
中有解.
证明: " " 半群
1
作成群 a , b G , ax b , ya b 有解
G
x a b G ; a , b G , ax b , ya b 都在 G 中有解. 取定 b G , yb b 有解,设为e: eb b a G , bx a 有解,设为c: bc a e a ebc ( eb ) c b c a 即有左单位元e 1 a G , ya e 有解,即存在左逆元 a 综上G是群.
对于数的普通乘法
做成交换群,称为正有理数乘群. 例3
G {全体整数},对于运算
1 2
ab a
1
2
b
2 1 2 2
4
2 1 2 2
2
结合律不成立,不做成群.
2012-9-19
注意:
(1)对于考察集合是否作成群: 既要考虑元素,又要考虑代数运算; (2)将群的代数运算叫做乘法,简记
ab ac b c
ba ca b c
4.单位元唯一;逆元唯一;
设
1
e, e '
都是单位元 ee ' e e '
由消去律 a
近世代数(复习duo)
(3)传递性: ∀x, y, z ∈ A , (xRy ∧ yRz) ⇒ xRz 。
则称 R 是一个定义在某个集合上的等价关系。
〖例子〗
设 A = {1, 2,,8} ,定义域上的关系如下: xRy ⇔ ∀x, y ∈ A, x ≡ y(mod 3) 。
7、系统同态,举例说明。
【定义】一个 A 到 A 的映射φ ,叫做一个对于代数运算 和 来说的, A 到 A 的同态映射,假如,在φ 之
单位元和一个元素的逆元素是唯一的。
9、什么叫做一个群的左、右陪集,有限群的左、右陪集的个数是什么关系?
由等价关系 所决定的类叫做子群 H 的右陪集。包含元 a 的右陪集用符号 Ha 来表示。 a b, b−1a ∈ H ,
Ha 为右陪集。
由等价关系 ′ 所决定的类叫做子群 H 的左陪集。包含元 a 的左陪集用符号 aH 来表示。a b, ab−1 ∈ H ,
下,不管 a 和 b 是 A 的哪两个元,只要 a → a,b → b 就有 a b → a b 。
〖例子〗
φ :a →1。
8、检错和纠错 【定义】信息位上增加一部分位数来进行检错和纠错。检错:能够检查出有错,但不知道错在哪里。纠错: 能够检查出错误并准确定位,同时纠正错误。 9、理想和商环
【定义】环 R 的一个非空子集ℵ 叫做一个理想子环,简称理想。
【定义】一个环 R 叫做一个除环,假如: (1) R 至少包含一个不等于零的元; (2) R 有一个单位元; (3) R 的每一个不等于零的元有一个逆元。
【定义】一个交换环叫做一个域。
8、什么是单位元,什么是一个元的逆元素,单位元和一个元素的逆元素唯一吗?
【定义】一个群 G 的唯一的能使 e=a a=e a ( a 是 G 的任意元)的元 e 叫做群 G 的单位元。 【定义】唯一的能使 a= −1a a= a−1 e 的元 a−1 叫做元 a 的逆元(有时简称逆)。
近世代数考试复习
<近世代数复习题>一、定义描述(8’)1、群:设G是一个非空集合,是它的一个代数运算。
如果满足以下条件:(1)结合律成立,即对G中任意元素a,b,c都有(a b)c = a (b c).(2)G中有元素e.叫做G的左单位元,它对G中每个元素a都有e a = a .(3)对G中每个元素a,在G中都有元素a-1,叫做a的左逆元,使a-1 a = e .则称G对代数运算做成一个群。
2、正规子群:设N是群G的一个子群,如果对G中每个元素a都有aN=Na,即aNa-1=N ,则称N是群G的一个正规子群(或不变子群)。
3、环:设非空集合R有两个代数运算,一个叫做加法并用加号+ 表示,另一个叫做乘法用乘号表示,如果:(1)R对加法作成一个加群;(2)R对乘法满足结合律:(ab)c = a(bc);(3)乘法对加法满足左右分配率:a(b+c)= ab + ac ,(b+c)a = ba + ca .其中a,b,c为R中任意元素,则称R对这两个代数运算作成一个环。
4、极大理想:设N是环R的一个理想,且N≠R .如果除R和N外,R中没有包含N的其它理想,则称N为环R的一个极大理想。
5、惟一分解整环:设K是有单位元的整环。
如果K中每个既不是零又不是单位的元素都能惟一分解,则称K为惟一分解整环。
