行程问题训练题教师版
行程问题教师版
行程问题例1.A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。
解:后半段路程长:240÷2=120(千米)后半段用时为:6÷2-0.5=2.5(小时)后半段行驶速度应为:120÷2.5=48(千米/时)原计划速度为:240÷6=40(千米/时)汽车在后半段加快了:48-40=8(千米/时)。
答:汽车在后半段路程时速度加快8千米/时。
例2.两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?分析:求时间的问题,先找相应的路程和速度。
解:轮船顺水速度为:231÷11=21(千米/时)轮船逆水速度为:21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时)答:行驶这段路程逆水比顺水需要多用10小时。
例3.汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。
分析:求平均速度,就要考虑用总路程除以总时间。
解:设从甲地到乙地距离为S 千米。
则汽车往返用的时间为:S ÷48+S ÷72= + = 平均速度为:2S ÷ =144÷5×2=57.6(千米/时) 答:该车的平均速度为57.6千米/时例4.一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均 速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?分析:求速度,首先找相应的路程和时间,平均速度说明了总路程和总时间的关系。
解:剩下的路程为300-120=180(千米)计划总时间为:300÷50=6(小时)剩下的路程计划用时为:6-120÷40=3(小时)剩下的路程速度应为:180÷3=60(千米/小时)答:剩下的路程应以60千米/时行驶。
第4单元:行程问题“提高型”专项练习-四年级数学上册典型例题系列(解析版)人教版
四年级数学上册典型例题系列第四单元:行程问题“提高型”专项练习(解析版)1.甲、乙两人同时从距离980米的A、B两地相向而行,7分钟相遇,已知甲平均每分钟行80米。
(1)乙平均每分钟行多少米?(2)下图是两人行走的路线,请在图中分别标出甲乙两人出发6分钟时大约的位置。
【答案】(1)60米(2)见详解【分析】(1)根据速度=路程÷时间,用两地的路程除以相遇的时间,求出两人的速度和,再减去甲行走的速度,求出乙行走的速度。
(2)根据路程=速度×时间,分别求出甲、乙两人出发6分钟行走的路程,再结合AB两地的中点位置判断两人的位置。
【详解】(1)980÷7-80=140-80=60(米)答:乙平均每分钟行60米。
(2)80×6=480(米)60×6=360(米)980÷2=490(米)甲快走到中点,乙距离中点还有一段距离,画图如下所示:【点睛】本题考查行程问题,根据路程、速度和时间之间的关系解答。
2.一列火车提速前平均每小时行80千米,比提速后平均每小时少行30千米,这列火车提速后12小时能行多少千米?【答案】1320千米【分析】用提速前的速度加上30千米/时,求出提速后的速度,再根据路程=速度×时间,求出火车行驶的路程。
【详解】(80+30)×12=110×12=1320(千米)答:这列火车提速后12小时能行1320千米。
【点睛】本题考查行程问题,根据路程、速度和时间之间的关系解答。
3.两辆客车同时从汽车站开出,向相反方向驶去。
两辆客车的速度分别是85千米/时和80千米/时。
3小时后两辆客车相距多少千米?【答案】495千米【分析】因为两辆车是向相反方向行驶,所以85加80可以求得1小时两辆车共行驶的路程,再乘3即可求出3小时行驶的总路程,3小时行驶的总路程即为两车之间的距离。
【详解】(85+80)×3=165×3=495(千米)答:3小时后两辆客车相距495千米。
行程问题基础训练
行程问题一:相遇【基础训练:小试牛刀】1两辆汽车同时从工A、B两城相对开出,从A城开出的汽车每小时行38千米,从B城开出的汽车每小时行42千米,4小时后两车相遇,A、B两城的距离是多少千米?2、两个筑路队合筑一条长12000米的公路,一个队每天筑115米,另一个队每天筑125米,多少天可以完工?3、甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?4、快车每小时行60千米,是慢车每小时行的2倍,现两车分别从相距270千米的AB两地同时相对开出,在某地相遇,相遇地点离AB两地各多少千米?5、一辆汽车和一辆自行车从相距171千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
已知汽车每小时比自行车多行31千米,求汽车、自行车的速度各是多少?6、甲、乙两列火车同时从相距985千米的两地相向而行,经过5小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?【提升训练:勇闯天涯】7、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?8、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?9、甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?10、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?11、甲、乙两列汽车同时从两地出发,相向而行。
已知甲车每小时行45千米,乙车每小时行32千米,相遇时甲车比乙车多行52千米。
求甲乙两地相距多少千米?【思维训练:挑战自我】12、姐妹俩同时从家里到少年宫,路程全长960米。
专题10 一次函数的应用:行程问题(老师版)
专题十一次函数的应用:行程问题专题诠释:行程问题是我们接触到最多的一类实际应用题。
本专题主要训练一次函数行程问题中的三类题型,路程-时间图像问题和两车之间路程-时间图像问题,速度时间-图象问题。
解决行程问题,需要明白相遇问题中的常见数量关系式,总路程=两车速度和×相遇时间;追及问题中的常见数量关系式,相距路程=两车速度差×追及时间;在路程-时间图像中,一次函数的斜率K 的绝对值等于行车速度。
类型一路程-时间图象典例1(2022•河东区一模)A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后以相同的速度返回B 地,两辆货车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计).请根据相关信息,解答下列问题:(Ⅰ)填表:货车甲离开A 地的时间/h0.10.8 1.63货车甲离开A 地的距离/km580(Ⅱ)填空:①事故地点到B地的距离为千米;②货车乙出发时的速度是千米/小时;③货车乙赶到事故地点时,为时分;④货车乙从事故地点返回B 地时间为时分.y 关于时间x 的函数解析式.思路引领:(Ⅰ)根据“速度=路程÷时间“可得结果,结合函数图象以及题意可得货车甲离开A 地3小时时的路程不变化即可求解.(Ⅱ)根据函数图象求解即可.(Ⅲ)由待定系数法可求出函数解析式.解:(Ⅰ)货车甲出发时的速度是:80÷1.6=50(千米/小时),0.8×50=40(千米),根据函数图像可知当x >1.6时,货车货车甲离开地的距离没有变化.货车甲离开A 地的时间/h0.10.8 1.63货车甲离开A 地的距离/km5408080故答案为:40,80;(Ⅱ)①根据函数图象可知,事故地点距离A 地80千米,则事故地点到B地的距离为200﹣80﹣120千米,故答案为:120.②根据图象可知80÷(2.6﹣1.6)=80千米/小时,货车乙出发时的速度是80千米小时.故答案为:80.③货车乙赶往事故地所需时间为:(200﹣80)÷80=1.5h,1.6+1.5=3.1h,所以货车乙赶到事故地点时,为11时6分,故答案为:11,6.④货车乙开始返回的时间为:3.1+1860=3.4h,货车乙返回到达B地的时间:3.1+1860+1.5=4.9h,货车乙从事故地点返回B地时间为12时54分,故答案为:12,54.(Ⅲ)货车乙赶往事故地所需时间为:(200﹣80)÷80=1.5h,2.6+1.5=3.1h,货车乙开始返回的时间为:3.1+1860=3.4h,货车乙返回到达B地的时间:3.1+1860+1.5=4.9h,当1.6≤x≤3.1时,设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y=kx+b,得0=1.6k+b80=2.6k+b,解得:k=80b=−128,∴y关于x的函数表达式为y=80﹣128(1.6≤x<3.1);y=120(3.1<x≤3.4);当3.4<x≤4.9时,设函数表达式为y=mx+n(m≠0),把(3.4,120),(4.9,0)代入=mx+n,得3.4m+n=1204.9m+n=0,解得:m=−80n=392.∴y关于x的函数表达式为y=﹣80x+392(3.4<x≤4.9);综上所述.y=80x −128(1.6≤x≤3.1)120(3.1<x≤3.4)−80x+392(3.4<x≤4.9).解题秘籍:本题考查了一次函数的应用;待定系数法求函数的解析式,根据数形结合得到甲乙相应的速度以及相应的时间是解决本题的关键.