高一数学上学期期末考试试题(含答案)

合集下载

山东省济南市高一上学期期末数学试题(解析版)

山东省济南市高一上学期期末数学试题(解析版)

高一年级数学期末考试一、单选题(每小题5分,共40分)1. 已知,,则集合() {20}=-<≤∣A xx {12}B x x =-≤<∣A B = A. B.C.D.()2,2-[)1,2-[]1,0-()1,0-【答案】C 【解析】【分析】由交集的定义即可得出答案.【详解】因为,, {20}=-<≤∣A xx {12}B x x =-≤<∣所以. []1,0A B =- 故选:C .2. 命题“”的否定为() 20,10x x x ∃>++>A. B. 20,10x x x ∀>++≤20,10x x x ∀≤++≤C. D.20,10x x x ∃>++≤20,10x x x ∃≤++≤【答案】A 【解析】【分析】根据特称命题的否定是全称命题进行求解即可. 【详解】由于特称命题的否定为全称命题,故命题“”的否定为“” 20,10x x x ∃>++>20, 10x x x ∀>++≤故选:A .3. 已知角的终边与单位圆交于点,则等于()α34,55P ⎛⎫- ⎪⎝⎭cos αA.B. C.D. 3535-4543-【答案】B 【解析】【分析】由余弦函数的定义计算. 【详解】由已知,所以. 1r OP ==cos 53x r α==-故选:B .4. 设,则“”是“”的() x ∈R ||1x >01xx >-A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】根据充分必要条件的概念分析题中命题进而判断出结果.【详解】时,或;时, 或 1x >1x >1x <-01xx >-1x >0x <成立时, 也成立,但 成立时,不一定成立1x ∴>01x x >-01xx >-1x >是的充分不必要条件,选项A 正确 “1”x ∴>“0”1xx >-故选:A.5. 若,则下列正确的是() 1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭A. B.C.D.33a b <ac bc >11a b<b c a c -<-【答案】D 【解析】【分析】先根据题干条件和函数的单调性得到,A 选项可以利用函数的单调性进行判断,13xy ⎛⎫= ⎪⎝⎭a b >BC 选项可以举出反例,D 选项用不等式的基本性质进行判断.【详解】因为在R 上单调递减,若,则,13x y ⎛⎫= ⎪⎝⎭1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭a b >对于选项A :若,因为单调递增,所以,故A 错误;a b >()3f x x =33a b >对于选项B :当时,若,则,故B 错误; a b >0c =ac bc =对于选项C :由,不妨令,,则此时,故C 错误; a b >1a =2b =-11a b>对于选项D :由不等式性质,可知D 正确. 故选:D.6. 下列区间包含函数零点的为()()2log 5=+-f x x xA. B.C.D.()1,2()2,3()3,4()4,5【答案】C 【解析】 【分析】根据零点存在定理,分别判断选项区间的端点值的正负可得答案.【详解】,,()211log 1540f =+-=-<()222log 2520f =+-=-<,, ()22333log 35log 04f =+-=<()244log 4510f =+-=>,又为上单调递增连续函数()2255log 55log 50f =+-=>()f x (0,)+∞故选:C .7. 将函数的图像向左平移个单位,再将图像上各点的纵坐标不变,横坐标变为原来()πsin(2)3f x x =-π3的,那么所得图像的函数表达式为( ) 12A. B. C. D. sin y x =πsin(43y x =+2sin(4)π3y x =+πsin()3y x =+【答案】B 【解析】【分析】根据三角函数图像的变换即可得到结果. 【详解】将函数的图像向左平移个单位后所得图像对应的的解析式为 ()πsin 23f x x ⎛⎫=-⎪⎝⎭π3;sin[2()]sin(2)333y x x πππ=+-=+再将图像上各点的纵坐标不变,横坐标变为原来的,所得图像对应的解析式为12.sin[2(2)]sin(4)3ππ3y x x =+=+故选:B .8. 设是定义在上的奇函数,对任意的,满足:()f x (,0)(0,)-∞+∞ 1212,(0,),x x x x ∈+∞≠,且,则不等式的解集为()()()2211210x f x x f x x x ->-(2)4f =8()0f x x->A. B. (2,0)(2,)-+∞ (2,0)(0,2)- C.D.(,4)(0,4)-∞-⋃(,2)(2,)-∞-+∞【答案】A 【解析】 【分析】 先由,判断出在上是增函数,然后再根据函数的奇偶性以及单()()2211210x f x x f x x x ->-()y xf x =(0,)+∞调性即可求出的解集. 8()0f x x->【详解】解:对任意的,都有,1212,(0,),x x x x ∈+∞≠()()2211210x f x x f x x x ->-在上是增函数,()y xf x ∴=(0,)+∞令,()()F x xf x =则,()()()()F x xf x xf x F x -=--==为偶函数,()F x ∴在上是减函数,()F x ∴(,0)-∞且,(2)2(2)8F f ==, 8()8()(2)()0xf x F x F f x x x x--∴-==>当时,,0x >()(2)0F x F ->即,解得:, 2x >2x >当时,, 0x <()(2)0F x F -<即,解得:, 2x <20x -<<综上所述:的解集为:. 8()0f x x->(2,0)(2,)-+∞ 故选:A.【点睛】方法点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.二、多项选择题(每小题5分,部分选对2分,有错误选项0分,共20分)9. 下列说法正确的是()A. 函数的定义域为 y =()1,1-B. 函数在其定义域上是单调递增函数 tan y x =C. 函数的值域是2xy -=()0,∞+D. 函数的图像过定点 ()()log 120,1a y x a a =-+>≠()2,2【答案】CD 【解析】【分析】选项A 根据函数有意义求出定义域即可,选项B 正切函数的定义域与单调递增的关系,选项C 根据函数单调性求值域即可,D 将代入即可验证. 2x =【详解】函数, y =210x -≥解得,故定义域为,故A 错误,11x -≤≤[]1,1-因为函数为周期函数,在内单调递增,tan y x =()πππ,πZ 22k k k ⎛⎫-+∈ ⎪⎝⎭但是在定义域内不是单调递增的函数,故B 错误, 因为函数在上的值域为,故C 正确, 122xxy -⎛⎫== ⎪⎝⎭R ()0,∞+当时,, 2x =()()log 12log 2122a a y x =-+=-+=所以函数过定点,故D 选项正确, ()2,2故选:CD.10. 以下结论正确的是()A. 若,,,则的最小值为1;B. 若且,则; 0x >0y >4x y xy +=x y +,R x y ∈0xy >2y xx y+≥C. 函数的最大值为0.D. 的最小值是2;12(0)y x x x=++<y =【答案】ABC 【解析】【分析】根据均值不等式的要求“一正二定三相等”,逐个验证选项是否正确.【详解】对于A ,由,由均值不等式可得(当且仅当0,0,4x y x y xy >>+=242x y x y xy ++⎛⎫=≤ ⎪⎝⎭时,等号成立),解得,所以的最小值为1,故A 正确; 12x y ==1x y +≥x y +对于B ,由知,根据均值不等式可得,(当且仅当0xy >0,0y x x y >>2y x x y +≥=0x y =≠时,等号成立),故B 正确;对于C ,由,有,由均值不等式可得,(当且仅当0x <0x ->1()2x x ⎛⎫-+≥=⎪-⎝⎭时,等号成立),1x y ==-有,当且仅当时取等号,所以函数112(220y x x x x=++=--++≤-+=-=1x -的最大值为0,故C 正确.12(0)y x x x=++<对于D ,,等号成立的条件是2y ==≥=,而不成立,所以等号不成立,因此的最小值不=231x +=231x +=y =是2,故D 错误; 故答案为:ABC11. 下列各式的值为1的是()A. tan20tan25tan20tan251+-B.13661log 27log 88-⎛⎫+- ⎪⎝⎭C. sin72cos18cos108sin18-D. 22cos 2251⋅- 【答案】BC 【解析】【分析】根据两角和的正切公式、诱导公式、两角和的正弦公式、二倍角的余弦公式,结合指数和对数的运算性质逐一判断即可.【详解】错误; ()tan20tan25tan20tan25tan 2025tan451,A tan20tan2511tan20tan25++=-=-+=-=---对;()1366666661log 27log 83log 33log 223log 3log 223log 621,B 8-⎛⎫+-=+-=+-=-= ⎪⎝⎭对;()sin72cos18cos108sin18sin72cos18cos72sin18sin 7218sin901,C -=+=+== ,D 错误. 22cos 22.51cos45-==故选:BC.12. 已知函数,以下结论正确的是()()()2ln 1f x x ax a =---A. 存在实数a ,使的定义域为R ()f x B. 函数一定有最小值()f x C. 对任意正实数a ,的值域为R()f x D. 若函数在区间上单调递增,则实数a 的取值范围 ()f x [)2,+∞(),1-∞【答案】CD 【解析】【分析】对A :若的定义域为R ,即在R 上恒成立,利用判别式运算分析;对()f x 210x ax a --->B 、C :根据的值域结合对数函数的性质运算分析;对D :根据复合函数的单调性以及21u x ax a =---对数函数的定义域运算求解.【详解】对A :若的定义域为R ,即在R 上恒成立, ()f x 210x ax a --->则不成立, ()()()224120a a a ∆=----=+<故不存在实数a ,使的定义域为R ,A 错误;()f x 对B 、C :∵,且,()()2222221244a a a u x ax a x ++⎛⎫=---=--≥-⎪⎝⎭()2204a +-≤故能取到全部正数,则的值域为R ,B 错误,C 正确;21u x ax a =---()()2ln 1f x x ax a =---对D :若函数在区间上单调递增,则在上单调递增, ()f x [)2,+∞21y x ax a =---[)2,+∞故,解得, 22a≤4a ≤又∵在区间上恒成立,且在上单调递增, 210x ax a --->[)2,+∞21y x ax a =---[)2,+∞∴,解得, 22210a a --->1a <故实数a 的取值范围,D 正确. (),1-∞故选:CD.三、填空题(每小题5分,共20分)13. 已知扇形的圆心角,弧长为,扇形的面积为________. AOB 23AOB π∠=2π【答案】 3π【解析】【分析】根据扇形的面积公式,结合弧长公式进行求解即可. 【详解】设扇形的半径为,因为弧长为,所以, AOB r 2π2233r r ππ=⋅⇒=扇形的面积为:, 12332ππ⋅⋅=故答案为:3π14. 已知函数为奇函数,且时,,则_________.()f x 0x ≥()2xf x x =+()1f -=【答案】 3-【解析】【分析】利用奇偶性得出,即可代入求解. ()()11f f -=-【详解】函数为奇函数,()f x ,()()11f f ∴-=-时,,0x ≥ ()2xf x x =+,()1213f ∴=+=,()13f ∴-=-故答案为:.3-15. 已知函数(其中),其部分图象如图所示,则()()sin ,f x A x x R ωϕ=+∈0,0,<2A πωϕ>>________.()f x =【答案】2sin 44x ππ⎛⎫+ ⎪⎝⎭【解析】 【分析】根据图象的最大值和最小值得到,根据图象得到周期从而求出,再代入点得到的值可得答案. A ω()3,0ϕ【详解】由图象可得函数的最大值为,最小值为,故22-2A =根据图象可知, 7342T=-=,28,4T T ππω∴===,()2sin 4x f x πϕ⎛⎫∴=+ ⎪⎝⎭将代入,得,()3,03sin 04πϕ⎛⎫+= ⎪⎝⎭所以, 32,4k k Z πϕππ+=+∈,解得,3||,24ππϕϕπ<∴+= 4πϕ=.()2sin 44x f x ππ⎛⎫∴=+ ⎪⎝⎭故答案为:. 2sin 44x ππ⎛⎫+⎪⎝⎭【点睛】本题考查根据正弦型函数的图象求函数的解析式,关键点是根据图象的最大值和最小值得到,A 根据图象得到周期,从而求出,再代入图象过的特殊点得到的值,考查了学生识图的能力及对基础知ωϕ识的掌握情况.16. 已知函数,若方程有三个不同的实数根,则实数a 的取值范围是()3,2121,2x x x f x x ⎧≥⎪-=⎨⎪-<⎩()0f x a -=_________. 【答案】 (0,1)【解析】【分析】利用分段函数的解析式作出分段函数的图象,将方程有三个不同的实数根转化为()0f x a -=与的图象有三个不同的交点,分析求解即可.()y f x =y a =【详解】因为函数,作出函数的图象如图所示,3,21()21,2x x x f x x ⎧≥⎪-=⎨⎪-<⎩()fx因为方程有三个不同的实数根,所以函数与的图象有三个不同的交点,由图()0f x a -=()y f x =y a =可知:实数的取值范围是, a (0,1)故答案为:.(0,1)四、解答题(共70分)17. 设集合,集合,其中. ()(){}150A x x x =+-<{}212B x a x a =-≤≤+R a ∈(1)当时,求;1a =A B ⋃(2)若“”是“”的必要不充分条件,求的取值范围. x A ∈x B ∈a 【答案】(1) {}15x x -<<(2) (),2-∞【解析】【分析】(1)直接求出两个集合的并集即可;(2)先将必要不充分条件转化为集合间的包含关系,然后根据集合是否为空集进行分类讨论即可B 【小问1详解】由题意得:{}15A x x =-<<当时,1a ={}13B x x =≤≤故{}15A B x x ⋃=-<<【小问2详解】由“”是“”的必要不充分条件x A ∈x B ∈可得:B A Ü当时,得B =∅212a a ->+解得:; 13a <当时,,解得. B ≠∅1312521a a a ⎧≥⎪⎪+<⎨⎪->-⎪⎩123a ≤<综上,的取值范围为:a (),2-∞18. (1)求值:若,求的值;3log 21x =22x x -+(2)化简:.()cos 3cos 2sin 2παπαα⎛⎫-- ⎪⎝⎭【答案】(1);(2). 10312-【解析】【分析】(1)由题意,,得,代入可得值;3log 21x =23x =(2)运用诱导公式,可化简求值.【详解】解:(1)由题意,,得,得; 3log 21x =23x =11022333x x -+=+=(2). ()cos 3cos cos sin 12sin 22sin cos 2παπαααααα⎛⎫-- ⎪-⎝⎭==-19. 已知,且是第二象限角. 12sin 13α=α(1)求和的值;sin2αtan2α(2)求的值. πcos 4α⎛⎫- ⎪⎝⎭【答案】(1),; 120sin2169α=-120tan2119α=(2. 【解析】【分析】(1)先根据角所在的象限和同角三角函数的基本关系得到,再利用二倍角公式即可求5cos 13α=-解;(2)结合(1)的中的结论,利用两角差的余弦公式即可求解. 【小问1详解】因为,且是第二象限角. 12sin 13α=α所以, 5cos 13α==-则,, 125120sin 22sin cos 2()1313169ααα==⨯⨯-=-2225144119cos 2cos sin 169169169ααα=-=-=-所以. sin 2tan 2cos 2120119ααα==【小问2详解】由(1)知:,, 5cos 13α=-12sin 13α=所以. πcos(4ααα-==20. 已知函数是定义在R 上的二次函数,且满足:,对任意实数x ,有()y f x =()01f =成立.()()122f x f x x +-=+(1)求函数的解析式;()y f x =(2)若函数在上的最小值为,求实数m 的值.()()()()121g x f x m x m R =-++∈3,2⎡⎫+∞⎪⎢⎣⎭2-【答案】(1)2()1f x x x =++(2)2m =【解析】【分析】(1)利用待定系数法求解即可,(2)由(1)得,,然后分和两种情况求解即可 ()222g x x mx =-+32m ≤32m >【小问1详解】设,2()(0)f x ax bx c a =++≠因为,所以,()01f =1c =所以,2()1f x ax bx =++因为,()()122f x f x x +-=+所以22(1)(1)1(1)22a x b x ax bx x ++++-++=+整理得,所以,得, 222ax a b x ++=+222a a b =⎧⎨+=⎩11a b =⎧⎨=⎩所以2()1f x x x =++【小问2详解】由(1)得,, ()222g x x mx =-+对称轴为直线,x m =当时,在上单调递增,所以, 32m ≤()g x 3,2⎡⎫+∞⎪⎢⎣⎭39()32224min g x g m ⎛⎫==-+=- ⎪⎝⎭解得(舍去), 2512m =当时,,解得(舍去),或, 32m >()22()222min g x g m m m ==-+=-2m =-2m =综上,2m =21. 已知函数 ()πsin 24f x x ⎛⎫=- ⎪⎝⎭(1)求函数的最小正周期;()f x (2)求函数图象的对称轴方程、对称中心的坐标;()f x (3)当时,求函数的最大、最小值及相应的x 的值. π02x ≤≤()f x 【答案】(1)π(2)对称轴;对称中心 3ππ,Z 82k x k =+∈ππ0Z 8,2k k ⎛⎫+∈ ⎪⎝⎭(3)时,;时, 3π8x =()max 1f x =0x =()min f x =【解析】 【分析】(1)根据和解析式即可求得最小正周期; 2πT ω=()f x (2)整体将代入的对称轴、对称中心即可求得结果; π24x -sin y x =(3)换元法,令,求出的范围,即可求得的最值,根据求出最值时x 的值即可. π24t x =-t ()f x t 【小问1详解】解:由题知, ()πsin 24f x x ⎛⎫=-⎪⎝⎭所以周期, 2ππ2T ==故最小正周期为;π【小问2详解】令, ππ2π,Z 42x k k -=+∈解得: , 3ππ,Z 82k x k =+∈故对称轴方程为; ()f x 3ππ,Z 82k x k =+∈令, π2π,Z 4x k k -=∈解得: , ππ,Z 82k x k =+∈故对称中心的坐标为; ()f x ππ0Z 8,2k k ⎛⎫+∈⎪⎝⎭【小问3详解】因为, π02x ≤≤令, ππ3π2,444t x ⎡⎤=-∈-⎢⎥⎣⎦故在时, sin y t =π4t =-min y =即,解得,, ππ244x -=-0x =()()min 0f x f ==在时,, π2t =max 1y =即,解得,, ππ242x -=3π8x =()max 3π18f x f ⎛⎫== ⎪⎝⎭综上: 时,;时,. 3π8x =()max 1f x =0x =()min f x =22. 已知函数是偶函数. ()()()2log 412R x kx f x x ⎡⎤=+⋅∈⎣⎦(1)求k 的值;(2)设,证明函数在上的单调递增;()()2f x g x =()g x [)0,∞+(3)令,若对恒成立,求实数m 的取值范围.()(2)2()=-⋅h x g x m g x ()0h x >[1,)x ∞∈+【答案】(1);1k =-(2)证明见解析;(3)的取值范围是. m 17(,)20-∞【解析】【分析】(1)由函数是偶函数,知对恒成2()log (41)2(R)x kx f x x ⎡⎤=+⋅∈⎣⎦()()0f x f x --=x ∈R 立,化简即得的值;k (2)由(1)知,,利用函数单调性的定义证明即可; 2log (22)()222x x x x g x -+-==+,设,则,()()()()()2232222222x x x x h x g x m g x m --=-⋅=+-+22x x t -=+222y t mt =--,对分类讨论,结合二次函数的性质,可得实数的取值范围. 5,2t ∞⎡⎫∈+⎪⎢⎣⎭m m 【小问1详解】∵函数是偶函数,2()log (41)2(R)x kx f x x ⎡⎤=+⋅∈⎣⎦对恒成立,()()0f x f x ∴--=x ∈R 又, ()22log (41)2log (41)x kx x f x kx ⎡⎤=+⋅=++⎣⎦∴, 22log (41)log (41)220x x kx kx x kx -+--+-=--=.1k ∴=-【小问2详解】由(1)知,, 22241()log (41)2log log (22)2x x xx x x f x --+⎡⎤=+⋅==+⎣⎦所以, ()2log (22)222x x x x g x -+-==+任取,且设, [)12,0,x x ∈+∞12x x < ()()()()22112121211122222222x x x x x x x x g x g x --∴-=+-+=-+-, ()1221211212221222212222x x x x x x x x x x -⎛⎫=-+=-- ⎪⎝⎭,,且,1x [)20,x ∈+∞12x x <,,, 21221x x ∴>≥21220x x ∴->1211022x x ->,()()210g x g x ∴->函数在上为单调递增函数.∴()g x [)0,∞+【小问3详解】, ()()()()222222222x x x x h x g x m g x m --=-⋅=+-+设,22x x t -=+由(2)知,当时, [)1,x ∈+∞5,2t ∞⎡⎫∈+⎪⎢⎣⎭, 222y t mt ∴=--5,2t ∞⎡⎫∈+⎪⎢⎣⎭当时,,解得; 52m ≤min 255204y m =-->1720m <当时,,无解, 52m >22min 220y m m =-->实数的取值范围是. ∴m 17(,)20-∞。

