一次函数与方程、不等式、方程组的关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
用函数观点看方程 y=2x−12
一次函数与一元一次方程
解kx+b=0 等价于哪两个问题?
O −12
6
x
(1)可以转化为求一 次函数 0 =kx+b y
(2)从图象上看, 这相当于求已知直线 变式:方程3x−10=x+2的解 y=kx+b与___轴交点的 x 横 ___坐标的值.
方程2x−12=0的解
-2 -1
1 ( ,0) (1)直线y=2x-1与x轴的交点坐标为 2
( yes)
y
y=1
1
O -1
1
2
x
2x y 5 图象法 x2 解得: 解方程组: x y 1 y 1
(1)转化 转化为y ax b的形式 y 5 2x 即: y x 1 (2)画图
画出两个函数图象 (3)找交点
把方程组化为:
y 2x 1 5 y 2x 2
x
在直角坐标系中画出 这两条直线的图像 由图得,两直线平行 即:两直线无交点
∴方程组无解
巩固练习: 用图象法解:
x 2y 3 2x y 6
3 x y 2 2 y 2x 6
解:原方程组可转化为两个函数:
即:方程组的解
两条直线的______ 交点
2.实践题
小明和小慧在长为50m的游泳池内练习游泳,小明每 分游50m,小慧每分游20m,他们同时从一边出发游向对 面,并且到达对面后立即转身返回(转身时间不计)。 问:小慧游完一个来回与小明在途中共相遇几次?
y(m) 小明 小慧
50
o
2 2.5 3 5 1 4 由图象得小慧与小明在途中共相遇4次
从图中看出: x < 2
∴ 不等式 5x+4 < 2 x +10 的解集是x < 2
=1 当y1= y2时,x___ <1 >1 当y1> y2时,x___ >1 <1 当y1< y2时,x___
y1在y2的下方
看两直线的交点 y1在y2的上方
y1 2
y2 1
基础练习,提高能力
(4,0) x>4
作直线y=x+3 x 0 -3 y3 0
y=x+3
x__时,y=3 =0 >0 x__时,y>3 x__时,y<3 <0
作直线y=x+3 x 0 -3 y3 0
y=x+3 =-1 x__时,y=2 >-1 x__时,y>2
作直线y = 2
x__时,y<2 <-1
用函数观点看不等式
一次函数与一元一次不等式 已知一次函数 y = 2x-2,根据它的图象回答下列问题. (1) x 取什么值时,函数值 y 为4? (2) x 取什么值是,函数值 y 大于4? (3) x 取什么值时,函数值 y 小于4?
y = 2x -2
解:作出函数 y =2x-2的图象
及直线y = 4 (如图)
从图中可知:
y= 4
(1)当 x = 3 时,函数值 y 为4。 (2)当x > 3 时,函数值 y >4。 (3)当x <3 时,函数值 y <4。
用函数观点看不等式
一次函数与一元一次不等式
例题:用画函数图象的方法 解不等式5x+4<2x+10 解法1:原不等式化为:3x -6<0, 画出直线 y = 3x -6 (如图) 即这时y = 3x -6 <0
两个函数图象的交点就是原方程组的解.
y
0 1 2 -2
x
如图:两函数图象的交点是(3,0)
所以原方程组的解是
x3 y0
1 y x x 4 3 若 方程 组 2 的 解是 , y 2 y x 6 1 则 直线y x 、 直 线y x 6 与 y轴 2 ( no ) 围 成的 三角 形面 积为. 6
图象法解方程组 的步骤:
y
1 0 1 2
(2,1)
x
交点坐标为(2,1)即x=2,y=1
二元一次方程组 解 对应关系: 两个一次函数图象 交点坐标
y 2x 1 用图象法解方程组: 4 x 2 y 5
y
4 3 2 1 -4 -3 -2 -1 -1 -2 -3 -4 0 1 2 3 4
x(分)
“数形结合”思想
3.综合题
小东从A地出发以某一速度向B地前进,同时小 明从B地出发以另一速度向A地前进(见下图),图中 的线段y1,y2分别表示小东、小明离B地的距离(km) 与所用时间(h)的关系. y(km)
(1)试用文字说明:
y1
(小东)
P
交点P所表示的实际意义. 解:(2)设直线y1=kx+b (k≠0)
7.5
y2
(小明)
∵过(2.5,7.5),(4,0) (2)试求出A,B两地之间的距离. k=-5 ∴ 7.5=2.5k+b ∴ 4 x(h) 2.5 0=4k+b b=20 o 1 解:(1)小东和小明出发2.5小时相遇,并且离B地7.5千米 ∴ y1=-5x+20 当x=0时,y1=20
∴A,B两地的距离为20千米
y
y = -wenku.baidu.com+6
6
A P
y= 1 2 x
2 O 4
B
6
x
直线y k 1 x b 1与直线y k 2 x b 2(k 1 k 2 )的交点坐标(m,n ) y k 1 x b 1 x m 等价于: 的解是 方程组 b2 y k 2 x y n
x<2
所以不等式的解集为:x<2
用函数观点看不等式
一次函数与一元一次不等式
解法二:画出函数 y = 2x+10和y = 5x+4图象 思路:不等式5x+4<2x+10可以看成 是两个函数值 y之间的大小比较,具 体在图象上是两条直线间的位置关系。 不等式5x+4 < 2x +10 即直线 y = 5x +4 在 y = 2x +10 下 的___方
一次函数
二元一次 方程

线
二元一次方程的一般式: ax+by+c=0 (a ≠ 0,b ≠0)
一次函数的解析式: 图像是 直线
转化
a c y x b b
过(0, b ),( 点的直线。

b k ,0)
.
y=kx+b (k ≠0)
注意1: 求x轴交点( ,0)令y=0 求 y轴交点( 0 , )令x=0 . (2) 在直角坐标系中的直线都是一次函数. (no ) 注意2: “形”的角度看问题.
x<4
4<x<6
x>6
y=2 y=-1
基础练习,提高能力
x<-2 X>-2
X>-2
求三角形面积
令y1=y2,先求x, 再把x代入求y
令x=0,求y
令y2=0,求x
令x=0,求y
令y1=0,求x
相关文档
最新文档