针对训练11.(2022•齐齐哈尔一模)在新冠肺炎疫情期间,A市派一辆货车将抗疫物资运往240km的B市,途中因故障停留一段时间.一辆轿车沿同一条公路从B市前往A市,到达A市停留一段时间后,原路原速返回.如图是两车距B市的距离y(km)与货车行驶时间x(h)之间的函数图象,结合图象回答下列问题:(1)图中m的值是;轿车的速度是km/h;(2)求货车从A市前往B市过程中,货车距B市的距离y(km)与行驶时间x(h)之间的函数关系式;(3)直接写出轿车出发多长时间与货车相距21km?思路引领:(1)由图象可知轿车从B地前往A地用时为2小时,据此可得m的值以及轿车的速度;(2)分段函数,线段MN与线段GH的函数关系式利用待定系数法求解即可;(3)根据两车的速度分桥车从B市前往A市时和桥车从A市返回B市时两种情况列方程解答即可.解:(1)由图象得,m=0.5+(2.5﹣0.5)×2+(3﹣2.5)=0.5+4+0.5=5;轿车的速度为:240÷2=120(km/h);故答案为:5;120;(2)①设线段MN所在直线的解析式为y1=k1x+b1(k1≠0)(0≤x<2.5),∵图象经过点M(0,240)和点N(2.5,75),∴b1=2402.5k1+b1=75,解得b1=240k1=−66,∴y1=﹣66x+240(0≤x<2.5);②y2=75(2.5≤x<3.5);③设GH所在直线解析式为y3=k3x+b3(k3≠0)(3.5≤x≤5),∵图象经过点G(3.5,75)和点H(5,0),∴5k3+b3=03.5k3+b3=75,解得k3=−50b3=250,∴y3=﹣50x+250,∴y=−66x+240(0≤x<2.5)75(2.5≤x<3.5)−50x+250(3.5≤x≤5);(3)①桥车从B市前往A市时,货车出故障前的速度为:(240﹣75)÷2.5=66(km/h),设轿车出发a小时与货车相距21km,根据题意,得66(0.5+a)+120a=240+21或66(0.5+a)+120a=240﹣21,解得a=或a=1;②桥车从A市返回B市时,货车出故障后的速度为:75÷(5﹣3.5)=50(km/h),设轿车出发a小时与货车相距21km,根据题意,得75+50(a﹣3.5+0.5)=120(a﹣3)+21,解得:a=13235.答:轿车出发1小时或5749小时或13235与货车相距21km.解题秘籍:本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.(2022春•尤溪县期中)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?小明在书店停留了多少分钟?(2)本次上学途中,小明一共行驶了多少米?(3)我们认为骑单车的速度超过300米/分就超过了安全限度.问:在整个上学途中哪个时间段小明的骑车速度最快,速度在安全限度内吗?(4)小明出发多长时间离家1200米?思路引领:(1)根据图象即可求得;(2)根据图象可知;(3)根据图象可知,从12分钟至14分钟小明的骑车速度最快,根据“路程÷时间=速度”即可判断;(4)设小明出发t分钟时,小明离家1200米,根据图象以及列方程即可求解.解:(1)根据图象可知,小明家到学校的路程是1500米,12﹣8=4(分钟),故小明在书店停留了4分钟;(2)1500+(1200﹣600)×2=2700(米),故本次上学途中,小明一共行驶了2700米;(3)根据图象可知,从12分钟至14分钟小明的骑车速度最快,(1500﹣600)÷(14﹣12)=450(米/分钟),∵450>300,∴小明的骑车速度超过了安全限度.(4)设小明出发t分钟时,小明离家1200米,①根据图象可知,t=6;②根据题意,得600+450(t﹣12)=1200,解得t=403,∴小明出发6分钟或403分钟时,小明离家1200米.解题秘籍:本题考查了一次函数的实际应用,理解图象上各点的含义并求出速度是解题的关键.3.(2022•铁锋区一模)A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C 市到A市,两车在途中匀速行驶,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与甲车行驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)图中括号内应填入的数为,A、B两市相距的路程为千米;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是300千米.思路引领:(1A、B两市相距的路程;(2)设MN的解析式为y=kt+b,代入(4,0)(10,480)用待定系数法即可求出;(3)两车距C市之和是300千米,分两种情况讨论:①是甲车到达C市之前,设甲车出发后x小时,此时列方程480﹣60x+80x﹣320=300即可求出;②当甲车到达C市时,此时乙车距离C市320千米,易得甲车从C到B的过程中两车距离之和不可能是300千米,即可得出结论.解:(1)根据图象可知甲车的速度为480÷8=60千米/小时,∴乙车速度为60+20=80千米/小时,∴乙车从C到A的时间为480÷80=6小时,∴乙车在甲车出发后4+6=10小时时到达A市.CB两市相距(10﹣8)×60=120千米,∴AB两市相距480+120=600千米,故答案为:10,600.(2)设MN的解析式为:y=kt+b,代入(4,0),(10,480),得4k+b=010k+b=480,解得,∴直线MN的解析式为:y=80t﹣320.(3)当甲车到C市之前,设甲车出发后x小时,两车离C市的距离之和是300千米,得480﹣60x+80x﹣320=300,解得x=7,当甲车到达C市,此时乙车距离C市80×8﹣320=320>300,∴当甲车从C市到B市过程中,两车离C市的距离之和不可能是300千米,综上,当甲车出发7小时时,两车离C市的距离之和是300千米.解题秘籍:本题考查了一次函数的实际应用,通过数形结合的思想以及分类讨论思想是解决本题的关键.4.(2021春•丰泽区校级期中)A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与甲行驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是千米/时,图中括号内应填入正确的数为;(2)求两车相遇时离C市的路程;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.思路引领:(1)根据图象可求甲车的速度,再求出乙车的速度即可求出时间;(2)设甲车出发x小时两车相遇,根据甲车的路程+乙车的路程=480列方程求解即可;(3)分两种情况:①是乙车出发之前,②是两车相遇之后,根据两车距C市的路程之和分别列方程求解即可.解:(1)甲车的速度:480÷8=60(千米/小时),乙车的速度为60+20=80(千米/小时)∴乙车从C到A市需要480÷80=6(小时),∴6+4=10,故答案为:60,10(2)设甲车出发x小时两车相遇,则有60x+80(x﹣4)=480,解得x=407,∴80×(407−4)=9607,∴两车相遇时距离C市9607千米.(3)设甲车出发后t小时,两车距C市的路程之和是460千米,①乙车出发之前,根据题意,得480﹣60t=460,解得t=13,②甲、乙两车相遇之后,根据题意,得60t﹣480+80(t﹣4)=460,解得t=9,综上,甲车出发13小时或9小时时,两车距C市的路程之和是460千米.解题秘籍:本题考查了一次函数的实际应用,结合实际问题理解图象上各点的含义是解决本题的关键.类型二两车之间距离-时间图像典例2(2021•宁波模拟)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至慢车到达甲地的过程中y 与x的函数关系.(1)点P表示在两车行驶1.5h时,两车相距千米;(2)求点C的横坐标;(3)两车距离小于或等于140千米的时间有多久?思路引领:(1 1.5h时,两车相距70千米;(2)根据函数图象中的数据,可以计算出两车的速度,从而可以求得点C的横坐标;(3)根据题意和图象中的数据,可以求得相遇前和相遇后,何时两车相距140千米,从而可以得到两车距离小于或等于140千米的时间有多久.解:(1)由图象可知,点P表示在两车行驶1.5h时,两车相距70千米,故答案为:70;(2)由图象可知,B点表示两车出发2小时时相遇,C点对应时刻快车正好到达乙地,D点对应时刻慢车正好到达甲地,设快车速度为x千米/小时,慢车速度为y千米/小时,2(x+y)=143y(2−1.5)×(x+y)=70,解得x=80y=60,∴点C的横坐标为2×(80+60)80=3.5;(3)设两车距离等于140千米的时间为t时,相遇前:(80+60)t=2(80+60)﹣140,解得t=1,相遇后:(80+60)×(t﹣2)=140,解得t=3,3﹣1=2(小时),即两车距离小于或等于140千米的时间有2小时.解题秘籍:本题考查一次函数的应用,从图象中获取解答问题的信息是解答本题的关键,其中用的数学思想是数形结合的思想.针对训练25.