2022-2023学年江西省丰城中学高一上学期期末考试数学试题(解析版)

2022-2023学年江西省丰城中学高一上学期期末考试数学试题(解析版)

2022-2023学年江西省丰城中学高一上学期期末考试数学试题一、单选题1.已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}2,3,4B =,则()UA B =( )A .{}2,3B .{}1,2,3,4C .{}1,4D .{}2,3,4【答案】C【解析】利用补集和交集的定义可求得集合()UA B ⋂.【详解】已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}2,3,4B =,{}2,3A B ∴=, 因此,(){}1,4UA B ⋂=.故选:C.2.已知实数a ,b ,c 满足0a b c >>>,则下列不等式一定成立的是( ) A .22a c b c > B .c c b a > C .b a c c<D .11a b b a+>+ 【答案】D【分析】利用作差法逐项判断可得答案.【详解】因为a ,b ,c 满足0a b c >>>,所以0a b ->,0ab >,0a b +>,对于A ,()()220a c b c c a b a b -=+-<,所以22a c b c <,故A 错误;对于B ,()0--=<c a b c c b a ab,所以c c b a <,故B 错误; 对于C ,0b a b a c c c --=>,所以b ac c >,故C 错误; 对于D ,()11110⎛⎫⎛⎫+-+=-+> ⎪ ⎪⎝⎭⎝⎭a b a b b a ab ,所以11a b b a +>+,故D 正确;故选:D.3.若“2[1,3],2x x a ∃∈-≤”为真命题,则实数a 的最小值为( ) A .2- B .1-C .6D .7【答案】B【分析】由题知22[1,7]x -∈-,再根据题意求解即可. 【详解】解:当[1,3]x ∈时,2[1,9]x ∈,所以22[1,7]x -∈-. 因为命题“2[1,3],2x x a ∃∈-≤”为真命题, 所以1a ≥-,实数a 的最小值为1-.故选:B4.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)≠-f(x)C.∃x0∈R,f(-x0)≠f(x0)D.∃x0∈R,f(-x0)≠-f(x0)【答案】C【分析】利用偶函数的定义和全称命题的否定分析判断解答.【详解】∵定义域为R的函数f(x)不是偶函数,∴∀x∈R,f(-x)=f(x)为假命题,∴∃x0∈R,f(-x0)≠f(x0)为真命题.故选C【点睛】本题主要考查偶函数的定义和全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.5.某商场开通三种平台销售商品,五一期间这三种平台的数据如图1所示.该商场为了解消费者对各平台销售方式的满意程度,用分层抽样的方法抽取了6%的顾客进行满意度调查,得到的数据如图2所示.下列说法正确的是()A.总体中对平台一满意的消费人数约为36B.样本中对平台二满意的消费人数为300C.若样本中对平台三满意的消费人数为120,则50%m=D.样本中对平台一和平台二满意的消费总人数为54【答案】D【分析】根据分层抽样比例,由扇形统计图和条形统计图的数据求解.⨯⨯=,故A错误;【详解】样本中对平台一满意的人数为20006%30%36总体中对平台二满意的人数约为150020%300⨯=,故B 错误; 对平台三的满意率为12080%25006%=⨯,所以80%m =,故C 错误;样本中对平台一和平台二满意的总人数为20006%30%15006%20%361854⨯⨯+⨯⨯=+=,故D 正确. 故选:D【点睛】本题主要考查分层抽样,扇形统计图和条形统计图的应用,还考查分析求解问题的能力,属于基础题.6.用二分法求函数32()22f x x x x =+--的一个正零点的近似值(精确度为0.1)时,依次计算得到如下数据:f (1)=–2,f (1.5)=0.625,f (1.25)≈–0.984,f (1.375)≈–0.260,关于下一步的说法正确的是A .已经达到精确度的要求,可以取1.4作为近似值B .已经达到精确度的要求,可以取1.375作为近似值C .没有达到精确度的要求,应该接着计算f (1.4375)D .没有达到精确度的要求,应该接着计算f (1.3125) 【答案】C【分析】根据已知能的特殊函数值,可以确定方程32220x x x +--=的根分布区间,然后根据精确要求选出正确答案.【详解】由由二分法知,方程32220x x x +--=的根在区间区间(1.375,1.5),没有达到精确度的要求,应该接着计算f (1.4375).故选C .【点睛】本题考查了二分法的应用,掌握二分法的步骤是解题的关键. 7.若正实数,a b 满足1a b +=,则 A .11a b +有最大值4 B .ab 有最小值14C .+a b 有最大值2D .22a b +有最小值22【答案】C【详解】试题分析:因为正实数,满足,所以112224a b a b b aa b a b a b+++=+=++≥+=,故11a b +有最小值4,故A 不正确;由基本不等式可得112,4a b ab ab +=≥∴≤,故有最大值14,故B 不正确;由于212,2a ba b ab ab a b =++=+a b 2,故C 正确;()22211212122a b a b ab ab +=+-=-≥-=,故22a b +由最小值12,故D 不正确.【解析】基本不等式8.设0a >,1a ≠,函数()241x xf x a a =--在区间[]1,2-上的最小值为5-,则a 的取值范围为( ).A .12a =或2a ≥ B .102a <≤或2a ≥ C .01a <<或2a ≥ D .前面三个答案都不对【答案】B【分析】对函数进行变形,结合函数单调性与零点存在性定理得到不等式,解出a 的取值范围.【详解】()()225x f x a =--,故[]{}2,1,2xy y a x ∈=∈-,因为x y a =为单调函数,由零点存在性定理得:()21220a a ⎛⎫--≤ ⎪⎝⎭,解得:102a <≤或2a ≥,故选:B .二、多选题9.若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是( ) A .3- B .18C .14D .1【答案】BC【解析】分离参数得22x x λ=--,求出22x x --在(1,0)-内的值域即可判断. 【详解】由题意22x x λ=--在(1,0)-上有解. ∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈, 故选:BC .10.如图为2017—2020年中国短视频用户规模和增长率、2021年用户规模和增长率预测,据图分析,下列结论正确的为( )A .根据预测,2021年中国短视频用户规模将突破8亿人B .2017—2020年中国短视频用户规模逐年增加,但增长速度变缓C .2018年中国短视频用户规模比2017年增加了超过两倍D .2020年中国短视频用户规模与2017年相比较,增长率约为198.3% 【答案】ABD【分析】利用已知条件中用户规模的条形图和增长率的折线图,逐一判断选项正误即可.【详解】由题图可知2021年中国短视频用户规模预测为8.09亿人,突破8亿人,A 正确;由由条形图知用户规模逐年增加,由折线统计图知增长率逐年下降,即增长变缓,故B 正确;2018年中国短视频用户规模的增长率为107.0%,即2018年中国短视频用户规模比2017年增加了一倍多一点,不足两倍,C 错误;2020年中国短视频用户规模与2017年相比较,增长率为7.22 2.422.42-100%198.3%⨯≈,D 正确.故选:ABD.11.函数()f x 是定义在R 上的奇函数,下列说法正确的是( ) A .()00f =B .若()f x 在[0,)+∞上有最小值1-,则()f x 在(,0]-∞上有最大值1C .若()f x 在[1,)+∞上为增函数,则()f x 在(,1]-∞-上为减函数D .若0x >时,()22f x x x =-,则0x <时,()22f x x x =--【答案】ABD【分析】根据奇函数的定义并取特值0x =即可判定A ;利用奇函数的定义和最值得定义可以求得()f x 在(,0]-∞上有最大值,进而判定B ;利用奇函数的单调性性质判定C ;利用奇函数的定义根据0x >时的解析式求得0x <时的解析式,进而判定D .【详解】由(0)(0)f f =-得(0)0f =,故A 正确; 当0x ≥时,()1f x ≥-,且存在00x ≥使得()01f x =-,则0x ≤时,()1f x -≥-,()()1f x f x =--≤,且当0x x =-有()01f x -=, ∴()f x 在(,0]-∞上有最大值为1,故B 正确;若()f x 在[1,)+∞上为增函数,而奇函数在对称区间上具有相同的单调性,则()f x 在(,1]-∞-上为增函数,故C 错误;若0x >时,()22f x x x =-,则0x <时,0x ->,22()()()2()2f x f x x x x x ⎡⎤=--=---⨯-=--⎣⎦,故D正确. 故选:ABD .【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键. 12.关于函数()|ln |2||f x x =-,下列描述正确的有( ) A .函数()f x 在区间(1,2)上单调递增 B .函数()y f x =的图象关于直线2x =对称 C .若12x x ≠,但()()12f x f x =,则122x x += D .函数()f x 有且仅有两个零点 【答案】ABD【分析】根据函数图象变换,可得图像,利用图象注意检测选项,可得答案. 【详解】由函数ln y x =,x 轴下方图象翻折到上方可得函数ln y x =的图象, 将y 轴右侧图象翻折到左侧,右侧不变,可得函数ln ln y x x ==-的图象, 将函数图象向右平移2个单位,可得函数()ln 2ln 2y x x =--=-的图象, 则函数()|ln |2||f x x =-的图象如图所示.由图可得函数()f x 在区间(1,2)上单调递增,A 正确; 函数()y f x =的图象关于直线2x =对称,B 正确;若12x x ≠,但()()12f x f x =,若1x ,2x 关于直线2x =对称,则124x x +=,C 错误; 函数()f x 有且仅有两个零点,D 正确. 故选:ABD.三、填空题13.已知幂函数()y f x =的图象过点2),则()f x =_____________. x 12x【分析】设出幂函数解析式,代入已知点坐标求解. 【详解】设()a f x x,由已知得2a =12a =,12()f x x ==.14.132327log 3log 48⎛⎫⋅++= ⎪⎝⎭______. 【答案】112【解析】根据指数、对数的运算性质计算即可得答案.【详解】原式=1323227311log 3log 4log +2=822⎛⎫⋅+= ⎪⎝⎭. 故答案为:11215.若函数214,0()21,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩则((3))f f -=__________. 【答案】13【分析】利用分段函数的性质,先算()3f -,再算((3))f f -即可.【详解】因为31(3)48442f -⎛⎫-=-=-= ⎪⎝⎭,所以2((3))(4)44113f f f -==-+=.故答案为:13.16.已知函数221()||1f x x a x a x =-+++有且只有一个零点,若方程()f x k =无解,则实数k 的取值范围为___________. 【答案】(),0∞-【分析】确定函数为偶函数,得到()00f =,即1a =-,带入解析式,利用均值不等式得到最值,得到取值范围.【详解】221()||1f x x a x a x =-+++,()()()221()||1f x x a x a f x x -=---++=-+ 故函数为偶函数,有且只有一个零点,故()00f =,即(0)10f a =+=,1a =-, 222211()||11||211f x x x x x x x +++=+-=+-++·||2||0x x ≥-=≥,当且仅当221110x x x ⎧+=⎪+⎨⎪=⎩,即0x =时等号成立. 方程()f x k =无解,故(),0k ∈-∞. 故答案为:(),0∞-.四、解答题17.已知集合{3A x x =≤-或}4x ≥,{}43B x a x a =≤≤+. (1)若1a =-,求A B ⋂,A B ⋃ (2)若B A ⊆,求实数a 的取值范围. 【答案】(1)见解析(2)(][),61,-∞-+∞【解析】(1)由题意和交集、并集运算求出A B ⋂,A B ⋃;(2)若B A ⊆,则集合B 为集合A 的子集,对集合B 讨论即可得到答案. 【详解】(1)若1a =-,则{}{}43|42B x a x a x x =≤≤+=-≤≤, 所以{}|43A B x x =-≤≤-,{|2A B x x ⋃=≤或}4x ≥ (2)若B A ⊆,则集合B 为集合A 的子集, 当B =∅时,即43a a >+,解得1a >; 当B ≠∅时,即43a a ≤+,解得1a ≤,又{3A x x =≤-或}4x ≥,由B A ⊆,则33a +≤-或44a ≥, 解得6a ≤-或1a =.综上所述:实数a 的取值范围为(][),61,-∞-+∞.【点睛】本题考查交集,并集的运算,集合与集合的包含关系,属于基础题.18.目前,"新冠肺炎"在我国得到了很好的遏制,但在世界其他一些国家还大肆流行.因防疫需要,某学校决定对教室采用药熏消毒法进行消毒,药熏开始前要求学生全部离开教室.已知在药熏过程中,教室内每立方米空气中的药物含量y (毫克)与药熏时间t (小时)成正比;当药熏过程结束,药物即释放完毕,教室内每立方米空气中的药物含量y (毫克)达到最大值.此后,教室内每立方米空气中的药物含量y (毫克)与时间t (小时)的函数关系式为1()32t ay -=(a 为常数).已知从药熏开始,教室内每立方米空气中的药物含量y (毫克)关于时间t (小时)的变化曲线如图所示.(1)从药熏开始,求每立方米空气中的药物含量y (毫克)与时间t (小时)之间的函数关系式; (2)据测定,当空气中每立方米的药物含量不高于0.125毫克时,学生方可进入教室,那么从药熏开始,至少需要经过多少小时后,学生才能回到教室? 【答案】(1)0.25,00.21,0.232t t t y t -⎧⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩;(2)0.8小时.【解析】(1)00.2t ≤≤时,设y kt =,由最高点求出k ,再依据最高点求出参数a ,从而得函数解析式;(2)解不等式0.210.12532t -⎛⎫≤ ⎪⎝⎭可得结论.【详解】解:(1)依题意,当00.2t ≤≤时, 可设y kt =,且10.2k =,解得5k = 又由0.21132a-⎛⎫= ⎪⎝⎭,解得0.2a =,所以0.25,00.21,0.232t t t y t -⎧⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩ (2)令0.210.12532t -⎛⎫≤ ⎪⎝⎭,即5131122t -⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭, 得513t -≥,解得0.8t ≥,即至少需要经过0.8h 后,学生才能回到教室.19.设函数()()212f x ax b x =+-+.(1)若不等式()0f x <的解集为()1,2,求实数a ,b 的值;(2)若()15f -=,且存在x ∈R ,使()1f x <成立,求实数a 的取值范围. 【答案】(1)1,2a b ==-; (2)9a >或1a <.【分析】(1)根据()()2120f x ax b x =+-+<的解集为1,2,利用根与系数的关系求解;(2)根据()15f -=,得到2a b -=,再由存在x ∈R ,()2310ax a x +-+<成立,分0a =,a<0,0a >,利用判别式法求解.【详解】(1)解:因为()()2120f x ax b x =+-+<的解集为1,2,所以01322a ba a ⎧⎪>⎪-⎪=⎨⎪⎪=⎪⎩,解得1,2a b ==-; (2)(2)因为()15f -=,所以2a b -=,因为存在x ∈R ,()()2121f x ax b x =+-+<成立,即存在x ∈R ,()2310ax a x +-+<成立,当0a =时,13x >,成立;当a<0时,函数()231y ax a x =+-+图象开口向下,成立;当0a >时,()2340a a ∆=-->,即21090a a -+>, 解得9a >或1a <,此时,9a >或01a <<, 综上:实数a 的取值范围9a >或1a <.20.某区政府组织了以“不忘初心,牢记使命”为主题的教育活动,为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n 名,获得了他们一周参与主题教育活动时间(单位:h)的频率分布直方图如图所示,已知参与主题教育活动时间在(]12,16内的人数为92.(1)求n 的值.(2)以每组数据所在区间的中点值作为本组的代表,估算这些党员干部参与主题教育活动时间的平均值以及中位数(中位数精确到0.01).(3)如果计划对参与主题教育活动时间在(]16,24内的党员干部给予奖励,且在(](]16,20,20,24内的分别评为二等奖和一等奖,那么按照分层抽样的方法从获得一、二等奖的党员干部中选取5人参加社区义务宣讲活动,再从这5人中随机抽取2人作为主宣讲人,求这2人均是二等奖的概率.【答案】(1)200;(2)13.64;13.83;(3)35.【分析】(1)先由频率分布直方图可知每一组的频率和为1,列方程求出a 的值,从而可得(]12,16的频率,进而可求出n 的值;(2)用每一组的中间值乘以其对应的频率,再把所得的积相加可得平均值,由频率分布直方图可知中位数在第3组,若设中位数为x ,则()0.050040.01254160.11500.5x ⨯+⨯+-⨯=,解方程可得中位数; (3)先利用分层抽样的方法计算出从(]16,20和(]20,24所选的人数,然后利用列举法列出从这5人中随机抽取2人的所有情况,进而可求出概率【详解】(1)由已知可得,()0.250.02500.04750.05000.01250.1150a =-+++=. 则0.1150492n ⨯⨯=,得922000.11504n ==⨯.(2)这些党员干部参与主题教育活动时间的平均值为:60.0250100.0475140.1150180.0500220.0125413.()64⨯+⨯+⨯+⨯+⨯⨯=设中位数为x ,则()0.050040.01254160.11500.5x ⨯+⨯+-⨯=,得13.83x ≈. (3)按照分层抽样的方法从(]16,20内选取的人数为0.050540.05000.0125⨯=+,从(]20,24内选取的人数为0.0125510.05000.0125⨯=+.记二等奖的4人分别为a b c d ,,,,一等奖的1人为A ,事件E 为“从这5人中抽取2人作为主宣讲人,且这2人均是二等奖”.从这5人中随机抽取2人的基本事件为()(),()()()a b a c a d a A b c ,,,,,,,,, ()()(,(),),)(b d b A c d c A d A ,,,,,,,共10种,其中2人均是二等奖的情况有,,,()(),(,)a b a c a d ,()()()b c b d c d ,,,,,,共6种, 由古典概型的概率计算公式得()63105P E ==. 【点睛】此题考查由频率分布直方图求平均数和中位数,考查分层抽样,考查古典概型的概率计算,考查分析问题的能力,属于中档题21.已知函数()f x 满足对任意12,x x ∈R ,都有()()()()1212,0f x x f x f x f x +=>恒成立.且当0x <时,()1f x >.(1)求()0f ,判断()f x 在R 上的单调性,并证你的结论; (2)解不等式()()121f x f x ->.【答案】(1)1,函数()f x 在R 上递减,证明见解析 (2)()1,+∞【分析】(1)令120x x ==可得()0f ,设12x x <,则120x x -<,利用()()()()()11221222=-+=->f x f x x x f x x f x f x 可证明函数()f x 在R 上单调递减;(2)根据函数()f x 在R 上单调递减可得120+-<x x 解不等式可得答案.【详解】(1)对任意12,x x ∈R ,都有()()()1212f x x f x f x +=,令120x x ==,可得()()200f f =,又()()0,01f x f >∴=;函数()f x 在R 上是单调递减函数,证明如下, 设12x x <,则120x x -<,则()121f x x ->,且()()()()()()2112212220.f x f x f x x x f x x f x f x >∴=-+=->, 则函数()f x 在R 上单调递减;(2)由(1)可知,()()()()01,1210f f x f x f =∴->=,又对任意12,x x ∈R ,都有()()()()()1212,120f x x f x f x f x x f +=∴+->,根据函数()f x 在R 上单调递减可得120+-<x x ,解得1x >, 故不等式的解集为()1,+∞.22.设函数()()210,1x xb t f x b b b -+=>≠是定义域为R 的奇函数.(1)求()f x ;(2)若()20f <,求使不等式()()210f kx x f x +++<对一切x R ∈恒成立的实数k 的取值范围;(3)若函数()f x 的图象过点31,2⎛⎫⎪⎝⎭,是否存在正数()1a a ≠,使函数()()22log 21x xa g xb b f x a -=+-+-⎡⎤⎣⎦在[]1,0-上的最大值为2,若存在,求出a 的值;若不存在,请说明理由.【答案】(1)()()0,1x xf x b b b b -->≠=(2)()3,1-(3)a =【分析】(1)根据()f x 是定义域为R 的奇函数,由()00f =求解;(2)()20f <,得到b 的范围,从而得到函数()f x 的单调性,将()()210f kx x f x +++<对一切x ∈R恒成立,转化为()2110x k x +++>对一切x R ∈恒成立求解;(3)根据函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,求得b ,得到()()22log 222221x x x xa g x a --=+--+-⎡⎤⎣⎦,令322,02x x t -⎡⎤-∈-⎢⎥⎣⎦=,利用复合函数求最值的方法求解.【详解】(1)解:函数()()210,1x xb t f x b b b -+=>≠是定义域为R 的奇函数,所以()020f t =-=,解得2t =,此时()()0,1x xf x b b b b -->≠=,满足()()f x f x -=-;(2)因为()20f <,所以220b b --<,解得01b <<,所以()()0,1x xf x b b b b -->≠=在R 上是减函数,()()210f kx x f x +++<等价于()()()211f kx x f x f x <+=+---,所以21kx x x +>--,即()2110x k x +++>,又因为不等式()()210f kx x f x +++<对一切x ∈R 恒成立,所以()2110x k x +++>对一切x ∈R 恒成立,所以()2140k ∆=+-<,解得31k -<<, 所以实数k 的取值范围是()3,1-; (3)因为函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以132b b --=,解得2b =, 则()()22log 222221x x x xa g x a --=+--+-⎡⎤⎣⎦,令322,02x xt -⎡⎤-∈-⎢⎥⎣⎦=,则()221h t t t a =-++,当01a <<时,log a y x =是减函数,()()min 01h t h a ==+,因为函数()g x 在[]1,0-上的最大值为2, 所以()log 12a a +=,即210a a --=,解得a =当1a >时,log a y x =是增函数,()max 32524h t h a ⎛⎫=-=+ ⎪⎝⎭,因为函数()g x 在[]1,0-上的最大值为2, 所以25log 24a a ⎛⎫+= ⎪⎝⎭,即244250a a --=,解得a =a =,所以存在正数a =()g x 在[]1,0-上的最大值为2.。