整数环Z及域F上多项式环F[ x ]都是惟一分解整环。
6、欧氏环:设K是一个有单位元的整环,如果(1)有一个从K的非零元集K – { 0}到非负整数集的映射ψ存在;(2)这个ψ对K中任意元素a及b≠0,在K中有元素q,r使a=bq + r,r=0或ψ(r)<ψ(b),则称R关于ψ作成一个欧氏环。
-------------7、素理想:设R是一个交换环,P ◁R .如果ab∈P => a∈P或b∈P,其中a,b∈R,则称P是R的一个素理想。
显然,环R本身是R的一个素理想;又零理想{ 0}是R的素理想当且仅当R无零因子,亦即R是一个整环。
近世代数课件 第3节 群的定义及性质
(1) 证明2: 设 |a| = r,则有
(b1ab)r (b1ab)(b1ab)...(b1ab)
r个
b1a rb b1eb e
可知b1ab的阶为有限. 令|b1ab| = t,从而有t | r.
另一方面,由 (b1ab)t=e可知
(b1ab)t = b1atb1 = e
at = e,从而有 r | t.
近世 代数
群论
主要内容:
群的定义与性质 有限群、子群 变换群 置换群 循环群 子群的陪集、正规子群与商群 群的同态基本定理
1/30
近世 代数
第3节 群的定义与性质
主要内容:
群的定义 群的基本性质 群的实例 群中的术语
2/30
近世 代数
群的三个等价定义
定义0 (1) 设(S, ∘)是一个代数系统,如果运算∘满足结合 律,则称(S, ∘)为一个半群. (2) 设(S, ∘)是半群,若e∈S是关于∘运算的单位元, 则称(S, ∘)是一个幺半群,也叫做独异点.
性质7 G为群,a∈G且 |a| = r. 设k是整数,则 (1) ak = e 当且仅当 r | k . (2 )|a1| = |a|.
证明: (2) 由 (a1)r = (ar)1 = e1 = e 可知 a1 的阶为有限. 令|a1| = t,从而有t | r. 同时,at = ((a-1)-1)t = (a-1)-t = ((a-1)t)-1 = e-1 = e , 所以 r | t. 从而证明了r = t,即|a1| = |a| .
22/30
近世 代数
例题
例5 设G是群,a, b∈G是有限阶元. 证明
(1) |b1ab| = |a|
(2) |ab| = |ba|
近世代数第二章答案讲解学习
近世代数第二章群论答案§1.群的定义1.全体整数的集合对于普通减法来说是不是一个群?解:不是,因为普通减法不是适合结合律。
例如()321110--=-=--=-=()321312()()--≠--3213212.举一个有两个元的群的例。
解:令G=,e a{},G的乘法由下表给出首先,容易验证,这个代数运算满足结合律(1) ()(),,= ∈x y z x y z x y z G因为,由于ea ae a==,若是元素e在(1)中出现,那么(1)成立。
(参考第一章,§4,习题3。
)若是e不在(1)中出现,那么有()aa a ea a==a aa ae a==()而(1)仍成立。
其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。
所以G是一个群。
读者可以考虑一下,以上运算表是如何作出的。
3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的定义:IV ' G 里至少存在一个右逆元1a -,能让=ae a对于G 的任何元a 都成立;V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让1=aa e -解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。
§2. 单位元、逆元、消去律1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。
解:令a 和b 是G 的任意两个元。
由题设()()()2==ab ab ab e另一方面()()22====ab ba ab a aea a e于是有()()()()=ab ab ab ba 。
利用消去律,得=ab ba所以G 是交换群。