(2021•集贤县模拟)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,图中的折线表示两车之间距离y(km)与慢车行驶时间x(h)之间的函数关系图象,请根据图象提供的信息回答:(1)快车的速度是km/h.(2)求线段BC所表示的函数关系式.(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同,直接写出第二列快车出发多长时间与慢车相距200km.思路引领:(1)x=0时两车之间的距离即为两地间的距离,根据横坐标和两车之间的距离增加变慢解答,分别利用速度=路程÷时间列式计算即可得解;(2)求出相遇的时间得到点B的坐标,再求出两车间的距离,得到点C的坐标,然后设线段BC的解析式为y=kx+b,利用待定系数法求一次函数解析式解答;(3)设第二列快车出发a小时两车相距200km,然后分相遇前与相遇后相距200km两种情况列出方程求解即可.解:(1)由图象可知,甲、乙两地间的距离是960km,图中点C的实际意义是:当慢车行驶6h时,快车到达乙地;慢车速度是:960÷12=80km/h,快车速度是:960÷6=160km/h;故答案为:160;(2)根据题意,两车行驶960km相遇,所用时间960÷(160+80)=4(h),所以,B点的坐标为(4,0),2小时两车相距2×(160+80)=480km,所以,点C的坐标为(6,480),设线段BC的解析式为y=kx+b,则4k+b=06k+b=480,解得,所以,线段BC所表示的y与x之间的函数关系式为y=240x﹣960(4≤x≤6);(3)设第二列快车出发a小时两车相距200km,分两种情况,①若是第二列快车还没追上慢车,相遇前,则4×80+80a﹣160a=200,解得a=1.5,②若是第二列快车追上慢车以后再超过慢车,则160a﹣(4×80+80a)=200,解得a=6.5,∵快车到达甲地仅需要6小时,∴a=6.5不符合题意,舍去,综上所述,第二列快车出发1.5h,与慢车相距200km.解题秘籍:本题考查了一次函数的应用,待定系数法求一次函数解析式,相遇问题,追击问题,综合性较强,(3)要注意分情况讨论并考虑快车到达甲地的时间是6h,这也是本题容易出错的地方.6.(2020•鼓楼区校级二模)甲、乙两车同时出发,在同一直线公路上同向匀速行驶,开始甲车在乙车前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后同一时间,甲车继续前行,乙车则原路返回.设甲车行驶x(h)后两车间的距离为y(km),y与x的函数关系如图所示.(1)请解释图中线段BC的实际意义;(2)求线段AB所表示的y与x之间的函数表达式;(3)求甲车与乙车的速度.思路引领:(1)根据函数图象可得,线段BC的实际意义是表示乙车的货物转给甲车所用的时间为1h;(2)设线段AB的解析式为y=kx+b,把点A(0,80),B(2,0)分别代入,即可解答;(3)设甲车的速度是a米/秒,乙车的速度为b米/秒,根据函数图象反应的数量关系建立方程组求出其解即可.解:(1)根据函数图象可得,线段BC的实际意义是表示乙车的货物转给甲车所用的时间为1h;(2)设线段AB的解析式为y=kx+b,把点A(0,80),B(2,0)代入y=kx+b,得:b=802k+b=0,解得:k=−40b=80,∴线段AB的解析式为:y=﹣40x+80,(0≤x≤2);(3)设甲车的速度是akm/h,乙车的速度为bkm/h,由题意,得2b−2a=80(4−3)(a+b)=200,解得:a=80b=120.答:甲车的速度是80km/h,乙车的速度为120km/h.解题秘籍:本题考查了一次函数的应用,解答时认真分析函数图象的含义是关键,根据条件建立方程组是难点.类型三速度时间图象典例3(2015春•安丘市期末)“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班,王叔叔某天骑自行车上班,从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T(t,0),直线l过点T且与横轴垂直,梯形OABC在直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米).(1)①当t=2分钟时,速度v=米/分钟,路程s=米;②当t=15分钟时,速度v=米/分钟,路程s=米;(2)当0≤t≤3和3≤t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式;(3)求王叔叔该天上班从家出发行进了1350米时所用的时间t.思路引领:(1)①根据图象得出直线OA的解析式,代入t=2解答即可;②根据图象得出t=15时的速度,并计算其路程即可;(2)利用待定系数法得出0≤t≤3和3<t≤15时的解析式即可;(3)根据当3<t≤15时的解析式,将s=1350代入解答即可.解:(1)①直线OA的解析式为:v=3003t,即v=100t,把t=2代入可得:v=200;路程S=12×2×200=200,故答案为:200;200;②当t=15时,速度为定值=300,路程=12×3×300+(15﹣3)×300=4050,故答案为:300;4050;(2)①当0≤t≤3,设直线OA的解析式为:v=kt,由图象可知点A(3,300),∴300=3k,解得:k=100,则解析式为:v=100t;设l与OA的交点为P,则P(t,100t),=12•t•100t=50t2,∴s=S△POT②当3<t≤15时,设l与AB的交点为Q,则Q(t,300),=12(t﹣3+t)×300=300t﹣450,∴S=S梯形OAQT(3)∵当0≤t≤3,S最大=50×9=450,∵1350>50,∴当3<t≤15时,450<S≤4050,则令1350=300t﹣450,解得:t=6.故王叔叔该天上班从家出发行进了1350米时所用的时间6分钟.解题秘籍:此题考查一次函数的应用,关键是根据图象进行分析,同时利用待定系数法得出解析.针对训练37.(2021秋•连云港期末)如图是甲、乙两个动点在某时段速度随时间变化的图象,下列结论错误的是()A.乙点前4秒是匀速运动,4秒后速度不断增加B.甲点比乙点早4秒将速度提升到32cm/sC.在4至8秒内甲的速度都大于乙的速度D.甲、乙两点到第3秒时运动的路程相等思路引领:选项A,根据前4s内,乙的速度﹣时间图象是一条平行于x轴的直线,即速度不变.选项B,8秒时速度是32cm/s,乙12秒时速度是32cm/s,直接可判断;选项C,在4至8秒内甲的速度图象一直在乙的上方,可判断;选项D,算出甲、乙3秒所走路程即可判断.解:A.根据图象可得,乙前4秒的速度不变,为12米/秒,故A正确,不合题意;B.从图象可知,甲8秒时速度是32cm/s,乙12秒时速度是32cm/s,故B正确,不符合题意;C.在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故C正确,不合题意.D.甲每秒增加的速度为:32÷8=4(米/秒),3×4=12(米/秒),甲前3秒的运动路程为4+8+12=24(米),乙前4秒的速度不变,为12米/秒,则行驶的路程为12×3=36米,所以甲、乙两点到第3秒时运动的路程不相等,故D错误,符合题意;故选:D.解题秘籍:此题考查了一次函数的应用,弄清函数图象表示的意义是解本题的关键.第二部分专题提优训练1.(2021秋•开州区期末)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是()A.934思路引领:根据图象得出,慢车的速度为为a9km/h,快车的速度为速度a3km/h.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.解:根据图象可知,慢车的速度为a9km/h,对于快车,由于往返速度大小不变,总共行驶时间是6h,因此单程所花时间为3h,故其速度a3km/h.所以对于慢车,y与t的函数表达式为y=a9t(0≤t≤9)①.对于快车,y与t的函数表达式为y=−3)(3≤t≤6)②a3(t−6)(6<t≤9)③,联立①②,可解得交点横坐标为t=92,联立①③,可解得交点横坐标为t=274,因此,两车先后两次相遇的间隔时间是274−92=94(h),故选:A.解题秘籍:本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.2.(2021秋•张店区期末)甲、乙两人沿同一条路从A地出发,去往100千米外的B地,甲、乙两人离A地的距离(千米)与时间t(小时)之间的关系如图所示,以下说法正确的是()A.甲出发2小时后两人第一次相遇B.乙的速度是30km/hC.甲乙同时到达B地D.甲的速度是60km/h思路引领:根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.解:由图可知,乙出发2小时后两人第一次相遇,故A不正确,不符合题意;乙3小时走了60千米,速度是20km/h,故B不正确,不符合题意;由图可知,甲到达B地时,乙距B地还有40千米,故C不正确,不符合题意;甲的速度是(100﹣40)÷(3﹣2)=60km/h,故D正确,符合题意;故选:D.解题秘籍:本题考查一次函数的应用,利用数形结合的思想解答是解答本题的关键.3.(2021秋•城阳区期末)如图,在一次爬山活动中,小新先出发,1h后,小宇从同一地点出发去追小新,两人在山顶相遇并一起在山顶欣赏日出,而后两人一起沿原路返回,小新和小宇距起点的距离y(km)与时间x (h)之间的关系如图所示,下列结论错误的是()A.