高一数学练习(统计)
(精选试题附答案)高中数学第九章统计经典大题例题
(名师选题)(精选试题附答案)高中数学第九章统计经典大题例题单选题1、某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性都为0.2,用随机数表法在该中学抽取容量为n的样本,则n等于()A.80B.160C.200D.280答案:C分析:每个个体被抽的可能性等于样本容量除以总体数,由此列出关于n的方程并求解出结果.=0.2,解得n=200,由题意可知:n400+320+280故选:C.2、某校为了解学生的课外锻炼身体的情况,随机抽取了部分学生,对他们一周的课外锻炼时间进行了统计,统计数据如下表所示:则该校学生一周进行课外锻炼的时间的第40百分位数是()A.8.5B.8C.7D.9答案:A分析:根据百分位数的求法计算即可.抽取的学生人数为6+10+9+8+7=40.由40%×40=16,故第40百分位数为所有数据从小到大排序的第16项与第17项数据的平均数,=8.5.即8+92故选: A.3、下列调查方式较为合适的是()A.为了了解灯管的使用寿命,采用普查的方式B.为了了解我市中学生的视力状况,采用抽样调查的方式C.调查一万张面值为100元的人民币中有无假币,采用抽样调查的方式D.调查当今中学生喜欢什么体育活动,采用普查的方式答案:B分析:根据实际情况选择合适的调查方式即可判断.对A,为了了解灯管的使用寿命,应采用抽样调查的方式,故A错误;对B,为了了解我市中学生的视力状况,采用抽样调查的方式,故B正确;对C,调查一万张面值为100元的人民币中有无假币,采用抽样普查的方式,故C错误;对D,调查当今中学生喜欢什么体育活动,采用抽样普查的方式,故D错误.故选:B.4、2021年3月,树人中学组织三个年级的学生进行“庆祝中国共产党成立100周年”党史知识竞赛.经统计,得到前200名学生分布的饼状图(如图)和前200名中高一学生排名分布的频率条形图(如图),则下列命题错.误.的是()A.成绩前200名的200人中,高一人数比高二人数多30人B.成绩第1-100名的100人中,高一人数不超过一半C.成绩第1-50名的50人中,高三最多有32人D.成绩第51-100名的50人中,高二人数比高一的多答案:D分析:根据饼状图和条形图提供的数据判断.由饼状图,成绩前200名的200人中,高一人数比高二人数多200×(45%−30%)=30,A正确;=45<50,B 由条形图知高一学生在前200名中,前100和后100人数相等,因此高一人数为200×45%×12正确;成绩第1-50名的50人中,高一人数为200×45%×0.2=18,因此高三最多有32人,C正确;第51-100名的50人中,高二人数不确定,无法比较,D错误.故选:D.5、某射击运动员6次的训练成绩分别为:88,91,89,88,86,85,则这6次成绩的第70百分位数为()A.89B.89.5C.90D.90.5答案:A分析:先将数据按从小到大的顺序排列,计算6×70%=4.2不是整数,则所求的是从小到大排列的第5位数6次考试数学成绩从小到大为:85,86,88,88,89,91,6×70%=4.2,∴这名学生6次训练成绩的第70百分位数为89 .故选:A6、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率直方图如图所示,估计棉花纤维的长度的样本数据的80百分位数是()A.29 mmB.29.5 mmC.30 mmD.30.5 mm答案:A分析:先求得棉花纤维的长度在30 mm以下的比例为85%,在25 mm以下的比例为85%-25%=60%,从而可得80百分位数一定位于[25,30)内,进而可求出答案棉花纤维的长度在30 mm以下的比例为(0.01+0.01+0.04+0.06+0.05)×5=0.85=85%,在25 mm以下的比例为85%-25%=60%,因此,80百分位数一定位于[25,30)内,=29,由25+5×0.80−0.600.85−0.60可以估计棉花纤维的长度的样本数据的80百分位数是29 mm.故选:A7、根据气象学上的标准,连续5天的日平均气温低于10℃即为入冬,将连续5天的日平均温度的记录数据(记录数据都是自然数)作为一组样本,现有4组样本①、②、③、④,依次计算得到结果如下:①平均数x̅<4;②平均数x̅<4且极差小于或等于3;③平均数x̅<4且标准差s≤4;④众数等于5且极差小于或等于4.则4组样本中一定符合入冬指标的共有()A .1组B .2组C .3组D .4组答案:B分析:举反例否定①;反证法证明②符合要求;举反例否定③;直接法证明④符合要求.①举反例:0,0,0,4,11,其平均数x̅=3<4.但不符合入冬指标;②假设有数据大于或等于10,由极差小于或等于3可知,则此组数据中的最小值为10−3=7,此时数据的平均数必然大于7,与x̅<4矛盾,故假设错误.则此组数据全部小于10. 符合入冬指标;③举反例:1,1,1,1,11,平均数x̅=3<4,且标准差s =4.但不符合入冬指标;④在众数等于5且极差小于等于4时,则最大数不超过9.符合入冬指标.故选:B .8、关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(x,y );再统计两数能与1构成钝角三角形三边的数对(x,y )的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4a mB .a+2mC .a+2m mD .4a+2m m答案:D解析:由试验结果知m 对0~1之间的均匀随机数x,y ,满足{0<x <10<y <1,面积为1,再计算构成钝角三角形三边的数对(x,y),满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值.解:根据题意知,m 名同学取m 对都小于1的正实数对(x,y ),即{0<x <10<y <1, 对应区域为边长为1的正方形,其面积为1,若两个正实数x,y 能与1构成钝角三角形三边,则有{x 2+y 2<1x +y >10<x <10<y <1,其面积S =π4−12;则有a m =π4−12,解得π=4a+2m m故选:D .小提示:本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.9、某校高一共有10个班,编号为01,02,…,10,现用抽签法从中抽取3个班进行调查,设高一(5)班被抽到的可能性为a ,高一(6)班被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19 C .a =310,b =310D .a =110,b =110答案:C分析:根据简单随机抽样的定义,分析即可得答案.由简单随机抽样的定义,知每个个体被抽到的可能性相等,故高一(5)班和高一(6)班被抽到的可能性均为310. 故选:C10、为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是( )A .1200名学生是总体B .每个学生是个体C .样本容量是100D .抽取的100名学生是样本答案:C分析:根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.根据题意,总体是1200名学生的成绩;个体是每个学生的成绩;样本容量是100,样本是抽取的100名学生的成绩;故正确的是C.故选:C.填空题11、某市A、B、C三个区共有高中学生20000人,其中A区高中学生7000人,现采用分层抽样的方法从这三个区所有高中学生中抽取一个容量为600人的样本进行学习兴趣调查,则A区应抽取__________________.答案:210分析:根据总体数和要抽取的样本数,得到每个个体被抽到的概率,利用这个概率乘以A区的人数,得到A区要抽取的人数.解:由题意知A区在样本中的比例为700020000∴A区应抽取的人数是700020000×600=210.所以答案是:210.12、某单位有员工900人,其中女员工有360人,为做某项调查,拟采用分层抽样的方法抽取容量为150的样本,则应抽取的男员工人数是_______________________.答案:90分析:按照分层抽样的定义,按照比例抽取即可由题意,设应抽取的男员工人数是x则900−360900=x150解得:x=90所以答案是:9013、已知一组数据:20,30,40,50,50,60,70,80,记这组数据的第60百分位数为a,众数为b,则a和b的大小关系是______________.(用“<”“>”或“=”连接)答案:a=b##b=a分析:由百分位数求法得50为第60百分位数,并确定数据的众数,即可比较它们的大小关系.因为8×60%=4.8,所以这组数据的第5个数:50为第60百分位数.观察易知这组数据的众数为50,所以a和b的大小关系是a=b.所以答案是:a=b14、某校从高一新生中随机抽取了一个容量为20的身高样本,数据从小到大排序如下(单位:cm):152 ,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170 ,171,x,174,175,若样本数据的第90百分位数是173,则x的值为________.答案:172分析:根据百分位数的意义求解.百分位数的意义就在于,我们可以了解的某一个样本在整个样本集合中所处的位置,=173,x=172本题第90百分位数是173,所以x+1742故答案为:172小提示:本题考查样本数据的第多少百分位数的概念.15、气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)①甲地5个数据的中位数为24,众数为22;②乙地5个数据的中位数为27,总体均值为24;③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.则肯定进入夏季的地区有_____.答案:①③分析:根据数据的特点进行估计甲、乙、丙三地连续5天的日平均气温的记录数据,分析数据的可能性进行解答即可得出答案.①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22、22、24、25、26,其连续5天的日平均气温均不低于22;②乙地:5个数据的中位数为27,总体均值为24,当5个数据为19、20、27、27、27,可知其连续5天的日平均温度有低于22,故不确定;③丙地:5个数据中有一个数据是32,总体均值为26,若有低于22,假设取21,此时方差就超出了10.8,可知其连续5天的日平均温度均不低于22,如22、25、25、26、32,这组数据的平均值为26,方差为10.8,但是进一步扩大方差就会超过10.8,故③对.则肯定进入夏季的地区有甲、丙两地,故答案为①③.小提示:本题考查中位数、众数、平均数、方差的数据特征,简单的合情推理,解答此题应结合题意,根据平均数的计算方法进行解答、取特殊值即可.解答题16、为了了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a的值;(2)估计这种植物果实重量的平均数x̅(同一组中的数据用该组区间的中点值作代表);(3)已知这种植物果实重量不低于37.5克的即为优质果实,现对该种植物果实的某批10000个果实进行检测.据此估算这批果实中的优质果实的个数.答案:(1)a=0.050(2)40(3)7000分析:(1)由各组频率之和为1(面积之和为1)可求得;(2)频率分布直方图用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和估计平均数;(3)用样本频率估计总体概率进行求解.(1)由题意,有(0.020+0.040+0.075+a+0.015)×5=1,解得a=0.050;(2)这种植物果实重量的平均数约为:30×0.020×5+35×0.040×5+40×0.075×5+45×0.050×5+50×0.015×5=40,∴这种植物果实重量的平均数x̅的估计值约为40.(3)样本中,这种植物果实重量不低于37.5克,即优质果实的频率为0 .075×5+0.050×5+0.015×5=0.7,由此估计某批10000个果实中,重量不低于37.5克,即优质果实的概率为0.7,∴这批果实中的优质果实的个数约为10000×0.7=7000个.17、第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某市举办了中学生滑雪比赛,从中抽取40名学生的测试分数绘制成茎叶图和频率分布直方图如下,后来茎叶图受到了污损,可见部分信息如图.(1)求频率分布直方图中a的值,并根据直方图估计该市全体中学生的测试分数的平均数(同一组中的数据以这组数据所在区间中点的值作代表,结果保留一位小数);(2)现要对测试成绩在前26%的中学生颁发“滑雪达人”证书,并制定出能够获得证书的测试分数线,请你用样本来估计总体,给出这个分数线的估计值.答案:(1)a=0.02,平均数为74.5(2)82分析:(1)计算出测试分数位于[90,100]个数,可求得测试分数位于[80,90)的个数,由此可求得a的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全加可得样本的平均数;(2)设能够获得证书的测试分数线为x,分析可得80<x<90,根据已知条件可得出关于x的等式,求解即可. (1)解:由频率分布直方图可知,测试分数位于[90,100]的频率为10×0.01=0.1,则测试分数位于[90,100]个数为40×0.1=4,所以,测试分数位于[80,90)的个数为40−(4+10+14+4)=8,÷10=0.02.所以a=840估计平均数为55×0.1+65×0.25+75×0.35+85×0.2+95×0.1=74.5.(2)解:因为测试分数位于[90,100]的频率为0.1,测试分数位于[80,90)的频率为0.2,能够获得“滑雪达人”证书的中学生测试分数要在前26%,故设能够获得证书的测试分数线为x,则80<x<90,由(90−x)×0.02=0.26−0.1,可得x=82,所以分数线的估计值为82.18、某中学要从高一年级甲乙两个班级中选择一个班参加电视台组织的“环保知识竞赛”,该校对甲乙两班的参赛选手(每班7人)进行了一次环保知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是85.(1)求x,y的值;(2)根据茎叶图,求甲乙两班同学方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.答案:(1)x=9,y=5;(2)乙班成绩比较稳定,故应选乙班参加.分析:(1)利用茎叶图,根据甲班7名学生成绩的平均分是85,乙班7名学生成绩的中位数是85.先求出x,y,(2)求出乙班平均分,再求出甲班7名学生成绩方差和乙班名学生成绩的方差,由此能求出结果.解:(1)甲班的平均分为:17(75+78+80+80+x+85+92+96)=85;解得x=9,∵乙班7名学生成绩的中位数是85,∴y=5,(2)乙班平均分为:17(75+80+80+85+90+90+95)=85;甲班7名学生成绩方差S12=17(102+72+52+42+02+72+112)=3607,乙班名学生成绩的方差S22=17(102+52+52+02+52+52+102)=3007,∵两个班平均分相同,S22<S12,∴乙班成绩比较稳定,故应选乙班参加.小提示:本题考查茎叶图的应用,解题时要认真审题,属于基础题.19、2019年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境,某部门在某小区年龄处于[20,45]岁的人中随机地抽取x人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图示各年龄段人数的频率分布直方图和表中的统计数据.(1)求x、y、z的值;(2)根据频率分布直方图,估计这x人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,并在这9人中选取2人作为记录员,求选取的2名记录员中至少有一人年龄在[30,35]中的概率.答案:(1){x=200y=0.625z=6;(2)30.75;(3)1318.分析:(1)由频率分布直方图和频数分布表能求出x、y、z;(2)根据频率分布直方图,能估计这x人年龄的平均值;(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,[25,30)中选5人,分别记为A、B、C、D、E,[30,35]中选4人,分别记为a、b、c、d,在这9人中选取2人作为记录员,利用列举法列举出所有的基本事件,然后利用古典概型的概率公式可求得所求事件的概率.(1)由题意得:{x=450.750.06×5=200y=25200×0.04×5=0.625z=200×0.03×5×0.2=6;(2)根据频率分布直方图,估计这x人年龄的平均值为:x=22.5×0.3+27.5×0.2+32 .5×0.2+37.5×0.15+42.5×0.15=30.75;(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,从[25,30)中选:9×2525+20=5人,分别记为A、B、C、D、E,从[30,35]中选:9×2025+20=4人,分别记为a、b、c、d,在这9人中选取2人作为记录员,所有的基本事件有:(A,B)、(A,C)、(A,D)、(A,E)、(A,a)、(A,b)、(A,c)、(A,d)、(B,C)、(B,D)、(B,E)、(B,a)、(B,b)、(B,c)、(B,d)、(C,D)、(C,E)、(C,a)、(C,b)、(C,c)、(C,d)、(D,E)、(D,a)、(D,b)、(D,c)、(D,d)、(E,a)、(E,b)、(E,c)、(E,d)、(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c,d),共36种,选取的2名记录员中至少有一人年龄在[30,35]包含的基本事件有:(A,a)、(A,b)、(A,c)、(A,d)、(B,a)、(B,b)、(B,c)、(B,d)、(C,a)、(C,b)、(C,c)、(C,d)、(D,a)、(D,b)、(D,c)、(D,d)、(E,a)、(E,b)、(E,c)、(E,d)、(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c,d),共26种,因此,选取的2名记录员中至少有一人年龄在[30,35]中的概率P=2636=1318.小提示:本题考查频率、平均数、概率的求法,考查频数分布表、频率分布直方图、分层抽样、古典概型的性质等基础知识,考查数据分析能力、运算求解能力,是基础题.。
高一数学统计试题
高一数学统计试题1.为了调查甲、乙两种品牌商品的市场认可度,在某购物网点随机选取了14天,统计在某确定时间段的销量,得如下所示的统计图,根据统计图求:(1)甲、乙两种品牌商品销量的中位数分别是多少?(2)甲品牌商品销量在[20,50]间的频率是多少?(3)甲、乙两个品牌商品哪个更受欢迎?并说明理由.【答案】(1) 甲、乙两种品牌商品销量的中位数分别是;(2)甲品牌商品销量在间的频率;(3)甲品牌商品更受欢迎.【解析】(1)利用茎叶图能求出甲、乙两种品牌商品销量的中位数;(2)甲品牌商品销量在间的数据有共5个,由此能求出甲品牌商品销量在间的频率.(3)求出甲品牌商品的日平均销售量和乙品牌商品的日平均销售量,由此能求出结果.试题解析:(1)甲的数据由小到大为:乙的数据由小到大为:所以甲、乙两种品牌商品销量的中位数分别是.(2) 甲品牌商品销量在间的数据有共5个,所以甲品牌商品销量在间的频率.(3) 解一:甲品牌商品的日平均销售量为:,乙品牌商品的日平均销售量为:,由知甲品牌商品更受欢迎.【考点】中位数、频率的求法;平均数的应用.2.青年歌手电视大赛共有10名选手参加,并请了7名评委,如图所示的茎叶图是7名评委给参加最后决赛的两位选手甲、乙评定的成绩,流程图用来编写程序统计每位选手的成绩(各评委所给有效分数的平均值),试根据所给条件回答下列问题:(1) 根据茎叶图,选手乙的成绩中,众数是多少?选手甲的成绩中,中位数是多少?(2) 在流程图(如图所示)中,用k表示评委人数,用a表示选手的成绩(各评委所给有效分数的平均值).横线①、②处应填什么?(3) 根据流程图,甲、乙的成绩分别是多少?【答案】(1) 84,85;(2) ①,②;(3) 84.2,85.【解析】(1)由众数与中位数概念易得,但要注意茎叶图所含的数据是什么,对于中位数的求法要先把这组数据从大到小或从小到大排列,当数据个数为奇数时,中位数为最中间一个数,当数据个数为偶数个时,中位数为最中间两个数的平均值,(2)由于满足条件要跳出循环结构,k的值是用来控制数据个数,所以①中要填,去掉一个最大数据与一个最小数据再求平均值,所以②中填,(3)由流程图可知a的值即去掉一个最大数据与一个最小数据再求平均值,因此易得甲与乙的成绩.试题解析:(1) 选手乙的成绩为79,84,84,84,86,87,93,众数为84,选手甲的成绩为75,78,84,85,86,88,92,中位数为85;(2) ①;②;(3) ,.【考点】1,众数,中位数的概念;2,茎叶图及程序框图的理解,数据处理能力.3.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:请观察图形,求解下列问题:(1)79.5~89.5这一组的频率、频数分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)和平均分.【答案】(1)0.25,15; (2)0.75, 70.5【解析】(1)利用频率分布直方图中,纵坐标与组距的乘积是相应的频率,频数=频率×组距,可得结论;(2)纵坐标与组距的乘积是相应的频率,再求和,即可得到结论.试题解析:(1)由频率的意义可知,成绩在79.5~89.5这一组的频率为:0.025×10=0.25,频数:60×0.25=15;(2)利用纵坐标与组距的乘积是相应的频率可得及格率为0.015×10+0.025×10+0.03×10+0.005×10=0.75平均分为: 70.5【考点】用样本的频率分布估计总体分布;频率分布直方图.4.样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为()A.B.C.D.2【答案】D【解析】由题意知,解得a=-1,∴样本方差为S2=,故选D.【考点】方差与标准差.5.某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间。
高一数学统计试题
高一数学统计试题1.样本中共有五个个体,其值分别为a,0,1,2,3,若该样本的平均值为1,则样本方差为()A.B.C.D.2【答案】D【解析】由题意知,解得a=-1,∴样本方差为S2=,故选D.【考点】方差与标准差.2.已知x与y之间的几组数据如下表:则y与x的线性回归方程=x+必过点()A.(1,2) B.(2,6) C. D.(3,7)【答案】C【解析】回归直线必过样本中心点,由表格可求得.【考点】回归分析.3.用秦九韶算法计算多项式在时的值时,的值为【答案】-57【解析】由秦九韶算法知,当时,.【考点】算法案例.4.为预防X病毒爆发,某生物技术公司研制出一种X病毒疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个样本分成三组,测试结果如下表:组组组67390已知在全体样本中随机抽取1个,抽到组疫苗有效的概率是0.33.(1)现用分层抽样的方法在全体样本中抽取360个测试结果,应在组抽取样本多少个?(2)已知,,求通过测试的概率.【答案】(1)90(2)【解析】(I)根据分层抽样的定义,按每层中的比例即可计算出组抽取样本的个数;(II)由(I),再结合题设条件,列举出所有可能的组合的个数及没有通过测试的组合的个数,再由概率公式及概率的性质求出通过测试的概率.(I)∵,∴,∵,∴应在组抽取样个数是(个).(II)∵,,,∴(,)的可能性是 (465,35),(466,34),(467,33),(468,32),(469,31),(470,30),若测试没有通过,则,,(,)的可能性是(465,35),(466,34),通过测试的概率是.【考点】1、分层抽样;2.、古典概型;3、估测能力.5.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六组:,,后得到如图的频率分布直方图.(Ⅰ)求图中实数的值;(Ⅱ)若该校高一年级共有学生500人,试估计该校高一年级在考试中成绩不低于60分的人数;(Ⅲ)若从样本中数学成绩在与两个分数段内的学生中随机选取两名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.【答案】(1)0.03(2)425(3)【解析】解:(Ⅰ)由可得 2分(Ⅱ)数学成绩不低于60分的概率为:4分数学成绩不低于60分的人数为人 5分(Ⅲ)数学成绩在的学生人数:人 6分数学成绩在的学生人数:人 7分设数学成绩在的学生为,数学成绩在的学生为 8分两名学生的结果为:,共种 10分其中两名学生的数学成绩之差的绝对值不大于10的情况有,,,,,,共7种, 12分因此,抽取的两名学生的数学成绩之差的绝对值不大于10的概率为 13分【考点】直方图以及古典概型点评:主要是考查了直方图以及古典概型概率的计算,属于基础题。