浙江省杭高三校2023-2024学年高一上学期期末数学试题含答案

浙江省杭高三校2023-2024学年高一上学期期末数学试题含答案

杭高2023学年第一学期期末考试高一数学参考答案(答案在最后)命题:1.本试卷分试题卷和答题卡两部分.本卷满分150分,考试时间120分钟.2.答题前务必将自己的学校、班级、姓名用黑色字迹的签字笔或钢笔填写在答题卡规定的地方.3.答题时,请按照答题卡上“注意事项”的要求,在答题卡相应的位置上规范答题,在本试题卷上答题一律无效.4.考试结束后,只需上交答题卡.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α终边上一点()43P ,-,则sin α=()A.3 B.45-C.35D.34-【答案】C 【解析】【分析】根据三角函数的定义可求sin α的值.【详解】因为()43P ,-,故5OP =,故3sin 5α=,故选:C.2.已知2log 0.5a =,0.52b =,sin 2c =,则,,a b c 的大小关系为()A.a b c <<B.b<c<aC.c<a<bD.a c b<<【答案】D 【解析】【分析】分别利用函数2log y x =、2x y =和sin y x =的单调性,对“2log 0.5a =,0.52b =,sin 2c =”三个因式进行估值即可.【详解】因为函数2log y x =是增函数,且0.51<,则22log 0.5log 10a =<=,因为函数2x y =是增函数,且0.50>,则0.50221b =>=,因为正弦函数sin y x =在区间π3π[,22上是减函数,且π2π2<<,所以π0sin πsin 2sin 12c =<=<<,所以a c b <<,故选:D.3.函数2lg 43()()f x x x =+-的单调递减区间是()A.3,2⎛⎤-∞ ⎥⎝⎦B.3,2⎡⎫+∞⎪⎢⎣⎭C.31,2⎛⎤- ⎥⎝⎦D.3,42⎡⎫⎪⎢⎣⎭【答案】D 【解析】【分析】计算出函数定义域后结合复合函数的单调性计算即可得.【详解】由()()243lg f x x x =+-可得,2430x x+->,解得()1,4x ∈-,故()f x 的定义域为()1,4-,由ln y x =为增函数,令243t x x =+-,对称轴为32x =,故其单调递减区间为3,42⎡⎫⎪⎢⎣⎭,所以()()243lg f x x x =+-的单调递减区间为3,42⎡⎫⎪⎢⎣⎭.故选:D.4.“01a <<且01b <<”是“log 0a b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两者之间的推出关系可得条件关系.【详解】若01a <<且01b <<,则log log 10a a b >=,故log 0a b >成立,故“01a <<且01b <<”是“log 0a b >”的充分条件.若log 0a b >,则log log 1a a b >,故11a b >⎧⎨>⎩或0101a b <<⎧⎨<<⎩,故“01a <<且01b <<”不是“log 0a b >”的必要条件,故“01a <<且01b <<”是“log 0a b >”的充分不必要条件.故选:A.5.设函数()f x 51,11,1x x x a x -<⎧=⎨+≥⎩.若4()95f f ⎡⎤=⎢⎥⎣⎦,则a 等于()A.12B.2C.13D.3【答案】B 【解析】【分析】按照从内到外的原则,先计算4()5f 的值,再代入4()95f f ⎡⎤=⎢⎥⎣⎦,即可求出a 的值.【详解】由于函数()f x 51,11,1x x x a x -<⎧=⎨+≥⎩,且415<,则44(51355f =⨯-=,且31>,所以34()(3)195f f f a ⎡⎤==+=⎢⎥⎣⎦,即38a =,得2a =.故选:B.6.已知函数()24f x x ax =-+在()1,2上有且只有一个零点,则实数a 的取值范围是()A.[)8,10 B.()8,10 C.[)4,5 D.()4,5【答案】D 【解析】【分析】根据题意将零点问题转化为函数图象公共点问题进而求解答案即可.【详解】因为函数()24f x x ax =-+在()1,2上有且只有一个零点,所以24x ax +=,即4x a x+=在()1,2上有且只有一个实根,所以4y x x=+与y a =的函数图象在()1,2x ∈时有一个公共点,由于4y x x =+在()1,2单调递减,所以442121a +<<+,即45a <<.故选:D7.已知()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω在2π0,3⎛⎫⎪⎝⎭上单调递增,则ω的取值范围是()A.(]0,4 B.10,4⎛⎤ ⎝⎦C.10,4⎛⎫ ⎪⎝⎭D.(]0,1【答案】B 【解析】【分析】先求出π3x ω+取值范围,再由()f x 在2π0,3⎛⎫⎪⎝⎭上单调递增得2πππ332ω+≤,最后结合题意求出ω的取值范围即可.【详解】因为2π0,3x ⎛⎫∈ ⎪⎝⎭,0ω>,所以ππ2ππ,3333x ω⎛⎫+∈+ ⎪⎝⎭,要使得()f x 在2π0,3⎛⎫ ⎪⎝⎭上单调递增,则2πππ332ω+≤,解得14ω≤,又由题意可知0ω>,所以104ω<≤,故选:B8.中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状.不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知4AB CD ==,4BC =,8AD =,则该玉佩的面积为()A.16π3- B.32π3-C.16π3D.32π3【答案】B【解析】【分析】取AD 的中点为M ,连接BM 、CM ,延长AB ,CD 交于点O ,利用平面几何知识得到扇形的圆心角,进而利用扇形面积公式和三角形的面积公式计算求得该玉佩的面积.【详解】如图,取AD 的中点为M ,连接BM ,CM ,延长AB ,CD 交于点O ,由题意,△AOB 为等腰三角形,又∵AB CD =,∴AD //BC ,又∵M 为AD 的中点,8,4AD BC ==,∴AM 与BC 平行且相等,∴四边形ABCM 为平行四边形,∴4MC AB ==,同理4CM AB ==,∴△ABM ,△CDM 都是等边三角形,∴△BOC 是等边三角形,∴该玉佩的面积138844234S π=⨯⨯⨯-⨯⨯=32π3-.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()f x 的图象是连续不断的,且有如下对应值表:x1234567()f x 4-2-1421-3-在下列区间中,函数()f x 必有零点的区间为()A.(1,2)B.(2,3)C.(5,6)D.(5,7)【答案】BCD 【解析】【分析】根据零点存在定理可判断零点所在区间.【详解】由所给的函数值表知,()()()()()()()()120,230,560,570,f f f f f f f f ><<<由零点存在定理可知:()f x 在区间()()()2,3,5,6,5,7内各至少有一个零点,故选:BCD.10.设函数()πsin 2,6f x x x ⎛⎫=+= ⎪⎝⎭R ,若ππ,22α⎛⎫∈- ⎪⎝⎭,函数()f x α+是偶函数,则α的值可以是()A.π6-B.π3-C.π6D.π3【答案】BC 【解析】【分析】由题意可得()πsin 226f x x αα⎛⎫+=++⎪⎝⎭,结合偶函数的性质与ππ,22α⎛⎫∈- ⎪⎝⎭计算即可得.【详解】()πsin 226f x x αα⎛⎫+=++ ⎪⎝⎭,又其为偶函数,则图像关于y 轴对称,则ππ2π,62k k α+=+∈Z ,得ππ,62k k α=+∈Z ,又ππ,22α⎛⎫∈- ⎪⎝⎭,则π6α=或π3α=-.故选:BC.11.已知函数())ln1f x x x =++.则下列说法正确的是()A.()1lg3lg 23f f ⎛⎫+= ⎪⎝⎭B.函数()f x 的图象关于点()0,1对称C.对定义域内的任意两个不相等的实数12,x x ,()()12120f x f x x x -<-恒成立.D.若实数,a b 满足()()2f a f b +>,则0a b +>【答案】ABD 【解析】【分析】选项A 、B ,先利用函数解析式得出结论:()()2f x f x -+=,由于1lglg33=-,只需验证()()lg3lg32f f +-=是否成立即可;选项B ,需验证点()(,)x f x 和点()(,)x f x --关于点()0,1对称即可;选项C ,利用复合函数单调性的“同增异减”的原则判断即可;选项D ,将不等式()()2f a f b +>转化为()()()2f a f b f b >-=-的形式,借助函数()f x 单调性判断即可.【详解】对于A 、B 选项,对任意的x ∈R ,0x x x >+≥,所以函数())ln1f x x x =++的定义域为R ,又因为()())()1])1f x f x x x x x -+=+-++++22ln(1)22x x =+-+=,由于()()()1lg3lg lg3lg323f f f f ⎛⎫+=+-= ⎪⎝⎭,故A 正确;由于函数()f x 满足()()2f x f x -+=,所以任意点()(,)x f x 和点()(,)x f x --关于点()0,1对称,故函数()f x 的图象关于点()0,1对称,故B 正确;对于C 选项,对于函数())ln h x x =+0x x x >+≥,得该函数的定义域为R ,()()))()22lnlnln 10h x h x x x x x -+=-+=+-=,即()()h x h x -=-,所以函数()h x 为奇函数,当0x ≥时,内层函数u x =为增函数,外层函数ln y u =为增函数,所以函数()h x 在[)0,∞+上为增函数,故函数()h x 在(],0-∞上也为增函数,因为函数()h x 在R 上连续,故函数()h x 在R 上为增函数,又因为函数1y x =+在R 上为增函数,故函数()f x 在R 上为增函数,故C 不正确;对于D 选项,由()()2f x f x -+=,得2()()f x f x -=-,因为实数a ,b 满足()()2f a f b +>,所以()()()2f a f b f b >-=-,同时函数()f x 在R 上为增函数,可得a b >-,即0a b +>,故D 正确.故选:ABD.12.函数()lg f x x =,有0a b <<且()()22a b f a f b f +⎛⎫==⎪⎝⎭,则下列选项成立的是()A.1ab =B.14a <C.3<<4b D.517328a b +<<【答案】ACD 【解析】【分析】利用对数性质判断选项A ;再利用零点存在定理判断得3<<4b ,从而判断选项B 、C 、D.【详解】因为()lg ,f x x =有0a b <<且()()2,2a b f a f b f +⎛⎫== ⎪⎝⎭所以lg lg =a b ,即lg lg a b -=,得lg lg 0a b +=所以1ab =,且()()0,1,1,.a b ∞∈∈+所以A 正确22112lg 2lg lg 24b b b b b +++==(因为12b b+>),故22142,b b b=++即4324210,b b b -++=()()321310b b b b ----=,令()3231,g b b b b =---当13b <<时,()3222313310g b b b b b b b =---<---<当4b >时,()32222314311(1)10g b b b b b b b b b b b =--->---=--=-->,而()()30,40,g g 故()0g b =在()3,4之间必有解,所以存在b ,使得3 4.b <<所以C 正确111,43a b ⎛⎫=∈ ⎪⎝⎭,所以B 不正确11517,2238a b b b +⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭,所以D 正确故选:ACD【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.第Ⅱ卷三、填空题:本题共4小题,每小题5分,20分.13.计算:23(log 9)(log 4)⋅=____________.【答案】4【解析】【分析】根据题意,由换底公式代入计算,即可得到结果.【详解】()()23log 9log 4=lg 9lg 2×lg 4lg 32lg 3lg 2=×2lg 2lg 3=4.故答案为:414.写出一个同时满足以下三个条件①定义域不是R ,值域是R ;②奇函数;③周期函数的函数解析式___________.【答案】()()πtan ,πZ 2f x x x k k =≠+∈(答案不唯一).【解析】【分析】联想正切函数可得结果.【详解】满足题意的函数为()tan f x x =,(Z)2x k k ππ≠+∈(答案不唯一).故答案为:()tan f x x =,(Z)2x k k ππ≠+∈(答案不唯一).15.已知()f x 为定义在R 上的奇函数,且又是最小正周期为T 的周期函数,则πsin 32T f ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦的值为____________.【答案】2【解析】【分析】根据函数的周期和奇偶性得到02T f ⎛⎫=⎪⎝⎭,进而得到ππsin sin 3232T f ⎡⎤⎛⎫+== ⎪⎢⎥⎝⎭⎣⎦.【详解】因为()f x 的最小正周期为T ,故222T T T f f T f ⎛⎫⎛⎫⎛⎫=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又()f x 为奇函数,故22T T f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,故22T T f f ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭,即202T f ⎛⎫= ⎪⎝⎭,解得02T f ⎛⎫= ⎪⎝⎭,故ππsin sin 3232T f ⎡⎤⎛⎫+== ⎪⎢⎥⎝⎭⎣⎦.故答案为:3216.对于任意实数,a b ,定义{},min ,,a a ba b b a b ≤⎧=⎨>⎩.设函数()3f x x =-+,()2log g x x =,则函数{}()min (),()h x f x g x =的最大值是_______.【答案】1【解析】【分析】画出()f x 和()g x 的图象,得到()h x 的图象,根据图象得到最大值.【详解】在同一坐标系中,作出函数()(),f x g x 的图象,依题意,()h x 的图象为如图所示的实线部分,令23log 2x x x -+=⇒=,则点()2,1A 为图象的最高点,因此()h x 的最大值为1,故答案为:1四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知cos sin 3cos sin θθθθ-=-+.(1)求tan θ的值;(2)求222sin 113cos +-θθ的值.【答案】(1)2-(2)132【解析】【分析】(1)根据题意整理可得sin 2cos θθ=-,进而可得结果;(2)根据齐次式问题分析求解,注意“1”的转化.【小问1详解】因为cos sin 3cos sin θθθθ-=-+,整理得sin 2cos θθ=-,所以sin tan 2cos θθθ==-;【小问2详解】因为tan 2θ=-,所以2222222222222sin 12sin sin cos 3sin cos 13cos sin cos 3cos sin 2cos θθθθθθθθθθθθ++++==-+--()()22223tan 1tan 321213222θθ⨯-+==--+=-.18.已知集合{}1217A xx =≤-≤∣,函数()f x =的定义域为集合B .(1)求A B ⋂;(2)若{}M xx m =≤∣,求R M B ⋃=时m 的取值范围.【答案】(1){34}A B xx ⋂=<≤∣(2)[)3,+∞【解析】【分析】(1)解一次与二次不等式,结合具体函数定义域的求法化简集合,A B ,再利用交集的运算即可得解;(2)利用集合的并集结果即可得解.【小问1详解】集合{}{}121714A xx x x =≤-≤=≤≤∣∣,由2230x x -->,得1x <-或3x >,则集合{1B xx =<-∣或3}x >,所以{34}A B xx ⋂=<≤∣.【小问2详解】因为R M B ⋃=,{}M xx m =≤∣,则3m ≥,故m 的取值范围是[)3,+∞.19.已知()sin()f x x π=-223,(1)求()f x 的最小正周期和对称轴方程;(2)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【答案】(1)最小正周期为π;对称轴方程为5,122k x k Z ππ=+∈;(2)()max 1f x =,()min 2f x =-;【解析】【分析】(1)由正弦函数的性质计算可得;(2)由x 的取值范围,求出23x π-的取值范围,再由正弦函数的性质计算可得;【详解】解:(1)因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以最小正周期22T ππ==,令2,32x k k Z πππ-=+∈,解得5,122k x k Z ππ=+∈,故函数的对称轴为5,122k x k Z ππ=+∈(2)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当236x ππ-=,即4x π=时函数取得最大值()max 14f x f π⎛⎫== ⎪⎝⎭,当232x ππ-=-,即12x π=-时函数取得最小值()min 212f x f π⎛⎫=-=- ⎪⎝⎭20.已知函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432xx f x +=-⨯.(1)求()f x 的解析式;(2)求方程()8f x =-的解集.【答案】(1)()11432,0432,0x x xx x f x x +--+⎧-⨯≥=⎨-⨯<⎩(2){}2,1,1,2--【解析】【分析】(1)根据偶函数的性质直接求解即可;(2)根据题意先求0x ≥时符合题意的解,再结合偶函数对称性求出方程解集即可.【小问1详解】因为函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432xx f x +=-⨯,所以任取0x <,则0x ->,此时()()1432xx f x f x --+=-=-⨯,所以()11432,0432,0x x xx x f x x +--+⎧-⨯≥=⎨-⨯<⎩【小问2详解】当0x ≥时,令()14328xx f x +=-⨯=-,即()226280xx -⨯+=,令2x t =,则2680t t -+=,解得2t =或4t =,当22x t ==时,1x =,当24x t ==时,2x =,根据偶函数对称性可知,当0x <时,符合题意的解为=1x -,2x =-,综上,原方程的解集为{}2,1,1,2--21.已知函数()222cos 1f x x x =+-.(1)求()f x 的单调递增区间;(2)若π102313f α⎛⎫-=⎪⎝⎭,π,π2α⎛⎫∈ ⎪⎝⎭,求πsin 4α⎛⎫+ ⎪⎝⎭的值.【答案】(1)πππ,π,Z36k k k ⎡⎤-++∈⎢⎥⎣⎦(2)26【解析】【分析】(1)由降幂公式和辅助角公式化简函数解析式,整体代入法求单调递增区间;(2)由π102313f α⎛⎫-= ⎪⎝⎭,代入函数解析式解出cos α和sin α,由两角和的正弦公式求解πsin 4α⎛⎫+ ⎪⎝⎭的值.【小问1详解】()222cos 12cos 2f x x x x x =+-=+1π2sin 2cos 22sin 2226x x x ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,令Z 262πππ2π22π,k x k k -+≤+≤+∈,解得2ππ2π22πZ ,33k x k k -+≤≤+∈,即ππππ,Z 36k x k k -+≤≤+∈,所以()f x 的单调递增区间为πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】由π102313f α⎛⎫-=⎪⎝⎭得5sin 213πα⎛⎫-= ⎪⎝⎭,所以5cos 13α=-,又因为π,π2α⎛⎫∈⎪⎝⎭,所以12sin 13α==,所以πππsin sin cos cos sin 44426ααα⎛⎫+=+= ⎪⎝⎭.22.已知函数()22log f x x =-,()()21,11,1x x g x f x x ⎧-≤⎪=⎨->⎪⎩.(1)求()g x 的最大值;(2)若对任意[]14,16x ∈,2R x ∈,不等式()()()12212kf x f xg x ⋅>恒成立,求实数k 的取值范围.【答案】(1)1(2)1,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)根据分段函数性质讨论函数单调性与最值,结合指数函数和对数函数相关知识求解最值即可;(2)根据题意转化为对任意[]14,16x ∈,()()21121kf x f x ⋅>恒成立,代入函数表达式进行化简,令21log ,24m x m =≤≤,将不等式化为()()2211k m m --->,结合二次函数相关知识分类讨论即可.【小问1详解】当1x ≤时,()21xg x =-,此时022x <≤,1211x -<-≤,则()0211xg x ≤=-≤;当1x >时,()()211log g x f x x =-=-单调递减,此时()()11g x g <=,综上所述,当1x =时,取得()g x 的最大值1;【小问2详解】因为对任意[]14,16x ∈,2R x ∈,不等式()()()21122kf x f xg x ⋅>恒成立,且()21g x ≤,所以对任意[]14,16x ∈,()()21121kf x f x ⋅>恒成立,由题意得,()()()()()()22112121212122log 22log 22log 1log kkf x f x x x k x x ⋅=--=---,令21log ,24m x m =≤≤,则不等式可化为()()2211k m m --->,即()2223230m k m k +--+>对任意[]2,4m ∈恒成立,令()()[]222323,2,4h m m k m k m =+--+∈,则函数图象开口向上,对称轴()233222k km --=-=⨯,当322k -≤,即1k ≥-时,()()()min 2843230h m h k k ==+--+>,解得12k >,符合题意;当3242k -<<时,即51k -<<-时,()2min 323022k k k h m h --+-⎛⎫==> ⎪⎝⎭,即2230k k -+<,不等式无解,该情况舍去;当342k-≥时,即5k ≤-时,()()()min 43283236110h m h k k k ==+--+=+>,解得116k >-,不符合题意,该情况舍去.综上所述,实数k 的取值范围为1,2∞⎛⎫+⎪⎝⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d=∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.。