在小宇追小新的过程中,小宇的平均速度是5km/hB.小新从起点出发到山顶的平均速度是4km/hC.AB的函数表达式是y=﹣4x+52D.小宇从起点出发到返回起点所用的时间是13小时思路引领:在小宇追小新的过程中,小宇用4h走了20km,可判定A正确,小新从起点出发到山顶用时5h,路程是20km,可判定B正确,设AB函数表达式是y=kx+b,将(8,20),(11,8)代入,可判定C正确,在y=﹣4x+52中,令y=0得x=13,由小新先出发,1h后,小宇从同一地点出发去追小新,可判断D错误.解:由图可知,在小宇追小新的过程中,小宇用4h走了20km,∴在小宇追小新的过程中,小宇的平均速度是5km/h,故A正确,不符合题意;∵小新从起点出发到山顶用时5h,路程是20km,∴小新从起点出发到山顶的平均速度是4km/h,故B正确,不符合题意;设AB函数表达式是y=kx+b,将(8,20),(11,8)代入得:8k+b=2011k+b=8,解得k=−4b=52,∴AB函数表达式是y=﹣4x+52,故C正确,不符合题意;在y=﹣4x+52中,令y=0得x=13,∵小新先出发,1h后,小宇从同一地点出发去追小新,∴小宇从起点出发到返回起点所用的时间是13﹣1=12(小时),故D错误,符合题意,故选:D.解题秘籍:本题考查一次函数的应用和待定系数法求函数解析式,关键是读取图形中信息,写出函数关系式.4.(2021秋•包河区期末)甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有()A.①②B.①③C.②④D.①②④思路引领:根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.解:由图可得,甲出发9分分钟时,乙追上甲,故乙用6分钟追上甲,故①结论正确;由题意可得:甲步行的速度为1203=40(米/分);设乙的速度为x米/分,由题意可得:9×40=(9﹣3)x,解得x=60,∴乙的速度为60米/分;故②正确;∴乙走完全程的时间=120060=20(分),乙到达终点时,甲离终点距离是:1200﹣(3+20)×40=280(米),故③结论错误;由图可知,整个过程中,甲乙两人相聚180米有2个时刻,当t=18时,甲距起点40×18=720(米),乙距起点60×(18﹣3)=900(米),此时二人相距180米;当t=24时,乙已到终点,即乙距起点1200米,甲距起点24×40=960米,此时二人相距240米,故④错误;∴正确的结论有①②,故选:A.解题秘籍:本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.(2022春•九龙坡区校级期中)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练.甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟,乙骑行30分钟后,甲以原速的1.7倍继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则下列说法错误的是()A.乙骑行的速度为300米/分B.甲提速之后的速度为425米/分C.乙出发52分钟后,甲追上乙D.甲到达B地时,乙距离B地还有4500米思路引领:根据函数与图象的关系以此计算即可判断.解:乙5min骑行1500m,故速度为1500÷5=300(米/分),故A正确,不符合题意;设甲开始的速度为x米/分,则有30×300﹣(30﹣5)x=2750,解得:x=250,∴甲开始的速度为250米/分,乙骑行30分钟后,甲以原速的1.7倍继续骑行,即1.7×250=425(米/分),故B正确,不符合题意;2750÷(425﹣300)=22(分钟),22+30=52(分钟),∴乙出发52分钟后,甲追上乙,故C正确,不符合题意;AB两地的总路程为25×250+(86﹣30)×425=30050(米),86分钟时乙的路程为86×300=25800(米),∴乙距离B地还有30050﹣25800=4250(米),故D错误,符合题意.故选:D.解题秘籍:本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题.6.(2022•夏津县模拟)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:①甲乙两地之间的距离是480千米;②快车的速度100km/h;③C点的坐标为(8,480);④当快车到达乙地时,慢车距甲地132千米;⑤慢车出发1.75h和3.875h时,两车相距200km.其中说法正确的个数是()A.2B.3C.4D.5思路引领:根据题意,结合两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系图进行分析,分别求出快车和慢车的速度,即可判断.解:由图可知,甲乙两地之间的距离是480km;故①正确;在0~3小时,慢车和快车一起行驶了3小时,3~4小时快车出故障停止前行,仅有慢车行驶,则慢车的速度为60=60km/h;。
第6单元:普通行程问题专项练习-四年级数学上册典型例题系列(解析版)人教版
四年级数学上册典型例题系列第六单元:普通行程问题专项练习(解析版)1.一列火车要通过735米长的隧道,已知火车长240米,火车每秒行25米,这列火车全部通过隧道要用多长时间?【答案】39秒【分析】根据题意,要求这列火车全部通过隧道的时间,车尾也要离开隧道,所以路程是隧道的长加上火车的长度,再除以火车的速度,求出来的就是这列火车全部通过隧道的时间。
【详解】(735+240)÷25=975÷25=39(秒)答:这列火车全部通过隧道要用39秒。
【点睛】本题主要考查的是三位数除以两位数的应用,解题关键在于弄清楚题目中的数量关系,计算过程中要细心认真。
2.如图,小红从家到学校要13分钟,如果她用同样的速度从家到少年宫要走几分钟?【答案】8分钟【分析】首先根据路程÷时间=速度,用小红从家到学校的路程除以用的时间,求出小红每分钟走多少米;然后用小红从家到少年宫的路程除以小红的速度,即可求出她用同样的速度从家到少年宫要走几分钟。
【详解】845÷13=65(米/分钟)520÷65=8(分钟)答:她用同样的速度从家到少年宫要走8分钟。
【点睛】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是求出小红每分钟走多少米。
3.李涛12分钟走了840米,照这样的速度,他从家到学校要走15分钟,他家离学校有多远?【答案】1050米【分析】速度=路程÷时间,依此计算出李涛步行的速度,然后再根据“路程=速度×时间”即可计算出李涛家到学校的路程,依此列式并计算即可。
【详解】840÷12=70(米/分)70×15=1050(米)答:他家离学校有1050米远。
【点睛】此题考查的是普通的行程问题,熟练掌握路程、速度、时间之间的关系,是解答此题的关键。
小学奥数之行程问题专项训练题(三)(武汉家教省城家教网)
行程问题专项训练题(三)例1、甲、乙两地相距3.6千米,两条狗从甲、乙两地相向奔跑,每分钟分别跑450米和350米。
它们相向跑1分钟后,同时调头背向跑2分钟,又调头相向跑3分钟,再调头背向跑4分钟……这样不停地跑,直到相遇为止。
问:从出发到相遇需要几分钟?例2、湖中有A、B两岛,甲、乙二人都要在两岛间游一个来回。
两人分别从A、B两岛出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米。
问:两岛相距有多远?例3、A、B、C三人要从甲地到乙地,步行速度都是每小时5千米,骑车速度都是每小时20千米。
现在只有一辆自行车,他们想了一个办法:先让A从甲地骑车走,同时B、C步行;A骑了一段后,换步行而把车放在途中,留给B接着骑;B骑了一段后,再换步行而把车放在途中,留给C接着骑到乙地。
这样A、B、C三人恰好同时到达乙地。
已知甲地到乙地全长12千米。
那么从甲地到乙地他们用了多少小时?例4、图中A、C两地相距2千米,C、B两地相距5千米。
甲、乙两人同时从C地出发,甲向B地走,到达B后立即返回,乙向A地走,到达A后立即返回。
如果甲的速度是乙的速度的1.5倍,那么当乙到达D地时,还未能与甲相遇,他们相距0.5千米,这时甲距C地多少千米?例5、A、B两地相距36千米,甲、乙、丙的速度分别是4千米/小时、7千米/小时、5千米/小时。
如果甲、乙从A地,丙从B地同时出发相向而行,那么几小时后,丙与乙的距离是丙与甲的距离的2倍?例6、甲、乙二人分别从A、B两地同时出发,在A、B之间往返跑步,甲每秒跑2米,乙每秒跑3米。
如果他们每四次相遇点与每五次相遇点的距离是160米,那么A、B之间的距离是多少千米?能力检测1、在一条公路上,甲、乙两个地点相距600米。
张明每小时行走4千米,李强每小时行走5千米,8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都调头反向而行,再过3分钟,他们又调头相向而行,依次接照1、3、5、7……(连续奇数)分钟数调头行走。
新概念思维训练-小学五年级 第讲 行程问题五-教师版