高中数学:统计与统计案例练习
高中数学:统计与统计案例练习一、选择题1.某校为了解学生平均每周的上网时间(单位:h),从高一年级1 000名学生中随机抽取100 名进行了调查,将所得数据整理后,画出频率分布直方图(如图),其中频率分布直方图从左到右前3个小矩形的面积之比为1 : 3 : 5,据此估计该校高一年级学生中平均每周上网时间少于4 h的学生人数为()领率组距A. 200 C. 400 0.0350.015B. 240D. 48010平均每周上网时间(h)解析:选C 设频率分布直方图中从左到右前3个小矩形的面积分别为A3K5P.由频率分布直方图可知,最后2个小矩形的面积之和为(0.015+0.035)X2 = 0.1.由于频率分布直方图中各个小矩形的面积之和为1,所以P+3P+5P=0.9,即尸=0.1.所以平均每周上网时间少于4h的学生所占比例为尸+3P=0.4,由此估计学生人数为0.4X1 000 =400.2. AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度.AQI共分六级,一级优(0〜50),二级良(51〜100),三级轻度污染(101〜150),四级中度污染(151〜200),五级重度污染(201〜300),六级严重污染(大于300).如图是昆明市2021年4月份随机抽取的10天的AQI茎叶图,利用该样本估计昆明市2021年4月份空气质量优的天数为 ()A. 3B. 4C. 12D. 2142解析:选c 从茎叶图知,10天中有4天空气质量为优,所以空气质量为优的频率为 1 V.Z 22所以估计昆明市2021年4月份空气质量为优的天数为30X5=12,应选C.3.〔成都模拟〕某城市收集并整理了该市2021年1月份至10月份各月最低气温与最高气 温〔单位:C 〕的数据,绘制了下面的折线图.该城市各月的最低气温与最高气温具有较好的线性关系,那么根据折线图,以下结论错误 的是〔〕A.最低气温与最高气温为正相关B. 10月的最高气温不低于5月的最高气温C.月温差〔最高气温减最低气温〕的最大值出现在1月D.最低气温低于0C 的月份有4个解析:选D 在A 中,最低气温与最高气温为正相关,故A 正确;在B 中,10月的最高气温 不低于5月的最高气温,故B 正确;在C 中,月温差〔最高气温减最低气温〕的最大值出现在1月, 故C 正确:在D 中,最低气温低于0℃的月份有3个,故D 错误.应选D.4 .〔承德模拟〕为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取 了容量为100的样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体 中倾向选择生育二胎与倾向选择不生育二胎的人数比例图〔如下图〕,其中阴影局部表示倾向 选择生育二胎的对应比例,那么以下表达中错误的选项是〔〕A.是否倾向选择生育二胎与户籍有关B.是否倾向选择生育二胎与性别无关♦最高气温 ♦最低气温C.倾向选择生育二胎的人员中,男性人数与女性人数相同D.倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数解析:选C 由题图,可得是否倾向选择生育二胎与户籍有关、与性别无关;倾向选择不 生育二胎的人员中,农村户籍人数少于城镇户籍人数;倾向选择生育二胎的人员中,男性人数为 60X60% =36,女性人数为40X60%=24,不相同.应选C.5 .(石家庄模拟)某学校48两个班的兴趣小组在一次对抗赛中的成绩如茎叶图所示,通过 茎叶图比拟两个班兴趣小组成绩的平均值及标准差.3 4 28 8 4 6 8 65152①A 班兴趣小组的平均成绩高于B 班兴趣小组的平均成绩; ②B 班兴趣小组的平均成绩高于A 班兴趣小组的平均成绩; ③A 班兴趣小组成绩的标准差大于B 班兴趣小组成绩的标准差;@B 班兴趣小组成绩的标准差大于A 班兴趣小组成绩的标准差. 其中正确结论的编号为()A.①④C. ®®其方差为白义[(53—78尸+(62—78/ +…+ (95—78)2]=121.6, 那么其标准差为'121.6%11.03;45+48+5H -------- F91B 班兴趣小组的平均成成为'」=66,其方差为表义[(45—66)2+(48 - 66)2 + ... + (91-66)2] =169.2, 那么其标准差为1169.2%13.01.应选A.6 .某商场对某一商品搞活动,该商品每一个的进价为3元,销售价为8元,每天售出的 第20个及之后的半价出售.该商场统计了近10天这种商品的销量,如下图,设M 个)为每天商 品的销量,M 元)为该商场每天箱售这种商品的利润.从日利润不少于96元的几天里任选2天, 那么选出的这2天日利润都是97元的概率为()4 5 5 1 6 2 7 38班8 3 6 4 5 3 4 02B.②③D.①③解析:选A A 班兴趣小组的平均成绩为 53+62+64+…+92+95--------------- ---------------- =785x, x=18, 19, y =<l95+(x-19)(4-3), x=20, 21, J5x, x=18, 19, 即 L176+x, x=20, 21.当日销量不少于20个时,日利泗不少于96元, 当日销量为20个时,日利润为96元, 当日销量为21个时,日利润为97元,日利泗为96元的有3天,记为日利泗为97元的有2天,记为人丛从中任选2天有 (.4),(〃石),(.力),(.1),3/),(48),3«),(c4),(.,8),(48),共 10 种情况.其中选出的这2天日利泗都是97元的有(A,8)1种情况. 故所求概率为关.应选B. 二、填空题7 .某小卖部销售某品牌饮料的零售价与销量间的关系统计如下:单价x/元 3.0 3.2 3.4 3.6 3.8 4.0 销量w 瓶504443403528x,y 的关系符合回归方程£=£+2其中分=-20.假设该品牌饮料的进价为2元,为使利润 最大,零售价应定为 元.解析:依题意得:x =3.5, y =40,A所以.=40—(- 20)X3.5=110,所以回归直线方程为f=-20x+110,利润 L = (A —2)(-20A + 110)= -201+ 150x-220,B 选• •1 - 9 1 - 5 A.C 解BioD.g由题意知频数(天)0 18 19 20 2 俏量〔个〕所以x=* = 3.75元时,利润最大.答案:3.758.某高校调查了200名学生每周的自习时间(单位:小时),制成了如下图的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是.解析:设所求的人数为〃,由频率分布直方图,自习时间不少于22.5小时的频率为(0.04+0.08 +0.16) X 2.5=0.7, n=0.7 X 200=140.答案:1409.为比拟甲乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:C) 制成如下图的茎叶图,甲地该月11时的平均气温比乙地该月11时的平均气温高1 ℃,那么甲地该月11时的平均气温的标准差为.甲9 8 2 62 m 03 I解析:甲地该月11时的气温数据(单位:℃)为28,29,30,30+〃?,32;乙地该月11时的气温数据(单位:℃)为26,28,29,31,31,那么乙地该月11时的平均气温为(26+28+29+31+31计5 = 29(℃),所以甲地该月11时的平均气温为30 ℃,故(28+29+30+30+m + 32)+5 = 30,解得〃?=1,那么甲地该月11时的平均气温的标准差为嗝义[(28 - 30产+(29 - 30)2+(30 - 30/+(31 - 30/+(32 - 30户]=\(2.答案:^2三、解做题10.某篮球运发动的投篮命中率为50%,他想提升自己的投篮水平,制定了一个夏季练习计划,为了了解练习效果,执行练习前他统计了10场比赛的得分,计算出得分的中位数为15,平均得分为15,得分的方差为463执行练习后也统计了10场比赛的得分,茎叶图如下图:0 8 91 2 4 4 5 6 82 1 3(1)请计算该篮球运发动执行练习后统计的10场比赛得分的中位数、平均得分与方差;⑵如果仅从执行练习前后统计的各10场比赛得分数据分析,你认为练习方案对该运发动的投篮水平的提升是否有帮助?为什么?解:(1)练习后得分的中位数为上芋=14.5;平均得分为8+9+12+14+14+15+16+18 + 21+23= 15:10方差为击义[(8—15)2 + (9 — 15>+(12 —15>+(14 — 15)2+(14 — 15> + (15 —15>+(16 — 15产+(18-15)2+(21-15)2+(23 —15)2]=20.6.(2)尽管中位数练习后比练习前稍小,但平均得分一样,练习前方差20.6小于练习前方差46.3, 说明练习后得分稳定性提升了(阐述观点合理即可),这是投篮水平提升的表现.故此练习方案对该篮球运发动的投篮水平的提升有帮助.11.(西安八校联考)在2021年俄罗斯世界杯期间,莫斯科的局部餐厅销售了来自中国的小龙虾,这些小龙虾均标有等级代码.为得到小龙虾等级代码数值x与销售单价y(单位:元)之间的关系,经统计得到如下数据:⑴销售单价),与等级代码数值x之间存在线性相关关系,求),关于x的线性回归方程(系数精确到0.1);(2)假设莫斯科某餐厅销售的中国小龙虾的等级代码数值为98,请估计该等级的中国小龙虾销售单价为多少元?参考公式:对于一组数据(xi1 ),3,光),…其回归直线f=源+2的斜率和截距的最小2Xyi一〃x y八 '। A — A——二乘估计分别为Z? = ----------------- a= y —b x .n _Xxr-n x 26 6参考数据:2>»=8 440, 2e = 25 564.—38+48 + 58 + 68 + 78 + 88解:(1)由题意,得x -■= 63,- 16.8+18.8+20.8 + 22.8 + 24+25.8 _y = 6 =21.5,yA_8 440 - 6X63X21.5〜h = ~~6Z—=25 564—6X63X63「026 A 2A — A 一a= y -bx =21.5-0.2X63 = 8.9.故所求线性回归方程为f=0.2x+8.9.⑵由(1)知,当%=98 时,>=0.2X98+8.9=28.5.・•・估计该等级的中国小龙虾销售单价为28.5元.12.(长沙模拟)某职称晋级评定机构对参加某次专业技术测试的100人的成绩进行了统计, 绘制的频率分布直方图如下图.规定80分以上者晋级成功,否那么晋级失败(总分值为100分).(1)求图中.的值;(2)估计该次测试的平均分不(同一组中的数据用该组的区间中点值代表);(3)根据条件完成下面2X2列联表,并判断能否有85%的把握认为“晋级成功〞与性别有关.P(K?2k)0.40 0.25 0.15 0.1()0.050.025k0.708 1.323 2.072 2.706 3.841 5.024解:(1)由频率分布直方图中各小长方形面积总和为1,得(2.+ 0.020+0.03.+0.040)义10=1,解得〃=0...5.⑵由频率分布直方图知洛小组的中点值依次是55,65,75,85,95, 对应的频率分别为0.05.30,0.40,0.20.05,那么估计该次测试的平均分为 x = 55X0.05 + 65X0.30 + 75X0.40 + 85X0.20 + 95X0.05 = 74(分). ⑶由频率分布直方图知,晋级成功的频率为0.20+0.05=0.25, 故晋级成功的人数为100X0.25 = 25,填写2X2列联表如下:晋级成功 晋级失败合计男 16 34 50 女 9 41 50 合计2575100100X(16X41 ——25X75X50X50^2,613>2.072,所以有85%的把握认为“晋级成功〞与性别有关.1 .为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单 位:小时)如下:248 256 232 243 188 268 278 266 289 312 274296 288 302 295 228 287 217 329 283K 2=n(acl-bc)2(1)完成下面的频率分布表,并作出频率分布直方图;(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.解:(1)频率分布表及频率分布直方图如下所示:0.0100 ——⑵由题意可得8乂(0.30+0.10+0.05) = 3.6,所以估计8万台电风扇中有3.6万台无故障连续使用时限不低于280小时.(3)由频率分布直方图可知x =190X0.05 + 210X0.05 + 230X0.10 + 250X0.15 + 270X0.20 + 290X0.30 + 310X0.10 + 330X0.05 = 269(小时),所以样本的平均无故障连续使用时限为269小时.2 .海水养殖场进行某水产品的新、旧网箱养殖方法的产量比照,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg 〞,估计A 的概率;⑵填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量V50 kg箱产量250 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比拟. 附:P (心2)0.050 0.010 0.001 k3.841 6.635 10.8280.01500.0125频率 仇距0.0075 0.0050 0.0025.厂工丁丁丁丁厂!无故障连续使用时用/小时新养殖法、n(ad-bc)1 _ .K-= . , , ,,其中〃=a+/?+c+d.(a+Z?)(c 十d)(a十c)(Z?+d)解:⑴旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)X5=0.62.因此,事件A的概率估计值为0.62.⑵根据箱产量的频率分布直方图得到联表:K2=---------- -------------------- 15 705100X100 X 96X104由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图说明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.3.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得x =+£即=9.97,5=、*ZG L x )21 /=1 \ / 1O/=1/ 1 16 _ / 16 16 _=、/讳16 X 2比0.212, / L G-8.5)2^ 18.439,Z (x,- x )(L8.5)=—2.78,其中为为抽取的第i个零件的尺寸,i= 1,2, (16)(1)求⑶,i)(i= 12…,16)的相关系数二并答复是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(假设加V0.25,那么可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(刀-35,7 +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①从这一天抽检的结果看,是否需对当天的生产过程进行检查?②在(7 -35,7 +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(H,v)(i = 12…4的相关系数£(X,-7)(57-7)r=I ______/ / ・、/(),008公丫0・09・、/ £ d )2、/ £ 8 - 5 )216 _Z (XL x )(/—8.5)尸1解:(1)由样本数据得8,i)(i= 1,2,…,16)的相关系数为r= --------- /--- 1/16 _ / 16、/ Z (即- X C-8.5)2 -2.78剔除第13个数据,剩下数据的样本方差为aX 〔1 591.134 —9.22?—15X 10.022〕=0.008,A Q 这条生产线当天生产的零件尺寸的标准差的估计值为廊而比0.09.4.〔昆明模拟〕〞工资条里显红利,个税新政入民心〞.随着2021年新年钟声的敲响,我国 自1980年以来,力度最大的一次个人所得税〔简称个税〕改革迎来了全面实施的阶段.某IT 从业 者为了解自己在个税新政下能享受多少税收红利,绘制了他在26〜35岁〔2021〜2021年〕之间各 年的月平均收入〕,〔单位:千元〕的散点图:20・・・・ 16- ・ , 12- ., 8 ■ •4°123456789 io"年龄代码工注:年龄代码1~10分别对应年的26〜35岁⑴由散点图知,可用回归模型y=h\n x+a 拟合〕,与x 的关系,试根据有关数据建立〕,关于x 的回归方程;〔2〕如果该IT 从业者在个税新政下的专项附加扣除为3 000元/月,试利用〔1〕的结果,将月平 均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴纳的个人所得税.1010 10 _10_ _ 10附注:参考数据:= 55,2〕〉= 155.5,N 〔即一x 〕2 =82.5,2 — x〕〔F — y 〕 = 94.9,26= i=li=li=lJ =1io _ io _ _15.1,2 缶- 1〕2=4.84,£〔力一 t 〕〔yi- y 〕 =242其中"=ln 为;取 In 11 =24,In 36=361=1 /=1参考公式:回归方程.=筋+味中斜率和截距的最小二乘估计分别为公= n ______ _X 〔出一〃〕〔.- V 〕 曰 A - A — -------------------------- \a= v —b u .Z 〔3一 〃 〕2月平均收入y千元解:(1)令 f=lnx,那么 y=bf+a10__Z & -,)()L y)24.2, b ~ ~__Z _痴_5ze —)2r=l10Zu-_2__155.5-_2_=而=-^-=15.55, t =苗A — A —a= y —b t = 15.55 —5X 1.51=8,所以〕,关于/的回归方程为〕,=5/+8.1015.1 lo"=L51由于/=lnx,所以y关于x的回归方程为y=51nx+8.⑵由⑴得,该IT从业者36岁时月平均收入为y=51n 11+8 = 5X2.4+8 = 20〔千元〕.旧个税政策下每个月应缴纳的个人所得税为1 500X3%+3 000X10%+4 500X20%+〔20 000-3 500-9 000〕X25% = 3 120〔元〕.新个税政策下每个月应缴纳的个人所得税为3 000X3%+〔20 000-5 OOO-3OOO-3 000〕X 10%=990〔元〕.故根据新旧个税政策,该IT从业者36岁时每个月少缴纳的个人所得税为3 120-990=2 130(70).I— 0 180.212X716X18.439 ',由于lrlV0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)①由于7 =9.97,产0.212,由样本数据可以看出抽取的第13个零件的尺寸在(T—3s,7 + 3s)以外,因此需对当天的生产过程进行检查.②剔除离群值,即第13个数据,剩下数据的平均数为右义(16义9.97—9.22)=10.02,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162X?=16X0.212I2+16X9.972^1 591.134,。
高一数学统计练习题
高一下概率统计练习题一.选择题1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .先从老年人中剔除一人,然后分层抽样2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,4,12.设其平均数为a ,中位数为b ,众数为c ,则有( )A .a>b>cB .b>c>aC .c>a>bD .c>b>a3.下列说法中正确的是 ( )A .数据5,4,4,3,5,2的众数是4B .一组数据的标准差是这组数据的方差的平方C .数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D .频率分布直方图中各小长方形的面积等于相应各组的频数4.下列说法正确的是( )A .根据样本估计总体,其误差与所选择的样本容量无关B .方差和标准差具有相同的单位C .从总体中可以抽取不同的几个样本D .如果容量相同的两个样本的方差满足S 21<S 22,那么推得总体也满足S 21<S 225.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( )A .3.5B .-3C .3D .-0.56如图所示是一批产品中抽样得到数据的频率直方图,由图可看出概率最大时数据所在范围是( )A .(8.1,8.3)B .(8.2,8.4)C .(8.4,8.5)D .(8.5,8.7)7.将编号为1、2、3、4的四个小球任意地放入A 、B 、C 、D 四个小盒中,每个盒中放球的个数不受限制,恰好有一个盒子是空的的概率为( ) ()169A ()41B ()43C ()167D 8从区间()0,1内任取两个数,则这两个数的和小于56的概率是 A 、35 B 、45 C 、1625 D 、2572 9 把一条长10厘米的线段随机地分成三段,这三段能够构成三角形的概率是( )A. ;31B. ;41C. ;103D. .53 10 ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.4π B.14π- C.8π D.18π- 11 在样本的频率分布直方图中,一共有n 个小矩形,若中间某一个小矩形的面积等于其余n -1个小矩形面积和的14,且样本容量为160,则中间这一组的频数是 A.32 B.20 C.40 D.2512一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其两面涂有油漆的概率是A .121 B .101 C .253 D .12512二、填空题:13.连续两次掷一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),记出现向上的点数分别为,m n ,设向量(),m n =a ,()3,3=-b ,则a 与b 的夹角为锐角的概率是 14某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。
高一数学统计试题答案及解析
高一数学统计试题答案及解析1.从测量所得数据中取出个,个,个,个组成一个样本,则这个样本的平均数是()A.B.C.D.【答案】C【解析】利用平均数计算公式平均数=,故选C。
【考点】本题考查了平均数的概念及计算.点评:运用求平均数公式:。
2.一位教师出了一份含有3个问题的测验卷,每个问题1分.班级中30%的学生得了3分,50%的学生得了2分,10%的学生得了1分,另外还有10%的学生得0分,则全班的平均分是_________.【答案】2分【解析】=3×30%+2×50%+1×10%+0=2.【考点】本题考查了平均数的概念及计算、频率分布表的意义、加权平均数的求法.点评:运用求平均数公式:。
3.某校在一次学生身体素质调查中,在甲、乙两班中随机抽10名男生测验100m短跑,测得成绩如下(单位:):【答案】甲班男生短跑水平高些【解析】,.,甲班男生短跑水平高些.【考点】本题考查了平均数的概念及计算.点评:运用求平均数公式:,分别计算比较,平均数高者为优秀,数基本题型。
4.如果五个数的平均数是7,那么这五个数的平均数是()A.5B.6C.7D.8【答案】D【解析】利用平均数计算,或利用结论:样本x1,x2, (x)n的平均数为7,∴样本x1+1,x2+1,…,xn+1的平均数=7+1=8,故选D.【考点】本题主要考查平均数的意义及其计算。