山东省潍坊市高一上学期期末考试数学试题(解析版)

山东省潍坊市高一上学期期末考试数学试题(解析版)

一、单选题1.已知集合,,则集合A ,B 的关系是( ) {}N A x y x =∈{}4,3,2,1B =A . B . C .D .B A ⊆A B =B A ∈A B ⊆【答案】A【分析】计算得到,据此得到集合的关系.{}0,1,2,3,4A =【详解】,,故错误; {}{N}0,1,2,3,4A xy x ==∈=∣{}4,3,2,1B =A B =集合中元素都是集合元素,故正确;B A B A ⊆是两个集合,不能用“”表示它们之间的关系,故错误;A B ,∈B A ∈集合中元素存在不属于集合的元素,故错误. A B A B ⊆故选:A2.函数的定义域为( )()()2ln 2f x x x =-A . B . (,0)(2,)-∞+∞ (,0][2,)-∞⋃+∞C . D .()0,2[]0,2【答案】C【分析】根据对数型函数的定义域运算求解. 【详解】令,解得,220x x ->02x <<故函数的定义域为.()()2ln 2f x x x =-()0,2故选:C.3.命题“,”的否定形式是( ) 2x ∀>240x -≠A ., B ., 2x ∃>240x -≠2x ∀≤240x -=C ., D .,2x ∃>240x -=2x ∃≤240x -=【答案】C【分析】根据全称命题的否定形式可直接得到结果.【详解】由全称命题的否定可知:原命题的否定为,. 2x ∃>240x -=故选:C.4.已知,,,则( ) 0.13a =30.3b =0.2log 3c =A . B .C .D .a b c <<c b a <<b a c <<c<a<b 【答案】B【分析】根据指数函数和对数函数单调性,结合临界值即可判断出结果.0,1【详解】,.3000.10.20.2log 3log 100.30.3133<=<<==< c b a ∴<<故选:B.5.某市四区夜市地摊的摊位数和食品摊位比例分别如图、图所示,为提升夜市消费品质,现用12分层抽样的方法抽取的摊位进行调查分析,则抽取的样本容量与区被抽取的食品摊位数分别6%A 为( )A .,B .,C .,D .,21024210272522425227【答案】D【分析】根据分层抽样原则,结合统计图表直接计算即可.【详解】根据分层抽样原则知:抽取的样本容量为;()1000800100014006%252+++⨯=区抽取的食品摊位数为.A 10006%0.4527⨯⨯=故选:D.6.小刚参与一种答题游戏,需要解答A ,B ,C 三道题.已知他答对这三道题的概率分别为a ,a ,,且各题答对与否互不影响,若他恰好能答对两道题的概率为,则他三道题都答错的概率为1214( ) A . B .C .D .12131415【答案】C【分析】记小刚解答A ,B ,C 三道题正确分别为事件D ,E ,F ,并利用D ,E ,F 构造相应的事件,根据概率加法公式与乘法公式求解相应事件的概率.【详解】记小刚解答A ,B ,C 三道题正确分别为事件D ,E ,F ,且D ,E ,F 相互独立, 且. ()()()1,2P D P E a P F ===恰好能答对两道题为事件,且两两互斥, DEF DEF DEF ++DEF DEF DEF ,,所以()()()()P DEF DEF DEF P DEF P DEF P DEF ++=++()()()()()()()()()P D P E P F P D P E P F P D P E P F =++,()()11111112224a a a a a a ⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯= ⎪⎝⎭整理得,他三道题都答错为事件,()2112a -=DEF 故.()()()()()()22111111224P DEF P D P E P F a a ⎛⎫==--=-= ⎪⎝⎭故选:C.7.定义在上的奇函数满足:对任意的,,有,且R ()f x ()12,0,x x ∈+∞12x x <()()21f x f x >,则不等式的解集是( ) ()10f =()0f x >A . B . ()1,1-()()1,01,-⋃+∞C . D .()(),10,1-∞-⋃()(),11,-∞-⋃+∞【答案】B【分析】根据单调性定义和奇函数性质可确定的单调性,结合可得不等式()f x ()()110f f -=-=的解集.【详解】对任意的,,有, ()12,0,x x ∈+∞12x x <()()21f x f x >在上单调递增,又定义域为,, ()f x \()0,∞+()f x R ()10f =在上单调递增,且,;()f x \(),0∞-()()110f f -=-=()00f =则当或时,, 10x -<<1x >()0f x >即不等式的解集为. ()0f x >()()1,01,-⋃+∞故选:B.8.已知函数,若函数有七个不同的零点,()11,02ln ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩()()()()24433g x f x t f x t =-+⎤⎦+⎡⎣则实数t 的取值范围是( ) A .B .C .D .1,12⎡⎤⎢⎥⎣⎦10,2⎛⎫ ⎪⎝⎭1,2⎡⎫+∞⎪⎢⎣⎭{}10,12⎛⎫⋃ ⎪⎝⎭【答案】D【分析】先以为整体分析可得:和共有7个不同的根,再结合的图象()f x ()34f x =()f x t =()f x 分析求解.【详解】令,解得或, ()()()()244330g x f x t f x t =-+⎦+⎤⎣=⎡()34f x =()f x t =作出函数的图象,如图所示,()y f x =与有4个交点,即方程有4个不相等的实根,()y f x =34y =()34f x =由题意可得:方程有3个不相等的实根,即与有3个交点, ()f x t =()y f x =y t =故实数t 的取值范围是.{}10,12⎛⎫⋃ ⎪⎝⎭故选:D.【点睛】方法点睛:应用函数思想确定方程解的个数的两种方法(1)转化为两熟悉的函数图象的交点个数问题、数形结合、构建不等式(方程)求解. (2)分离参数、转化为求函数的值域问题求解.二、多选题9.下列说法正确的是( ) A .的最小值为 B .无最小值 ()4f x x x=+4()4f x x x=+C .的最大值为D .无最大值()()3f x x x =-94()()3f x x x =-【答案】BC【分析】结合基本不等式和二次函数性质依次判断各个选项即可.【详解】对于AB ,当时,(当且仅当时取等号); 0x >44x x +≥=2x =当时,(当且仅当时取等号), 0x <()444x x x x ⎡⎤⎛⎫+=--+-≤-=- ⎪⎢⎥⎝⎭⎣⎦2x =-的值域为,无最小值,A 错误,B 正确; ()4f x x x∴=+(][),44,-∞-⋃+∞对于CD ,,()()22393324f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭当时,取得最大值,最大值为,C 正确,D 错误. ∴32x =()f x 94故选:BC.10.下列函数中,既是偶函数,又在上单调递减的是( ) (0,)+∞A . B .C .D .y x =||e x y =-12log y x =13y x -=【答案】BC【分析】A 选项不满足单调性;D 不满足奇偶性,B 、C 选项均为偶函数且在上单调递减正(0,)+∞确.【详解】在上单调递增,A 选项错误;y x =()0,∞+,故为偶函数,当时为单调递减函数,B()e ,)()e (xxf x f x f x =--==-||e x y =-()0,x ∈+∞e x y =-选项正确;,故为偶函数,当时为单调递1122()()log ,log ()g g g x x x x x =-==12log y x =()0,x ∈+∞12log y x =减函数,C 选项正确;是奇函数,D 选项错误. 13y x -=故选:BC11.如图,已知正方体顶点处有一质点Q ,点Q 每次会随机地沿一条棱向相邻的1111ABCD A B C D -某个顶点移动,且向每个顶点移动的概率相同,从一个顶点沿一条棱移动到相邻顶点称为移动一次,若质点Q 的初始位置位于点A 处,记点Q 移动n 次后仍在底面ABCD 上的概率为,则下列n P 说法正确的是( )A .B . 123P =259P =C .D .点Q 移动4次后恰好位于点的概率为012133n n P P +=+1C 【答案】ABD【分析】根据题意找出在下或上底面时,随机移动一次仍在原底面及另一底面的概率即可逐步分Q 析计算确定各选项的正误.【详解】依题意,每一个顶点由3个相邻的点,其中两个在同一底面.所以当点在下底面时,随机移动一次仍在下底面的概率为:, Q 23在上底面时,随机移动一次回到下底面的概率为:,13所以,故A 选项正确; 123P =对于B :,故B 选项正确;22211533339P =⨯+⨯=对于C :,故C 选项错误; ()1211113333n n n n P P P P +=+-=+对于D :点由点移动到点处至少需要3次, Q A 1C 任意折返都需要2次移动,所以移动4次后不可能 到达点,所以点Q 移动4次后恰好位于点的概率为0. 1C 1C 故D 选项正确; 故选:ABD.12.已知实数a ,b 满足,,则( ) 22a a +=22log 1b b +=A . B . C . D .22a b +=102a <<122a b->5384b <<【答案】ACD【分析】构建,根据单调性结合零点存在性定理可得,再利用指对数互()22xf x x =+-13,24a ⎛⎫∈ ⎪⎝⎭化结合不等式性质、函数单调性分析判断. 【详解】对B :∵,则,22a a +=220a a +-=构建,则在上单调递增,且,()22xf x x =+-()f x R 3413350,202244f f ⎛⎫⎛⎫=<=-> ⎪ ⎪⎝⎭⎝⎭故在上有且仅有一个零点,B 错误;()f x R 13,24a ⎛⎫∈ ⎪⎝⎭对A :∵,则, 22log 1b b +=222log 20b b +-=令,则,即,22log t b =22t b =220t t +-=∴,即,故,A 正确; 2lo 2g a t b ==22a b =22a b +=对D :∵,则,D 正确; 22a b +=253,284a b -⎛⎫=∈ ⎪⎝⎭对C :∵,且在上单调递增, 23211224a a ab a ---=-=>->-2x y =R ∴,C 正确. 11222a b-->=故选:ACD.【点睛】方法点睛:判断函数零点个数的方法:(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b ]上是连续的曲线,且f (a )·f (b )<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.三、填空题13.已知一元二次方程的两根分别为和,则______. 22340x x +-=1x 2x 1211x x +=【答案】## 340.75【分析】利用韦达定理可直接求得结果.【详解】由韦达定理知:,,. 1232x x +=-122x x =-1212121134x x x x x x +∴+==故答案为:. 3414.已知函数(且)的图象恒过定点M ,则点M 的坐标为______.1log (2)3a y x =-+0a >1a ≠【答案】13,3⎛⎫⎪⎝⎭【分析】函数存在参数,当时所求出的横纵坐标即是定点坐标. log (2)0a x -=【详解】令,解得,此时,故定点坐标为. log (2)0a x -=3x =13y =13,3M ⎛⎫ ⎪⎝⎭故答案为:13,3⎛⎫⎪⎝⎭15.将一组正数,,,…,的平均数和方差分别记为与,若,1x 2x 3x 10x x 2s 10214500i i x ==∑250s =,则______. x =【答案】20【分析】列出方差公式,代入数据,即可求解.【详解】由题意得,()10221110i i s x x ==-∑, 102211105010i i x x =⎛⎫=-= ⎪⎝⎭∑代入数据得,, ()214500105010x -=解得.20x =故答案为:2016.已知两条直线:和:,直线,分别与函数的图象相交1l 1y m =+2l ()221y m m =+>-1l 2l 2x y =于点A ,B ,点A ,B 在x 轴上的投影分别为C ,D ,当m 变化时,的最小值为______. CD【答案】()2log 2-【分析】分别求出直线,与函数的图象交点的横坐标,再根据对数运算与基本不等式求1l 2l 2x y =最值.【详解】由与函数相交得,解得,所以,1y m =+2x y =21x m =+()2log 1x m =+()()2log 1,0C m +同理可得,()()22log 2,0D m +所以,()()222222log 2log 1log 1m CD m m m +=+-+=+令,()2231211m g m m m m +==++-++因为, 所以,当且仅当时取最小值. 1m >-()31221g m m m =++-≥-+1m =所以 ()()22min log 2log 2CD ==所以的最小值为. CD ()2log 2-故答案为:()2log 2【点睛】利用基本不等式求最值时要注意成立的条件,一正二定三相等,遇到非正可通过提取负号转化为正的;没有定值时可对式子变形得到积定或和定再用基本不等式;取不到等号时可借助于函数的单调性求最值.四、解答题17.设全集,已知集合,. U =R {}11A x a x a =-+≤≤+401x B xx -⎧⎫=>⎨⎬-⎩⎭(1)若,求;3a =A B ⋃(2)若,求实数a 的取值范围. A B ⋂=∅【答案】(1)或;{1x x <}2x ≥(2). 23a ≤≤【分析】(1)由已知解出集合A ,B ,根据并集的运算即可得出答案; (2)若,根据集合间关系列出不等式,即可求出实数a 的取值范围. A B ⋂=∅【详解】(1)当,, 3a ={}24A x x =≤≤由得,所以或, 401x x ->-(4)(1)0x x -->{1B x x =<}4x >或;{1A B x x ∴⋃=<}2x ≥(2)已知, {}11A x a x a =-+≤≤+由(1)知或, {1B x x =<}4x >因为,且, A B ⋂=∅B ≠∅∴且, 11a -+≥14a +≤解得,23a ≤≤所以实数a 的取值范围为.23a ≤≤18.已知函数.()22f x x ax a =-+(1)若的解集为,求实数的取值范围; ()0f x ≥R a (2)当时,解关于的不等式. 3a ≠-x ()()43f x a a x >-+【答案】(1) []0,1(2)答案见解析【分析】(1)由一元二次不等式在上恒成立可得,由此可解得结果;R 0∆≤(2)将所求不等式化为,分别在和的情况下解不等式即可. ()()30x x a +->3a >-3a <-【详解】(1)由题意知:在上恒成立,,解得:, 220x ax a -+≥R 2440a a ∴∆=-≤01a ≤≤即实数的取值范围为.a []0,1(2)由得:;()()43f x a a x >-+()()()23330x a x a x x a +--=+->当时,的解为或; 3a >-()()30x x a +->3x <-x a >当时,的解为或;3a <-()()30x x a +->x a <3x >-综上所述:当时,不等式的解集为;当时,不等式的解集为3a >-()(),3,a -∞-+∞ 3a <-.()(),3,a -∞-+∞ 19.受疫情影响年下半年多地又陆续开启“线上教学模式”.某机构经过调查发现学生的上课2022注意力指数与听课时间(单位:)之间满足如下关系:()f t t min ,其中,且.已知在区间上的最大()()224,016log 889,1645a mt mt n t f t t t ⎧-++≤<⎪=⎨-+≤≤⎪⎩0m >0a >1a ≠()y f t =[)0,16值为,最小值为,且的图象过点. 8870()y f t =()16,86(1)试求的函数关系式;()y f t =(2)若注意力指数大于等于时听课效果最佳,则教师在什么时间段内安排核心内容,能使学生听85课效果最佳?请说明理由.【答案】(1) ()()2121370,0168log 889,1645t t t f t t t ⎧-++≤<⎪=⎨-+≤≤⎪⎩(2)教师在内安排核心内容,能使学生听课效果最佳1224t ⎡⎤∈-⎣⎦【分析】(1)根据二次函数最值和函数所过点可构造不等式求得的值,由此可得; ,,m n a ()f x (2)分别在和的情况下,由可解不等式求得结果.016t ≤<1645t ≤≤()85f t ≥【详解】(1)当时,,[)0,16t ∈()()()222412144f t m t t n m t m n =--+=--++,解得:; ()()()()max min 1214488070f t f m n f t f n ⎧==+=⎪∴⎨===⎪⎩1870m n ⎧=⎪⎨⎪=⎩又,,解得:, ()16log 88986a f =+=log 83a ∴=-12a =.()()2121370,0168log 889,1645t t t f t t t ⎧-++≤<⎪∴=⎨-+≤≤⎪⎩(2)当时,令,解得:;16t ≤<21370858t t -++≥1216t -≤<当时,令,解得:;1645t ≤≤()12log 88985t -+≥1624t ≤≤教师在内安排核心内容,能使学生听课效果最佳.∴1224t ⎡⎤∈-⎣⎦20.已知函数,函数. ()()33log log 39x f x x =⋅()1425x x g x +=-+(1)求函数的最小值;()f x (2)若存在实数,使不等式成立,求实数x 的取值范围.[]1,2m Î-()()0f x g m -≥【答案】(1) 94-(2)或 109x <≤27x ≥【分析】(1)将化为关于的二次函数后求最小值;()f x 3log x (2)由题意知,求得后再解关于的二次不等式即可.min ()()f x g m ≥min ()g m 3log x 【详解】(1) ()()3333()log log (3)log 2log 19x f x x x x =⋅=-+ ()233log log 2x x =--, 2319log 24x ⎛⎫=-- ⎪⎝⎭∴显然当即, , 31log 2x =x =min 9()4f x =-∴的最小值为. ()f x 94-(2)因为存在实数,使不等式成立,[]1,2m Î-()()0f x g m -≥所以, 又,min ()()f x g m ≥()()21421524x x x g x +=-+-=+所以,()()2124m g m -=+又,显然当时,,[]1,2m Î-0m =()()02min 2414g m -=+=所以有,即,可得, ()4f x ≥()233log log 24x x --≥()()33log 2log 30x x +-≥所以或,解得 或. 3log 2x ≤-3log 3x ≥109x <≤27x ≥故实数x 的取值范围为或. 109x <≤27x ≥21.某中学为了解高一年级数学文化知识竞赛的得分情况,从参赛的1000名学生中随机抽取了50名学生的成绩进行分析.经统计,这50名学生的成绩全部介于55分和95分之间,将数据按照如下方式分成八组:第一组,第二组,…,第八组,下图是按上述分组方法得[)55,60[)60,65[]90,95到的频率分布直方图的一部分.已知第一组和第八组人数相同,第七组的人数为3人.(1)求第六组的频率;若比赛成绩由高到低的前15%为优秀等级,试估计该校参赛的高一年级1000名学生的成绩中优秀等级的最低分数(精确到0.1);(2)若从样本中成绩属于第六组和第八组的所有学生中随机抽取两名学生,记他们的成绩分别为x ,y ,从下面两个条件中选一个,求事件E 的概率.()P E ①事件E :;[]0,5x y -∈②事件E :.(]5,15x y -∈注:如果①②都做,只按第①个计分.【答案】(1)0.08;81.8(2)选①:;选②: 715815【分析】(1)根据频率之和为1计算第六组的频率;先判断优秀等级的最低分数所在区间,再根据不低于此分数所占的频率为0.12求得此分数.(2)分别求出第六组和第八组的人数,列举出随机抽取两名学生的所有情况,再求出事件E 所包含事件的个数的概率,根据古典概型求解.【详解】(1)第七组的频率为, 30.0650=所以第六组的频率为,()10.0650.00820.0160.0420.060.08--⨯++⨯+=第八组的频率为0.04,第七、八两组的频率之和为0.10,第六、七、八组的频率之和为0.18,设优秀等级的最低分数为,则,m 8085m <<由,解得, 850.040.060.080.155m -++⨯=81.8m ≈故估计该校参赛的高一年级1000名学生的成绩中优秀等级的最低分数.81.8(2)第六组的人数为4人,设为,,第八组的人数为2人,设为, [80,85),a b ,c d [90,95],A B 随机抽取两名学生,则有共15种情况,,,,,,,,,,,,,,,ab ac ad bc bd cd aA bA cA dA aB bB cB dB AB选①:因事件发生当且仅当随机抽取的两名学生在同一组,[]:0,5E x y -∈所以事件包含的基本事件为共7种情况,E ,,,,,,ab ac ad bc bd cd AB 故. 7()15P E =选②:因事件发生当且仅当随机抽取的两名学生不在同一组,(]:5,15E x y -∈所以事件包含的基本事件为共8种情况,E ,,,,,,,aA bA cA dA aB bB cB dB 故. 8()15P E =22.已知函数的定义域为D ,对于给定的正整数k ,若存在,使得函数满足:()f x [],a b D ⊆()f x 函数在上是单调函数且的最小值为ka ,最大值为kb ,则称函数是“倍缩函()f x [],a b ()f x ()f x 数”,区间是函数的“k 倍值区间”.[],a b ()f x (1)判断函数是否是“倍缩函数”?(只需直接写出结果)()3f x x =(2)证明:函数存在“2倍值区间”;()ln 3g x x =+(3)设函数,,若函数存在“k 倍值区间”,求k 的值. ()2841x h x x =+10,2x ⎡⎤∈⎢⎣⎦()h x 【答案】(1)是,理由见详解(2)证明见详解(3){}4,5,6,7k ∈【分析】(1)取,结合题意分析说明;1,1,1k a b ==-=(2)根据题意分析可得至少有两个不相等的实根,构建函数结合零点存在性定理分析ln 32x x +=证明;(3)先根据单调性的定义证明在上单调递增,根据题意分析可得在内()h x 10,2⎡⎤⎢⎥⎣⎦2841x kx x =+10,2⎡⎤⎢⎥⎣⎦至少有两个不相等的实根,根据函数零点分析运算即可得结果.【详解】(1)取,1,1,1k a b ==-=∵在上单调递增,()3f x x =[]1,1-∴在上的最小值为,最大值为,且, ()3f x x =[]1,1-()1f -()1f ()()()1111,1111f f -=-=⨯-==⨯故函数是“倍缩函数”.()3f x x =(2)取,2k =∵函数在上单调递增,()ln 3g x x =+[],a b 若函数存在“2倍值区间”,等价于存在,使得成立, ()ln 3g x x =+0a b <<ln 32ln 32a a b b+=⎧⎨+=⎩等价于至少有两个不相等的实根,ln 32x x +=等价于至少有两个零点,()ln 23G x x x =-+∵,且在定义内连续不断, ()()()332e 0,110,2ln 210e G G G -=-<=>=-<()G x ∴在区间内均存在零点,()G x ()()3e ,1,1,2-故函数存在“2倍值区间”.()ln 3g x x =+(3)对,且,则, 121,0,2x x ⎡⎤∀∈⎢⎥⎣⎦12x x <()()()()()()12121212222212128148841414141x x x x x x h x h x x x x x ---=-=++++∵,则, 12102x x ≤<≤221212120,140,410,410x x x x x x -<->+>+>∴,即,()()120h x h x -<()()12h x h x <故函数在上单调递增, ()h x 10,2⎡⎤⎢⎥⎣⎦若函数存在“k 倍值区间”,即存在,使得成立, ()h x *10,2a b k ≤<≤∈N 22841841a ka ab kb b ⎧=⎪⎪+⎨⎪=⎪+⎩即在内至少有两个不相等的实根, 2841x kx x =+10,2⎡⎤⎢⎥⎣⎦∵是方程的根,则在内有实根, 0x =2841x kx x =+2841k x =+10,2⎛⎤ ⎥⎝⎦若,则,即,且, 10,2x ⎛⎤∈ ⎥⎝⎦[)284,841x ∈+[)4,8k ∈*k ∈N ∴,即.4,5,6,7k ={}4,5,6,7k ∈【点睛】方法点睛:利用函数零点求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.。