第14讲行程问题五内容概述运动过程中,速度大小或方向有变化的行程问题.掌握分段计算和估算的方法,注意两个不同运动过程之间的对比与计算.典型问题兴趣篇1.邮递员早晨7点出发送一份邮件到对面的村里,从邮局开始先走12千米的上坡路,再走6千米的下坡路.上坡的速度是3千米/时,下坡的速度是6千米/时,请问:(1)邮递员去村里的平均速度是多少?(2)邮递员返回时的平均速度是多少?(3)邮递员往返的平均速度是多少?【答案】(1)3.6km/h;(2)4.5km/h;(3)4km/h【解析】(1)去村里时上坡时间=12÷3=4(h)下坡时间=6÷6=1(h)总路程=12+6=18(km)总时间=4+1=5(h)平均速度=18÷5=3.6(km/h)(2)返回时上坡时间=6÷3=2(h)下坡时间=12÷6=2(h)总路程=18km总时间=2+2=4(h)平均速度=18÷4=4.5(km/h)(3)往返总路程=18*2=36(km)总时间=5+4=9(h)平均速度=36÷9=4(km/h)2.费叔叔开车回家,原计划按照40千米/时的速度行驶.行驶到路程的一半时发现之前的速度只有30千米/时,那么在后一半路程中,速度必须达到多少才能准时到家?【答案】60km/h【解析】设总路程为240km总时间=240÷40=6(h)前半段用的时间=120÷30=4(h)后半段用的时间=6-4=2(h)后半段的速度=120÷2=60(km/h)3.一辆汽车原计划6小时从A城到B城.汽车行驶了一半路程后,因故在途中停留了30分钟.如果按照原定的时间到达B城,汽车在后一半路程的速度就应该提高12千米/时,那么A、B两城相距多少千米?【答案】360km【解析】汽车行驶到中间时行驶时间为3H剩余时间为6-3=3小时由于中途休息0.5小时所以后半段路程的实际行驶时间=3-0.5=2.5h2.5小时行驶的路程比计划2.5小时多行驶=2.5*12=30km这30km就是计划速度休息0.5小时行驶的路程所以计划速度=30÷0.5=60(km/h)总路程=60*6=360km4.甲、乙两人在400米圆形跑道上进行10000米比赛,两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次从后面追上乙时,甲的速度就减少1米/秒,而乙的速度增加0.5米/秒,直到乙比甲快.请问:领先者到达终点时,另一人距终点多少米?【答案】33313m【解析】甲第一次追上乙时耗时400÷(8-6)=200s此时甲跑了200*8=1600m,乙跑了200*6=1200m此时甲的速度为7m/s,乙的速度为6.5m/s甲第二次追上乙时又耗时 400÷(7-0.5)=800s此时甲共跑了1600+800*7=7200m乙一共跑了1200+800*6.5=6400m此后甲的速度为6m/s 乙的速度为7 m/s甲到达终点还需(10000-7200)÷6=24663s已到达终点还需(10000-6400)÷7=25147s所以甲先到达终点,此时乙距终点(25147-24663)*7=33313m5.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行,这两只蚂蚁每秒钟分别爬行5.5厘米和3.5厘米,在运动过程中它们不断地调头,如果把出发算作第零次调头,那么相邻两次调头的时间间隔依次是1秒,3秒,5秒,…,即是一个由连续奇数组成的数列.问:两只蚂蚁爬行了多长时间才能第一次相遇?【答案】49s【解析】1.26m=126cm如果两只蚂蚁不掉头的往前爬,那么他们第一次相遇所需的时间为126÷2÷(5.5+3.5)=7秒。
行程问题练习题
行程问题练习题(一)、行程(时刻)问题类1、一个人骑自行车从甲地到乙地,如果每小时行走10千米,下午1点才能到达;如果每小时行15千米,上午11点就能到达。
要在中午12点到达乙地,他每小时要行多少千米?2、邮递员早晨7时出发送一份邮件到东村去,从邮局开始要走12千米上坡路,8千米下坡路,他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局。
(二)、行程(参数法)问题类。
3、小明从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地,骑车速度是每小时12千米,步行时每小时行4千米,小明走完全程的平均速度是多少千米?4、一个人原计划骑自行车由甲地去乙地,后来改为前一半路乘汽车,后一半路步行,汽车速度是自行车2倍,步行速度是自行车一半,自行车速度为每小时10千米,求行这段路的平均速度。
5、学校组织秋游,同学们下午1点出发,走了一段平坦的路,爬了一座山,然后按原路返回,下战书7点回到学校,已知他们步行速率:高山4千米,上山3千米,下山6千米,他们一共走了多少路?(三)、相遇问题类6、甲乙两车同时从AB两地出发,相向而行,4小时相遇。
相遇后甲车继续行驶3小时到达B地,乙车每小时行24千米,问:AB两地相距多少千米?7、甲、乙两辆汽车的速率为每小时52千米和40千米,它们同时从甲地出发到乙地去,出发后6小时,甲车遇到一辆迎面开来的卡车,1小时后,乙车也遇到了这辆卡车,求这辆卡车的速度。
8、甲乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身后两人相遇,求甲、乙两人的速率。
(四)、相遇(时刻)问题类9、甲、乙两地间的铁路长800千米,某日上午5时30分从甲地开出一列快车,当日上午9时从乙地开出一列快车,两车相向而行,当日下战书4时30分相遇,快车每小时行48千米,慢车每小时行多少千米?10、甲乙两辆汽车早上8时分别从AB两城同时相向出发,到10时两车相距112.5千米,继续行进到下午1时,两车相距还是112.5千米,问:AB两地的距离是多少千米?11、一辆卡车和一辆大客车从相距320千米的两地相向开出,已知卡车每小时行45千米,大客车每小时行40千米,假如卡车上午8时开出,大客车要什么时候开出两车才能在正午12时相遇?(五)、相遇(中点)问题类12、甲、乙两车同时从AB两地相向而行,它们相遇时距AB两地中点处8千米,已知甲车速度是乙车的1.2倍,求AB两地的距离。
第一讲 行程问题专项练习题(含答案)
第一讲:行程问题一、基本公式1.路程=速度×时间;2.速度=路程÷时间;3.时间=路程÷速度。
关键问题二、相遇问题1.基本公式:相遇总路程=甲行的路程+乙行的路程,2.相遇总路程=速度之和×相遇时间,即(甲速+乙速)×相遇时间。
3.速度之和=相遇路程÷相遇时间,4.相遇时间=相遇路程÷速度之和,即相道路程÷(甲速十乙速)5.甲速=相遇总路程÷相遇时间-乙速;乙速=相遇总路程÷相遇时间-甲速。
三、追及问题(一)基本公式1.追及时间=追及时的距离差÷速度差2.速度差=追及时的距离差÷追及时间3.追及时间×速度差=追及时的距离差四、往返的平均速度基本公式:平均速度=总路程÷总时间,即往返的平均速度=甲乙之间的路程×2÷(路程÷去时速度+路程÷回时速度)五、流水问题顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间行程问题专项练习一、求时间:1.甲乙两地相距405千米,一辆汽车从甲地开往乙地,4小时行驶了180千米.照这样的速度,再行驶多少小时,这辆汽车就可以到达乙地?2.甲、乙两辆汽车从相距255千米的A、B两地同时相向开出,甲车的速度是45千米/时,乙车的速度是40千米/时,他们几小时后相遇?3.小强有一本书要给小刚,他们约好同时从家出发迎面而行.已知两家之间的路程是960米,小强的速度是80米/分,小刚的速度是70米/分,经过几分两人相遇?相遇地点距小刚家多少米?4.上海至天津铁路长1375千米.一列火车从上海开往天津,当行了总路程的时,接到通知要求火车提速到每小时行110千米,再经过多少小时到达天津?5.甲乙两人骑自行车从相距90千米的南北两地同时出发,相向而行.甲每小时行10千米乙的速度是甲的1.25倍,经过多长时间两人相遇?6.A、B二人从相距900米的两地同时相对而行,A的速度是60米/秒,B的速度是90米/秒,请问两人多长时间相遇?(请用两种方法解答)二、求距离7.一辆小汽车每小时行98千米,这辆小汽车往返A、B两地一次要6小时,A、B两地之间的距离是多少千米?8.甲、乙两车同时从A地开往B地,乙车6小时达到,甲车每小时比乙车慢8千米,因此比乙车迟到一小时达到.A、B两地间的路程是多少千米?9.甲乙两人从东西两地同时出发,相向而行,甲每分钟行75米,乙每分钟行的是甲的,经过1小时相遇,求东西两地的距离是多少?10.客车每小时行65千米,货车每小时行60千米,客车从甲站先开出2小时,货车从乙站开出后,经4小时,两车相遇,甲乙两站相距多少千米?11.客车和货车同时从甲、乙两城相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米。
北师大版小学数学毕业专项训练行程问题部分一
(北师大版)小学数学毕业专项训练(行程问题)部分(一)小升初专题训练相遇与追及问题1.甲乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。
问他走后一半路程用了多少分钟?2.小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?3.一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