点评:基本题型,注意掌握平均数计算公式。
在此基础上推出一般结论更好。
5.一个工厂在某年里每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组对应数据:判断它们是否有相关关系.【答案】解:两者之间具有相关关系.【解析】本题只给出了样本数据,对于给定的两个变量是否具有相关关要用散点图来分析,散点图中的点若很集中,则具有相关关系并且集中趋势越强则相关性越强,若很分散,则不具相关关系。
散点图为:可看出样本点都集中在一条直线附近,所以两者之间具有相关关系。
人教A版高一数学必修第二册第九章《统计》单元练习题卷含答案解析 (55)
高一数学必修第二册第九章《统计》单元练习题卷8(共22题)一、选择题(共10题)1. 某位教师 2018 年的家庭总收入为 80000 元,各种用途占比统计如下面的折线图.2019 年家庭总收入的各种用途占比统计如下面的条形图,已知 2019 年的就医费用比 2018 年的就医费用增加了 4750 元,则该教师 2019 年的旅行费用为 ( )A . 21250 元B . 28000 元C . 29750 元D . 85000 元2. 总体由编号为 01,02,⋯,19,20 的 20 个个体组成,利用下面的随机数表选取 5 个个体,选取方法是从随机数表第 1 行的第 11 列和第 12 列数字开始由左到右依次选取两个数字,则选出来的第 5 个个体的编号为 ( )4698637162332616804560111410959774246762428114572042533237322707A . 11B . 14C . 16D . 203. 设 x 1,x 2,⋯,x n 为样本数据,令 f (x )=∑(x i −x )2n i=1,则 f (x ) 的最小值点为 ( )A .样本众数B .样本中位数C .样本标准差D .样本平均数4. 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米 1534 石,验得米内夹谷,抽样取米一把,数得 254 粒内夹谷 28 粒,则这批米内夹谷约为 ( ) A . 134 石B . 169 石C . 338 石D . 1365 石5. 如图所示的茎叶图记录了甲、 乙两组各 5 名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则 x 和 y 的值分别为 ( )A .3,5B .5,5C .3,7D .5,76. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是 ( )A .该地农户家庭年收入低于 4.5 万元的农户比率估计为 6%B .该地农户家庭年收入不低于 10.5 万元的农户比率估计为 10%C .估计该地农户家庭年收入的平均值不超过 6.5 万元D .估计该地有一半以上的农户,其家庭年收入介于 4.5 万元至 8.5 万元之间7. 为比较甲、乙两地某月 14 时的气温情况,随机选取该月中的 5 天,这 5 天中 14 时的气温数据(单位:∘C )如下:甲:2628293131乙:2829303132以下结论:①甲地该月 14 时的平均气温低于乙地该月 14 时的平均气温; ②甲地该月 14 时的平均气温高于乙地该月 14 时的平均气温; ③甲地该月 14 时的气温的标准差小于乙地该月 14 时的气温的标准差; ④甲地该月 14 时的气温的标准差大于乙地该月 14 时的气温的标准差. 其中根据数据能得到的统计结论的编号为 ( ) A .①③B .①④C .②③D .②④8. 某项测试成绩满分为 10 分,现随机抽取 30 名学生参加测试,得分情况如图所示,假设得分值的中位数为 m e ,平均数为 x ,众数为 m 0,则 ( )A . m e =m 0=xB . m e =m 0<xC . m e <m 0<xD . m 0<m e <x9. 对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数,众数,极差分别是 ( )125202333124489455577889500114796178A . 46,45,56B . 46,45,53C . 47,45,56D . 45,47,5310. 气象意义上从春季进入夏季的标志为“联系 5 天的日平均温度均不低于 22∘C ”.现有甲、乙、丙三地连续 5 天的日平均温度的记录数据(记录数据都是正整数). ① 甲地:5 个数据的中位数为 24,众数为 22; ② 乙地:5 个数据的中位数为 27,平均数为 24;③ 丙地:5 个数据中有一个数据是 32,平均数为 26,方差为 10.8. 则肯定进入夏季的地区有 ( ) A . 0 个 B . 1 个 C . 2 个 D . 3 个二、填空题(共6题)11. 从甲、乙、丙三个厂家生产的同一种产品中各抽取 8 件产品,对其使用寿命(单位:年)跟踪调查结果如下:甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12.三个厂家在广告中都称该产品的使用寿命是 8 年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲 ,乙 ,丙 .12. 某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比依次为 2:3:5,现用分层抽样方法抽出一个容量为 n 的样本,样本中A 种型号产品有 16 件,那么此样本的容量 n = .13. 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了 5 次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程 y ^=0.67x+54.9.零件数x/个1020304050加工时间y/min62■758189现发现表中有一个数据模糊看不清,请你推断出该数据的值为.14.下图是根据部分城市某年6月份的平均气温(单位:∘C)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5).已知样本中平均气温低于22.5∘C的城市个数为11,则样本中平均气温不低于25.5∘C的城市个数为.15.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=(结果保留3位小数).若要从身高在[120,130),[130,140),[140,150]内的三组学生中,用分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.16.样本容量为10的一组样本数据依次为:3,9,0,4,1,6,6,8,2,7,该组数据的第50百分位数是,第75百分位数是.三、解答题(共6题)17.要做频率分布表,需要对原始数据做哪些工作?18.某学校对男、女学生进行有关“习惯与礼貌”的评分,记录如下:男:54,70,57,46,90,58,63,46,85,73,55,66,38,44,56,75,35,58,94,58女:77,55,69,58,76,70,77,89,51,52,63,63,69,83,83,65,100,74分别求男生、女生得分的四分位数.19.某班40个学生平均分成两组,两组学生某次考试成绩情况如表所示:组别平均数标准差第一组904第二组806求该班学生这次考试成绩的平均数和标准差.20.一个频数分布表(样本容量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)内的频率为0.6,试计算样本在[40,50),[50,60)内的数据个数之和.21.某武警大队共有第一、第二、第三三支中队,人数分别为30,30,40人.为了检测该大队的射击水平,从整个大队用分层随机抽样共抽取了30人进行射击考核,统计得三个中队参加射击比赛的平均环数分别为8.8环,8.5环,8.1环,试估计该武警大队队员的平均射击水平.22.为提倡节能减排,同时减轻居民负担,广州市积极推进“一户一表”工程.非一户一表用户电费采用“合表电价”收费标准:0.65元/度.“一户一表”用户电费采用阶梯电价收取,其11月到次年4月起执行非夏季标准如下:第一档第二档第三档每户每月用电量(单位:度)[0,200](200,400](400,+∞)电价(单位:元/度)0.610.660.91例如:某用户11月用电410度,采用合表电价收费标准,应交电费410×0.65=266.5元,若采用阶梯电价收费标准,应交电费元200×0.61+(400−200)×0.66+(410−400)×0.91=263.1元.为调查阶梯电价是否能取到“减轻居民负担”的效果,随机调查了该市100户的11月用电量,工作人员已经将90户的月用电量填在下面的频率分布表中,最后10户的月用电量(单位:度)为:88,268,370,140,440,420,520,320,230,380.(1) 完成频率分布表,并绘制频率分布直方图;(2) 根据已有信息,试估计全市住户11月的平均用电量(同一组数据用该区间的中点值作代表);(3) 设某用户11月用电量为x度(x∈N),按照合表电价收费标准应交y1元,按照阶梯电价收费标准应交y2元,请用x表示y1和y2,并求当y2≤y1时,x的最大值,同时根据频率分布直方图估计“阶梯电价”能否给不低于75%的用户带来实惠?答案一、选择题(共10题)1. 【答案】C【解析】由题意可知,2018年的就医花费为80000×10%=8000(元),×35=则2019年的就医花费为8000+4750=12750(元),2019年的旅行费用为1275015 29750(元).【知识点】频率分布直方图2. 【答案】D【解析】由随机数法的抽样过程及题意知,选出的5个个体的编号为:16,11,14,10,20,故第5个个体的编号是20.【知识点】简单随机抽样3. 【答案】D【知识点】样本数据的数字特征4. 【答案】B≈169石,故选:B.【解析】由题意,这批米内夹谷约为1534×28254【知识点】简单随机抽样5. 【答案】A【解析】由已知中甲组数据的中位数为65,故乙组数据的中位数也为65,即y=5,则乙组数据的平均数为:66,故x=3.【知识点】茎叶图、样本数据的数字特征6. 【答案】C【解析】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元农户的比率估计值为0.02+0.04=0.06=6%,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.04+0.02×3=0.10=10%,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.10+0.14+0.20×2=0.64=64%>50%,故D正确;该地农户家庭年收入的平均值的估计值为3×0.02+4×0.04+5×0.10+6×0.14+7×0.20+8×0.20+9×0.10+10×0.10+11×0.04+12×0.02+13×0.02+14×0.02=7.68(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C . 故选:C .【知识点】样本数据的数字特征7. 【答案】B【解析】因为 x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,所以 x 甲<x 乙.又 s 甲2=9+1+0+4+45=185,s 乙2=4+1+0+1+45=2,所以 s 甲>s 乙,故由样本估计总体可知结论①④正确. 【知识点】样本数据的数字特征8. 【答案】D【解析】由图知 m 0=5.由中位数的定义知应该是第 15 个数与第 16 个数的平均值,由图知将数据从小到大排,第 15 个数是 5,第 16 个数是 6, 所以 m e =5+62=5.5,x =3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×230≈5.97>5.5,所以 m 0<m e <x .【知识点】样本数据的数字特征、频率分布直方图9. 【答案】A【解析】由概念知中位数是中间两数的平均数,即 45+472=46,众数是 45,极差为 68−12=56.所以选A .【知识点】茎叶图、样本数据的数字特征10. 【答案】C【解析】甲地肯定进入,因为众数为 22,所以 22 至少出现两次,若有一天低于 22∘C ,则中位数不可能为 24;丙地肯定进入,令 x 为其中某天的日平均温度,则 10.8×5−(32−26)2=18>(x −26)2,若 x ≤21,上式显然不成立;乙地不一定进入,如 13,23,27,28,29.【知识点】样本数据的数字特征二、填空题(共6题)11. 【答案】众数;平均数;中位数【解析】甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:该组数据8出现的次数最多;乙:该组数据的平均数x=4+6×3+8+9+12+138=8;丙:该组数据的中位数是7+92=8.【知识点】样本数据的数字特征12. 【答案】80【知识点】分层抽样13. 【答案】68【解析】由表知x=30,设模糊不清的数据为m,则y=15×(62+y+75+81+89)=307+m5,因为y=0.67x+54.9,即307+m5=0.67×30+54.9,解得m=68.【知识点】样本数据的数字特征14. 【答案】9【解析】设样本容量为n,则(0.1+0.12)n=11,解得n=50,故气温不低于25.5∘C的城市个数为50×0.18=9.【知识点】频率分布直方图15. 【答案】0.030;3【解析】因为0.005×10+0.035×10+a×10+0.020×10+0.010×10=1,所以a=0.030.设身高在[120,130),[130,140),[140,150]内的三组学生分别有x,y,z人.则x100=0.030×10,解得x=30.同理,y=20,z=10.故从身高在[140,150]内的学生中选取的人数为1030+20+10×18=3.【知识点】分层抽样、频率分布直方图16. 【答案】5;7【解析】样本容量为10的一组样本数据依次为:3,9,0,4,1,6,6,8,2,7,从小到大排列为:0,1,2,3,4,6,6,7,8,9,因为10×50%=5,所以该组数据的第50百分位数是4+62=5.因为10×75%=7.5,第75百分位数是7.【知识点】样本数据的数字特征三、解答题(共6题)17. 【答案】分组,频数累计,计算频数和频率.【知识点】频率分布直方图18. 【答案】对男生得分由小到大排序为35,38,44,46,46,54,55,56,57,58,58,58,63,66,70,73,75,85,90,94,共20个数据,所以20×25%=5,20×50%=10,20×75%=15,则25%分位数为46+542=50,50%分位数为58+582=58,75%分位数为70+732=71.5.对女生得分由小到大排序为51,52,55,58,63,63,65,69,69,70,74,76,77,77,83,83,89,100,共18个数据.所以18×25%=4.5,18×50%=9,18×75%=13.5,则25%分位数为63,50%分位数为69+702=69.5,75%分位数为77.【知识点】样本数据的数字特征19. 【答案】根据题意,全班平均成绩为x=90×2040+80×2040=85,第一组的平均数为x1=90,方差为s12=16.第二组的平均数为x2=80,方差为s22=36.则该班学生的方差为s2=2040[s12+(x1−x)2]+2040[s22+(x2−x)2]=12[16+(90−85)2]+12[36+(80−85)2]=51.所以s=√51.综上可得,该班学生这次考试成绩的平均数和标准差分别为85和√51.11 【知识点】样本数据的数字特征20. 【答案】根据题意,设分布在 [40,50),[50,60) 内的数据个数分别为 x ,y .因为样本中数据在 [20,60) 内的频率为 0.6,样本容量为 50,所以4+5+x+y 50=0.6,解得 x +y =21.即样本在 [40,50),[50,60) 内的数据个数之和为 21.【知识点】频率与频数21. 【答案】该武警大队共有 30+30+40=100(人),按比例分配所以第一中队参加考核人数为30100×30=9(人),第二中队参加考核人数为 30100×30=9(人), 第三中队参加考核人数为 40100×30=12(人).所参加考核的 30 人的平均射击环数为 930×8.8+930×8.5+1230×8.1=8.43(环).所以估计该武警大队的平均射击水平为 8.43 环.【知识点】分层抽样22. 【答案】(1) 频率分布表如下:频率分布直方图如下:(2) 该 100 户用户 11 月的平均用电量 x =50×0.04+150×0.12+250×0.24+350×0.3+450×0.26+550×0.04=324 度,所以估计全市住户 11 月的平均用电量为 324 度.(3) y 1=0.65x ,y 2={0.61x,0≤x ≤2000.66(x −200)+122=0.66x −10,200<x ≤4000.91(x −400)+254=0.91x −110,x >400. 由 y 2≤y 1 得 {0.61x ≤0.65x,0≤x ≤200或 {200<x ≤400,0.66x −10≤0.65x 或 {0.91x −110≤0.65x,x >400, 解得 x ≤1100.26≈423.1,因 x ∈N ,故 x 的最大值为 423,根据频率分布直方图,x ≤423 时的频率为 0.04+0.12+0.24+0.3+23×0.26=0.7598>0.75,故估计“阶梯电价”能给不低于 75% 的用户带来实惠.【知识点】频率分布直方图、样本数据的数字特征、函数模型的综合应用。
人教A版高一数学必修第二册第九章《统计》单元练习题卷含答案解析 (27)
高一数学必修第二册第九章《统计》单元练习题卷9(共22题)一、选择题(共10题)1.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳2.A,B两名同学在5次数学考试中的成绩统计如图的茎叶图所示,若A,B两人的平均成绩分别是x A,x B,观察茎叶图,下列结论正确的是( )A.x A<x B,A比B成绩稳定B.x A>x B,A比B成绩稳定C.x A<x B,B比A成绩稳定D.x A>x B,B比A成绩稳定3.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分,1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数B.平均数C.方差D.极差4.如图所示的茎叶图记录了甲、乙两名同学在10次英语听力比赛中的成绩(单位:分),已知甲得分的中位数为76分,乙得分的平均数是75分,则下列结论正确的是( )A.x甲=76B.甲数据中x=3,乙数据中y=6 C.甲数据中x=6,乙数据中y=3D.乙同学成绩较为稳定5.如图所示的是一容量为100的样本的频率分布直方图,则由图形中的数据,可知其中位数为( )A.12.5B.13C.13.5D.146.右面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的概率为( )A.25B.710C.45D.9107.为了了解某校高三学生每天的作业量,通过简单随机抽样从该校高三学生中抽取了60名学生,通过调查发现这60名学生每天完成作业平均用时2小时,则可以推测该校高三学生每天完成作业所需时间的平均数( )A.一定为2小时B.高于2小时C.低于2小时D.约为2小时8.某班有48名学生,在一次考试中统计出平均分为70,方差为75,后来发现有2名学生的成绩有误,学生甲实得80分却记为50分,学生乙实得70分却记为100分,更正后平均分和方差分别是( )A.70,25B.70,50C.70,5√2D.65,259.已知100个数据的75%分位数是9.3,则下列说法正确的是( )A.这100个数据中一定有75个数小于或等于9.3B.把这100个数据从小到大排列后,9.3是第75个数据C.把这100个数据从小到大排列后,9.3是第75个数据和第76个数据的平均数D.把这100个数据从小到大排列后,9.3是第75个数据和第74个数据的平均数10.16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断他能否进入决赛,则其他15位同学成绩的下列数据中,能使他得出结论的是( )A.平均数B.极差C.中位数D.众数二、填空题(共6题)11.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装宽带,调查结果如下表所示:宽带动迁户原住户已安装6035未安装4560则该小区已安装宽带的户数估计有户.12.某单位工会组织75名会员观看《光荣与梦想》、《觉醒年代》、《跨过鸭绿江》三部建党百年优秀电视,对这三部剧的观看情况统计如表,则会员中看过《跨过鸭绿江》的共有人,三部电视剧中,看过至少一部的有人.观看情况观看人数只看过《光荣与梦想》12只看过《觉醒年代》11只看过《跨过鸭绿江》8只看过《光荣与梦想》和《觉醒年代》7只看过《光荣与梦想》和《跨过鸭绿江》4只看过《觉醒年代》和《跨过鸭绿江》5同时看过《光荣与梦想》、《觉醒年代》和《跨过鸭绿江》2113.某高中在校学生有2000人,为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动,每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:高一年级高二年级高三年级跑步a b c登山x y z其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的2.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级5参与跑步的学生中应抽取的人数为.14.某单位200名职工的年龄分布情况如图所示,现要从中随机抽取50名职工的年龄作为样本,若采用分层随机抽样的方法,则40∼50岁年龄段应抽取人.15.某学校为调查学生的身高情况,从高二年级的220名男生和180名女生中,根据性别采用按比例分配的分层抽样方法,随机抽取容量为40的样本.样本中男,女生的平均身高分别是178.6cm,164.8cm,该校高二年级学生的平均身高估计为cm.(精确到0.01cm)16.判断下列结论是否正确(请在括号中打“√”或“×”).(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( )(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( )(3)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( )三、解答题(共6题)17.某超市计划按月订购一种酸奶,每天进货量相同,已知每售出一箱酸奶的利润为50元,当天未售出的酸奶降价处理,以每箱亏损10元的价格全部处理完.若供不应求,可从其它商店调拨,每销售1箱可获利30元.假设该超市每天的进货量为14箱,超市的日利润为y元.为确定以后的订购计划,统计了最近50天销售该酸奶的市场日需求量,其频率分布表如图所示.(1) 求a,b,m,n,P的值;(2) 求y关于日需求量x(10≤x≤20)的函数表达式;(3) 以50天记录的酸奶需求量的频率作为酸奶需求量发生的概率,估计日利润在区间[580,760)内的概率.18.为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调査,将所得数据整理绘制出如图所示的频率分布直方图,根据直方图所提供的信息:(1) 求该班学生周末的学习时间不少于20小时的人数.(2) 估计这40名同学周末学习时间的25%分位数.(3) 如果用该班学生周末的学习时间作为样本去推断该校高一年级全体学生周末的学习时间,这样推断是否合理?说明理由.19.某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表:周跑量(km/周)[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)[45,50)[50,55)人数100120130180220150603010(1) 补全该市1000名跑步爱好者周跑量的频率分布直方图;注:请先用铅笔画,确定后再用黑色水笔描黑.