2022-2023学年广东省深圳市(集团)高一年级上册学期期末考试数学试题【含答案】

2022-2023学年广东省深圳市(集团)高一年级上册学期期末考试数学试题【含答案】

2022-2023学年广东省深圳市(集团)高一上学期期末考试数学试题一、单选题1.命题:“,”的否定是( )0x ∀>2ln 20xx +>A .,B .,0x ∀>2ln 20xx +<0x ∀>2ln 20xx +≤C .,D .,0x ∃>2ln 20xx +≤0x ∃>2ln 20xx +<【答案】C【分析】根据含有一个量词的命题的否定形式,全称命题的否定是特称命题,可得答案.【详解】命题:“,”是全称命题,0x ∀>2ln 20xx +>它的否定是特称命题:,,0x ∃>2ln 20xx +≤故选:C2.已知集合,则( ){}121log ,,2,02x A y y x x B y y x ⎧⎫==>==<⎨⎬⎩⎭∣∣A B = A .B .102y y ⎧⎫<<⎨⎬⎩⎭∣{01}<<∣yy C .D .112yy ⎧⎫<<⎨⎬⎩⎭∣∅【答案】B【分析】根据指数函数、对数函数的单调性和值域求解.【详解】因为,所以,所以,12x >11221log log 12y x =<={}1A y y =<∣因为所以,且,0x <0221x y =<=20x>所以,{}1B y y =<<∣0所以.A B = {01}<<∣yy 故选:B.3.函数的图象大致是( )()()233ln x x f x x -=+A.B .C.D.【答案】C【分析】由题可得函数为偶函数,再利用,即得.102f ⎛⎫< ⎪⎝⎭【详解】∵,定义域为,()()233ln x x f x x -=+()(),00,∞-+∞ 又,()()()()()2233ln 33ln x x x x f x x x f x ---=+-==+∴函数为偶函数,故AD 错误;()()233ln x x f x x -=+又,故B 错误.211221133ln 220f -⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭<⎝故选:C.4.针对“台独”分裂势力和外部势力勾结的情况,为捍卫国家主权和领土完整,维护中华民族整体利益和两岸同胞切身利益,解放军组织多种战机巡航台湾.已知海面上的大气压强是,大760mmHg 气压强(单位:)和高度(单位:)之间的关系为(为自然对数的底数,P mmHg h m 760ehkP -=e 是常数),根据实验知高空处的大气压强是,则当歼20战机巡航高度为,k 500m 700mmHg 1000m 歼战机的巡航高度为时,歼20战机所受的大气压强是歼16D 战机所受的大气压强的16D 1500m ( )倍.A .B .C .D .0.670.921.091.5【答案】C【分析】根据题意分别列出指数等式即可求解.【详解】由题可知,,,10001760e k P -=15002760e kP -=则有,50012e kP P =又因为,所以,500700760e k-=500760e 1.09700k =≈故选:C.5.享有“数学王子”称号的德国数学家高斯,是近代数学奠基者之一,被称为“高斯函数”,[]y x =其中表示不超过的最大整数,例如:,设为函数[]R,x x ∈x ][][2.12,33, 1.52⎡⎤==-=-⎣⎦0x 的零点,则( )()lg 5f x x x =+-[]0x =A .3B .4C .5D .6【答案】B【分析】先根据零点存在定理确定出零点的位置,进而根据高斯函数的定义求得答案.【详解】因为函数在上单调递增,且,,()lg 5f x x x =+-()0,∞+()4lg 410f =-<()5lg 50f =>则存在唯一零点,使得,由高斯函数的定义可知,.()04,5x ∈()00f x =[]04x =故选:B.6.已知,则( )1sin 65πα⎛⎫-=⎪⎝⎭sin 26πα⎛⎫+= ⎪⎝⎭A .B .C .D .2325-2325725-725【答案】B【分析】利用换元法可得,结合诱导公式和二倍角的余弦公式计算即可.sin 2sin 262t ππα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭【详解】令,故,,6t πα=-1sin 5t =6tπα=-故.223sin 2sin 2cos 212sin 6225t t t ππα⎛⎫⎛⎫+=-==-=⎪ ⎪⎝⎭⎝⎭故选:B7.函数的部分图象如图所示.若,且()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭()12,0,2πx x ∈,则的值为( )()()12(0)f x f x a a ==<12x x +A .B .C .D .π32π34π38π3【答案】D【分析】根据函数的图象求出该函数的解析式,结合图象可知,点、()y f x =11ππ,66x f x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭关于直线对称,进而得出.22ππ,66x f x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭3π2x =12x x +【详解】由图象可知, ,即,则,311ππ3π4632T =-=2πT =2π1T ω==此时,,()()2sin f x x ϕ=+由于,,,ππ2sin 233f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭||2ϕπ<ππ32ϕ+=所以,即.π6ϕ=()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭,且,12,(0,2π)x x ∈()()12(0)f x f x a a ==<由图像可知,,12323662x x +++=⨯=ππππ则.128π3x x +=故选:D.8.已知定义在上的偶函数满足,当时,单调递增,则R ()f x ()()2f x f x -=-+20x -≤≤()f x ( )A .()37π1tan 2023log 242f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()37π1tan log 2023242f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()317πlog 2023tan 224f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()317πlog tan 2023224f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】A【分析】由题意求出函数的周期,然后根据偶函数的性质判断出函数在[0,2]上的单调性,进而将自变量的取值转化到区间[0,2]上,利用放缩法判断出它们的大小关系,最后根据单调性求得答案.【详解】因为为偶函数,所以,()f x ()()f x f x -=又,所以,()(2)f x f x -=-+()(2)f x f x =-+所以,即是周期为4的函数,()()4f x f x =+()f x 则.(2023)(50641)(1)(1)f f f f =⨯-=-=因为,π7ππ4243<<所以,.7π1tan24<<()()3331log log 2log 22f f f ⎛⎫=-= ⎪⎝⎭30log 21<<因为为偶函数,且当时,单调递增,()f x 20x -≤≤()f x 所以当时,单调递减,故.02x ≤≤()f x 37π1tan (2023)log 242f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭故选:A.二、多选题9.下列函数中是偶函数,且在上为增函数的有( )()0,∞+A .B .C .D .cos y x =3y x=24y x =+2log y x=【答案】CD【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【详解】解:对于A ,函数为偶函数,在上不单调,故A 错误;cos y x =()0,∞+对于B ,函数为奇函数,不正确;3y x =对于C ,是偶函数,且在上为增函数,正确;24y x =+()0,∞+对于D ,函数的定义域为,,函数为偶函数,当时,{|0}x x ≠()()22log log f x x x f x -=-==0x >为增函数,满足条件,2log y x=故选:CD .10.(多选)要得到函数的图象,只要将函数的图象( )sin(23y x π=+sin y x =A .每一点的横坐标扩大到原来的倍(纵坐标不变),再将所得图象向左平移个单位长度23πB .每一点的横坐标缩短到原来的 (纵坐标不变),再将所得图象向左平移个单位长度126πC .向左平移个单位长度,再将所得图象每一点的横坐标缩短到原来的 (纵坐标不变)3π12D .向左平移个单位长度,再将所得图象每一点的横坐标缩短到原来的 (纵坐标不变)6π12【答案】BC【分析】分别分析先伸缩后平移和先平移后伸缩两种情况下图像的变换.【详解】(1)先伸缩后平移时:每一点的横坐标缩短到原来的 (纵坐标不变),再将所得图象向左12平移个单位长度,所以A 选项错误,B 选项正确.6π(2)先平移后伸缩时:向左平移个单位长度,再将所得图象每一点的横坐标缩短到原来的 (纵3π12坐标不变),所以C 选项正确,D 选项错误.故选:BC.11.已知为锐角,角的终边上有一点,x 轴的正半轴和以坐标原点O 为圆心的θα()sin ,cos M θθ-单位圆的交点为N ,则( )A .若,则()0,2a π∈2παθ=+B .劣弧的长度为MN 2πθ+C .劣弧所对的扇形的面积为是MN OMN 2αD .sin sin 1αθ+>【答案】ABD【分析】根据题意,结合诱导公式化简整理,可判断A 的正误;根据弧长公式,可判断B 的正误;根据扇形面积公式,可判断C 的正误,根据同角三角函数的关系,可判断D 的正误,即可得答案.【详解】A :()sin ,cos cos ,sin cos ,sin 2222ππππθθθθπθπθ⎛⎫⎛⎫⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=---=---- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎝⎭,故,故A 正确;cos ,sin 22ππθθ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2παθ=+B :劣弧的长度为,故B 正确;MN 1=22ππθθ⎛⎫+⨯+ ⎪⎝⎭C :只有当时,扇形的面积为,故C 不正确;02απ<<OMN 1122S αα=⨯⨯=D :,sin sin sin sin sin cos 2παθθθθθ⎛⎫+=++=+ ⎪⎝⎭∵为锐角,故.故D 正确.θ()222sin cos sin cos 2sin cos 1sin cos 1θθθθθθθθ+=++>⇒+>故选:ABD12.已知,则下列不等关系一定正确的是( )10a b >>>A .B .()log 2b ab <111a a +>+C .D .11a b b a->-3ln28b a ab>-【答案】ABD【分析】对,结合对数的运算性质和对数函数的单调性进行判断;A 对,根据基本不等式即可判断;B 对,取,代入计算即可判断.C 11,42b a ==对,原不等式等价于,进而构造函数,然后根据函数的单调性得D 32ln 32ln a ba b +>+2ln x y x =+到答案.【详解】对,因为,且,则,所以A log ()log log log 1b b b b ab a b a =+=+10a b >>>log log 1b b a b <=,故选项正确;log ()log 12b b ab a =+<A对,由题意,(此处等号不能成立),故选项正B 11111111a a a a +=++->-=++B 确;对,取,则,故选项错误;C 11,42b a ==1171174,22244a b b a -=-=--=-=-C 对,问题等价于,易知函数在上是D 33ln 3ln 222ln 32ln b a a b a b a b ->-⇔+>+2ln x y x =+()0,∞+增函数,而,则成立,故选项正确.30a b >>32ln 32ln a ba b +>+D 故选:.ABD 三、填空题13.__________.ln 224216log log e 39-+=【答案】1【分析】由对数换底公式以及对数恒等式、对数运算法则进行计算求得结果.【详解】.ln 224222221624231log log e log log 2log 2log 21213933342⎛⎫⎪-+=-+=⨯+=+=-+⎝=⎭故答案为:1.14.函数的图象恒过定点P ,P 在幂函数的图象上,则___________.()log 238a y x =-+()f x ()4f =【答案】64【分析】由题意可求得点,求出幂函数的解析式,从而求得.()2,8P ()f x ()4f 【详解】令,则,故点;2x =8y =()2,8P 设幂函数,()bf x x =则,28b=则;3b =故;()464f =故答案为:64.15__________.1cos80-=【答案】4-【分析】先用诱导公式转化,再对已知分式进行通分,分子化成一个三角函数,再cos8010sin =使用二倍角公式即可得到结果.【详解】.()sin sin sin 210301122041cos801010cos1sin s 22in 00--====-=故答案为:.4-四、双空题16.已知函数,则的最小正周期为__________,不等式的()()1cos cos 2f x x x =+()f x ()()12f f x >解集为__________.【答案】 2πR【分析】根据题意作出函数图象,根据函数图象即可求解.【详解】由题意可知:当时,函数;cos 0x ≥()cos f x x =当时,函数,作出函数图象,如图所示:cos 0x <()0f x=结合图形可知:函数的最小正周期为;()f x 2π令,所以,(),[0,1]f x t t =∈()()[]1cos cos cos cos1,12f t t t t =+=∈因为函数在上单调递减,所以,()f t π[0,3π1()cos1cos 32f t ≥>=则不等式的解集为,()()12f f x >R 故答案为:;.2πR 五、解答题17.已知.()()()πcos sin 2tan πf θθθθ⎛⎫+⋅- ⎪⎝⎭=+(1)化简,并求的值;()f θπ3f ⎛⎫ ⎪⎝⎭(2)若,且,求的值.()0,πθ∈()1225f θ=-cos sin θθ-【答案】(1)()sin cos f θθθ=(2)75-【分析】(1)先根据诱导公对进行化简,再将代入进算出结果即可;()f θπ3(2)将代入可求,根据的正负及,可判断正负,从而判断θsin cos θθsin cos θθ()0,πθ∈sin ,cos θθ正负,对平方再开方,代入即可得所求.cos sin θθ-cos sin θθ-sin cos θθ【详解】(1)解:由题知()()()πcos sin 2tan πf θθθθ⎛⎫+⋅- ⎪⎝⎭=+()sin sin tan θθθ-⋅-=,sin cos θθ=;πππsin cos 333f ⎛⎫∴=⋅=⎪⎝⎭(2),,()1225f θ=-()0,πθ∈,且,12sin cos 25θθ∴=-sin 0,cos 0θθ><cos sin 0θθ∴-<cos sin θθ∴-===,75=-故.7cos sin 5θθ-=-18.在①,②,③这三个条件中任选一个,补充到下面的问题中,()A B A=R A B ⋂=∅A B A = 并求解下列问题:已知集合,若__________,求实数的取值范围.{}11123,14A x a x a B x x ⎧⎫=-≤≤+=<-⎨⎬-⎩⎭∣∣a 【答案】答案见解析【分析】根据所选的条件,①可以推出是的子集;②,两个集合没有()A B A=R A B R A B ⋂=∅公共元素;③可以推出.利用集合的交集、补集、并集的定义,对a 进行分类讨论,A B A = A B ⊆分别求解即可.【详解】解:由解得,所以,.1114x <--74x -<<()7,4B =-若选择①:,则是的子集,,()A B A=R A B R {}123A x a x a =-≤≤+∣,][(),74,B =-∞-⋃+∞R 当,即时,,满足题意;123a a ->+4a <-A =∅当时,或,解得,4a ≥-4237a a ≥-⎧⎨+≤-⎩414a a ≥-⎧⎨-≥⎩5a ≥综上可得,实数的取值范围是.a ()[),45,∞∞--⋃+若选择②:,A B ⋂=∅当时,即,即时,满足题意;A =∅123a a ->+4a <-当时,或,解得.4a ≥-4237a a ≥-⎧⎨+≤-⎩414a a ≥-⎧⎨-≥⎩5a ≥综上可知,实数的取值范围是.a ()[),45,∞∞--⋃+若选择③:,则,A B A = A B ⊆当,即时,,满足题意;123a a ->+4a <-A =∅当时,,解得;4a ≥-17234a a ->-⎧⎨+<⎩142a -≤<综上可知,实数的取值范围是.a 1,2⎛⎫-∞ ⎪⎝⎭19.已知函数(且).()()()log log a a f x x a a x =++-0a >1a ≠(1)判断函的奇偶性,并说明理由;()f x (2)若,且,求的取值范围.3a =()()1f x f x >-x 【答案】(1)偶函数,理由见解析(2)12,2⎛⎫- ⎪⎝⎭【分析】(1)利用奇偶性的定义直接判断;(2)先判断出函数在上的单调性,利用单调性解不等式即可.()f x [)0,3【详解】(1)函数的定义域为.()()()log log a a f x x a a x =++-(),a a -因为,所以,()()()log log a a f x x a a x -=-+++()()f x f x -=所以函数为偶函数.()f x (2)当时,定义域为,所以有:.①.3a =()()()log 3log 3a a f x x x =++-()3,3-33x -<<⋯⋯②.313x -<-<⋯⋯由①知函数为偶函数,所以可化为:.()f x ()()1f x f x >-()()1f x f x >-()()()()2333log 3log 3log 9f x x x x =++-=-因为为增函数,在上递减,3log y t =29t x =-[)0,3所以函数在上递减,所以.③.()f x [)0,31x x <-⋯由①②③解得:的取值范围为.x 12,2⎛⎫- ⎪⎝⎭20.设函数(ω>0),且图象的一个对称中心到最近2()sin cos f x x x x ωωω-()y f x =的对称轴的距离为.4π(1)求在上的单调区间;()f x [,0]2π-(2)若,且,求sin2x 0的值.03()5f x =0[0,]3x π∈【答案】(1)单调增区间为,单调减区间为;[,212ππ--[,0]12π-.【分析】(1)化简得到,结合条件求出,再利用余弦函数的性质即得;()f x ()πcos 26f x x ω⎛⎫=+ ⎪⎝⎭ω(2)由题可得,,再利用差角公式即求.0π3cos 265x ⎛⎫+= ⎪⎝⎭0π4sin 265x ⎛⎫+= ⎪⎝⎭【详解】(1)∵()2sin cos f x x x x ωωω=-1cos 21sin 222x x ωω-=-,1π2sin 2cos 226x x x ωωω⎛⎫=-=+ ⎪⎝⎭因为图象的一个对称中心到最近的对称轴的距离为,π4又,所以,因此,0ω>2ππ424ω=⨯1ω=∴,()πcos 26f x x ⎛⎫=+ ⎪⎝⎭当时,,[,0]2x π∈-π5π2[,]666x π+∈-∴由,得,函数单调递增,52[,0]66x ππ+∈-[,]212x ππ∈--由,得,函数单调递减,2[0,]66x ππ+∈[,0]12x π∈-所以函数单调增区间为,单调减区间为.()f x [,]212ππ--[,0]12π-(2)∵,且, 03()5f x =0[0,]3x π∈∴,0π3cos 265x ⎛⎫+= ⎪⎝⎭又,0ππ5π2,666x ⎡⎤+∈⎢⎥⎣⎦∴,0π4sin 265x ⎛⎫+= ⎪⎝⎭∴00001sin 2sin 22cos 266626x x x x ππππ⎛⎫⎛⎫⎛⎫=+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.413525=-⨯=21.目前全球新冠疫情严重,核酸检测结果成为是否感染新型冠状病毒的重要依据,某核酸检测机构,为了快速及时地进行核酸检测,花费36万元购进核酸检测设备.若该设备预计从第1个月到第个月的检测费用和设备维护费用总计为万元,该设备每月检测收入为20万元.n ()*n ∈N ()25n n +(1)该设备投入使用后,从第几个月开始盈利?(即总收入减去成本及所有支出费用之差为正值);(2)若该设备使用若干月后,处理方案有两种:①月平均盈利达到最大值时,以20万元的价格卖出;②盈利总额达到最大值时,以16万元的价格卖出.哪一种方案较为合算?请说明理由.【答案】(1)第4个月开始盈利(2)方案①较为合算,理由见解析【分析】(1)求出利润表达式然后解不等式可得答案;(2)分别计算出两种方案的利润比较可得答案.【详解】(1)由题意得,即,()2203650n n n --+>215360n n -+<解得,∴.312n <<()*3n n >∈N ∴该设备从第4个月开始盈利.(2)该设备若干月后,处理方案有两种:①当月平均盈利达到最大值时,以20万元的价格卖出,.()22036536153n n n n n n --+⎛⎫=-+≤ ⎪⎝⎭当且仅当时,取等号,月平均盈利达到最大,6n =∴方案①的利润为:(万元).()2063636302038⨯--++=②当盈利总额达到最大值时,以16万元的价格卖出.,()222158120365153624y n n n n n n ⎛⎫=--+=-+-=--+ ⎪⎝⎭∴或时,盈利总额最大,7n =8n =∴方案②的利润为20+16=36(万元),∵38>36,∴方案①较为合算.22.已知函数,,与互为反函数.()2x f x =()245h x x x m =-+()x ϕ()f x (1)求的解析式;()x ϕ(2)若函数在区间内有最小值,求实数m 的取值范围;()()y h x ϕ=()32,2m m -+(3)若函数,关于方程有三个不同的实数解,求实()()401x g x x x ϕ⎛⎫=> ⎪+⎝⎭()()230g x a g x a ⎡⎤+++=⎣⎦数a 的取值范围.【答案】(1)()()2log 0x x x ϕ=>(2)44,53m ⎛⎫∈ ⎪⎝⎭(3)73,3⎛⎤-- ⎥⎝⎦【分析】(1)根据指数函数的反函数为同底数的对数函数,即得;(2)根据题意,利用对数函数和二次函数的性质及复合函数的单调性即可得到函数关于的不等m 式组,求解即得;(3)先利用对数函数和分式函数的单调性知识,结合复合函数的单调性得到函数g (x )的单调性和零点及图象,进而得到的图象,将方程有三个不同的实数解,()y g x =()()230g x a g x a ⎡⎤+++=⎣⎦转化为则有两个根,且一个在上,一个根为0;或有两个根,230t at a +++=()0,2230t at a +++=且一个在上,一个在上.进而利用二次方程根的分布思想分析讨论确定实数a 的取值范()0,2[)2,+∞围.【详解】(1)指数函数的反函数为同底数的对数函数,∴.()2x f x =()()2log 0x x x ϕ=>(2)函数在区间内有最小值,()()()22log 45y h x x x m ϕ==-+()32,2m m -+∴在内先减后增,且,()245h x x x m =-+()32,2m m -+()min 0h x >∴,∴.4032223(2)54045m m m h m m ⎧<<⎪-<<+⎧⎪⇒⎨⎨-=->⎩⎪>⎪⎩44,53m ⎛⎫∈ ⎪⎝⎭(3)∵,∴,∴,0x >()4440,411x x x =-∈++()2g x <∵g (x )在时单调递增,且g =0,2441log x ⎛⎫=- ⎪+⎝⎭0x >13⎛⎫ ⎪⎝⎭∴的图象如下:()y g x =因为有三个不同的实数解,()()230g x a g x a +++=设,由的图象可得当或时对于一个确定的的值,对应一个的值,对()g x t =()y g x =0t =2t ≥t x 于的每一个确定的的值,对应两个不同的实数根.02t <<t x 则有两个根,且一个在上,一个根为0;230t at a +++=()0,2或有两个根,且一个在上,一个在上.230t at a +++=()0,2[)2,+∞①有两个根,且一个在上,一个根为0,230t at a +++=()0,2∴一个根为0,解得,此时,3a =-22330t at a t t +++=-=另一根,舍去;()30,2t =∉②有两个根,且一个在上,一个在上,230t at a +++=()0,2[)2,+∞令,()23k t t at a =+++(ⅰ)当一个根在上,一个在上,()0,2()2,+∞则∴∴.()()00,20.k k ⎧>⎪⎨<⎪⎩3,7,3a a >-⎧⎪⎨<-⎪⎩733a -<<-(ⅱ)当一个根在上,一个根为2,则,解得.()0,2()20k =73a =-此时的两根为,,满足题意.272033t t -+=()110,23t =∈22t =综上,a 的取值范围为.73,3⎛⎤-- ⎥⎝⎦【点睛】本题关键难点在于(3)中,结合的图象,将已知方程有三个实数根的条件转化()y g x =为二次方程的根的分布问题(利用数形结合思想求解),易错点是有两个根,且一230t at a +++=个在上,一个在上的情况,要注意分两种情况讨论.()0,2[)2,+∞。

高一数学必修一期末检测试题(含答案)

高一数学必修一期末检测试题(含答案)

16 A、 (- , +¥)
3
B、 (-¥, -4]
16 C、 (- , -4]
3
D、 (-¥, -1) (3, +¥)
1
10、已知函数
f
(x) 满足:当 x
³
4 时, f
(x)
= ( )x ;当 x 2
<
4 时, f
(x) =
f
(x +1) ,则
f
(2
+log
3)2
=

二、填空题(本大题共5 小题,每小题5 分,共 25 分)
C、x
=
ìíî16500t,-05£t,t
£ 2.5 x > 3.5
ìï60t, 0 £ t £ 2.5 D、x = í150, 2.5 < t £ 3.5
ïî150 - 50(t - 3.5), 3.5 < t £ 6.5
2
9、已知方程 x + 2mx - m +12 = 0 的两个根都大于 2,则实数 m 的取值范围是 ( )
11、已知 0 < a < 1,方程 a x = loga x 的实数根个数是
个;
-1
1
12、设 f (x) = 10x - 2 ,则 f - (98) =

2
13、二次函数 y = ax + bx + c (x ÎR) 的部分对应值如下表:
x
-3 -2 -1
0
1
2
3
4
y
6
0 -4 -6 -6 -4
3 时, f (x) > 0 ;
(1)求 f (0) 的值;