2. 在一个有限群里,阶大于2的元的个数一定是偶数。
解:令G 是一个有限群。
设G 有元a 而a 的阶>2n 。
考察1a -。
我们有()1=n n a a e - ()()11==n n e a a e -- 设正整数<m n 而()1=ma e -,那么同上可得=m a e ,与n 是a 的阶的假设矛盾。
近世代数考试复习
近世代数考试复习文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)<近世代数复习题>一、定义描述(8’)1、群:设G是一个非空集合,是它的一个代数运算。
如果满足以下条件:(1)结合律成立,即对G中任意元素a,b,c都有(a b) c = a (b c).(2)G中有元素e.叫做G的左单位元,它对G中每个元素a都有e a = a .(3)对G中每个元素a,在G中都有元素a-1,叫做a的左逆元,使a-1 a =e .则称G对代数运算做成一个群。
2、正规子群:设N是群G的一个子群,如果对G中每个元素a都有 aN=Na,即aNa-1=N ,则称N是群G的一个正规子群(或不变子群)。
3、环:设非空集合R有两个代数运算,一个叫做加法并用加号 + 表示,另一个叫做乘法用乘号表示,如果:(1)R对加法作成一个加群;(2)R对乘法满足结合律:(ab)c = a(bc);(3)乘法对加法满足左右分配率:a(b+c)= ab + ac ,(b+c)a = ba + ca .其中a,b,c为R中任意元素,则称R对这两个代数运算作成一个环。
4、极大理想:设N是环R的一个理想,且N≠R .如果除R和N外,R中没有包含N的其它理想,则称N为环R的一个极大理想。
5、惟一分解整环:设K是有单位元的整环。
如果K中每个既不是零又不是单位的元素都能惟一分解,则称K为惟一分解整环。
整数环Z及域F上多项式环F[ x ]都是惟一分解整环。
6、欧氏环:设K是一个有单位元的整环,如果(1)有一个从K的非零元集K – { 0}到非负整数集的映射ψ存在;(2)这个ψ对K中任意元素a及b≠0,在K中有元素q,r使a=bq + r,r=0或ψ(r)<ψ(b),则称R关于ψ作成一个欧氏环。
-------------7、素理想:设R是一个交换环,P R .如果ab∈P => a∈P或b∈P,其中a,b∈R,则称P是R的一个素理想。
近世代数知识点
近世代数知识点近世代数,是数学中的一门重要分支,涉及了许多重要的知识点和概念。
在这篇文章中,我们将探讨一些近世代数中的关键概念和应用。
一、群论群论是近世代数中的基础概念,它描述了一种抽象的代数结构。
一个群由一个集合和一个二元运算组成,同时满足封闭性、结合律、单位元和逆元这四个性质。
群论的研究具有广泛的应用,如密码学、物理学中的对称性研究等。
二、环论环论是研究带有两个二元运算的代数结构,具有更多的性质和运算规则。
一个环由一个集合和两个二元运算组成,同时满足封闭性、结合律、分配律等性质。
环论的应用包括数论、代数几何等领域。
三、域论域论是研究带有四个基本运算(加法、减法、乘法、除法)的代数结构。
域是一种满足封闭性、结合律、单位元和逆元的代数结构。
域论在代数几何、密码学等领域有广泛应用。
四、线性代数线性代数是研究向量空间及其线性变换的代数学分支。
向量空间是一个满足特定性质的集合,其中定义了向量的加法和数量乘法运算。
线性代数的应用广泛,如机器学习、图像处理等。
五、域扩张域扩张是域论的重要内容之一,研究一个域如何通过添加元素扩张成一个更大的域。
域扩张的研究对于解决方程、证明数论中的一些性质等具有重要意义。
六、代数拓扑代数拓扑是代数学和拓扑学的交叉地带,研究了如何通过代数的方法来分析拓扑空间。
代数拓扑的研究在拓扑数据分析、几何学、非线性动力系统等领域有重要应用。
七、泛函分析泛函分析是研究函数空间和函数的特性以及泛函的理论和应用的数学分支。
泛函分析的应用广泛,如量子力学、信号处理等。
近世代数作为一门重要的数学学科,对于数学的发展和应用起到了重要的推动作用。
它通过抽象的方式研究代数结构,提供了一种新的思维方式和工具,为数学家们解决实际问题提供了新的途径。
同时,近世代数的理论和方法在信息科学、工程学、物理学等领域也得到了广泛的应用。