(2) 根据以上图表数据计算得样本的平均数为28.5km,试求样本的中位数(保留一位小数),并用平均数、中位数等数字特征估计该市跑步爱好者周跑量的分布特点.(3) 根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如表:周跑量小于20公里20公里到40公里不小于40公里类别休闲跑者核心跑者精英跑者装备价格(单位:元)250040004500根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?20.为保障食品安全,某地食品监管部门对辖区内甲、乙两家食品企业进行检查,分别从这两家企业生产的某种同类产品中随机抽取了100件作为样本,并以样本的一项关键质盘指标值为检测依据.已知该质量指标值对应的产品等级如下:质量指标值[15,20)[20,25)[25,30)[30,35)[35,40)[40,45]等级次品二等品一等品二等品三等品次品根据质量指标值的分组,统计得到了甲企业的样本频率分布直方图和乙企业的样本频数分布表(图表如图,其中a>0).质量指标值频数[15,20)2[20,25)18[25,30)48[30,35)14[35,40)16[40,45]2合计100(1) 现从甲企业生产的产品中任取一件,试估计该件产品为次品的概率.(2) 根据图表数据,请自定标准,对甲、乙两企业食品质量的优劣情况进行比较.21.一个频数分布表(样本容量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)内的频率为0.6,试计算样本在[40,50),[50,60)内的数据个数之和.22.某生产企业对其所生产的甲、乙两种产品进行质量检测,分别抽取6件产品检测其质量的误差,测得数据如下(单位:mg):甲:13,15,13,8,14,21;乙:15,13,9,8,16,23.(1) 画出样本数据的茎叶图;(2) 分别计算甲、乙两组数据的方差,并分析甲、乙两种产品的质量(精确到0.1).答案一、选择题(共10题)1. 【答案】A【解析】对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确.【知识点】频率分布直方图2. 【答案】C【解析】由茎叶图知,可知道甲的成绩为96,91,92,103,128,平均成绩为102;乙的成绩为99,108,107,114,112,平均成绩为106;从茎叶图上可以看出B的数据比A的数据集中,B比A成绩稳定,故选:C.【知识点】样本数据的数字特征、茎叶图3. 【答案】A【解析】根据题意,从9个原始评分中去掉1个最高分,1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变.【知识点】样本数据的数字特征4. 【答案】C【解析】因为甲得分的中位数为76分,所以x=6,=75,故A,B错误;所以x甲因为乙得分的平均数是75分,=75,解得y=3,故C正确;由茎叶图中甲、乙成绩的所以56+68+68+70+72+(70+y)+80+86+88+8910分布可知D错误.【知识点】样本数据的数字特征、茎叶图5. 【答案】B【解析】中位数是把频率分布直方图分成两个面积相等部分的平行于纵轴的直线的横坐标,第一个矩形的面积是0.2,第二个矩形的面积是0.5,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可,所以中位数是13.【知识点】频率分布直方图6. 【答案】C【解析】由已知中的茎叶图可得甲的5次综合测评中的成绩分别为88,89,90,91,92,则甲的平均成绩甲=88+89+90+91+925=90设污损数字为X,则乙的5次综合测评中的成绩分别为83,83,87,99,90+X则乙的平均成绩乙=83+83+87+99+90+X5=88.4+X5当X=8或9时,甲≤乙即甲的平均成绩不超过乙的平均成绩的概率为210=15则甲的平均成绩超过乙的平均成绩的概率P=1−15=45.【知识点】样本数据的数字特征、茎叶图7. 【答案】D【知识点】简单随机抽样8. 【答案】B【解析】学生甲少记30分,学生乙多记30分,则总分不变,由此可知平均分不发生变化.设其余46名学生的成绩分别为x1,x2,⋯,x46,则原方差s2=148[(x1−70)2+(x2−70)2+⋯+(x46−70)2+(50−70)2+(100−70)2]=75,更正后方差sʹ2=148[(x1−70)2+(x2−70)2+⋯+(x46−70)2+(80−70)2+(70−70)2]=s2−148×[(50−70)2+(100−70)2]+148×[(80−70)2+(70−70)2]=50.【知识点】样本数据的数字特征9. 【答案】C【解析】因为100×75%=75为整数,所以第75个数据和第76个数据的平均数为75%分位数,是9.3.【知识点】样本数据的数字特征10. 【答案】C【解析】判断是不是能进入决赛,只要判断是不是前8名,所以只要知道其他15位同学的成绩中是不是有8个高于他,也就是把其他15位同学的成绩排列后看第8个的成绩即可,小刘的成绩高于这个成绩就能进入决赛,低于这个成绩就不能进入决赛,这个第8名的成绩就是这15位同学成绩的中位数.【知识点】样本数据的数字特征二、填空题(共6题)11. 【答案】9500【知识点】用样本估计总体12. 【答案】38;68【解析】根据题意,将数据利用韦恩图表示,如图所示:由图可知看过《跨过鸭绿江》的共有21+4+5+8=38人;三部电视剧中,看过至少一部的有12+7+21+4+8+5+11=68人.【知识点】频率分布直方图13. 【答案】36【解析】根据题意,可知样本中参与跑步的人数为200×35=120.所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.【知识点】分层抽样14. 【答案】15【解析】50×30%=15(人).【知识点】分层抽样15. 【答案】172.39【解析】高二年级男女比例为220180=119,所以平均身高为: 178.6×1120+164.8×920=98.23+74.16=172.39.故该校高二学生平均身高为172.39cm.【知识点】样本数据的数字特征16. 【答案】 × ; × ; √【知识点】样本数据的数字特征、简单随机抽样、频率分布直方图三、解答题(共6题)17. 【答案】(1) a =50×0.16=8,b =1250=0.24,m =50×0.3=15,n =50−8−12−15−5=10,P =1050=0.2;(2) 超市的日利润 y 关于日需求量 x 的函数表达式为y ={50×14+30×(x −14),14≤x ≤20,50x −10×(14−x ),10≤x <14,即 y ={30x +280,14≤x ≤2060x −140,10≤x <14.(3) 由(2)知:当 10≤x <14 时,y =60x −140,令 580≤y <760,解得 12≤x <14.当 14≤x ≤20 时,y =30x +280,令 580≤y <760,解得 14≤x <16;所以 y ∈[580,760) 时,x ∈[12,16),故所求概率为 0.24+0.30=0.54.【知识点】函数模型的综合应用、频率分布直方图、建立函数表达式模型18. 【答案】(1) 由图可知,该班学生周末的学习时间不少于 20 小时的频率为 (0.03+0.015)×5=0.225, 则 40 名学生中周末的学习时间不少于 20 小时的人数为 40×0.225=9.(2) 学习时间在 5 小时以下的频率为 0.02×5=0.1<0.25,学习时间在 10 小时以下的频率为 0.1+0.04×5=0.3>0.25,所以 25% 分位数在 (5,10),5+5×0.25−0.10.2=8.75,则这 40 名同学周末学习时间的 25% 分位数为 8.75.(3) 不合理,样本的选取只选在高一某班,不具有代表性.【知识点】频率分布直方图、样本数据的数字特征19. 【答案】(1) 补全该市 1000 名跑步爱好者周跑量的频率分布直方图,如下:(2) 中位数的估计值:由 5×0.02+5×0.024+5×0.026=0.35<0.5,0.35+5×0.036=0.53>0.5,所以中位数位于区间 [25,30) 中,设中位数为 x ,则 0.35+(x −25)×0.036=0.5,解得 x ≈29.2,因为 28.5<29.2,所以估计该市跑步爱好者多数人的周跑量多于样本的平均数.(3) 依题意可知,休闲跑者共有 (5×0.02+5×0.024)×1000=220 人,核心跑者 (5×0.026+5×0.036+5×0.044+5×0.030)×1000=680 人,精英跑者 1000−220−680=100 人,所以该市每位跑步爱好者购买装备,平均需要 220×2500+680×4000+100×45001000=3720 元.【知识点】样本数据的数字特征、频率分布直方图20. 【答案】(1) 由题意知 (a +0.020+0.022+0.028+0.042+0.080)×5=1,解得 a =0.008,所以甲企业的样本中次品的频率为 (a +0.020)×5=0.14,故从甲企业生产的产品中任取一件,该件产品是次品的概率约为 0.14.(2) 答案不唯一,只要言之有理便可(下面给出几种参考答案).①以产品的合格率(非次品的占有率)为标准,对甲、乙两家企业的食品质量进行比较.由图表可知:甲企业产品的合格率约为 0.86,乙企业产品的合格率约为 0.96,即乙企业产品的合格率高于甲企业产品的合格率,所以可以认为乙企业的食品生产质量更高.②以产品次品率为标准,对甲、乙两家企业的食品质量进行比较(略).③以产品中一等品的概率为标准,对甲、乙两家企业的食品质量进行比较.根据图表可知,甲企业产品中一等品的概率约为 0.4;乙企业产品中一等品的概率约为 0.48,即乙企业产品中一等品的概率高于甲企业产品中一等品的概率,所以乙企业的食品生产质量更高.【知识点】频率分布直方图21. 【答案】根据题意,设分布在 [40,50),[50,60) 内的数据个数分别为 x ,y .因为样本中数据在 [20,60) 内的频率为 0.6,样本容量为 50,所以4+5+x+y 50=0.6,解得 x +y =21.即样本在 [40,50),[50,60) 内的数据个数之和为 21.【知识点】频率与频数22. 【答案】(1) 如图所示.(2) 甲的平均数是8+13+13+14+15+216=14, 乙的平均数是 8+9+13+15+16+236=14; 甲的方差是 s 甲2=16×[(−6)2+(−1)2+(−1)2+02+12+72]≈14.7,乙的方差是 s 乙2=16×[(−6)2+(−5)2+(−1)2+12+22+92]≈24.7. 所以甲产品质量好,较稳定.【知识点】样本数据的数字特征。
人教A版高一数学必修第二册第九章《统计》单元练习题卷含答案解析 (43)
高一数学必修第二册第九章《统计》单元练习题卷3(共22题)一、选择题(共10题)1.为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度(单位长度:cm),其茎叶图如图所示,则下列描述正确的是( )A.甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐B.甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐C.乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐D.乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A.抽签法B.系统抽样法C.分层抽样法D.随机数法3.甲、乙两组数据如茎叶图所示,则甲组的中位数与乙组的平均数分别为( )A.32,32B.34,32C.33,34D.33,324.下面定义一个同学数学成绩优秀的标志为“连续5次考试成绩均不低于120分”.现有甲、乙、丙三位同学连续5次数学考试成绩的记录数据(记录数据都是正整数):①甲同学:5个数据的中位数为127,众数为120;②乙同学:5个数据的中位数为125,总体均值为127;③丙同学:5个数据的中位数为135,总体均值为128,总体方差为19.8.则可以判定数学成绩优秀的同学为( )A.甲、丙B.乙、丙C.甲、乙D.甲、乙、丙5.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000)内的频率为( )A.0.001B.0.1C.0.2D.0.36.某校有1000名学生参加扶贫知识政策答题比赛,分初赛和复赛两个阶段进行,规定:初赛成绩小于等于90分的会被淘汰.已知所有学生的初赛成绩均在区间(30,150]内,其频率分布直方图如图所示,则会被淘汰的人数为( )A.480B.450C.350D.3007.已知x1,x2,⋯,x n的平均数为10,方差为4,则2x1−1,2x2−1,⋯,2x n−1的平均数和方差分别为( )A.18和4B.19和16C.19和9D.20和88.某校通过问卷调查了解500名学生周末参加体育锻炼的时间,频率分布直方图如图所示,数据的分组依次为:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90],则在调查的学生中周末参加体育锻炼的时间不少于60分钟的人数是( )A.125B.175C.200D.3009. 某校高三年级有男生 500 人,女生 400 人,为了解该年级学生的体重状况,从男生中随机抽取 25 人,从女生中随机抽取 20 人进行调查.这种抽样方法是 ( ) A .分层随机抽样B .抽签法C .随机数法D .其他随机抽样10. 某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是 ( )(注:结余 = 收入 − 支出)A .收入最高值与收入最低值的比是 3:1B .结余最高的月份是 7 月C . 1 至 2 月份的收入的变化率与 4 至 5 月份的收入的变化率相同D .前 6 个月的平均收入为 40 万元二、填空题(共6题)11. 某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A ,B ,C ,D 四个单位回收的问卷数依次成等差数列,且共回收 1000 份.因报道需要,再从回收的问卷中按单位分层抽取容量为 150 的样本,若在B 单位抽取 30 份,则在D 单位抽取的问卷是 份.12. 若样本数据 x 1,x 2,⋯,x 10 的标准差为 8,则数据 2x 1−1,2x 2−1,⋯,2x 10−1 的标准差为 .13. 某台机床加工的 1000 只产品中次品数的频率分布如表,则次品数的众数为 .次品数01235频率0.50.20.050.20.514.思考辨析 判断正误中位数是一组数据中间的数.15.下面是甲、乙两种化学纤维中分别抽测得到纤度的十个数据:甲:1.36,1.35,1.40,1.39,1.38,1.36,1.42,1.43,1.42,1.42;乙:1.34,1.37,1.41,1.52,1.49,1.19,1.45,1.44,1.12,1.20.则种化学纤维质量较稳定.16.已知1,2,a,b的中位数为3,平均数为3.5,则a×b=.三、解答题(共6题)17.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如图所示的频数分布直方图:(1) 估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(2) 根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?18.某工厂36名工人的年龄数据如表:工人编号年龄工人编号年龄工人编号年龄工人编号年龄014010361927283402441131204329390340123821413043044113392237313805331443232432420640154524423353074516392537343708421738264435490943183627423639利用随机抽样法抽取容量为 9 的样本,其年龄数据为 44,40,36,43,36,37,44,43,37. (1) 计算样本的平均数 x 和方差 s 2;(2) 36 名工人中年龄在 x −s 与 x +s 之间有多少人?所占的百分比是多少?(精确到0.01%)19. 某公司为了解用户对其产品的满意度,从A 、B 两地区分别随机调查了 40 个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表如下:B 地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数2814106(1) 作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2) 根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的可能性大,说明理由.20. 某校 500 名学生中,有 200 人的血型为 O 型,有 125 人的血型为 A 型,有 125人的血型为B型,有50人的血型为AB型.为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?21.某家庭记录了使用节水龙头100天的日用水量数据,得到频数分布表如下:日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)频数21026203210(1) 作出使用了节水龙头100天的日用水量数据的频率分布直方图.(2) 估计该家庭使用节水龙头后,日用水量小于0.4m3的概率.(3) 求该家庭使用节水龙头的日用水量的中位数的估计值(结果精确到0.01).22.现有一批编号为10,11,⋅⋅⋅,99,100,⋅⋅⋅,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?答案一、选择题(共10题) 1. 【答案】D【解析】由茎叶图中的数据,我们可得甲、乙两种树苗抽取的样本高度分别为: 甲:19,20,21,23,25,29,31,32,33,37; 乙:10,10,14,26,27,30,44,46,46,47. 由已知易得: 甲=19+20+21+23+25+29+31+32+33+3710=27, 乙=10+10+14+26+27+30+44+46+46+4710=30,s 甲2<s 乙2,故:乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐. 【知识点】样本数据的数字特征、茎叶图2. 【答案】C【解析】按照各种抽样方法的适用范围可知,应使用分层抽样. 【知识点】分层抽样3. 【答案】D【解析】由茎叶图可知: 甲的中位数为32+342=33,乙的平均数为 x =14(24+32+34+38)=32. 【知识点】样本数据的数字特征、茎叶图4. 【答案】A【解析】利用排除法,由中位数、众数的定义判断甲同学数学成绩优秀,排除B ; 利用特殊值判断乙同学数学成绩不一定优秀,排除C ,D . 具体解法如下:对于①,因为中位数为 127, 所以后三次成绩不低于 127 分. 又因为众数为 120,所以前两次成绩都必为 120 分,所以 5 次成绩都不低于 120 分,甲同学数学成绩优秀,排除B ;对于②,当 5 个数据为 110,125,125,131,144 时,中位数为 125,总体均值为 127,即乙同学数学成绩不一定优秀,排除C ,D ,故选A . 【知识点】样本数据的数字特征5. 【答案】D【知识点】频率分布直方图6. 【答案】C【知识点】频率分布直方图7. 【答案】B【知识点】样本数据的数字特征8. 【答案】C【解析】根据频率分布直方图知,设调查的学生中周末参加体育锻炼的时间在[30,40)内的频率为x,则0.15+0.15+x=1−x−0.2−0.3,解得x=0.1,所以不少于60分钟的频率为:0.15+0.15+0.1=0.4,对应的人数是500×0.4=200(人).【知识点】频率分布直方图9. 【答案】A【知识点】分层抽样10. 【答案】D【知识点】频率分布直方图二、填空题(共6题)11. 【答案】60【知识点】分层抽样12. 【答案】16【解析】若x1,x2,⋯,x n的标准差为s,则ax1+b,ax2+b,⋯,ax n+b的标准差为as.由题意s=8,则上述标准差为2×8=16.【知识点】样本数据的数字特征13. 【答案】0和5【解析】由某台机床加工的1000只产品中次品数的频率分布表得:次品数为0和次品数为5的频率最大,所以次品数的众数为0和5.【知识点】样本数据的数字特征14. 【答案】 ×【知识点】样本数据的数字特征15. 【答案】甲【知识点】样本数据的数字特征16. 【答案】 28【知识点】样本数据的数字特征三、解答题(共6题) 17. 【答案】(1) 质量指标值的样本平均数为 x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为 s 2=(−20)2×0.06+(−10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为 100,方差的估计值为 104. (2) 质量指标值不低于 95 的产品所占比例的估计值为 0.38+0.22+0.08=0.68.由于该估计值小于 0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于 95 的产品至少要占全部产品 80%”的规定.【知识点】频率分布直方图、样本数据的数字特征18. 【答案】(1) 由平均数公式知 x =44+40+⋯+379=40,由方差公式知,s 2=19[(44−40)2+(40−40)2+⋯+(37−40)2]=1009.(2) 因为 s 2=1009,s =103,所以 36 名工人中年龄在 x −s 和 x +s 之间的人数等于年龄在区间 [37,43] 上的人数, 即 40,40,41,⋯,39,共 23 人.所以 36 名工人中年龄在 x −s 和 x +s 之间的人数所占的百分比为 2336×100%≈63.89%. 【知识点】样本数据的数字特征19. 【答案】(1) B 地区用户满意度评分的频率分布直方图如图:通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值;B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散. (2) A 地区用户的满意度等级为不满意的可能性大.由直方图得A 地区用户的满意度等级为不满意的频率的估计值为 (0.01+0.02+0.03)×10=0.6,B地区用户的满意度等级为不满意的频率的估计值为(0.005+0.02)×10=0.25,所以A地区用户的满意度等级为不满意的可能性大.【知识点】样本数据的数字特征、频率分布直方图20. 【答案】用分层抽样抽取样本.因为20500=125,即抽样比为125,所以200×125=8,125×125=5,50×125=2.故O型血抽取8人,A型血抽取5人,B型血抽取5人,AB型血抽取2人.抽样步骤:(1)确定抽样比125.(2)按比例分配各层所要抽取的个体数,O型血抽取8人,A型血抽取5人,B型血抽取5人,AB型血抽取2人.(3)用简单随机抽样分别在各种血型的人数中抽取样本,直至抽取出容量为20的样本.【知识点】分层抽样21. 【答案】(1) 由频数分布表作出使用了节水龙头100天的日用水量数据的频率分布直方图如下:(2) 估计该家庭使用节水龙头后,日用水量小于0.4m3的概率为:P=2+10+26100=38.(3) 由频率分布直方图得:[0,0.3)的频率为(0.2+1+2.6)×0.1=0.37,[0.3,0.4)的频率为2×0.1=0.2,所以该家庭使用节水龙头的日用水量的中位数的估计值(结果精确到0.01)为:0.3+0.5−0.370.2×0.1=0.365≈0.37.【知识点】频率分布直方图、样本数据的数字特征22. 【答案】第一步,将元件的编号调整为010,011,012,⋅⋅⋅,099,100,⋅⋅⋅,600.第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010∼600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.【知识点】简单随机抽样。