新课标高一上学期期末考试数学试卷含答案

新课标高一上学期期末考试数学试卷含答案

高一数学第一学期期末考试试题卷选择题部分(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A {}24x x ==,B {}2280x x x =--=,则AB =( ▲ ) A .{}4B .{}2C .{}2- D. ∅ 2.函数2()log (2)f x x =++的定义域是( ▲ ) A .[2,1]-B .(2,1]-C .[2,1)-D .(2,1)- 3.函数()ln 2f x x x =+-的零点所在的一个区间是( ▲ )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4.已知12log 5a =,0.314b ⎛⎫= ⎪⎝⎭,312=c ,则a ,b ,c 的大小关系是( ▲ ) A .c b a << B .c b a << C .c a b << D .b a c <<5.已知角α的终边过点(1,)P y ,若1cos 3=α,则y 的值是( ▲ )A B .± C . - D .6.下列函数中,周期为π的偶函数是( ▲ )A .tan y x =B .sin y x =C .cos 2x y = D .sin cos y x x =⋅ 7.已知扇形的周长为4,面积为1,则该扇形的圆心角是( ▲ )A .1B .2C .2π D .π 8. 函数2cos sin 1y x x =-+的值域是( ▲ ) A .[0,2] B .9[2,]4 C .[1,3] D .9[0,]49. 已知向量=a (,)12,=b (,)k 1,且a 与b 的夹角为锐角,则实数k 的取值范围是( ▲ )A .(2,)-+∞ B.11(2,)(,)22-+∞ C .(,2)-∞- D .(2,2)-10.函数ln ()x f x e =的图像大致是( ▲ )A. B. C. D.11. 已知函数()x x f x e e -=-,()x x g x e e -=+,则以下结论正确的是( ▲ )A .任意的12,x x ∈R 且12x x ≠,都有1212()()0f x f x x x -<- B .任意的12,x x ∈R 且12x x ≠,都有1212()()0g x g x x x -<- C .()f x 有最小值,无最大值D .()g x 有最小值,无最大值12.已知e 是单位向量,向量a 满足-⋅-=2230a a e ,则-4a e 的取值范围是( ▲ )A .[1,3]B .[3,5]C .[1,5]D .[1,25] 非选择题部分(共90分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共34分.13.计算:33log 362log 2-= ▲;138π+= ▲ . 14.已知函数⎩⎨⎧≥+-<+=0),1(log 0,2)(22x x x x x x f ,则((3))f f = ▲ ;若()3f a =,则 实数a = ▲ .15.已知函数(),1f x x x a x =--∈R 有三个零点1x 、2x 、3x ,则实数a 的取值范围是 ▲ ;123x x x 的取值范围是 ▲ . 16.已知1cos()63πα-=-,则sin()3+=πα ▲ . 17.若函数()2sin()f x x m ωϕ=++,对任意实数t 都有()()44f t f t ππ+=-,且()34f π=-,则实数m =▲ .18.在Rt ABC ∆中,已知A ∠=60,斜边AB =4,D 是AB 的中点,M 是线段CD 上的动点,则AM AB ⋅的取值范围是 ▲ .19.已知函数2()2f x x bx =-,若(())f f x 的最小值与()f x 的最小值相等,则实数b 的取值范围是▲ .三、解答题:本大题共4小题,共56分.解答应写出文字说明,证明过程或演算步骤.20.(本题满分14分)已知向量a (sin ,1)=α,b (1,cos )=α. (Ⅰ)若34πα=,求+a b 的值; (Ⅱ)若⋅a b 1,(0,)5απ=-∈,求sin()2sin()2ππαα+++的值.21.(本题满分14分)已知函数2()ln(3)f x x ax =-+.(Ⅰ)若)(x f 在(,1]-∞上单调递减,求实数a 的取值范围;(Ⅱ)当3a =时,解不等式()x f e x ≥.22.(本题满分14分)已知函数()sin()(f x A x x =+∈ωϕR ,0,0,0)2A >><<πωϕ的部分图象如图所示,P 、Q 分别是图象的最高点与相邻的最低点,且1(1),OP =,4OP OQ +=,O 为坐标原点.(Ⅰ)求函数()y f x =的解析式;(Ⅱ)将函数()y f x =的图象向左平移1个单位后得到函数()y g x =的图象,求函数(),[y g x x =∈-23.(本题满分14分)已知函数2()1f x x x =-+,,m n 为实数.(Ⅰ)当[,1]x m m ∈+时,求()f x 的最小值()g m ;(Ⅱ)若存在实数t ,使得对任意实数[1,]x n ∈都有()f x t x +≤成立,求n 的取值范围.第一学期普通高中教学质量监控高一数学参考答案一、选择题(本题有12小题,每小题5分,共60分,每题所给的四个选项中,有且只有一个选项符合题目要求)1—5CDBAB 6—10ABDBC 11—12 DC二、填空题(本题有7个小题,多空题每小题6分,单空题每小题4分,共34分)13.214.0;3- 15.a <<104;(,322 16.13- 17.--51或 18.[,]48 19.b b ≤-≥10或三、解答题:(本题有4个小题,共56分)20.解:(Ⅰ) +=2222a b (1)+(1,-)=(1,1-),∴+=a b --------------------------------6分 (Ⅱ) ⋅a b 15=-, sin cos αα∴+=-15, 又sin cos 221αα+=,sin cos 3545αα⎧=⎪⎪∴⎨⎪=-⎪⎩或sin cos 4535αα⎧=-⎪⎪∴⎨⎪=⎪⎩ 又(0,)∈απ sin ,cos αα∴==-3455, 11sin()2sin()sin 2cos 25ππαααα∴+++=-+=-.-----------14分 21.解:(Ⅰ)()f x 在(,1]-∞上单调递减,a a ⎧≥⎪∴⎨⎪-+>⎩12130得a ≤<24. ---------------------------------7分 (Ⅱ)原不等式等价于2(e )430x x e -+≥,ln x x ∴≤≥03或,所以原不等式的解集为{}0ln3或x x x ≤≥. --------------------------------14分22.(Ⅰ) ()sin()33f x x ππ=+; --------------------------------7分 (Ⅱ) 2g()sin()33x x ππ=+, [1,2]x ∈-,243333x ππππ∴+∈[,],()[g x ∴∈. --------------------------------14分 23.解:(Ⅰ) (ⅰ)当12m ≤-时,2min ()(1)1f x f m m m =+=++, (ⅱ)当1122m -<≤时,min 13()()24f x f ==, (ⅲ)当12m >时,2min ()()1f x f m m m ==-+. 综上,2211,2311(),42211,2m m m g m m m m m ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩. --------------------------------7分(Ⅱ)由()f x t x +≤得22()(22)10h x x t x t t =+-+-+≤,(1)0()0h h n ≤⎧∴⎨≤⎩ ∴关于t 的不等式组2220(21)210t t t n t n n ⎧+≤⎨+-+-+≤⎩有解, 22(21)210t n t n n ∴+-+-+≤在t [1,0]∈-上有解,22112430n n n -⎧-≤-⎪∴⎨⎪-+≤⎩或2221102(2n 1)4(n 2n 1)0n -⎧-≤-≤⎪⎨⎪---+≥⎩, 解得3333242n n ≤≤≤<或, 即334n ≤≤ 又1n > , n ∴的取值范围是13n <≤. ------------------------------14分 (注:第(Ⅱ)小题,由数形结合得正确答案可给满分)。

高一第一学期数学期末考试试卷(含答案)

高一第一学期数学期末考试试卷(含答案)

高一第一学期期末考试试卷考试时间:120分钟;学校:___________姓名:___________班级:___________考号:___________ 注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上。

写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合,则=()A.B.C.D.2。

的分数指数幂表示为()A. B. a 3C.D.都不对3.下列指数式与对数式互化不正确的一组是( )A。

B.C. D。

4.下列函数中,满足“对任意的,当时,总有"的是A. B. C. D.5。

已知函数是奇函数,当时,则的值等于()A.C.D.-6.对于任意的且,函数的图象必经过点 ( )A。

B。

C。

D.7.设a=,b=,c=,那么()A.a〈b〈c B.b<a<c C.a〈c<b D.c〈a〈b8.下列函数中哪个是幂函数()A.B.C.D.9。

函数的图象是( )10.已知函数在区间上的最大值为,则等于( )A.-B.C.-D.-或-11..函数的零点所在的区间是()A. B。

C。

D.12。

在一个倒置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是( )第Ⅱ卷本卷包括必考题和选考题两部分。

第13题-第21题为必考题,每个试题考生都必须作答,第22—24题为选考题,考生根据要求作答。

二.填空题:本大题共4小题,每小题5分。

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。

高一数学第一学期期末测试题和答案

高一数学第一学期期末测试题和答案

高一数学第一学期期末测试题本试卷共4页,20题,满分为150分钟,考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13,4,5,7,9}=A ,B {3,5,7,8,10}=,那么=AB ( )A 、{13,4,5,7,8,9},B 、{1,4,8,9}C 、{3,5,7}D 、{3,5,7,8} 2.cos()6π-的值是( )A B . C .12 D .12- 3.函数)1ln()(-=x x f 的定义域是( )A . ),1(+∞B .),1[+∞C . ),0(+∞D .),0[+∞ 4.函数cos y x =的一个单调递增区间为 ( ) A .,22ππ⎛⎫-⎪⎝⎭ B .()0,π C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ 5.函数tan(2)4y x π=+的最小正周期为( )A .4π B .2πC .πD .2π 6.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A .(1,2) B .(,3)e C .(2,)e D .(,)e +∞7.已知0.30.2a=,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a 8.若函数23()(23)m f x m x-=+是幂函数,则m 的值为( )A 、1-B 、0C 、1D 、2 9.若1tan()47πα+=,则tan α=( )A 、34 B 、43C 、34-D 、43-10.函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是( ) A.最小正周期为π的奇函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数二、填空题:本大题共4小题,每小题5分,满分20分.11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩,则()0f f =⎡⎤⎣⎦ . 12.已知3tan =α,则ααααsin 3cos 5cos 2sin 4+-= ;13.若cos α=﹣,且α∈(π,),则tan α= .14.设{1,2,3,4,5,6},B {1,2,7,8},A ==定义A 与B 的差集为{|},A B x x A x B A A B -=∈∉--,且则()三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(满分12分)(1)4253sin cos tan()364πππ-(2)22lg 4lg 25ln 2e -+-+16.(满分12分)已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭)(R x ∈ (1)求()f x 的振幅和初相;(2)该函数图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到?17.(本题满分14分) 已知函数()sin 2cos 21f x x x =+-(1)把函数化为()sin(),(0,0)f x A x B A ωϕω=++>>的形式,并求()f x 的最小正周期;(2)求函数()f x 的最大值及()f x 取得最大值时x 的集合; 18.(满分14分)()2sin(),(0,0,),()62.1(0)228730(),(),sin 35617f x x A x R f x f ABC A B C f A f B C πωωπωππ=->>∈+=+=-已知函数且的最小正周期是()求和的值;()已知锐角的三个内角分别为,,,若求的值。