那么甲、乙两地之间的距离是多少千米?4.一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。
有一个人从乙站出发沿电车线路骑车前往甲站。
他出发的时候,恰好有一辆电车到达乙站。
在路上他又遇到了10辆迎面开来的电车。
到达甲站时,恰好又有一辆电车从甲站开出。
问他从乙站到甲站用了多少分钟?5.甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。
现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。
问:甲现在离起点多少米?6.甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地的距离是多少千米?7.李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。
又过了1.5小时,张明从学校骑车去营地报到。
结果3人同时在途中某地相遇。
问:骑车人每小时行驶多少千米?8快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。
已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?9.某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。
小升初复习行程问题练习(含答案)
行程问题练习知识点梳理一、基础公式①路程=速度×时间②时间=路程÷速度③速度=路程÷时间二、常见题型①一般相遇:路程和=时间×速度和②中点相遇:四步曲(1)找出快走者多走的路程:中点路程×2 (2)算出速度差:快者速度-慢者速度 (3)时间:(1)的路程÷(2)的速度=时间(4)套用公式:路程和=时间×速度和③往返相遇:两者相对行驶,第三人在中间往返。
同时出发、同时停止就是相遇时间。
④环形相遇:背向行驶,相遇几次就共走了几个全长。
三、解题思路①画行程图理解题意。
②分析题型。
③套用公式。
例题1红红和聪聪分别从相距 1026 米的两地同时出发,相向而行。
红红家的小狗也跟来了,而且跑在了红红的前面。
当小狗和聪聪相遇后,立即返回跑向红红,遇到红红后,又立即返回跑向聪聪,这样跑来跑去,一直到两人相遇。
这只小狗一共跑了__________米。
(已知红红每分钟走54 米,聪聪每分钟走60 米,小狗每分钟跑70米)例题2一辆客车从 A 地出发开往 B 地,同时一辆货车从 B 地出发开往 A 地。
3 小时后两车在离 A 地 180 千米的 C 地相遇。
相遇后两车继续向前行驶,2 小时后,客车到达 B 地。
此刻,货车还要行驶多少小时才能到达A地?例题3星期天,小英从家里出发去少年宫学画画。
她刚走不久,妈妈发现小英忘了带画笔,于是就去追小英。
如图象表示两人行走的时间和路程。
①妈妈每分钟走__________米;②照这样的速度,妈妈出发后__________分钟可以追上小英。
例题4某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地。
甲车 7 点出发,如图是甲行驶路程 s(千米)随行驶时间 t(小时)变化的图像。
乙车 8 点出发,若要在 9 点至 10 点之间(含 9 点和 10 点)追上甲车,则乙车的速度 v (单位:千米/时)的范围是__________。
行程问题练习题及答案(3篇)
行程问题练习题及答案(3篇)行程问题练习题及答案 1(一)超车问题(同向运动,追及问题)1、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。
慢车在前面行驶,快车从后面追上到完全超过需要多少秒?思路点拨:快车从追上到超过慢车时,快车比慢车多走两个车长的和,而每秒快车比慢车多走(22-17)千米,因此快车追上慢车并且超过慢车用的时间是可求的。
(125+140)÷(22-17)=53(秒)答:快车从后面追上到完全超过需要53秒。
2、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?(20-18)×110-120=100(米)3、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?25-(150+160)÷31=15(米)小结:超车问题中,路程差=车身长的和超车时间=车身长的和÷速度差(二)过人(人看作是车身长度是0的火车)1、小王以每秒3米的速度沿着铁路跑步,迎面__一列长147米的火车,它的行使速度每秒18米。
问:火车经过小王身旁的时间是多少?147÷(3+18)=7(秒)答:火车经过小王身旁的时间是7秒。
2、小王以每秒3米的速度沿着铁路跑步,后面__一列长150米的火车,它的行使速度每秒18米。
问:火车经过小王身旁的时间是多少?150÷(18-3)=10(秒)答:火车经过小王身旁的时间是10秒。
(四)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)3、长150米的火车,以每秒18米的速度穿越一条长300米的隧道。
问火车穿越隧道(进入隧道直至完全离开)要多少时间?(150+300)÷18=25(秒)答:火车穿越隧道要25秒。
4、一列火车,以每秒20米的速度通过一条长800米的大桥用了50秒,这列火车长多少米?20×50-800=200(米)行程问题练习题及答案 2甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?解答:甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程。
小升初数学行程问题1教师版
行程问题专项训练1走路、行车、一个物体的移动,总是要涉及到三个数量:距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内(例如1小时内)行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示:距离=速度×时间很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米。
1.1 追及与相遇有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离= 甲的速度×时间-乙的速度×时间=(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差.例1小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=1.5(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是面包车速度是 54-6=48(千米/小时).城门离学校的距离是48×1.5=72(千米).答:学校到城门的距离是72千米.例2小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是50 ×10÷(75- 50)= 20(分钟)·因此,小张走的距离是75× 20= 1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法.家到公园的距离是一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少?解一:自行车1小时走了30×1-已超前距离,自行车40分钟走了自行车多走20分钟,走了因此,自行车的速度是答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:马上可看出前一速度差是15.自行车速度是35- 15= 20(千米/小时).解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?解:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么甲走的距离+乙走的距离=甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.“相遇问题”,常常要考虑两人的速度和.例5小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?解:走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷(3+1)=9(分钟).答:两人在9分钟后相遇.例6 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是2÷(5-4)=2(小时).因此,甲、乙两地的距离是(5+ 4)×2=18(千米).本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到 D点.这两点距离是 12+ 16= 28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点(或E点)相遇所用时间是28÷5= 5.6(小时).比C点相遇少用 6-5.6=0.4(小时).甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米,因此甲的速度是12÷0.4=30(千米/小时).