人教A版高一数学必修第二册第九章《统计》单元练习题卷含答案解析 (44)
高一数学必修第二册第九章《统计》单元练习题卷4(共22题)一、选择题(共10题)1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法B.随机数法C.系统抽样法D.分层抽样法2.根据如图给出的2000年至2016年我国实际利用外资情况,以下结论正确的是实际利用外资规模实际利用外资同比增速( )A.2000年以来我国实际利用外资规模与年份负相关B.2010年以来我国实际利用外资规模逐年增加C.2008年我国实际利用外资同比增速最大D.2010年我国实际利用外资同比增速最大3.某学校组织部分学生参加体能测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是18人,则参加体能测试的学生人数是( )A.45B.48C.50D.604.下列调查方式中,可用普查的是( )A.调查某品牌电视机的市场占有率B.调查某电视连续剧在全国的收视率C.调查某校七年级一班的男女同学的比例D.调查某型号炮弹的射程5.某县共有小学生4400名,初中生3600名,高中生2000名,为了解该县学生的视力情况,计划按学段采用分层抽样法,抽取一个容量为100的样本,则应在这三个学段抽取学生的人数分别为( )A.34,55,11B.56,34,10C.55,30,10D.44,36,206.从某中学抽取100名学生进行周课余锻炼时长(单位:min)的调查,发现他们的锻炼时长都在50∼350min之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,则直方图中x的值为( )A.0.0040B.0.0044C.0.0048D.0.00527.为全面地了解学生对任课教师教学的满意程度,特在某班开展教学调查.采用简单随机抽样的办法,从该班抽取20名学生,根据他们对语文、数学教师教学的满意度评分(百分制),绘制茎叶图如图.设该班学生对语文、数学教师教学的满意度评分的中位数分别为a,b,则( )A.a<b B.a>b C.a=b D.无法确定8.已知一组数据1,2,3,4,5,那么这组数据的方差为( )A.√2B.2C.√3D.39.某学校为了了解高一年级、高二年级、高三年级这三个年级的学生对学校有关课外活动内容与时间安排的意见,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A.抽签法B.随机数法C.分层抽样法D.不能确定10.甲、乙、丙三名学生在一项集训中的40次测试分数都在[50,100]内,将他们的测试分数分别绘制成频率分布直方图,如图所示,记甲、乙、丙的分数标准差分别为s1,s2,s3,则它们的大小关系为( )A.s1>s2>s3B.s1>s3>s2C.s3>s1>s2D.s3>s2>s1二、填空题(共6题)11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是.12.已知样本x1,x2,⋯,x2019的平均数和方差分别是1和4,若y i=ax i+b(i=1,2,⋯,2019)的平均数和方差也是1和4,则a b=.13.从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布表如下:分组[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)则这堆苹果中质量频数1231031不小于120克的苹果数约占苹果总数的%.14. 一个单位共有职工 200 人,其中不超过 45 岁的有 120 人,超过 45 岁的有 80 人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为 25 的样本,应抽取超过 45 岁的职工 人.15. 常用的百分位数(1)四分位数: , , .(2)其它常用的百分位数:第 1 百分位数, ,第 95 百分位数, .16. 思考辨析,判断正误.在分层随机抽样时,每层可以不等可能抽样.( )三、解答题(共6题)17. 为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了 6 次测试,测得他们的最大速度(单位:m/s )的数据如下:甲273830373531乙332938342836(1) 根据这两组数据你能获得哪些信息;(2) 估计甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.18. 试构造由 10 个正数组成的一组数据,使该组数据的平均数比中位数大 10.19. 某校从高二年级学生中随机抽取 60 名学生,将期中考试的政治成绩(均为整数)分成六段:[40,50),[50,60),[60,70),⋯,[90,100] 后得到如下频率分布直方图.(1) 根据频率分布直方图,分别求 a ,众数,中位数; (2) 估计该校高二年级学生期中考试政治成绩的平均数;(3) 用分层抽样的方法在各分数段的学生中抽取一个容量为 20 的样本,则在 [70,90) 分数段抽取的人数是多少?20. 某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):甲群 13,13,14,15,15,15,15,16,17,17;乙群54,3,4,4,5,5,6,6,6,57.(1) 甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映甲群市民的年龄特征?(2) 乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映乙群市民的年龄特征?21.为了创建“和谐平安”校园,某校决定在开学前将学校的电灯电路使用情况进行检查,以便排除安全隐患,该校应该怎样进行调查?22.共享单车入驻某市一周年以来,因其“绿色出行,低碳环保”的理念而备受人们的喜爱,值此周年之际,某机构为了了解共享单车使用者的年龄段、使用频率、满意度等三个方面的信息,在全市范围内发放5000份调查问卷,回收到有效问卷3125份,现从中随机抽取80份,分别对使用者的年龄段、26∼35岁使用者的使用频率、26∼35岁使用者的满意度进行汇总,得到如下三个表格:表(一)使用者年龄段25岁以下26岁∼35岁36岁∼45岁45岁以上人数20401010表(二)使用频率0∼6次/月7∼14次/月15∼22次/月23∼31次/月人数510205表(三)满意度非常满意(9∼10)满意(8∼9)一般(7∼8)不满意(6∼7)人数1510105(1) 依据上述表格完成下列三个统计图:(2) 某城区现有常住人口30万,请用样本估计总体的思想,试估计年龄在26岁∼35岁之间,每月使用共享单车在7∼14次的人数.答案一、选择题(共10题)1. 【答案】D【解析】总体(1000名学生)中的个体(男、女学生)有明显差异,应采用分层抽样法.【知识点】分层抽样2. 【答案】C【解析】从图表中可以看出,2000年以来我国实际利用外资规模基本上是逐年上升的,因此实际利用外资规模与年份正相关,选项A错误;我国实际利用外资规模2012年比2011年少,所以选项B错误;从图表中的折线可以看出,2008年实际利用外资同比增速最大,所以选项C正确;2008年实际利用外资同比增速最大,所以选项D错误;故选:C.【知识点】频率分布直方图3. 【答案】D【解析】低于60分的人数是18人,由频率分布直方图得低于60分的频率为:(0.005+0.010)×20=5.3.所以参加体能测试的学生人数n=180.5=60.故选:D.【知识点】频率分布直方图4. 【答案】C【解析】选项A,调查市场占有率,要求时效性,而普查时间较长,不适合普查;选项B,调查对象较多,在人力、物力、财力上很难实现,且结果要保证时效性,不适合普查;选项C,调查对象较少,且容易实现,适合普查;选项D,调查过程具有破坏性,不适合普查.【知识点】简单随机抽样5. 【答案】D【解析】由题意得,应在这三个学段抽取学生的人数分别为440010000×100=44,360010000×100=36,200010000×100=20.【知识点】分层抽样6. 【答案】B【解析】依题意及频率分布直方图知,0.0024×50+0.0036×50+0.0060×50+x×50+0.0024×50+0.0012×50=1,解得 x =0.0044. 【知识点】频率分布直方图7. 【答案】A【解析】由茎叶图得 a =75+762=75.5,b =75+772=76,所以 a <b .【知识点】样本数据的数字特征8. 【答案】B【解析】由题可得 x =1+2+3+4+55=3;所以这组数据的方差 s 2=15[(1−3)2+(2−3)2+(3−3)2+(4−3)2+(5−3)2]=2. 【知识点】样本数据的数字特征9. 【答案】C【解析】由于研究对象是三个年级学生的意见,故应按分层抽样法来抽取,故选C . 【知识点】分层抽样10. 【答案】B【解析】比较三个频率分布直方图知,甲为“双峰”直方图,两端数据最多,最分散,方差最大; 乙为“单峰”直方图,数据最集中,方差最小;丙为“单峰”直方图,但数据分布相对均匀,方差介于甲、乙之间. 综上可知 s 1>s 3>s 2.【知识点】样本数据的数字特征、频率分布直方图二、填空题(共6题) 11. 【答案】6【知识点】分层抽样12. 【答案】 1【解析】因为 x 1,x 2,⋯,x 2019 的平均数为 1,所以 y i =ax i +b (i =1,2,⋯,2019) 的平均数为 a ×1+b =1. 因为 x 1,x 2,⋯,x 2019 的方差为 4,所以 y i =ax i +b (i =1,2,⋯,2019) 的方差为 4a 2=4, 所以 {a 2=1,a +b =1,解得 {a =1,b =0 或 {a =−1,b =2.所以 a b =1.【知识点】样本数据的数字特征13. 【答案】70【解析】由表中可知这堆苹果中,质量不小于 120 克的苹果数为 20−1−2−3=14,故约占苹果总数的 1420=0.70,即 70%. 【知识点】频率分布直方图14. 【答案】 10【解析】因为超过 45 岁的职工为 80 人,占比例为 80200=25, 所以抽取的 25 人中超过 45 岁的职工为 25×25=10 人.【知识点】分层抽样15. 【答案】第 25 百分位数;第 50 百分位数;第 75 百分位数;第 5 百分位数;第 99 百分位数【知识点】样本数据的数字特征16. 【答案】 ×【知识点】分层抽样三、解答题(共6题) 17. 【答案】(1) 可以看出,甲、乙两人的最大速度都是均匀分布的,只是甲的最大速度的中位数是 33,乙的最大速度的中位数是 33.5,因此从中位数看乙的情况比甲好. (2) x 甲=16(27+38+30+37+35+31)=33,x 乙=16(33+29+38+34+28+36)=33, 所以他们的最大速度的平均数相同,再看方差 s 甲2=16[(−6)2+⋯+(−2)2]=473,s 乙2=16(02+⋯+32)=383,则 s 甲2>s 乙2,故乙的最大速度比甲稳定,所以派乙参加比赛更合适. 【知识点】样本数据的数字特征18. 【答案】不妨设平均数为 0,则中位数为 −10,为方便可取从小到大排列的 10 个数据的第 5个数和第 6 个数都是 −10.于是可构造 10 个数据如下(它们的和为 0):−14,−13,−12,−11,−10,−10,11,12,13,34.现将上面的每个数都加15,就得满足条件的10个正数:1,2,3,4,5,5,26,27,28,49.(结果不唯一)【知识点】样本数据的数字特征19. 【答案】(1) 由题意可得,(0.01+0.015×2+a+0.025+0.005)×10=1,解得a=0.03.根据频率分布直方图可知[70,80)分数段的频率最高,因此众数为75.又由频率分布直方图可知[40,70)分数段的频率为0.1+0.15+0.15=0.4,因为[70,80)分数段的频率为0.3,所以,中位数为70+13×10=2203.(2) 估计该校高二年级学生政治成绩的平均数为(45×0.01+55×0.015+65×0.015+ 75×0.03+85×0.025+95×0.005)×10=71.(3) 因为总体共60名学生,样本容量为20,因此抽样比为2060=13,又在[70,90)分数段共有60×(0.3+0.25)=33(人),因此,在[70,90)分数段抽取的人数是33×13=11.【知识点】样本数据的数字特征、频率分布直方图、分层抽样20. 【答案】(1) 甲群市民年龄的平均数为13+13+14+15+15+15+15+16+17+1710=15(岁),中位数为15岁,众数为15岁.平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.(2) 乙群市民年龄的平均数为54+3+4+4+5+5+6+6+6+5710=15(岁),中位数为5.5岁,众数为6岁.由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.【知识点】样本数据的数字特征21. 【答案】由于一个学校的电灯电路数目不算大,且对创建“和谐平安”校园来说,必须排除任一潜在或已存在的安全隐患,故必须用普查的方式.【知识点】数据的收集22. 【答案】(1)(2) 由表(一)可知:年龄在26岁∼35岁之间的有40人,占总抽取人数的一半,用样本估计总体的思想可知,某城区30万人口中年龄在26岁∼35岁之间的约有30×12=15(万人);又年龄在26岁∼35岁之间每月使用共享单车在7∼14次之间的有10人,占总抽取人数的14,用样本估计总体的思想可知,城区年龄在26岁∼35岁之间每月使用共享单车在7∼14次之间的约有15×14=154(万人),所以年龄在26岁∼35岁之间,每月使用共享单车在7∼14次之间的人数约为154万人.【知识点】简单随机抽样、频率分布直方图。
高一数学第15周测试题(统计Ⅰ、Ⅱ节)定稿
高一数学第15周测试题(统计Ⅰ、Ⅱ节)1、从高一D 级1000名学生中抽取60名学生进行体重的统计分析,在这个问题中,60名学生的体重是( )A 、总体B 、个体C 、从总体中抽取的一个样本D 、样本容量 2、从162人中抽取一个样本容量为16的样本,采用系统抽样的方法则必须从这162人中剔除( )人A 、1B 、2C 、3D 、43、一批热水器共有98台,其中甲厂生产的有56台,乙厂生产的有42台,用分层抽样从中抽出一个容量为14的样本,那么甲、乙两厂各抽得的热水器的台数是( )A 、甲厂9台,乙厂5台B 、甲厂7台,乙厂7台C 、甲厂10台,乙厂4台D 、甲厂8台,乙厂6台4、频率分布直方图中,各小长方形高的比不.等于( ) A 、组距比 B 、频率比 C 、面积比 D 、频数比5、一个容量为10的样本数据,分组后,组距与频数如下:[10,20),2;[20,30),3;[30,40),4;[40,50),1则样本在[20,30)上的频率为( )A 、0.2B 、0.4C 、0.1D 、0.36、计算40个数据的平均数时,错将其中的一个数据115输入为15,那么由此求出的平均数与实际平均数的差是( )A 、-2.5B 、2.5C 、3.25D 、-3.257、阅读如图1的程序框图,如果两次输入的值分别为1和3,则输出y 的值分别为( )A 、1和6B 、2和9C 、2x 和x 2D 、3和68、某商场一天中售出MK 牌运动鞋12双,其中各种尺码的鞋的销售量如下表所9、在频率分布直方图中共有11个小矩形,其中中间小矩形的面积是其余小矩形面积之和的4倍,若样本容量为220,则该组的频数是( )A 、176B 、44C 、20D 、以上答案都不对10、一组数据X 1,X 2,…,Xn 的平均数是3,方差是5,则数据3X 1+2,3X 2+2,…,3Xn +2 的平均数和方差分别是( )A 、3 ,5B 、5 ,15C 、11 ,45D 、5 ,4511、从参加数学竞赛的100名学生中抽取一个容量为10的样本,按系统抽样的方法分成10组,第一组随机抽取一个号码为05,则抽取的第8个号码为12、观察某县新生婴儿的体重,其频率分布直方图如图2所示,则新生婴儿体重在[2.6,2.8)的频率为图113、某班学生父母年龄的茎叶图如图3所示,则该班学生的母亲的平均年龄是________;父亲的平均年龄是_________14、如图4所示的程序运行后输出的结果是班级 学号 姓名 分数二、填空题(5×4=20)11、 12、 13、(1) (2) 14、三、计算题(30)15、某赛季甲、乙两名NBA 球员在5场比赛中的盖帽数如下: 甲 2,3,4,5,6 乙 3,4,5,3,5根据上述数据,试判断谁更优秀.父 母 2 3 8 4 7 2 3 1 2 83 1 7 1 2 345 图3图22.8 2.4 2.6 33.2 3.4图4高一数学第15周测试题(统计Ⅰ、Ⅱ节)参考答案二、填空题11、75 12、 0.3 13、(1) 41 (2) 44 14、 2 三、 15、分故乙比甲更优秀,但乙比甲更稳定,两人的平均盖帽数相同由此可以说明,甲、乙> = 分 ])-+()-+()-+()-+()-[(=分 ])-+()-+()-+()-+()-[(=分 =++++=分=++++=乙甲乙甲乙甲乙甲30 . s s 24 8.0454********1s 172464544434251s 10 4553543 5 4565432 22222222222222x x x x ∴==。
高一年级数学统计初步练习题及答案
统计初步练习题及答案一. 选择题(每题4分)1.在用样本频率估计总体分布的过程中:下列说法正确的是( C ) A:总体容量越大:估计越精确 B:总体容量越小:估计越精确 C:样本容量越大:估计越精确 D:样本容量越小:估计越精确 2.刻画数据的离散程度的度量,下列说法正确的是( )(1) 应充分利用所得的数据,以便提供更确切的信息; (2) 可以用多个数值来刻画数据的离散程度;(3) 对于不同的数据集,其离散程度大时,该数值应越小;A :(1)和(3)B :(2)和(3)C : (1)D :都正确3.数据5:7:7:8:10:11的标准差是( C ) A :8 B :4 C :2 D :14.某公司现有职员160人:中级管理人员30人:高级管理人员10人:要从其中抽取 20个人进行身体健康检查:如果采用分层抽样的方法:则职员:中级管理人员和高 级管理人员各应该抽取多少人( )A :8:15:7B :16:2:2C :16:3:1D :12:3:55.比较甲乙两种机器的使用寿命:下列情况中:甲好于乙时最理想的是( B ) A :平均数甲略小于平均数乙:且方差甲大于方差乙: B :平均数甲略大于平均数乙:且方差甲小于方差乙: C :平均数甲略小于平均数乙:且方差甲小于方差乙: D :平均数甲略大于平均数乙:且方差甲大于方差乙:6.已知两组样本数据xx x x n,,,,321的平均数为h :yy y y m,,,,321的平均数为k, 则把两组数据合并成一组以后:这组样本的平均数为:( B ) A :2k h + B :n m mk nh ++ C :n m nh mk ++ D :nm kh ++ 7.某商场一天中售出李宁牌运动鞋12双:其中各种尺码的鞋的销售量如下表所示:则A :25:25B :24:24.25C :24.5:25D :25:24.58.从162人中抽取一个样本容量为16的样本:采用系统抽样的方法则必须从这162人中剔除( B )人A :1B :2C :3D :49.在下列各图中:每个图的两个变量具有相关关系的图是( D )(1) (2) (3) (4)A :(1)(2)B :(1)(3)C :(2)(4)D :(2)(3)10.一个容量为20的样本数据:分组后:组距与频数如下:2),70,60[;4),60,50[;5),50,40[;4),40,30[;3),30,20[;2),20,10[:则样本在)50,0[上的频率为( D ) A :201 B :41 C :21 D :10711.观察新生婴儿的体重:其频率分布直方图如下图所示:则新生婴儿体重在[2800:3200]的频率为( C )0.002 频率/组距婴儿体重2400 2700 3000 3300 3600 390012.在样本方差的计算公式中)30(301252222212⨯-+⋅⋅⋅++=n x x x s中:数字30和25分别表示样本的( A )A:容量:平均数 B:标准差:平均数 C:容量:方差 D:平均数:容量二. 填空题(每题3分)13.系统抽样与简单随机抽样的联系在于:将总体均分后对第一部分进行抽样采用的是_____简单随机抽样________;14.已知xx x x n321,,的平均数为a,则2,,2,233321+++xx x n的平均数是_3a+2____________;15.已知样本7,10,14,8,7,12,11,10,8,10,13,10,8,11,8,9,12,9,13,12,那么这组数据在8.5至15内的频率为__________;16.实验测得四组(x,y )人值为(1:2):(2:3.5):(4:6.5):(6:9.5),测y 与x 之间的线性回归方程为____5.05.1ˆ+=x y_______________:当x 为5时:估算y 的值为___8________:二.填空题答案:16.____________________ ___________________ 三.解答题(共40分)17某班4个小组的人数分别为10:10:x :8:已知这组数据的中位数和平均数相等:求这组数据的中位数。
人教A版高一数学必修第二册第九章《统计》单元练习题卷含答案解析 (21)