安徽省六安2023-2024学年高一上学期期末考试数学试题含答案

安徽省六安2023-2024学年高一上学期期末考试数学试题含答案

六安2023年秋学期高一年级期末考试数学试卷(答案在最后)时间:120分钟满分:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知命题P :0x ∃∈R ,0302xx >,则它的否定形式为()A.0x ∃∈R ,0302x x ≤ B.x ∀∈R ,32>x x C.0x R ∃∉,0302x x ≤ D.x ∀∈R ,32≤xx 【答案】D 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得命题“0:P x R ∃∈,0302xx >”的否定为:“:P x R ⌝∀∈,32≤x x ”.故选:D.2.π3α=是1cos 2α=的()条件A.充要B.必要不充分C.充分不必要D.既不充分也不必要【答案】C 【解析】【分析】根据特殊角的三角函数值判断充分性,通过举反例说明不满足必要性即可.【详解】若π3α=,故可得1cos 2α=,满足充分性;若π3α=-,显然满足1cos 2α=,但无法推出π3α=,故必要性不成立;故π3α=是1cos 2α=的充分不必要条件.故选:C .3.函数2()log f x x x =+的零点所在区间为()A.10,8⎛⎫ ⎪⎝⎭B.11,84⎛⎫ ⎪⎝⎭C.1,12⎛⎫⎪⎝⎭D.11,42⎛⎫ ⎪⎝⎭【答案】C【分析】根据()f x 的单调性,结合零点存在性定理,即可判断和选择.【详解】2,log y x y x ==在()0,+∞上都是单调增函数,故()y f x =在()0,+∞上是单调增函数;又21111log 308888f ⎛⎫=+=-< ⎪⎝⎭,21111log 204444f ⎛⎫=+=-< ⎪⎝⎭,21111log 102222f ⎛⎫=+=-< ⎪⎝⎭,()211log 110f =+=>;故()f x 的零点所在区间为1,12⎛⎫⎪⎝⎭.故选:C.4.设2log 0.3a =,0.3log 0.2b =,sin37c =︒,则a ,b ,c 之间的大小关系是()A.a b c >>B.b a c>> C.c a b>> D.b c a>>【答案】D 【解析】【分析】通过三个数与0,1的关系即可解出.【详解】由题意,22log 0.3log 10a =<=,0.30.3log 0.2log 0.31b =>=,0sin 37sin 451c <=︒<︒<,∴01a c b <<<<.故选:D.5.函数()sin ln ||f x x x =⋅的大致图象是A. B.C. D.【解析】【详解】函数()=sin ln f x x x ⋅是奇函数,图像关于原点对称,故排除,A B 当2x =时,()2sin 2ln 20f =⨯>,故排除D 故选C点睛:已知函数的解析式判断函数图象的形状时,主要是按照排除法进行求解,可按照以下步骤进行:(1)求出函数的定义域,对图象进行排除;(2)判断函数的奇偶性、单调性,对图象进行排除;(3)根据函数图象的变化趋势判断;(4)当以上方法还不能判断出图象时,再选取一些特殊点,根据特殊点处的函数值进行判断.6.若43m =,则3log 12=()A.1m m+ B.21m m+ C.2m m+ D.212m m+【答案】A 【解析】【分析】指数式化为对数式,进而利用换底公式及对数运算公式进行求解.【详解】由43m=得:4log 3m =,则334111log 121log 411log 3m m m+=+=+=+=故选:A7.已知ABC 的外接圆圆心为O ,且2AO AB AC =+ ,OA AC = ,则向量BA 在向量BC上的投影向量为()A.32BC B.34BC uu u r C.32BC-D.34BC - 【答案】B 【解析】【分析】根据题意得出BC 为外接圆的直径,且AOC 是等边三角形,从而求出向量BA 在向量BC上的投影向量.【详解】∵ABC 的外接圆的圆心为O ,且2AO AB AC =+,∴O 为BC 的中点,即BC 为外接圆的直径,∴90BAC ∠=︒.∵OA AC = ,∴AOC 是等边三角形.设D 为OC 的中点,则34BD BC =.∴向量BA 在向量BC上的投影向量为3cos 4BD BC BA ABC BC BC BC BC∠⋅=⋅=.故选:B.8.已知函数()cos ]2f x x π⎛⎫= ⎪⎝⎭,其中[]x 表示不超过x 的最大整数,下列说法正确的是()A.()f x 为偶函数B.()f x 的值域为{0,1}C.()f x 为周期函数,且最小正周期2T =D.()f x 与7|1og |l y x =-的图像恰有一个公共点【答案】D 【解析】【分析】利用特殊值排除AC ,根据余弦函数的性质可求出函数的值域进而判断B ,根据函数的值域判断D .【详解】对于A ,由于1cos 012f ⎛⎫== ⎪⎝⎭,1πcos 022f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,所以12f ⎛⎫≠ ⎪⎝⎭12f ⎛⎫- ⎪⎝⎭,所以()y f x =不是偶函数,故A 错;对于B ,由于[]x 为整数,[]()ππZ 22x k k =⋅∈,而πcos 2k ⎛⎫⋅ ⎪⎝⎭的值有0,1,1-三种情况,所以()f x 的值域为{}0,1,1-,故B 错误;对于C ,由于()[]()π1.1cos 1.1cos 12f π⎛⎫-=⨯-=-=-⎪⎝⎭,()[]π0.9cos 0.9cos 012f ⎛⎫=⨯== ⎪⎝⎭,()()1.10.9f f -≠,故C 错误;对于D ,由B 得(){}0,1,1f x ∈-,令7log 10x -=,得2x =或0x =,而()()2cos π1,0cos01f f ==-==不是公共点的横坐标.令7log 11x -=,得8x =或6x =-,而()()()8cos 4π1,6cos 3πcos π1f f ==-=-==-,所以()8,1是两个函数图像的一个公共点.令7log 11x -=-,得87x =或67x =,而8π6cos 0,cos 01727f f ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,所以不是两个函数图像的一个公共点.综上所述,两个函数图像有一个公共点()8,1,故D 正确.故选:D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.)A.sin15cos15︒+︒B.222cossin 1212ππ⎛⎫- ⎪⎝⎭C.1tan151tan15+︒-︒D.2sin15cos15︒︒【答案】BC 【解析】【分析】根据三角恒等变换公式,求解即可.【详解】对于A 选项,原式45)2=︒+︒=,故A 选项错误;对于B 选项,原式2cosπ6==,故B 选项正确;对于C 选项,原式tan 45tan15tan 601tan 45tan15︒+︒==︒=-︒︒C 选项正确;对于D 选项,原式1sin 302=︒=,故D 选项错误.故选:BC.10.若0a b >>,0c <,则下列不等式中正确的是()A.c c a b< B.ac bc< C.b c ba c a +>+ D.2b a a b+>【答案】BD 【解析】【分析】利用不等式的基本性质看判断B 选项;利用作差法可判断ACD 选项.【详解】因为0a b >>,0c <,对于A 选项,()0c b a c c a b ab--=>,所以,c c a b >,A 错;对于B 选项,由不等式的基本性质可得ac bc <,B 对;对于C 选项,()()()()()a b c b a c c a b b c b a c a a a c a a c +-+-+-==+++,a c +的符号不确定,无法得出b c a c ++与ba的大小关系,C 错;对于D 选项,()222220a b b a a ab b a b ab ab--++-==>,则2b a a b +>,D 对.故选:BD.11.如图,已知点O 为正六边形ABCDEF 的中心,下列结论正确的是()A.CB OA=B.0OA OB OC ++=C.OF OD OC OB+=-D.OA FA DE BC⋅=⋅ 【答案】AC 【解析】【分析】利用相等向量的定义可判断A 选项;利用平面向量加法的平行四边形法则可判断B 选项;利用平面向量线性运算可判断C 选项;利用平面向量数量积的定义可判断D 选项.【详解】对于A 选项,由正六边形的几何性质可知,60AOB OBC BOC ABO ∠=∠=∠=∠= ,所以,//OA BC ,//AB OC ,则四边形OABC 为平行四边形,故CB OA =,A 对;对于B 选项,因为四边形OABC 为平行四边形,由平面向量加法的平行四边形法则可得20OA OB OC OB ++=≠,B 错;对于C 选项,由正六边形的几何性质可知,OF OD DE EF ===,则四边形ODEF 为菱形,所以,OF OD OE += ,OC OB BC -=,易知ODE 为等边三角形,则OE DE BC == ,故OF OD OC OB +=-,C 对;对于D 选项,设正六边形ABCDEF 的边长为a ,易知CB EF =,则21cos 602OA FA AO AF AO AF a ⋅=⋅=⋅=,21cos1202DE BC DE CB DE EF ED EF ED EF a ⋅=-⋅=-⋅=⋅=⋅=- ,所以,OA FA DE BC ⋅≠⋅,D 错.故选:AC.12.已知函数()()πsin 0,2f x x ϕωϕω⎛⎫=+><⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,下列说法中正确的有()A.若1ω=,则()f x 在π5π,36⎛⎫⎪⎝⎭上单调递减B.若()f x 在()0,π上有且仅有4个零点,则232966ω<≤C.若把()f x 的图象向左平移π6个单位后得到的函数为偶函数,则ω的最小值为2D.若2,33x ωωππ⎛⎫∈-⎪⎝⎭,则()()sin f x x ωϕ=+与()()tan g x x ωϕ=+有3个交点【答案】ABC 【解析】【分析】由已知条件求出π6ϕ=,利用正弦型函数的单调性可判断A 选项;利用函数()f x 在()0,π上的零点个数可得出关于实数ω的不等式,解出ω的取值范围,可判断B 选项;利用三角函数图象变换结合正弦型函数的奇偶性可判断C 选项;当2,33x ωωππ⎛⎫∈-⎪⎝⎭时,解方程()()f x g x =,可判断D 选项.【详解】因为函数()()πsin 0,2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫⎪⎝⎭,则()1sin 20==f φ,又因为ππ22ϕ-<<,所以,π6ϕ=,对于A 选项,若1ω=,则()πsin 6f x x ⎛⎫=+⎪⎝⎭,当π5π,36x ⎛⎫∈⎪⎝⎭时,则πππ26x <+<,所以,函数()f x 在π5π,36⎛⎫⎪⎝⎭上单调递减,A 对;对于B 选项,因为()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭,当()0,πx ∈时,ππππ666x ωω<+<+,因为()f x 在()0,π上有且仅有4个零点,则π4ππ5π6ω<+≤,解得232966ω<≤,B 对;对于C 选项,把()f x 的图象向左平移π6个单位,可得到函数ππππsin sin 6666y x x ωωω⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎢⎝⎭⎝⎭⎣⎦为偶函数,则()ππππ662k k ω+=+∈Z ,可得()62k k ω=+∈Z ,因为0ω>,故当0k =时,ω取最小值2,C 对;对于D 选项,因为2,33x ωωππ⎛⎫∈-⎪⎝⎭且0ω>,则πππ262x ω-<+<,由πsin ππ6sin tan π66cos 6x x x x ωωωω⎛⎫+ ⎪⎛⎫⎛⎫⎝⎭+=+= ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,可得πsin 06x ω⎛⎫+= ⎪⎝⎭,则π06x ω+=,故当2,33x ωωππ⎛⎫∈-⎪⎝⎭时,则()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭与()πta 6n g x x ω⎛⎫=+ ⎪⎝⎭只有1个交点,D 错.故选:ABC.三、填空题:本题共4小题,每小题5分,共20分.13.一个扇形的弧长为6π,面积为27π,则此扇形的圆心角为________.(用弧度制表示)【答案】2π3【解析】【分析】利用扇形弧长公式,面积公式列方程求解即可.【详解】设圆心角为α,扇形半径为r ,依题可得6πr α=,2127π2r α=,解得2π3α=,9r =.故答案为:2π314.已知简谐运动ππ()2sin ||32f x x ϕϕ⎛⎫⎛⎫=+<⎪⎪⎝⎭⎝⎭的图象经过点(0,1),则该简谐运动初相ϕ为________.【答案】π6##1π6【解析】【分析】将点代入函数中,结合所求量范围求解即可.【详解】将(0,1)代入函数中,可得()12sin ϕ=,解得π2πZ 6k k =+∈,ϕ,已知π||2ϕ<,解得ππ22ϕ-<<,故π6ϕ=.故答案为:π615.求值:()cos 40110︒+︒=__________.【答案】1【解析】【分析】利用三角函数切化弦,辅助角公式与诱导公式求解即可.【详解】()sin10cos10cos 40110cos 401cos 40cos10cos10︒︒+︒⎛⎫︒+︒=︒+=⨯︒ ⎪︒︒⎝⎭()2sin 30cos10cos30sin102sin40sin80cos 40cos40cos10cos10cos10︒︒+︒︒︒︒=⨯︒=⨯︒=︒︒︒()sin 9010cos101cos10cos10︒-︒︒===︒︒.故答案为:1.16.已知方程12sin π01x x-=-,则当[2,4]x ∈-时,该方程所有实根的和为________.【答案】8【解析】【分析】作出1()1f x x=-,()2sin πg x x =的图象,通过图象的对称性可得方程所有实根的和.【详解】方程12sin π01x x -=-,即12sin π1x x=-,令1()1f x x =-,()2sin πg x x =,1()1f x x =-的图象可由1y x=-的图象向右平移1个单位得到,故关于点(1,0)对称,同时(1,0)也是()2sin πg x x =的一个对称中心;作图可得()f x ,()g x 的图象,观察它们在[2,4]x ∈-时的图象,可知二者的图象都关于(1,0)点成中心对称且()f x ,()g x 图象在[2,4]-上共有8个交点,这8个交点两两成对关于点(1,0)对称,每一对关于(1,0)对称的交点的横坐标的和为2,故所有8个交点的横坐标的和为248⨯=,即方程12sin π01x x-=-所有实根的和为8.故答案为:8.【点睛】方法点睛:(1)转化法,方程12sin π01x x-=-的根的问题,转化为1()1f x x =-,()2sin πg x x=的图象的交点问题;(2)数形结合:作出函数1()1f x x=-,()2sin πg x x =的图象,判断其对称性,从而求解问题.