总之,近世代数是一门充满魅力的学科,通过对群论、环论、域论、线性代数、域扩张、代数拓扑和泛函分析等知识点的学习与探索,我们能够更好地理解数学的本质和思想,从而为更广泛的数学研究和应用打下坚实的基础。
近世代数基础知识点总结
近世代数基础知识点总结近世代数是现代数学中的一个重要分支,它研究的是代数结构和代数运算的一般性质。
近世代数的基础知识点包括群论、环论和域论,这些知识点在数学研究和应用中都有着广泛的应用。
一、群论群是近世代数中最基本的代数结构之一。
群由一个集合和一个二元运算组成,这个二元运算必须满足封闭性、结合律、单位元和逆元四个性质。
群论的基本概念包括子群、陪集、正规子群、循环群等,并且研究了群之间的同构和同态等映射关系。
群论的应用非常广泛,例如在密码学、物理学、化学等领域都有着重要的应用。
二、环论环是一种比群更一般化的代数结构。
环由一个集合和两个二元运算组成,这两个二元运算分别满足封闭性、结合律、交换律和分配律等性质。
环论的基本概念包括子环、理想、商环等,并且研究了环的同态和同构等映射关系。
环论在数论、代数几何、代数拓扑等领域有着广泛的应用。
三、域论域是一种比环更一般化的代数结构。
域由一个集合和两个二元运算组成,这两个二元运算满足封闭性、结合律、交换律和分配律等性质,并且其中一个二元运算有单位元和逆元。
域论的基本概念包括子域、域扩张、代数元和超越元等,并且研究了域之间的同态和同构等映射关系。
域论在数论、代数几何、代数数论等领域有着广泛的应用。
四、线性代数线性代数是近世代数的一个重要分支,研究的是向量空间及其线性变换的性质。
线性代数的基本概念包括向量、线性组合、线性相关性、基、维数等,并且研究了线性变换、特征值和特征向量等。
线性代数在几何学、物理学、工程学等领域有着广泛的应用。
五、Galois理论Galois理论是近世代数的一个重要分支,研究的是域的扩张和多项式方程的解的关系。
Galois理论的基本概念包括Galois扩张、Galois群、Galois对应等,并且研究了可解多项式和不可解多项式的判别方法。
Galois理论在数论、代数几何、代数数论等领域有着广泛的应用。
六、表示论表示论是近世代数的一个重要分支,研究的是群的表示及其性质。
近世代数--群的概念
所以+与
都是Z
上旳代数运算.
m
定义1.2.2 设G是一种非空集合,“ ”G是 上旳 一种代数运算,即对全部旳a,b G,有 a b G. 如 果G旳运算还满足
(G1) 结合律,即对全部旳a,b,c G, 有; (a b) c a (b c);
(G2) G中有元素e,使对每个a G ,有 e a a e a;
(5) 在群中消去律成立,即设 a,b, c G ,
假如 ab ac ,或 ba ca ,则 b c .
证 (1) 假如 e1,e2都是 G旳单位元,则 e1 e2 e2(因为e1是G旳单位元), e1 e2 e(1 因为e2是G旳单位元),
所以
e2 e1 e2 e1,
所以单位元是惟一旳.
对任意旳正整数 n ,定义 an a a a
n个a
再约定
a0 e, an (a1)n,(n为正整数) 则 a n对任意整数都有意义,而且不难证明:
对任意旳 a G,m,n Z, 有下列旳指数法则 (1) an am anm ; (2) (an )m anm; (3) 假如 G是互换群,则 (ab)n anbn
所以结合律成立.
(3) 因为(1, m) 1,从而 1 Zm ,且对任意旳 a U (m),
a 1 a1 a,
且
1a 1a a, 所以1是U (m)旳单位元.
(4) 对任意旳 a U (m),,有(a, m) 1 , 由整数旳性质可知,存在 u,v Z ,使au mv 1, 显然(u, m) 1, 所以 u U (m) ,且
易知, Z*p 1, 2, , p 1
(2) 由初等数论可知(参见[1]),U (m)旳阶等于
(m) 这里 (m) 是欧拉函数.假如
近世代数的基础知识
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。
一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。