高一数学必修第二册第九章《统计》单元练习题卷6(共22题)一、选择题(共10题)1. 在一组样本数据中,1,2,3,4 出现的频率分别为 p 1,p 2,p 3,p 4,且 ∑p i 4i=1=1,则下面四种情形中,对应样本的标准差最大的一组是 ( ) A . p 1=p 4=0.1,p 2=p 3=0.4 B . p 1=p 4=0.4,p 2=p 3=0.1 C . p 1=p 4=0.2,p 2=p 3=0.3D . p 1=p 4=0.3,p 2=p 3=0.22. 某人 5 次上班途中所花时间(单位:分钟)分别为 x ,y ,10,11,9.已知这组数据的平均数为 10,方差为 2,则 ∣x −y ∣ 的值为 A .1B .2C .3D .43. 用样本频率分布估计总体分布的过程中,下列说法正确的是 ( ) A .总体容量越大,估计越精确 B .总体容量越小,估计越精确 C .样本容量越大,估计越精确D .样本容量越小,估计越精确4. 某学校进行数学竞赛,将考生的成绩分成 90 分及以下、 91∼120 分、 121∼150 分三种情况进行统计,发现三个成绩段的人数之比为 5:3:1.现用分层抽样的方法抽取一个容量为 m 的样本,其中分数在 91∼120 分的人数是 45,则此样本的容量 m 的值为 ( ) A . 75B . 100C . 125D . 1355. 某班要从甲、乙、丙、丁四名同学中选出一人参加学校的投篮比赛,根据以往的数据,得到这四名同学在连续 5 次投篮中,投中次数 X 的概率分布可以分别用下列四个图直观表示: 如果从平均水平和发挥稳定性角度来考虑,应该选择参加比赛的同学为 ( )A .甲B .乙C .丙D .丁6. 使用简单随机抽样从 1000 件产品中抽出 50 件进行某项检查,合适的抽样方法是 ( )A .抽签法B .随机数法C .随机抽样法D .以上都不对7.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.据该走势图,下列结论正确的是( )A.这半年中,网民对该关键词相关的信息关注度呈周期性变化B.这半年中,网民对该关键词相关的信息关注度不断减弱C.从网名对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值8.某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为60的样本.按照分层抽样的方法抽取样本,则丙地区抽取的销售点比乙地区抽取的销售点多( )A.6个B.8个C.10个D.12个9.若一组数据x1,x2,x3,⋯,x n的平均数为2,方差为3,则2x1+5,2x2+5,2x3+5,⋯,2x n+5的平均数和方差分别是( )A.9,11B.4,11C.9,12D.4,1710.对于一组数据x i(i=1,2,3,⋯,n),如果将它们改变为x i+C(i=1,2,3,⋯,n),其中C≠0,则下列结论正确的是( )A.平均数与方差均不变B.平均数变,方差保持不变C.平均数不变,方差变D.平均数与方差均发生变化二、填空题(共6题)11.《数术记遗》相传是汉末徐岳(约公元2世纪)所著.该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究学习小组共6人,他们搜集整理该14种算法的相关资料所花费的时间(单位:min)分别为:93,93,88,81,94,91,则这组时间数据的标准差为.12.数组2.7,3.1,2.5,4.8,2.9,3.6的中位数为.13.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[15,25)内的人数为.14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.15.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n且支出在[20,60]元的样本,其频率直方图如图所示,其中支出在[50,60]元的学生有30人,则n的值为.16.某电子商务公司对10000名网络购物者2019年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=;(2)估计在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.三、解答题(共6题)17.某校500名学生中,有200人的血型为O型,有125人的血型为A型,有125人的血型为B型,有50人的血型为AB型.为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?18.某企业有甲、乙两个分厂生产同一种电子产品,从甲、乙两个分厂生产的电子产品中分别抽取20件作使用寿命的测试,结果如表所示:使用寿命(单位:时)980985990995100010051010甲厂件数0368201乙厂件数1274321(1) 估计甲、乙两厂生产的电子产品使用寿命的平均数?(2) 估计哪个厂的生产情况比较稳定?19.《中华人民共和国个人所得税法》规定,公民月收入总额(工资、薪金等)不超过免征额的部分不必纳税,超过免征额的部分为全月应纳税所得额,个人所得税税款按税率表分段累计计算.为了给公民合理减负,稳步提升公民的收入水平,自2018年10月1日起,个人所得税免征额和税率进行了调整,调整前后的个人所得税税率表如下:(1) 已知小李2018年9月份上交的税费是295元,10月份工资、薪金等税前收入与9月份相同,请帮小李计算一下税率调整后小李 10 月份的税后实际收入是多少?(2) 某税务部门在小李所在公司利用分层抽样方法抽取某月 100 位不同层次员工的税前收入,并制成下面的频率分布直方图.(i )请根据频率分布直方图估计该公司员工税前收入的中位数;(ii )同一组中的数据以这组数据所在区间中点的值作代表,按调整后税率表,试估计小李所在的公司员工该月平均纳税多少元?20. 某单位有 2000 名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示.人数管理技术开发营销生产共计老年40404080200中年80120160240600青年401602807201200共计16032048010402000(1) 若要抽取 40 人调查身体状况,则应怎样抽样?(2) 若要开一个 25 人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?21. 一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,若有剩余,则免费分赠给第二天购花顾客,若不足,则从本地鲜花供应商处进货.今年四月前 10 天,微店百合花的售价为每枝 2 元,云南空运来的百合花每枝进价 1.6 元,本地供应商处的百合花每枝进价 1.8 元,微店这 10 天的订单中百合花的日需求量(单位:枝)依次为 251,255,231,243,263,241,265,255,244,252.(1) 求今年四月前 10 天订单中百合花日需求量的平均数和众数,并完成频率分布直方图;(2) 预计四月的后20天,订单中百合花日需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(1)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值代表),微店每天从云南固定空运250枝还是255枝百合花,才能使四月后20天百合花的销售总利润更大.22.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1) 结合平均数和方差分析谁更优秀;(2) 结合平均数和中位数分析谁的成绩好些;(3) 结合平均数和命中9环及以上的次数分析谁的成绩好些;(4) 从折线图上两人射击命中环数的走势分析谁更有潜力.答案一、选择题(共10题) 1. 【答案】B【解析】对于 A 选项,该组数据的平均数为 x A =(1+4)×0.1+(2+3)×0.4=2.5,方差为 s A 2=(1−2.5)2×0.1+(2−2.5)2×0.4+(3−2.5)2×0.4+(4−2.5)2×0.1=0.65;对于 B 选项,该组数据的平均数为 x B =(1+4)×0.4+(2+3)×0.1=2.5,方差为 s B 2=(1−2.5)2×0.4+(2−2.5)2×0.1+(3−2.5)2×0.1+(4−2.5)2×0.4=1.85;对于 C 选项,该组数据的平均数为 x C =(1+4)×0.2+(2+3)×0.3=2.5,方差为 s C 2=(1−2.5)2×0.2+(2−2.5)2×0.3+(3−2.5)2×0.3+(4−2.5)2×0.2=1.05;对于 D 选项,该组数据的平均数为 x D =(1+4)×0.3+(2+3)×0.2=2.5,方差为 s D 2=(1−2.5)2×0.3+(2−2.5)2×0.2+(3−2.5)2×0.2+(4−2.5)2×0.3=1.45.因此,B 选项这一组的标准差最大. 【知识点】样本数据的数字特征2. 【答案】D【解析】由已知可得,{x+y+10+11+95=10,15[(x −10)2+(y −10)2+(10−10)2+(11−10)2+(9−10)2]=2.解得 {x =12,y =8. 或 {x =8,y =12. 故 ∣x −y ∣=4.【知识点】样本数据的数字特征3. 【答案】C【解析】样本容量越大,估计越接近于总体,因而越精确. 【知识点】频率与概率4. 【答案】D【解析】由已知得 35+3+1=45m,得 m =135. 【知识点】分层抽样5. 【答案】A【解析】 E 甲=3×0.1+4×0.8+5×0.1=0.3+3.2+0.5=4,D 甲=(3−4)2×0.1+(4−4)2×0.8+(5−4)2×0.1=0.1+0+0.1=0.2;E 乙=3×0.2+4×0.6+5×0.2=0.6+2.4+1.0=4,D乙=(3−4)2×0.2+(4−4)2×0.6+(5−4)2×0.2=0.2+0+0.2=0.4;E丙=3×0.3+4×0.4+5×0.3=0.9+1.6+1.5=4,D丙=(3−4)2×0.3+(4−4)2×0.4+(5−4)2×0.3=0.3+0+0.3=0.6;E丁=3×0.4+4×0.2+5×0.4=1.2+0.8+2.0=4,D丁=(3−4)2×0.4+(4−4)2×0.2+(5−4)2×0.4=0.4+0+0.4=0.8.所以由以上数据可知,甲、乙、丙、丁四者的平均数都是4,但其中方差最小的是甲,即发挥最稳定者为甲,所以从平均水平和发挥稳定性的角度考虑,应选择甲参加比赛.【知识点】频率分布直方图、样本数据的数字特征6. 【答案】B【解析】由于总体相对较大,样本量较小,故采用随机数法较为合适.【知识点】系统抽样7. 【答案】D【解析】根据走势图可知:这半年中,网民对该关键词相关的信息关注度不呈周期变化,故A项错误;这半年中,网民对该关键词相关的信息关注度有增有减,故B项错误;从网民对该关键词的搜索指数来看,去年10月份的搜索指数的稳定性小于11月份的搜索指数的稳定性,所以去年10月份的方差大于11月份的方差,故C项错误;从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值,故D项正确.【知识点】样本数据的数字特征8. 【答案】A【解析】由题意,抽样比为:60600=110,因此丙地区抽取的销售点比乙地区抽取的销售点多(180−120)×110=6.【知识点】分层抽样9. 【答案】C【解析】由题E(x)=2,D(x)=3,则E(2x+5)=2E(x)+5=9,D(2x+5)=22D(x)=12.【知识点】样本数据的数字特征10. 【答案】B【解析】依题意,记原数据的平均数为 x ,方差为 s 2,则新数据的平均数为(x 1+C )+(x 2+C )+⋯+(x n +C )n=x +C ,即新数据的平均数改变;新数据的方差为1n{[(x 1+C )−(x +C )]2+[(x 2+C )−(x +C )]2+⋯+[(x n +C )−(x +C )]2}=s 2,即新数据的方差不变. 【知识点】样本数据的数字特征二、填空题(共6题) 11. 【答案】 2√5【解析】平均数:x =16×(93×2+88+81+94+91)=90 . 方差:s 2=16×[(93−90)2×2+(88−90)2+(81−90)2+(94−90)2+(91−90)2]=20.标准差:s =√20=2√5. 【知识点】样本数据的数字特征12. 【答案】 3.0【知识点】样本数据的数字特征13. 【答案】 60【解析】由茎叶图中 [15,25) 内的有 15,16,17,21,22,24 共 6 人, 所以使用多媒体进行教学次数在 [15,25) 内的频率为 620=310,所以该校上学期 200 名教师中使用多媒体进行教学次数在 [15,25) 内的人数是 200×310=60. 故答案为 60.【知识点】样本数据的数字特征、茎叶图14. 【答案】 18【解析】应从丙种型号的产品中抽取 60×3001000=18 件,故答案为 18.【知识点】分层抽样15. 【答案】 100【解析】设支出在 [50,60] 元的概率为 P ,由频率直方图得 P =1−(0.01+0.024+0.036)×10=0.3,所以 n =300.3=100. 【知识点】频率分布直方图16. 【答案】 3 ; 6000【解析】由频率分布直方图及频率和等于 1 可得 (0.2+0.8+1.5+2+2.5+a )×0.1=1,解得a=3.于是消费金额在区间[0.5,0.9]内的频率为(3+2+0.8+0.2)×0.1=0.6,所以消费金额在区问[0.5,0.9]内的购物者的人数为0.6×10000=6000.【知识点】频率分布直方图三、解答题(共6题)17. 【答案】用分层抽样抽取样本.因为20500=125,即抽样比为125,所以200×125=8,125×125=5,50×125=2.故O型血抽取8人,A型血抽取5人,B型血抽取5人,AB型血抽取2人.抽样步骤:(1)确定抽样比125.(2)按比例分配各层所要抽取的个体数,O型血抽取8人,A型血抽取5人,B型血抽取5人,AB型血抽取2人.(3)用简单随机抽样分别在各种血型的人数中抽取样本,直至抽取出容量为20的样本.【知识点】分层抽样18. 【答案】(1) 甲,993.25;乙,994.(2) 甲厂的生产情况比较稳定.【知识点】样本数据的数字特征19. 【答案】(1) 设小李9月份的税前收入为x元,又1500×3%+3000×10%=345,所以295<345,所以按调整起征点前应缴纳个税为:1500×3%+(x−5000)×10%=295,解得x=7500,按调整起征点后应缴纳个税为:(7500−5000)×3%=75,调整后小李的实际收入是7500−75=7425.(2) (i)由柱状图知,中位数落在第二组,不妨设中位数为x千元,0.12×2+0.16(x−5)=0.5,解得x=6.625(千元),估计该公司员工收入的中位数为6625千元.(ii)按调整起征点后该公司员工当月所交的平均个税为:0.24×0+0.32×30+0.2×90+0.12×290+0.08×490+0.04×690=129.2,估计小李所在的公司员工平均纳税129.2元.【知识点】函数模型的综合应用、频率分布直方图、样本数据的数字特征20. 【答案】(1) 按老年、中年、青年分层用分层抽样法抽取,抽取比例为402000=150.故老年人、中年人、青年人各抽取4人,12人,24人.(2) 按管理、技术开发、营销、生产分层用分层抽样法抽取,抽取比例为252000=180,故管理、技术开发、营销、生产各部门分别抽取2人,4人,6人,13人.【知识点】分层抽样21. 【答案】(1) 四月前10天订单中百合花日需求量的众数为255枝,平均数x=110×(251+255+231+243+263+241+265+255+244+252)=250(枝).频率分布直方图如图:(2) 设订单中百合花需求量为a(a∈N)枝,由(1)中频率分布直方图知,a的可能取值为235,245,255,265,相应频率分别为0.1,0.3,0.4,0.2,故后20天中a=235,245,255,265相应的天数分别为2,6,8,4.①若空运250枝,则当a=235时,当日利润为235×2−250×1.6=70(元),当a=245时,当日利润为245×2−250×1.6=90(元),当a=255时,当日利润为255×2−250×1.6−5×1.8=101(元),当a=265时,当日利润为265×2−250×1.6−15×1.8=103(元),则20天总利润为70×2+90×6+101×8+103×4=1900(元).②若空运255枝,则当a=235时,当日利润为235×2−255×1.6=62(元),当a=245时,当日利润为245×2−255×1.6=82(元),当a=255时,当日利润为255×2−255×1.6=102(元),当a=265时,当日利润为265×2−255×1.6−10×1.8=104(元),则20天总利润为62×2+82×6+102×8+104×4=1848(元).因为1900>1848,所以每天从云南固定空运250枝百合花,才能使四月后20天百合花的销售总利润更大.【知识点】样本数据的数字特征、频率分布直方图22. 【答案】(1) 根据题意作出统计表:平均数方差中位数命中9环及以上次数甲7 1.271乙7 5.47.53因为平均数相同,且 s 甲2<s 乙2, 所以甲的成绩比乙稳定,甲更优秀.(2) 因为平均数相同,甲的中位数 < 乙的中位数,所以乙的成绩比甲好.(3) 因为平均数相同,且乙命中 9 环及以上的次数比甲多,所以乙的成绩比甲好.(4) 因为甲的成绩在平均线附近波动,而乙的成绩整体处于上升趋势,从第 4 次开始射靶的环数没有比甲少的情况发生,所以乙更有潜力.【知识点】样本数据的数字特征。
人教A版高一数学必修第二册第九章《统计》单元练习题卷含答案解析 (6)
高一数学必修第二册第九章《统计》单元练习题卷2(共22题)一、选择题(共10题)1.分层抽样又称类型抽样,即将相似的个体归为一类(层),然后从每类中抽取若干个个体构成样本,所以分层抽样为保证每个个体被等可能抽取,必须做到( )A.每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽取的个体数相同2.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n座城市作试验基地,这n座城市共享单车的使用量(单位:人次/天)分别为x1,x2,⋯,x n,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是( ( )A.x1,x2,⋯,x n的平均数B.x1,x2,⋯,x n的标准差C.x1,x2,⋯,x n的最大值D.x1,x2,⋯,x n的中位数3.为了解某校老年、中年和青年教师的身体状况,已知老、中、青人数之比为3:7:5,现用分层抽样的方法抽取容量为n的样本,其中老年教师有18人,则样本容量n=( )A.54B.90C.45D.1264.在中秋节到来之前,儿童福利院对全体小朋友爱吃哪几种月饼进行调查,以决定最终多买哪种月饼.下面的调查数据中你认为最值得关注的是( )A.方差B.众数C.中位数D.平均数5.如果想用统计图来反映各数据的变化趋势,比较合适的统计图是( )A.条形图B.折线图C.扇形图D.其他图形6.苏州市6月1日起正式实施的《生活垃圾分类管理条例》将城市生活垃圾分为“可回收物”、“有害垃圾”、“厨余垃圾”和“其他垃圾”四类.某社区为了分析不同年龄段的人群对垃圾分类知识的了解情况,对辖区内的居民进行分层抽样调查.已知该社区的青年人、中年人和老年人分别有800人、900人、700人,若在老年人中的抽样人数是35,则在青年人中的抽样人数是( )A.20B.40C.60D.807.某班100名学生期中考试语文成绩(单位:分)的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100],则图中a的值为( )A.0.005B.0.05C.0.5D.0.0258.某工厂的质检人员从生产的100件产品中,采用随机数法抽取10件,采用下面的编号方法:① 01,02,03,⋯,100;② 001,002,003,⋯,100;③ 00,01,02,⋯,99.其中编号方法正确的序号是( )A.①②B.①③C.②③D.③9.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,610.已知一组数据:1,2,2,3,3,3.则这组数据的中位数是( )A.2B.73C.52D.3二、填空题(共6题)11.思考辨析,判断正误通过网络查询的数据是真实的数据.( )12.思考辨析 判断正误众数是一组数据中出现次数最多的数.13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.14.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是.15.思考辨析 判断正误一组数据中,有一半的数据不大于中位数,而另一半则不小于中位数,中位数反映了一组数据的中心的情况.中位数不受极端值的影响.16.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均数x8.58.78.88.0方差s2 3.5 3.5 2.18.7则参加奥运会的最佳人选应为.三、解答题(共6题)17.某电信部门执行的新的电话收费标准中,其中本地网营业区内的通话费标准:前3分钟为0.20元(不足3分钟按3分钟计算),以后的每分钟收0.10元(不足1分钟按1分钟计算).在一次实习作业中,某同学调查了A,B,C,D,E五人某天拨打的本地网营业区内的电话通话时间情况,其原始数据如表所示:A B C D E第一次通话时间3分3分45秒3分55秒3分20秒6分第二次通话时间0分4分3分40秒4分50秒0分第三次通话时间0分0分5分2分0分应缴话费(元)(1) 在上表中填写出各人应缴的话费;(2) 设通话时间为t分钟,试根据上表完成下表的填写(即这五人在这一天内的通话情况统计表):18.某初级中学七、八、九三个年级共有学生2000名,各年级男、女生人数如下表:七年级八年级九年级女生(人数)373x y男生(人数)377370z已知在三个年级的学生中随机抽取1名,抽到八年级女生的概率是0.19.(1) 求x的值;(2) 现用分层抽样的方法在三个年级中抽取48名学生,应从九年级抽取多少名?19.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.(1) 高一参赛学生的成绩的众数、中位数;(2) 高一参赛学生的平均成绩.20.某城市有210家百货商店,其中大型商店20家、中型商店40家、小型商店150家,为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层随机抽样的方法抽取时,各种百货商店分别要抽取多少家?写出抽样过程.21.已知一组数据x1,x2,⋯,x10的总体方差由s2=110∑(x i−5)210i=1求得,求∑x i10i=1.22.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1) 游泳组中,青年人、中年人、老年人分别所占的比例;(2) 游泳组中,青年人、中年人、老年人分别应抽取的人数.答案一、选择题(共10题)1. 【答案】C【知识点】分层抽样2. 【答案】B【解析】表示一组数据x1,x2,⋯,x n的稳定程度是方差或标准差.【知识点】样本数据的数字特征3. 【答案】B【解析】依题意得33+5+7×n=18,解得n=90,即样本容量为90.故选B.【知识点】分层抽样4. 【答案】B【解析】最值得儿童福利院关注的应该是爱吃哪种月饼的人数最多,由于众数是一组数据中出现次数最多的数,所以最值得儿童福利院关注的应该是众数.【知识点】样本数据的数字特征5. 【答案】B【知识点】频率分布直方图6. 【答案】B【解析】设青年人中抽了x人由题可知:35700=x800,所以x=40.【知识点】分层抽样7. 【答案】A【解析】由频率分布直方图知(0.04+0.03+0.02+2a)×10=1,因此a=0.005,故选A.【知识点】频率分布直方图8. 【答案】C【解析】根据随机数法的要求,只有编号的数字位数相同,才能达到随机等可能抽样的效果.【知识点】简单随机抽样9. 【答案】D【解析】高级职称应抽取:160×40800=8(人),中级职称应抽取:320×40800=16(人),初级职称应抽取:200×40800=10(人),其余人员:120×40800=6(人).【知识点】分层抽样10. 【答案】C【知识点】样本数据的数字特征二、填空题(共6题)11. 【答案】×【知识点】数据的收集12. 【答案】√【知识点】样本数据的数字特征13. 【答案】18【解析】应从丙种型号的产品中抽取60×3001000=18件,故答案为18.【知识点】分层抽样14. 【答案】110【解析】简单随机抽样中每个个体被抽到的可能性均为nN =20200=110.【知识点】简单随机抽样15. 【答案】√【知识点】样本数据的数字特征16. 【答案】丙【解析】因为丙的平均数最大,方差最小.【知识点】样本数据的数字特征三、解答题(共6题)17. 【答案】(1) 0.20;0.60;1.0;0.9;0.50(2) 第1列:正,第2列:5,2,1,10;第3列:0.5,0.2,0.1,1;第4列:0.7,0.9,1.【知识点】频率分布直方图18. 【答案】(1) 因为x2000=0.19,所以x=380.(2) 九年级学生人数为y+z=2000−(373+377+380+370)=500(名),现用分层抽样的方法在全校抽取48名学生,则应从九年级抽取5002000×48=12(名).【知识点】分层抽样、频率分布直方图19. 【答案】(1) 由图可知众数为65,因为第一个小矩形的面积为0.3,所以设中位数为60+x,则0.3+x×0.04=0.5,得x=5,所以中位数为60+5=65.(2) 依题意,平均成绩为55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67(分),故平均成绩约为67分.【知识点】频率分布直方图、样本数据的数字特征20. 【答案】①样本容量与总体中的个体数的比值为21210=110;②确定要抽取的各种商店的数目:大型商店为20×110=2(家),中型商店为40×110=4(家),小型商店为150×110=15(家);③采用简单随机抽样的方法在各层中分别抽取大型商店2家、中型商店4家、小型商店15家,这样便得到了所要抽取的样本.【知识点】分层抽样21. 【答案】由于110∑x i10i=1=5,所以∑x i10i=1=50.【知识点】样本数据的数字特征22. 【答案】(1) 设登山组人数为x,游泳组中,青年人、中年人、老年人所占比例分别为a,b,c,则x×40%+3xb4x =47.5%,x×10%+3xc4x=10%,解得b=50%,c=10%,故a=100%−50%−10%=40%,即游泳组中,青年人、中年人、老年人所占的比例分别为40%,50%,10%.(2) 由(1)知游泳组中,青年人、中年人、老年人所占比例分别为40%,50%,10%,则抽取的青年人人数为200×34×40%=60,抽取的中年人人数为200×34×50%=75,抽取的老年人人数为200×34×10%=15.即游泳组中,青年人、中年人、老年人分别应抽取的人数为60,75,15.【知识点】分层抽样。
人教A版高一数学必修第二册第九章《统计》单元练习题卷含答案解析 (9)
【解析】总体中带有标记的比例是 ,则抽取的 个个体中带有标记的个数估计为 .