同样道理,乙的速度是16÷0.4=40(千米/小时).A到 B距离是(30+ 40)×6= 420(千米).答: A,B两地距离是 420千米.很明显,例7不能简单地说成是“相遇问题”.例8 如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问:(1)小张和小王分别从A, D同时出发,相向而行,问多少时间后他们相遇?(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米?解:(1)小张从 A到 B需要 1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要 2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了因此在 B与 C之间平路上留下 3- 1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是2 ÷(4+ 4)×60= 15(分钟).从出发到相遇的时间是25+ 15= 40 (分钟).(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走 1÷2×60=30分钟,即他再走 60分钟到达终点.小张走15分钟平路到达D点,45分钟可走小张离终点还有2.5-1.5=1(千米).答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.。
行程问题的练习题
行程问题的练习题一、选择题1. 一辆汽车以每小时60公里的速度行驶,如果它行驶了2小时,那么它行驶了多少公里?A. 60公里B. 120公里C. 180公里D. 240公里2. 某同学骑自行车从家到学校,如果自行车的速度是每小时15公里,他需要20分钟到达学校,那么他家到学校的距离是多少公里?A. 5公里B. 3.75公里C. 2.5公里D. 1.25公里3. 一辆火车从A地到B地,如果火车的速度是每小时100公里,那么它需要多少时间才能行驶500公里?A. 5小时B. 3小时C. 2小时D. 1小时二、填空题4. 一辆汽车以每小时80公里的速度行驶,行驶了3小时,它行驶的总距离是________公里。
5. 某船以每小时20公里的速度在河上航行,如果它航行了4小时,那么它航行的总距离是________公里。
6. 一个人步行的速度是每小时5公里,如果他走了1.5小时,他走的总距离是________公里。
三、简答题7. 一辆汽车从甲地出发,以每小时120公里的速度向乙地行驶。
如果甲地到乙地的距离是360公里,那么汽车需要多少时间才能到达乙地?8. 某飞机从机场起飞,以每小时800公里的速度飞行。
如果飞行了2.5小时,那么飞机飞行了多少公里?9. 一个跑步者以每小时10公里的速度跑步,如果他跑了30分钟,他跑了多少公里?四、计算题10. 一辆摩托车和一辆汽车同时从同一地点出发,摩托车以每小时50公里的速度行驶,汽车以每小时100公里的速度行驶。
如果它们都行驶了3小时,那么汽车比摩托车多行驶了多少公里?11. 一辆火车从起点站出发,以每小时150公里的速度行驶,经过3小时后,火车到达了一个中间站。
如果火车从中间站继续以相同的速度行驶了2小时,那么火车总共行驶了多少公里?12. 某船在静水中的速度是每小时15公里,如果船顺流而下,水流的速度是每小时5公里,那么船顺流行驶的速度是多少?五、应用题13. 某公司需要将一批货物从仓库A运送到仓库B,两地之间的距离是200公里。
行程测试题及答案
行程测试题及答案一、选择题1. 某人从A地出发,以每小时10公里的速度行驶,2小时后到达B地。
请问A地到B地的距离是多少公里?A. 20公里B. 30公里C. 40公里D. 50公里2. 如果上述人从B地返回A地,速度提高到每小时15公里,那么他需要多少时间?A. 1小时B. 1.5小时C. 2小时D. 2.5小时二、填空题3. 一辆汽车以60公里/小时的速度行驶,行驶了2小时,那么它行驶的总距离是________公里。
4. 如果汽车在行驶过程中,每行驶1小时后休息10分钟,那么在行驶了3小时后,汽车实际行驶的时间是________小时。
三、简答题5. 请简述如何计算平均速度。
6. 某旅行者计划从C地到D地,两地相距300公里,预计平均速度为60公里/小时。
如果旅行者在途中休息了2小时,那么他到达D地需要的总时间是多少?四、计算题7. 一辆汽车从E地出发,以每小时80公里的速度行驶,行驶了3小时后,汽车因故障停车修理,修理时间为1小时。
如果汽车修理后以每小时70公里的速度继续行驶,直到到达F地。
假设E地到F地的总距离为500公里,求汽车从E地到F地的总用时。
五、论述题8. 论述在长途旅行中,如何合理安排行程,以确保旅行的效率和安全。
答案:一、选择题1. A2. B二、填空题3. 1204. 2.5三、简答题5. 平均速度是指在一段时间内,总路程除以总时间得到的速度。
6. 旅行者在行驶了300公里后,以60公里/小时的速度需要5小时。
加上2小时的休息时间,总共需要7小时。
四、计算题7. 汽车前3小时行驶了240公里,剩余260公里。
修理后以70公里/小时的速度行驶,需要3小时43分钟左右。
加上之前的3小时和1小时修理时间,总用时为8小时43分钟。
五、论述题8. 长途旅行中,合理安排行程应考虑以下因素:提前规划路线,避免高峰时段;合理安排休息时间,避免疲劳驾驶;检查车辆状况,确保安全;携带必要的应急物品和工具;留意天气变化,避免恶劣天气出行。
第三单元行程问题专项练习-五年级数学(解析版)人教版
2023-2024学年五年级数学上册典型例题系列第三单元:行程问题专项练习(解析版)1.2022年“中国旅游日”活动主题为“感悟中华,享受美好旅程”,主会场设在山西省晋中市平遥古城。
小美一家三口到平遥古城旅游。
照这样计算,这列动车还需要多长时间才能到达平遥?【答案】0.8时【分析】根据速度=路程÷时间,用264÷1.2即可求出动车的速度,再根据时间=路程÷速度,用440千米除以动车的速度这列动车到平遥的时间;再减去1.2时即可求出剩下需要行驶多长时间。
【详解】264÷1.2=220(千米/时)440÷220=2(时)2-1.2=0.8(时)答:这列动车还需要0.8时才能到达平遥。
【点睛】本题考查了小数除法的计算和应用,掌握速度、路程、时间三者之间的关系是解答本题的关键。
2.甲、乙两地相距488千米。
一辆汽车从甲地开往乙地,3.6时行驶了244.8千米。
照这样的速度,再行驶3.9时,能到达目的地吗?【答案】能到达目的地【分析】首先根据路程÷时间=速度,用这辆汽车3.6小时行驶的路程除以3.6,求出这辆汽车的速度是多少;然后用剩下的路程除以这辆汽车的速度,求出剩下的路程还要行驶多少小时即可。
【详解】(488-244.8)÷(244.8÷3.6)=243.2÷68≈3.6(小时)3.6小时<3.9小时答:能到达目的地。
【点睛】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是求出这辆汽车的速度是多少。
3.棋盘山山腰上曾有一巨石棋盘,传说仙人吕洞宾和铁拐李曾在此对弈,这便是棋盘山山名的由来。
丽丽家住在山脚下,她家到山顶的距离是2.85千米。
周末丽丽一家去爬山,他们从家到山顶用了2.5小时,原路返回用了1.5小时,她们往返的平均速度是多少?【答案】1.425千米/时【分析】往返的平均速度=上下山的总路程÷上下山需要的总时间。
第4单元:行程问题“基础型”专项练习-四年级数学上册典型例题系列(原卷版)人教版
四年级数学上册典型例题系列第四单元:行程问题“基础型”专项练习(原卷版)一、填空题。
1.一辆汽车每小时行78千米,它的速度可记作( )。
小明每分钟走80米,他10分钟走多少米?要求的是( )。
2.一架飞机每小时飞行950千米,它的速度可以写成( )。
照这样的速度飞行3小时,共飞行( )千米。
3.一辆汽车2小时行驶了160千米,这是已知这辆汽车行驶的( )和( ),这辆汽车的速度是( )。
4.客车8小时行驶了640千米,它的速度可以记作( );火车4小时行驶了360千米,它的速度可以记作( ),( )的速度快。
5.小红每分钟走70米,她12分钟走( )米。
这题所用等量关系是( )。
6.复兴号动车组列车的速度最高可达350千米/时,如果以这样的速度行驶12小时,可以行驶( )千米。
7.一辆小汽车3小时行驶240千米,根据等量关系( ),求出这辆小汽车行驶的速度是( )。
8.一辆汽车每小时行70千米,70千米叫做( ),可以写成( ),读作( )。
二、解答题。
9.张医生坐汽车到温州出差,去时汽车的速度是56千米/时,共用了5小时,原路返回时只用了4小时。
返回时汽车的速度是多少?10.一辆汽车从A地出发,经过B地开往C地(如图所示)。
已知A地到B地平均每小时行驶80千米。
(1)这辆车从B地到C地平均每小时行驶多少千米?(2)这辆车从A地到C地平均每小时行驶多少千米?11.蒲溪河公园健身步道全长有2500米。
王叔叔走路的速度是60米/分钟,他从起点走到终点再返回到起点,1小时够吗?12.李老师家距离森林公园7500米,如果他骑车的速度是198米/分,他从家到森林公园骑车38分钟能到达吗?13.看路牌解决问题。