【知识点】简单随机抽样
8.【答案】A
【解析】【分析】根据分层抽样的定义建立比例关系即可得到结论.
【解析】解:由图1得样本容量为 % % ,
抽取的高中生人数为 % 人,
则近视人数为 人,
故选: .
【点评】本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.
16.在一次歌手大奖赛上,七位评委为歌手打出的分数如下: ,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为、.
三、解答题(共6题)
17.随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出 吨该商品可获利润 万元,未售出的商品,每 吨亏损 万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了 吨该商品.现以 (单位:吨, )表示下一个销售季度的市场需求量, (单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
【知识点】样本数据的数字特征
2.【答案】C
【解析】四支足球队进行单循环比赛(每两队比赛一场),共比赛 场.
每场比赛胜者得 分,负者得 分,平局双方各得 分.
即每场比赛若不平局,则共产生 分,每场比赛都平局,则共产生 分.
比赛结束后发现没有足球队全胜,且四队得分各不相同,
则各队得分分别为: , , , ;或 , , , .
如果从平均水平和发挥稳定性角度来考虑,应该选择参加比赛的同学为
A.甲B.乙C.丙D.丁
7.某总体容量为 ,其中带有标记的有 个,现用简单随机抽样的方法从中抽取一个容量为 的样本,则抽取的 个个体中带有标记的个数估计为
人教A版高一数学必修第二册第九章《统计》单元练习题卷含答案解析 (36)
高一数学必修第二册第九章《统计》单元练习题卷11(共22题)一、选择题(共10题)1.天津市某中学组织高二年级学生参加普法知识考试(满分100分),考试成绩的频率分布直方图如图,数据(成绩)的分组依次为[20,40),[40,60),[60,80),[80,100],若成绩低于60分的人数是180,则考试成绩在区间[60,80)内的人数是( )A.180B.240C.280D.3202.关于频率分布直方图中小长方形的高的说法,正确的是( )A.表示该组上的个体在样本中出现的频率B.表示取某数的频率C.表示该组上的个体数与组距的比值D.表示该组上的个体在样本中出现的频率与组距的比值3.下列问题中,最适合用简单随机抽样方法抽样的是( )A.某学术厅有32排座位,每排有40个座位,座位号是1∼40,有一次报告会学术厅里坐满了观众,报告会结束以后听取观众的意见,要留下32名观众进行座谈B.从10台冰箱中抽取3台进行质量检验C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解大家对学校机构改革的意见,要从中抽取容量为20的样本D.某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480亩估计全乡农田平均产量4.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分,1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数B.平均数C.方差D.极差5.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),⋯,[5.45,5.47],[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A.10B.18C.20D.366.10名工人生产某一零件,生产的件数分别是10,12,14,14,15,15,16,17,17,17.设其平均数为a,中位数为b,众数为c,则( )A.a>b>c B.b>c>a C.c>a>b D.c>b>a7.某班由编号为01,02,03,⋯,50的50名学生组成,现在要选取8名学生参加合唱团,选取方法是从如下随机数表的第1行第11列开始由左到右依次选取两个数字,则该样本中选出的第8名学生的编号为( )495443548217379323783035209623842634916450258392120676572355068877044767217633502583921206764954A.20B.23C.26D.348.在一次体育测试中,某班的6名同学的成绩(单位:分)分别为66,83,87,83,77,96.关于这组数据,下列说法错误的是( )A.众数是83B.中位数是83C.极差是30D.平均数是839.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,610.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.若从每周使用时间在[15,20),[20,25),[25,30)三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在[20,25)内的学生中选取的人数为( )A.1B.2C.3D.4二、填空题(共6题)11.某次体检,8位同学的身高(单位:米)分别为 1.68,1.71,1.73,1.63,1.81,1.74,1.66,1.78,则这组数据的中位数是(米).12.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图所示),已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在(80,100)之间的学生人数是.13.校本课程的学分,统计如表.甲811141522乙67102324用s12,s22分别表示甲、乙两班抽取的5名学生学分的方差,计算两个班学分的方差,得s22=,并由此可判断成绩更稳定的班级是班.14.众数、中位数、平均数(1)众数、中位数、平均数的概念.①众数:在一组数据中,出现最多的数据(即频率分布最大值所对应的样本数据)叫这组数据的众数.若有两个或两个以上的数据出现得最多,且出现的次数一样,则这些数据都叫众数;若一组数据中每个数据出现的次数一样多,则没有众数.②中位数:将一组数据按大小依次排列,把处在位置的一个数据(或中间两个数据的平均数)叫这组数据的中位数.③平均数:指样本数据的算术平均数.即:x=.(2)众数、中位数、平均数与频率分布直方图的关系.众数众数是最高矩形的 所对应的数据,表示样本数据的中心值中位数①在频率分布直方图中,中位数左边和右边的直方图 相等,由此可以估计中位数的值,但是有偏差②表示样本数据所占频率的等分线平均数①平均数等于每个小长方形的面积乘以小长方形底边中点的横坐标之和②平均数是频率分布直方图的重心,是频率分布直方图的平衡点15.某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层随机抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.16.一汽车厂生产甲,乙,丙三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车甲轿车乙轿车丙舒适型100120z标准型300480600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有甲类轿车10辆,则z的值为,抽取的50辆车中,乙类舒适型的数量为.三、解答题(共6题)17.一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.18.作为北京副中心,通州区的建设不仅成为京津冀协同发展战略的关键节点,也肩负着医治北京市“大城市病”的历史重任,因此,通州区的发展备受啊目,2017年12月25日发布的《北京市通州区统计年鉴(2017)》显示:2016年通州区全区完成全社会固定资产投资939.9亿元,比上年增长17.4%,下面给出的是通州区2011∼2016年全社会固定资产投资及增长率,如图一.根据通州区统计局2018年1月25日发布:2017年通州区全区完成全社会固定资产投资1054.5亿元,比上年增长12.2%.(1) 在图二中画出2017年通州区全区完成全社会固定资产投资(柱状图),标出增长率并补全折线图;(2) 从2011∼2017这7年中随机选取续的2年份,求后一年份增长率高于前一年份增长率的概率;(3) 设2011∼2017这7年全社会固定资产投资总额的中位数为x0,平均数为x,比较x0与x的大小(写出结论即可).19.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(1) 求这次测试数学成绩的众数; (2) 求这次测试数学成绩的中位数.20. 某公交公司为了估计某线路公交公司发车的时间间隔,对乘客在这条线路上的某个公交车站等车的时间进行了调查,以下是在该站乘客候车时间的部分记录:等待时间(分钟)频数频率[0,3) 0.2[3,6) 0.4[6,9)5x [9,12)2y [12,15) 0.05合计z 1 (1) 求 x ,y ,z ;(2) 画出频率分布直方图及频率分布折线图; (3) 计算乘客平均等待时间的估计值.21. 某校从高一全体男生中用简单随机抽样抽取了 20 人测量出体重情况如下:(单位 kg )6556708266725486706258726460767280685866试估计该校高一男生的平均体重,以及体重在 60∼75 kg 之间的人数所占比例.22. 平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?答案一、选择题(共10题)1. 【答案】B【知识点】频率分布直方图2. 【答案】D,面积表示频率.【解析】频率分布直方图中小长方形的高是频率组距【知识点】频率分布直方图3. 【答案】B【知识点】简单随机抽样4. 【答案】A【解析】根据题意,从9个原始评分中去掉1个最高分,1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变.【知识点】样本数据的数字特征5. 【答案】B【解析】根据直方图,直径落在区间[5.43,5.47)之间的零件频率为:(6.25+5.00)×0.02=0.225,则区间[5.43,5.47)内零件的个数为:80×0.225=18.【知识点】频率分布直方图6. 【答案】D=14.7,【解析】依题意,得a=10+12+14+14+15+15+16+17+17+1710中位数b=15,众数c=17,故c>b>a.【知识点】样本数据的数字特征7. 【答案】D【解析】从样本中选出来的8名学生的编号分别为17,37,23,30,35,20,26,34.故该样本中选出的第8名学生的编号为34.【知识点】简单随机抽样8. 【答案】D【知识点】样本数据的数字特征9. 【答案】D【解析】高级职称应抽取:160×40800=8(人),中级职称应抽取:320×40800=16(人),初级职称应抽取:200×40800=10(人),其余人员:120×40800=6(人).【知识点】分层抽样10. 【答案】C【解析】由频率分布直方图可知:5×(0.01+0.02+a+0.04+0.04+0.06)=1,解得:a=0.03,即在[15,20),[20,25),[25,30)三组内的学生数之比为:4:3:1,则从每周使用时间在[15,20),[20,25),[25,30)三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在[20,25)内的学生中选取的人数为38×8=3.【知识点】分层抽样、频率分布直方图二、填空题(共6题)11. 【答案】1.72【知识点】样本数据的数字特征12. 【答案】33【解析】数学成绩在(80,100)之间的学生人数是(520+620)×60=33.【知识点】频率分布直方图13. 【答案】62;甲【知识点】样本数据的数字特征14. 【答案】次数;最中间;1n(x1+x2+⋯+x n);中点;面积【知识点】样本数据的数字特征15. 【答案】15【解析】高二年级学生人数占总数的310,样本容量为50,则应从高二年级抽取的学生人数为50×310=15.【知识点】分层抽样16. 【答案】400;3【解析】由题意知抽样比为10100+300=140,则50100+300+120+480+z+600=140,解得z=400.可得甲,乙,丙三类车数量的比例为2:3:5,则乙类车抽到的数量为310×50=15,乙类车中,舒适型与标准型的数量比为1:4,所以舒适型的数量为15×15=3.【知识点】分层抽样三、解答题(共6题)17. 【答案】因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而应采用分层抽样的方法.具体过程如下:(1)将3万人分成5层,一个乡镇为一层.(2)按照各乡镇的人口比例随机抽取各乡镇的样本:300×315=60( 人),300×215=40(人),300×515=100( 人),300×215=40( 人),300×315=60( 人).各乡镇分别用分层抽样抽取的人数分别为60,40,100,40,60.(3)将抽取的这300人组到一起,即得到一个样本.【知识点】分层抽样18. 【答案】(1) 由题意在图二中画出2017年通州区全区完成全社会固定资产投资(柱状图),标出增长率并补全折线图,如图.(2) 从2011∼2017这7年里,随机选取连续的2个年份,共6组,分别为:(2011,2012),(2012,2013),(2013,2014),(2014,2015),(2015,2016),(2016,2017),设事件A表示“随机选取续的2年份,后一年份增长率高于前一年份增长率”,则事件A包含的基本事件有2个,分别为:(2011,2012),(2015,2016),所以随机选取续的2年份,后一年份增长率高于前一年份增长率的概率P(A)=26=13.(3) x0<x.【知识点】频率与频数、样本数据的数字特征、频率分布直方图19. 【答案】(1) 由题干图知众数为70+802=75.(2) 由题干图知,设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x−70),所以x≈73.3,即中位数为73.3.【知识点】频率分布直方图、样本数据的数字特征20. 【答案】(1) 由上面表格得0.2+0.4+x+y+0.05=1即x+y=0.35,又52=xy,所以x=0.25,y=0.1.又5z=x=0.25,所以z=20(2) 根据上一问做出的数据画出频率分步直方图.(3) 由频率分步直方图可以知道x=1.5×0.2+4.5×0.4+7.5×0.25+10.5×0.1+13.5×0.05=5.7,即乘客平均等待时间的估计值是5.7.【知识点】频率分布直方图、样本数据的数字特征、频率与频数21. 【答案】这20名男生的平均体重为65+56+70+⋯+68+58+6620=67.85(kg).20名男生中体重在60∼75kg之间的人数为12,故这20名男生体重在60∼75kg之间的人数所占比例为1220=0.6.所以佔计该校高一男生的平均体重约为67.85kg,体重在60∼75kg之间的人数所占比例约为0.6.【知识点】样本数据的数字特征22. 【答案】平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大.【知识点】样本数据的数字特征。
统计计算练习题
统计计算练习题
本文将提供统计计算练题,以帮助读者巩固统计学知识并提高
练能力。
1. 某公司5月份的销售额分别为:1000元、1500元、1200元、1100元、1300元,求该公司5月份销售总额和平均销售额。
2. 某品牌牛仔裤样本的长度如下(单位:厘米):62、64、66、68、70、70、70、70、72、72、72、74、76、78、80,请计算样本
均值、中位数、众数。
3. 某市场调查机构通过对1000位市民做的一项调查得到以下
结果:
- 其中男性有600人,女性有400人;
- 男性中有250人喜欢看电影,350人喜欢看电视剧;
- 女性中有280人喜欢看电影,120人喜欢看电视剧。
请回答以下问题:
- 调查期间看电影的受访者人数占总受访者人数的比例分别是
多少?
- 被调查者中喜欢看电视剧的人数占女性受访者的比例是多少?
4. 某商品在1月份、2月份、3月份的销售量分别为1200件、1400件、1800件,请问3月份销售量比1月份销售量增加了多少
百分比?如果3月份销售量减少了20%,销售量是多少?