(1)一位小轿车司机看到路牌后,经过3小时到达了天津,这辆小轿车的平均速度是多少?(2)一辆货车的平均速度是43千米/时,经过8小时它能否从路牌处到达石家庄?14.欢欢5分钟步行450米,照这样的速度,她从家到学校要走16分钟。
四年级下册关于行程问题植树问题及和差问题的专项练习(附答案 教师版)
相遇问题(1)两列火车同时从甲乙两城相对开出,甲车每小时行76千米,乙车每小时行82千米,两车开出3小时后,还相距156千米,甲乙两车相距多少千米?(1)(76+82)×3+156=630(千米)(2)甲乙两辆汽车同时从东西两地相向出发,甲车每小时行48千米,乙车每小时行54千米,两车在离中点36千米的地方相遇,东西两地间的路程是多少千米?(2)36×2÷(54-48)=12(小时)(52+48)×12=1224(千米)(3)甲乙两车分别从A.B两地同时车发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过4小时两车在中途相遇,A.B两地间的路程是多少千米?(3)(75+69)×4=576(千米)(4)甲乙两地相距384千米,两辆汽车从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
甲车开出64千米后,乙车才出发,再经过几小时两车相遇?(4)(384-64)÷(38+24)=4(小时)(5)两列火车从相距870米的两地相对开出,货车每小时行55千米,客车每小时行90千米,经过几小时后两车相遇?两列火车相遇时各行多少千米?(5)870/(55+90)=6(小时)55*6=330(千米) 90*6=540(千米)(6)南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行。
从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?(6) 392/(28+21)=8(小时)(7)甲乙两船分别从相距320千米的两个码头相向而行,8小时后,两船相距40千米,已知甲船每小时航行20千米,那么乙船每小时航行多少千米?(7)(320-40)/8-20=15(千米)(8)甲乙两人分别从相距20千米的两地同时出发,甲每小时走6千米,经过2小时后两人相遇,乙每小时行多少千米?(8)20/2-6=4(千米)(9)两辆汽车从甲乙两地相对开出,A车每小时行50千米,B 车每小时行40千米,两辆汽车在距离两地中点20千米处相遇,甲乙两地相距多少千米?(9)20*2/(50-40)=4(小时)(50+40)*4=360(千米)(10)小李和小刘在周长为400米的环形跑道上跑步,小李每秒跑5米,小刘每秒跑3米,他们从同一地点同时出发,反向而跑,那么,二人从同时出发到第一次相遇需要多长时间?(10)400/(5+3)=50(秒)(11)北京到青岛的铁路线长900千米,两列火车从两地相向而行,快车每小时行140千米,快车先行180千米后,慢车才出发。
行程问题训练题
行程问题训练题一、复习相遇问题:1、甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
求两人几小时后相遇?2、甲车每小时行6千米,乙车每小时行驶5千米,两车于相隔10千米的两地同时相背而行,几小时后两车相隔65千米?3、甲、乙两人从A、B两地步行相向而行,甲每小时走3千米,乙每小时走2千米,两人相遇时距离中点还有3千米。
A、B两地相距多远?二、复习追及问题:1、甲、乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。
几小时后甲可以追上乙?2、一辆每小时行60千米的汽车去追一辆先行96千米的汽车,已知行了480千米后追上。
那么,先行的汽车每小时行多少千米?3、甲、乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米,如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?三、复习航行问题1、一艘船在静水中速度是60千米/小时,已知水流速度是5千米/小时,那么(1)、这艘船在顺水中的速度是______千米/小时.在逆水中的速度是______千米/小时(2)、这艘船在顺水航行120千米需要_______小时。
在逆水中航行120千米又需要_____小时2、两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/小时,水流速度是a千米/小时。
(1)、甲船在顺水中的速度是多少(2)、乙船在逆水中的速度是多少(3)、 2小时后两船相距多远(4)、 2小时后甲船比乙船多航行多少千米。
3、某船来往于相距360 千米的两港口之间。
上行(逆水)需用18 小时,下行要用15 小时。
这只船在静水中速度和水流速度各是多少?4、轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流速度是2千米/小时。
求轮船在静水中航行的速度。
5、一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时的飞机航行速度和两城之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、甲、乙两车分别从A、B两地同时相向开出,甲车的速度是50千米/时,乙
车的速度是40千米/时,当甲车驶过A、B距离的1
3
多50千米时,与乙车相遇,
A、B两地相距多少千米?
速度比是甲:乙=50:40=5:4 路程比是甲:乙=5:4
相遇时,甲行了5÷(5+4)=5/9
A、B两地相距50÷(5/9-1/3)=225千米
2、张大力和王涛从环形公路上的A点同时出发,沿相反方向跑,第一次相遇在B点,张大力第二次到达B点后立即掉头沿相反方向跑,已知张大力跑完一圈需4分钟,王涛跑完一圈需5分钟,问张大力掉头之后经过多长时间追上王涛?
3、甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒,从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?(甲乙两辆汽车的长度忽略不计)设甲速度x m/s,乙速度y m/s,火车速度60 km/h=50/3 米/秒=1000米/分
则:(50/3-x)*30=180,
(50/3+y)*6=180
所以:x=32/3 米/秒,y=40/3 m/s
5分钟火车所走路程为:5000米,甲车向前行驶了32/3*5*60=3200米
则甲乙相距5000-3200=1800米
所以需要时间为:1800/(32/3+40/3)=75秒
4、A、B两地相距90千米,甲骑自行车每小时行15千米,乙开汽车,每行1千米比甲少用3分钟,若甲、乙两人同时从A地出发去B地,乙到B地后立即返回,则当乙遇到甲时,他们距离B地多少千米?
甲行1千米的时间是:60÷15=4(分钟),
可得乙行1千米的时间是4-3=1(分钟),
所以乙的速度是:1×60=60(千米每小时),
所以甲乙相遇时行驶的时间为:90×2÷(15+60)=180÷75,=2.4(小时),
则距离B地的距离为:90-15×2.4=90-36=54(千米);
答:他们距离B地54千米.
5、一个游人由A地出发,每天走54千米,每走2天休息1天,14天后到达B 地,如果这个游人每天走36千米,但中途不休息,那么走完这段路程需要多少天?
14天里体息的次数为:
14÷3=4(次)…2(天),即在14天里他体息了4天.
54×(14-4)÷36=540÷36,=15(天).
答:需要15天.
6、A、B两地间有一条公路,甲、乙两辆车分别从A、B两地同时相向出发,甲车的速度是60千米/时,经过1小时,两车第1次相遇,然后两车继续行驶,各自到达B、A两地后都立即返回,第2次相遇点与第1次相遇点的距离是20千米,求:(1)A、B两地的距离;(2)乙车的速度。
第一种情况:
(1)第二次相遇地点距A地60+20=80千米时,
AB两地的距离为:
(60×3+60+20)÷2=260÷2=130(千米)
答:AB两地的距离为130千米.
(2)乙车的速度为:
130÷1-60=130-60=70(千米/小时)
答:乙车的速度为70千米/小时.
第二种情况:
(1)第二次相遇时距离A地60-20=40千米时:
(60×3+60-20)÷2=220÷2=110(千米)
答:AB两地的距离为110千米.
(2)乙车的速度为:
110÷1-60=110-60=50(千米/小时)
答:乙车的速度为50千米/小时
7、某城市举行“万人申奥”长跑活动,长跑队伍以每小时6千米的速度前进,长跑开始时,两名记者小张和小王分别从排头、排尾同时向队伍中间行进,报导这次活动,小张和小王都乘摩托车每小时行10千米,他们在离队伍中点900米处相遇,求长跑队伍有多长?
根据题意,小张和小王都乘摩托车每小时行10千米,如果队伍没移动他们相遇,肯定在队伍中点;实际上他们在离队伍中点900米处相遇,说明队伍移动了900米,根据队伍的速度,可以求出队伍移动的时间,也就是两人相遇时的时间;他们原来一个在排头一个在排位,距离就是队伍长度,用相遇时间乘它们的速度和就是队伍长.两人
的相遇时间:900÷1000÷6=0.15(小时);
队伍长:0.15×(10+10)=3(千米).
答:长跑队伍有3千米长.。