以上练习题只是统计学习中的基础题目,希望读者可以在掌握
了基础知识的基础上多练习,不断提高。
人教A版高一数学必修第二册第九章《统计》单元练习题卷含答案解析 (1)
高一数学必修第二册第九章《统计》单元练习题卷9(共22题)一、选择题(共10题)1. 设 x 1,x 2,⋯,x n 为样本数据,令 f (x )=∑(x i −x )2n i=1,则 f (x ) 的最小值点为 ( )A .样本众数B .样本中位数C .样本标准差D .样本平均数2. 某课外小组的同学们在社会实践中调查了 20 户家庭某月的用电量,如表所示:用电量/度120140160180200户数23582则这 20 户家庭该月用电量的众数和中位数分别是( ) A . 180,170B . 160,180C . 160,170D . 180,1603. 从总数为 N 的一批零件中利用简单随机抽样方法,抽取一个容量为 30 的样本,若每个零件被抽到的可能性为 25%,则 N 为 ( ) A . 150B . 200C . 100D . 1204. 为深入贯彻落实《国务院办公厅关于强化学校体育促进学生身心健康全面发展的意见》,我市提出:到 2020 年,全市义务教育阶段学生体质健康合格率达到 98%,基础教育阶段学生优秀率达到 15% 以上,某学校现有小学和初中学生共 2000 人,为了解学生的体质健康合格情况,决定采用分层抽样的方法从全校学生中抽取一个容量为 400 的样本,其中被抽到的初中学生人数为 180,那么这所学校的初中学生人数为 ( ) A . 800B . 900C . 1000D . 11005. 某次考试有 70000 名学生参加,为了了解这 70000 名考生的数学成绩,从中抽取 1000 名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法: ① 1000 名考生是总体的一个样本;② 1000 名考生数学成绩的平均数是总体平均数; ③ 70000 名考生的数学成绩是总体; ④样本容量是 1000. 其中正确的说法有 ( ) A . 1 种B . 2 种C . 3 种D . 4 种6. 某调査机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布扇形图、 90 后从事互联网行业岗位分布条形图,则下列结论中不一定正确的是 ( )注:90 后指 1990 年及以后出生,80 后指 1980−1989 年之间出生,80 前指 1979 年及以前出生.A .互联网行业从业人员中 90 后占一半以上B .互联网行业中 90 后从事技术岗位的人数超过总人数的 20%C .互联网行业中从事运营岗位的人数 90 后比 80 前多D .互联网行业中从事技术岗位的人数 90 后比 80 后多7. 某中学高一、高二、高三年级的学生人数之比依次为 6:5:7.防疫站欲对该校学生进行身体健康调查,用分层抽样的方法从该校高中三个年级的学生中抽取容量为 1 的样本,样本中高三年级的学生有 21 人,则 n 等于 ( ) A . 35 B . 45 C . 54 D . 638. 如果想用统计图来反映各数据的变化趋势,比较合适的统计图是 ( ) A .条形图 B .折线图 C .扇形图 D .其他图形9. 甲乙两位同学一共参加了 5 次社会实践活动,每次的得分如下:( )甲35345乙44534A .甲比乙的平均成绩高B .乙比甲的平均成绩高C .甲比乙的成绩稳定D .乙比甲的成绩稳定10. 为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A .简单随机抽样 B .按性别分层抽样 C .按学段分层抽样D .系统抽样二、填空题(共6题)11. 若数据 k 1,k 2,⋯,k 6 的方差为 3,则 2(k 1−3),2(k 2−3),⋯,2(k 6−3) 的方差为 .12. 下图是根据部分城市某年6月份的平均气温(单位:∘C )数据得到的样本频率分布直方图,其中平均气温的范围是 [20.5,26.5],样本数据的分组为 [20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5).已知样本中平均气温低于 22.5∘C 的城市个数为 11,则样本中平均气温不低于 25.5∘C 的城市个数为 .13.如图是100位居民月均用水量的频率分布直方图,则月均用水量在[2,2.5)范围内的居民有人.14.一个容量为32的样本,已知某组样本的频率为0.375,则该组样本的频数为.15.思考辨析 判断正误简单随机抽样和分层随机抽样都是等可能抽样.( )16.某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a,b,c,且a,b,c 构成等差数列,则第二车间生产的产品数为.三、解答题(共6题)17.要做频率分布表,需要对原始数据做哪些工作?18.栀子原产于中国,喜温暖湿润、阳光充足的环境,较耐寒.叶,四季常绿;花,芳香素雅.绿叶白花,格外清丽.某地区引种了一批栀子作为绿化景观植物,一段时间后,从该批栀子中随机抽取棵测量植株高度,并以此测量数据作为样本,得到该样本的频率分布直方图(单位:m),其中不大于1.50(单位:m)的植株高度茎叶图如图所示.(1) 求植株高度频率分布直方图中 a ,b ,c 的值;(2) 在植株高度频率分布直方图中,同一组中的数据用该区间的中点值代表,植株高度落入该区间的频率作为植株高度取该区间中点值的频率,估计这批栀子植株高度的平均值.19. 两台机床同时生产直径为 10 mm 的零件,为了检验产品质量,质量检验员从两台机床生产的产品中各抽出 4 件进行测量(单位:mm )结果如下:机床甲109.81010.2机床乙10.1109.910若你是质量检验员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求?20. 随着移动互联网的发展,与餐饮美食相关的手机 app 软件层出不穷.现从某市使用 A 和 B 两款订餐软件的商家中分别随机抽取 100 个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如图.(1) 试估计该市使用 A 款订餐软件的商家的“平均送达时间”的众数及平均数(同一组中的数据用该组区间的中点值代表);(2) 如果以“平均送达时间”的平均数作为决策依据,从 A 和 B 两款订餐软件中选择一款订餐,你会选择哪款?21. 某城市共有 36 个大型居民小区,要从中抽取 7 个调查了解居民小区的物业管理状况.请写出用抽签法抽取样本的过程. 22. 某工厂人员及月工资构成如下:人员经理管理人员高级技工工人学徒合计月工资/元22000550042003000100035700人数16510123合计220003300021000300001000107000(1) 指出该工厂人员月工资数据中的众数、中位数、平均数.(2) 月工资的平均数能客观地反映该工厂人员的月工资水平吗?为什么?答案一、选择题(共10题)1. 【答案】D【知识点】样本数据的数字特征2. 【答案】A【知识点】样本数据的数字特征3. 【答案】D【解析】每个个体被抽到的可能性相等,都为30N=25%,解得N=120.【知识点】简单随机抽样4. 【答案】B【知识点】分层抽样5. 【答案】B【知识点】样本数据的数字特征6. 【答案】D【解析】对于选项A互联网行业从业人员中90后占56%,占一半以上,所以该选项正确;对于选项B,互联网行业中90后从事技术岗位的人数占总人数的39.6%×56%=22.176%,超过总人数的20%,所以该选项正确;对于选项C,互联网行业中从事运营岗位的人数90后占总人数的56%×17%=9.52%,比80前多,所以该选项正确;对于选项D,互联网行业中从事运营岗位的人数90后占总人数的9.52%,80后占总人数的41%,所以互联网行业中从事运营岗位的人数90后不一定比80后多,所以该选项不一定正确.【知识点】频率分布直方图7. 【答案】C【知识点】分层抽样8. 【答案】B【解析】能反映各数据的变化趋势的统计图是折线图.【知识点】频率分布直方图9. 【答案】D【解析】x甲=3+5+3+4+55=4,x 乙=4+4+5+3+45=4,s 甲2=1+1+1+15=0.8, s 乙2=0+0+1+1+05=0.4,0.8>0.4,所以乙比甲的成绩稳定. 【知识点】样本数据的数字特征10. 【答案】C【解析】我们常用的抽样方法有:简单随机抽样,分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理. 【知识点】分层抽样二、填空题(共6题) 11. 【答案】 12【解析】设 k 1,k 2,⋯,k 6 的平均数为 k , 则 16[(k 1−k)2+(k 2−k)2+⋯+(k 6−k)2]=3.而 2(k 1−3),2(k 2−3),⋯,2(k 6−3) 的平均数为 2(k −3),则所求方差为 16[4(k 1−k)2+4(k 2−k)2+⋯+4(k 6−k)2]=4×3=12. 【知识点】样本数据的数字特征12. 【答案】9【解析】设样本容量为 n ,则 (0.1+0.12)n =11,解得 n =50, 故气温不低于 25.5∘C 的城市个数为 50×0.18=9. 【知识点】频率分布直方图13. 【答案】 25【解析】 0.5×0.5×100=25. 【知识点】频率分布直方图14. 【答案】 12【知识点】样本数据的数字特征15. 【答案】 √【知识点】简单随机抽样、分层抽样16. 【答案】 1200【知识点】分层抽样三、解答题(共6题)17. 【答案】分组,频数累计,计算频数和频率.【知识点】频率分布直方图18. 【答案】(1) 由茎叶图知,a =51000.1=0.5,b =101000.1=1.由频率分布直方图知,0.5×0.5+1.45×1+1.55×3+1.65×4+c ×0.1+3×0.1+4×0.1=1, 所以 c =1.5.(2) 这批栀子植株高度的平均值的估计值:(1.35×0.5+1.45×1+1.55×3+1.65×4+1.75×1.5)×0.1=1.60. 【知识点】频率分布直方图、样本数据的数字特征19. 【答案】 ① x 甲=14×(10+9.8+10+10.2)=10(mm ),x 乙=14×(10.1+10+9.9+10)=10( mm ),由于 x 甲=x 乙,因此,平均直径反映不出两台机床生产的零件的质量优劣. ②S 甲2=14×[(10−10)2+(9.8−10)2+(10−10)2+(10.2−10)2]=0.02,S 乙2=14×[(10.1−10)2+(10−10)2+(9.9−10)2+(10−10)2]=0.005.这说明乙机床生产出的零件直径波动小,因此,从产品质量稳定性的角度考虑,乙机床生产的零件质量更符合要求.【知识点】样本数据的数字特征20. 【答案】(1) 依题意,可得使用 A 款订餐软件的商家中“平均送达时间”的众数为 55, 平均数为 15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40.(2) 使用 B 款订餐软件的商家中“平均送达时间”的平均数为 15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40, 所以选 B 款订餐软件.【知识点】样本数据的数字特征、频率分布直方图21. 【答案】第一步,将36个居民小区进行编号,分别为01,02,03,⋯,36.第二步,将36个号码分别写在相同的纸片上,揉成团,制成号签.第三步,将号签放入一个不透明的盒子里,充分搅匀,依次抽取7个号签,并记录上面的号码.第四步,与这7个号码对应的居民小区就是要抽取的样本.【知识点】简单随机抽样22. 【答案】(1) 由表格可知,众数为3000元.把23个数据按从小到大(或从大到小)的顺序排列,排在最中间的数应是第12个数,其值为4200,故中位数为4200元.107000÷23≈4652,所以平均数为4652(元).(2) 虽然平均数为4652元,但由表格中所列出的数据可见,只有经理及管理人员在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该工厂人员的月工资水平.【知识点】样本数据的数字特征。
高一数学统计案例试题答案及解析
高一数学统计案例试题答案及解析1.用辗转相除法求得459和357的最大公约数是_________ .[【答案】51.【解析】由用辗转相除法知:由于459÷357,余数是102;357÷102,余数是51;102÷51,整除;所以459和357的最大公约数是51; 故应填入:51.【考点】辗转相除法.2.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高儿子身高则,对的线性回归方程为( )A. B. C. D.【答案】C.【解析】∵,,∴,,∴线性回归方程为.【考点】线性回归方程.3.某公司的广告费支出与销售额(单位:万元)之间有下列对应数据:由资料显示对呈线性相关关系。
x24568根据上表提供的数据得到回归方程中的,预测销售额为115万元时约需万元广告费.【答案】15【解析】由题知=(2+4+5+6+8)=5,=(30+40+60+50+70)=50,因为回归直线过样本中心点(,),所以50=6.5×5+,解得=17.5,所以回归直线方程为,令=115,解得=15.考点:回归直线方程4.用秦九韶算法求多项式f(x)=7x3+3x2-5x+11在x=23时的值,在运算过程中下列数值不会出现的是()A.164B.3 767C.86 652D.85 169【答案】D【解析】,故D正确。
【考点】秦九韶算法5.三个数的最大公约数是_________________。
【答案】24【解析】因为三个数都是偶数,则都除与8约简得,9、15、21,容易得出 9、15、21这三个数的最大公约数是3,所以72、120、168的最大公约数是【考点】更相减损术6.某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据:由资料显示对呈线性相关关系。
根据上表提供的数据得到回归方程中的,预测销售额为115万元时约需万元广告费。
参考公式:回归方程为其中,【答案】15万元【解析】略7.(2014•潍坊三模)为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如下的2×2列联表.喜爱打篮球不喜爱打篮球合计则至少有()的把握认为喜爱打篮球与性别有关.A.95%B.99%C.99.5%D.99.9%【答案】C【解析】根据所给的列联表得到求观测值所用的数据,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,得到所求的值所处的位置,得到百分数.解:根据所给的列联表,得到k2==8.333>7.879,∴至少有99.5%的把握说明喜爱打篮球与性别有关.故选:C.点评:根据所给的列联表得到求观测值所用的数据,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,得到所求的值所处的位置,得到百分数.8.(2014•呼和浩特二模)从1,2,3,4,5中不放回地依次取2个数,事件A=“第一次取到的是奇数”,B=“第二次取到的是奇数”,则P(B|A)=()A. B. C. D.【答案】D【解析】先计算P(AB)、P(A),再利用P(B|A)=,即可求得结论.解:由题意,P(AB)==,P(A)==∴P(B|A)===故选D.点评:本题考查条件概率,考查学生的计算能力,属于基础题.9.(2014•淄博三模)先后掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为x、y,设事件A为“x+y为偶数”,事件B为“x、y中有偶数,且x≠y”,则概率P(B|A)=()A. B. C. D.【答案】B【解析】根据题意,利用随机事件的概率公式,分别求出事件A的概率与事件A、B同时发生的概率,再用条件概率公式加以计算,可得P(B|A)的值.解:根据题意,若事件A为“x+y为偶数”发生,则x、y两个数均为奇数或均为偶数.共有2×3×3=18个基本事件,∴事件A的概率为P==.1而A、B同时发生,基本事件有“2+4”、“2+6”、“4+2”、“4+6”、“6+2”、“6+4”,一共有6个基本事件,因此事件A、B同时发生的概率为P==2因此,在事件A发生的情况下,B发生的概率为P(B|A)==故选:B.点评:本题给出掷骰子的事件,求条件概率.着重考查了随机事件的概率公式、条件概率的计算等知识,属于中档题.10.(2012•泰安一模)下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;③线性回归方程必过;④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系;其中错误的个数是()A.0B.1C.2D.3【答案】C【解析】①方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程,变量x增加一个单位时,y平均减少5个单位;③线性回归方程必过必过样本中心点;④由计算得K2=13.079,则其两个变量间有关系的可能性是99.9%,解:①方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,故①正确;②设有一个回归方程,变量x增加一个单位时,y平均减少5个单位,故②不正确;③线性回归方程必过必过样本中心点,故③正确;④由计算得K2=13.079,对照临界值,可得其两个变量间有关系的可能性是99.9%,故④错误,综上知,错误的个数是2个故选C.点评:本题考查线性回归方程,考查独立性检验,考查方差的变化特点,是一个考查的知识点比较多的题目,注意分析,本题不需要计算,只要理解概念就可以得出结论.11.(2012•道里区三模)同时抛掷三颗骰子一次,设A=“三个点数都不相同”,B=“至少有一个6点”则P(B|A)为()A. B. C. D.【答案】A【解析】本题要求条件概率,根据P(B|A)=,需要先求出AB同时发生的概率,除以B 发生的概率,根据等可能事件的概率公式做出要用的概率.代入算式得到结果.解:∵P(B|A)=,同时抛掷三颗骰子一次,每颗骰子出现的点数有6种情况,三颗骰子出现的点数组合有63种情况.三个点数都不相同且至少有一个6点,则三颗骰子中只有一个6点,共×5×4=60种,∴P(AB)==,∵A=“三个点数都不相同”,共有6×5×4=120种,∴P(A)=,∴P(B|A)===.故选A.点评:本题考查条件概率,在这个条件概率的计算过程中,可以用两种不同的表示形式来求解,一是用概率之比得到条件概率,一是用试验发生包含的事件数之比来得到结果.12.(2014•包头一模)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于.【答案】【解析】利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解.解:P(A)=,P(AB)=.由条件概率公式得P(B|A)=.故答案为.点评:本题考查了条件概率与互斥事件的概率,考查了古典概型及其概率计算公式,解答的关键在于对条件概率的理解与公式的运用,属中档题.13.(2011•湖南)如图,EFGH 是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)= ;(2)P(B|A)= .【答案】.【解析】此题是个几何概型.用面积法求出事件A“豆子落在正方形EFGH内”的概率p(A),同理求出P(AB),根据条件概率公式P(B|A)=即可求得结果.解:用A表示事件“豆子落在正方形EFGH内”,∴p(A)==,B表示事件“豆子落在扇形OHE(阴影部分)内”,p(AB)==,∴P(B|A)=.故答案为:.点评:此题是个基础题.考查条件概率的计算公式,同时考查学生对基础知识的记忆、理解和熟练程度.14.(2010•海门市模拟)根据科学家的测算,未来若干年人类活到76岁的概率是0.8,活到90岁的概率是0.4,则现年76岁的某人活到90岁的概率是.【答案】0.5【解析】根据人类活到76岁的概率是0.8,活到90岁的概率是0.4,现年76岁的某人活到90岁的概率是一个条件概率,利用条件概率的概率公式,代入数据,求得结果.解:∵人类活到76岁的概率是0.8,活到90岁的概率是0.4,∴现年76岁的某人活到90岁的概率是一个条件概率,设现年76岁的某人活到90岁为事件A,人类活到76岁为事件B,人类活到90岁为事件C,∴P(A)===0.5,故答案为:0.5点评:本题考查条件概率,是一个基础题,这种题目出现的机会比较少,在教材上所占的篇幅也比较少,同学们要根据这个题目熟悉条件概率.15.一个口袋中装有大小相同1个红球和3个黑球,现在有3个人,每人依次去摸出一个球,然后放回,若某两人摸出的球均为红色,则称这两人是“好朋友“,记A=“有两人好朋友”,B=“三人都是好朋友”,则P(B|A )= .【答案】【解析】求出P(A)==,P(AB)=,利用P(B|A )=可得结论.解:A=“有两人好朋友”,B=“三人都是好朋友”,则P(A)==,P(AB)=,∴P(B|A )==.故答案为:.点评:本题考查条件概率,考查学生的计算能力,比较基础.16.已知随机事件M、N,P(M)=,P(N)=,P()=,则P()= .【答案】【解析】利用已知得到事件M、N同时发生的概率为,即可求得P()的值.解:已知随机事件M、N,P(M)=,P()=,则P(MN)=,故P()==,故答案为:点评:本题考查概率的计算,考查学生的计算能力,属于基础题.17.(本小题满分12分)A、B、C、D、E五位学生的数学成绩x与物理成绩y(单位:分)如下表:8075706560(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(参考数值:,)(2)若学生F的数学成绩为90分,试根据(1)求出的线性回归方程,预测其物理成绩(结果保留整数).【答案】(1)(2) 约73分【解析】根据所给数据计算样本均值,,再利用参考公式计算得回归方程,然后利用方程进行估算.试题解析:(1)因为,(1分),(2分),(3分)(4分)所以,(6分).(7分)故所求线性回归方程为.(8分)(2)由(1),当x=90时,,(11分)答:预测学生F的物理成绩为73分.(12分)【考点】1.回归直线方程2.回归分析.18.在对两个变量、进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释;②收集数据、),,,;③求线性回归方程;④求未知参数;⑤根据所搜集的数据绘制散点图。
高一数学统计试题答案及解析
高一数学统计试题答案及解析1.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格).【答案】(1)0.25,15(2)0.75【解析】(1)利用频率分布直方图中,纵坐标与组距的乘积是相应的频率,频数=频率×组距,可得结论;(2)纵坐标与组距的乘积是相应的频率,再求和,即可得到结论.试题解析:(1)由频率的意义可知,成绩在79.5~89.5这一组的频率为:0.025×10=0.25,频数:60×0.25=15;(2)利用纵坐标与组距的乘积是相应的频率可得及格率为0.015×10+0.025×10+0.03×10+0.005×10=0.75平均分为: 70.5【考点】用样本的频率分布估计总体分布;频率分布直方图.2.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 .【答案】0.1【解析】这组数据的平均数为,.故答案应填:0.1【考点】方差【名师】本题考查的是总体特征数的估计,重点考查了方差的计算,本题有一定的计算量,属于简单题.认真梳理统计学的基础理论,特别是系统抽样和分层抽样、频率分布直方图、方差等,针对训练近几年的江苏高考类似考题,直观了解本考点的考查方式,强化相关计算能力.3.某初级中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…300;使用系统抽样时,将学生统一编号为1,2,…300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,37,67,97,127,157,187,217,247,277;②5,9,100,107,121,180,195,221,265,299;③11,41,71,101,131,161,191,221,251,281;④31,61,91,121,151,181,211,241,271,300关于上述样本的下列结论中,正确的是()A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样【答案】D【解析】根据分层抽样和系统抽样的定义进行判断.①中数据相差30,符合系统抽样,也可能是分层抽样.②中数据排列没有规律.③中数据相差30,符合系统抽样的定义,也可能是分层抽样.④中数据相差30,但第一个数据大于30,不可能是系统抽样.解:在系统抽样中,将学生统一编号为1,2,…300,并将整个编号依次分为10段.则每一段的号码数为30.①中数据为7,37,67,97,127,157,187,217,247,277,数据相差30,所以①为系统抽样或分层抽样.②中数据5,9,100,107,121,180,195,221,265,299;数据排列没有规律,可能为分层抽样.③中数据11,41,71,101,131,161,191,221,251,281;数据相差30,所以③为系统抽样或分层抽样.④中数据31,61,91,121,151,181,211,241,271,300,数据相差30,但第一个数据大于30,所以④不可能是系统抽样.故D正确.故选D.点评:本题主要考查抽样方法的应用,要求熟练掌握分层抽样和系统抽样的定义和区别.4.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22℃.”现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位:℃):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.2.则肯定进入夏季的地区有____个.【答案】【解析】甲地肯定进入夏季,因为众数为,所以至少出现两次,若有一天低于,则中位数不可能为;丙地肯定进入,,,若不成立;乙地不一定进入,如,,,,,故答案为.【考点】1、样本的中位数及众数;2、样本的平均数及方差.5.为了了解某种轮胎的性能,随机抽取了8个进行测试,其最远里程数分别(单位:1000km)为:96, 112, 97, 108, 99, 104, 86, 98,则它们的中位数是( )A.100B.99C.98.5D.98【答案】C【解析】根据题意,某种轮胎的性能,随机抽取了8个进行测试,那么其结果分别是86,96, 97, 98,99, 104, 108, 112,从小到大排列,那么中位数是最中间的两数的平均值,即为98+99=197,其平均值为98.5,故可知答案为C.【考点】中位数点评:主要是考查了数据中中位数的求解和简单的运用,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学练习(统计)
1.某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率 分布直方图如图所示,现规定不低于70分为合格,则合格人数是
.600
2.(2012广东卷文科)
某校100名学生期中考试语文成绩的频率分布直方图 如图4所示,其中成绩分组区间是: [50,60][60,70][70,80][80,90][90,100]。
(1)求图中a 的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分; (3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩
相应分数段的人数(y )之比如下表所示,求数学成绩在
[50,90)之外的人数。
【解析】(1)(20.020.030.04)1010.005a a +++⨯=⇔=
(2)平均分为550.05650.4750.3850.2950.0573⨯+⨯+⨯+⨯+⨯= (3)数学成绩在[50,90)内的人数为145
(0.0050.040.030.02)1010090234
+
⨯+⨯+⨯⨯⨯=人 数学成绩在[50,90)外的人数为1009010-=人
3. (2012广东卷文科)由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1, 则这组数据为__________。
(从小到大排列)
【解析】这组数据为_________1,1,3,3
不妨设1234x x x x ≤≤≤得:231234144,84x x x x x x x x +=+++=⇒+=
2222212341(2)(2)(2)(2)420,1,2i s x x x x x =⇔-+-+-+-=⇒-= ①如果有一个数为0或4;则其余数为2,不合题意 ②只能取21i x -=;得:这组数据为1,1,3,3
O
40 50 60 70 80 90 100 0.005
0.010 0.015 0.020 0.025 0.030 0.035 频率
组距
第1题图。