四、解答题:本小题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{30}A x x =-≤<,集合{}22B x x x =->.(1)求A B ⋂;(2)若集合{}22C x a x a =≤≤+,且()C A B ⊆ ,求实数a 的取值范围.【答案】(1){}20A B x x ⋂=-<<(2){}2a a >【解析】【分析】(1)计算{}21B x x =-<<,再计算交集得到答案.(2)考虑C =∅和C ≠∅两种情况,根据集合的包含关系得到答案.【小问1详解】{}{}2221B x x x x x =->=-<<,{}20A B x x ⋂=-<<.【小问2详解】当C =∅时,22a a >+,即2a >,满足条件;当C ≠∅时,22a a ≤+且2220a a >-⎧⎨+<⎩,无解.综上所述:实数a 的取值范围{}2a a >.18.如图,以Ox 为始边作角α与(0π)<<<ββα,它们的终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为34,55⎛⎫- ⎪⎝⎭.(1)求3sin()5sin 22cos()cos 2ππααπαα⎛⎫-+- ⎪⎝⎭⎛⎫--+ ⎪⎝⎭的值;(2)若5sin 13β=,π0,2β⎛⎫∈ ⎪⎝⎭,求sin()αβ+的值.【答案】(1)32(2)3365【解析】【分析】(1)利用诱导公式化简求值即可.(2)利用两角和的正弦公式处理即可.【小问1详解】由题得3cos 5α=-,4sin 5α=,4tan 3α=-,所以433sin()5sin 353sin 5cos 3255342cos sin 22cos()cos 2255ααααααααπ⎛⎫⎛⎫π-+-⨯+⨯- ⎪ ⎪+⎝⎭⎝⎭===π+⎛⎫⎛⎫--+⨯-+⎪ ⎪⎝⎭⎝⎭【小问2详解】由题得,5sin 13β=,π0,2β⎛⎫∈ ⎪⎝⎭,所以12cos 13β=,所以4123533sin()sin cos cos sin 51351365αβαβαβ⎛⎫+=+=+-⨯= ⎪⎝⎭19.已知函数π()cos 23f x x ⎛⎫=-⎪⎝⎭.(1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;23x π-3π-2ππ32π53πx6π512π23π1112ππ()f x 1211-12(2)将()y f x =的图象横坐标扩大为原来的2倍,再向左平移π2个单位后,得到()g x 的图象,求()g x 的对称中心.【答案】(1)表格及图象见解析(2)ππ,03k ⎛⎫+ ⎪⎝⎭,()k ∈Z 【解析】【分析】(1)直接根据五点作图法补全表格,然后描点画图;(2)先通过图象变换得到()cos 6g x x π⎛⎫=+ ⎪⎝⎭,然后令πππ62x k +=+可得对称中心.【小问1详解】π()cos 23f x x ⎛⎫=- ⎪⎝⎭,列表如下:π23x -π3-π2π3π25π3xπ65π122π311π12π()f x 1211-012图象如图:【小问2详解】()f x 的图象横坐标扩大为原来的2倍得πcos 3y x ⎛⎫=- ⎪⎝⎭,再向左平移π2个单位后,得()cos cos 236g x x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,令πππ62x k +=+,()k ∈Z ,得ππ3x k =+,()k ∈Z ,所以函数()g x 的对称中心为ππ,03k ⎛⎫+⎪⎝⎭,()k ∈Z .20.已知函数2()2sin cos f x x x x =+-.(1)求函数()f x 的最小正周期和单调递减区间;(2)当π0,4x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域.【答案】(1)π,π7ππ,π1212k k ⎡⎤++⎢⎣⎦()k ∈Z ;(2)[1,2].【解析】【分析】(1)将()f x 化简为三角函数的一般式,结合正弦型函数最小正周期以及单调区间的求解方法,即可求得结果;(2)根据x 的取值范围,求得23x π+的范围,结合正弦函数单调性,即可求得结果.【小问1详解】2π()2sin cos sin 222sin 23f x x x x x x x ⎛⎫=+-==+ ⎪⎝⎭,所以()f x 最小正周期为22ππ=;由ππ3π2π22π232k x k +≤+≤+,解得单调递减区间是π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦()k ∈Z ;【小问2详解】当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ5π2,336x ⎡⎤+∈⎢⎣⎦,又sin y x =在,32ππ⎡⎤⎢⎥⎣⎦单调递增,在5,26ππ⎛⎫⎪⎝⎭单调递减;则π5π236x +=,即π4x =时,()f x 取得最小值1,ππ232x +=,即π12x =时,()f x 取得最大值2,故当π0,4x ⎡⎤∈⎢⎥⎣⎦时,()f x 的值域为[1,2].21.六安一中新校区有一处矩形地块ABCD ,如图所示,50AB =米,BC =米,为了便于校园绿化,计划在矩形地块内铺设三条绿化带OE ,EF 和OF ,考虑到整体规划,要求O 是边AB 的中点,点E 在边BC 上,点F 在边AD 上,且π2EOF ∠=.(1)设BOE α∠=,ππ,63α⎡⎤∈⎢⎥⎣⎦,试将OEF 的周长l 表示成α的函数关系式;(2)在(1)的条件下,为增加夜间照明亮度,决定在两条绿化带OE 和OF 上按装智能照明装置,已知两条绿化带每米增加智能照明装置的费用均为m 元,当新加装的智能照明装置的费用最低时,求α大小(备注:7πsin124+=)【答案】(1)25(1sin cos )sin cos l αααα++=,ππ,63α⎡⎤∈⎢⎥⎣⎦(2)π4【解析】【分析】(1)分别在Rt BOE 和Rt AOF △中,表示出,OE OF ,即可求出EF ,从而求得OEF 的周长l 表示成α的函数关系式;(2)结合(1)可得出OE OF +的表达式,利用三角代换,令sin cos t αα+=,化简OE OF +的表达式,即为501t tOE OF +=-,再结合函数1y t t =-的单调性,即可确定OE OF +何时取得最小值,即可求得答案.【小问1详解】由题意知50AB =,O 是边AB 的中点,在Rt BOE 中,由BOE α∠=,ππ,63α⎡⎤∈⎢⎥⎣⎦,可得25cos OE α=,由于π2EOF ∠=,故在Rt AOF △中,π2AOF α∠=-,AFO α∠=,可得25sin OF α=,又在Rt EOF △中,由勾股定理得25sin cos EF αα===,所以25252525(1sin cos )cos sin sin cos sin cos l αααααααα++=++=,ππ,63α⎡⎤∈⎢⎥⎣⎦.【小问2详解】根据题意,要使费用最低,只需OE OF +最小即可,由(1)得25(sin cos )sin cos OE OF αααα++=,ππ,63α⎡⎤∈⎢⎥⎣⎦,设sin cos t αα+=,则21sin cos 2t αα-⋅=,得2225(sin cos )25505011sin cos 12t t OE OF t t t t αααα++===---=,由于πsin cos )4t ααα=+=+,5ππ7π12412α≤+≤,而5π7πsinsin 12124+==,故312t +≤≤,令1()f t t t=-,则1()f t t t=-在(0,)+∞上为增函数,则max 2()2f t f ==,所以当t =时,501t tOE OF +=-最小,此时π4α=,即当新加装的智能照明装置的费用最低时,π4α=.22.已知函数1()log 1a x f x x -=+(0a >且1a ≠).(1)求()f x 的定义域;(2)若当12a =时,函数()()g x f x b =-在()1,∞+有且只有一个零点,求实数b 的范围;(3)是否存在实数a ,使得当()f x 的定义域为[,]m n 时,值域为[]1log ,1log a a n m ++,若存在,求出实数a 的取值范围;若不存在,请说明理由.【答案】22.,1(),)1(-∞-⋃+∞23.()0,+∞24.存在,03a <<-【解析】【分析】(1)根据对数的真数大于0结合分析不等式运算求解;(2)根据题意分析可知()f x b =在(1,)+∞上有且只有一个解,进而结合函数单调性运算求解;(3)根据定义域和值域可得01a <<,且1m n <<,结合单调性分析可知2()(1)10h x ax a x =+-+=有两个大于1相异实数根,结合二次函数零点分布运算求解.【小问1详解】由101x x ->+,得1x >或1x <-.所以()f x 的定义域为,1(),)1(-∞-⋃+∞.【小问2详解】令12()111x t x x x -==-++,可知()t x 在()1,∞+上为增函数,可得()()10t x t >=,且()1t x <,可知()t x 的值域为()0,1,因为12a =,则12log y x =在定义域内为减函数,可得()12log 10f x >=,所以函数()f x 在()1,+∞上的值域为()0,+∞,又因为函数()()g x f x b =-在()3,∞+有且只有一个零点,即()f x b =在()3,∞+上有且只有一个解,所以b 的范围是()0,+∞.【小问3详解】存在,理由如下:假设存在这样的实数a ,使得当()f x 的定义域为[,]m n 时,值域为[]1log ,1log a a n m ++,由m n <且1log 1log +<+a a n m ,可得01a <<,且1m n <<.令12()111x t x x x -==-++,可知()t x 在(1,)+∞上为增函数,因为01a <<,则log a y x =在定义域内为减函数,所以()f x 在(1,)+∞上为减函数,可得()()()()1log log 11log log 1a a aa m f m am m n f n an n -⎧==⎪⎪+⎨-⎪==⎪+⎩,可知11x ax x -=+在(1,)+∞上有两个互异实根,可得2(1)10ax a x +-+=,即2()(1)10h x ax a x =+-+=有两个大于1相异实数根.则()()2Δ14011210a a a a h ⎧=-->⎪-⎪->⎨⎪>⎪⎩,解得03a <<-,所以实数a的取值范围(0,3-.【点睛】方法点睛:应用函数思想确定方程解的个数的两种方法(1)转化为两熟悉的函数图象的交点个数问题、数形结合、构建不等式(方程)求解;。

2021-2022学年山东省蓬莱高一年级上册学期期末考试数学试题【含答案】

2021-2022学年山东省蓬莱高一年级上册学期期末考试数学试题【含答案】

2021-2022学年山东省蓬莱第一中学高一上学期期末考试数学试题一、单选题1.已知集合{}{}22|log (32),|4A x y x B x x ==-=>,则R A B ⋃=( )A .3|22x x ⎧⎫-<⎨⎬⎩⎭B .{|2}x x <C .3|22x x ⎧⎫-<<⎨⎬⎩⎭D .{|2}x x【答案】D【解析】根据对数型函数的定义域化简集合A 的表示,解一元二次不等式化简集合B 的表示,最后根据集合的补集和并集的定义,结合数轴进行求解即可.【详解】因为{}{242B x x x x ==>或}2x <-,所以R {|22}B x x =-又因为{}23|log (32){|320}|,2A x y x x x x x ⎧⎫==-=->=<⎨⎬⎩⎭所以R A B ⋃={|2}x x . 故选:D【点睛】本题考查集合的补集与并集的定义,考查了数学运算能力,属于基础题.2.函数()lg(2)f x x =-的定义域为( ) A .1,3⎡⎫+∞⎪⎢⎣⎭B .1,23⎡⎤⎢⎥⎣⎦C .1,23⎡⎫⎪⎢⎣⎭D .[)2,∞+【答案】C【分析】解不等式组310,20x x -≥⎧⎨->⎩即得解. 【详解】解:由题得3101,2203x x x -≥⎧∴≤<⎨->⎩. 所以函数的定义域为1,23⎡⎫⎪⎢⎣⎭.故选:C3.已知角α的顶点为坐标原点,始边为x 轴的非负半轴,若点(sin ,tan )P αα在第四象限,则角α的终边在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【分析】依据三角函数值的符号判断角α的终边所在象限即可解决. 【详解】由点(sin ,tan )P αα在第四象限,可知sin 0,tan 0αα><,则角α的终边在第二象限. 故选:B4.已知命题“[]3,3x ∀∈-,240x x a -++≤”为假命题,则实数a 的取值范围是( ) A .(4,)-+∞ B .()21,+∞ C .(),21-∞ D .()3,-+∞【答案】A【分析】由全称命题的否定转化为最值问题求解即可. 【详解】因为命题“[]3,3x ∀∈-,240x x a -++≤”为假命题,所以240x x a -++>在[3,3]x ∈-上有解,所以2max (4)0x x a -++>,而一元二次函数24x x a -++在422(1)x =-=⨯-时取最大值,即22420a -+⨯+>解得4a >-, 故选:A5.函数()13cos313xxf x x -=+的图象大致是( )A .B .C .D .【答案】A【解析】先判断奇偶性,可排除C ,D ,由特殊值()f π,可排除B ,即可得到答案.【详解】因为()()()1331cos 3cos31331x x x x f x x x f x -----=⋅-=⋅=-++,所以函数()f x 为奇函数,排除C ,D ;又()13cos3013f ππππ-=>+,排除B ,故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 6.若α,β的终边(均不在y 轴上)关于x 轴对称,则( ) A .sin sin 0αβ+= B .cos cos 0αβ+= C .22sin sin 1αβ+= D .tan tan 0αβ-=【答案】A【分析】因为α,β的终边(均不在y 轴上)关于x 轴对称,则2k αβπ+=,Z k ∈,然后利用诱导公式对应各个选项逐个判断即可求解.【详解】解:因为α,β的终边(均不在y 轴上)关于x 轴对称, 则2k αβπ+=,Z k ∈,选项A :sin sin sin sin(2)sin sin 0k αβαπααα+=+-=-=,故A 正确, 选项B :cos cos cos cos(2)2cos 0k αβαπαα+=+-=≠,故B 错误, 选项C :22222sin sin sin sin (2)2sin 0k αβαπαα+=+-=≠,故C 错误, 选项D :tan tan tan tan(2)tan tan 2tan 0k αβαπαααα-=--=+=≠,故D 错误, 故选:A .7.若31,2α⎛⎫∈ ⎪⎝⎭,记cos sin cos log ,log cos ,1log tan x y z αααααα===+,则,,x y z 的大小关系正确的是( )A .x y z <<B .z x y <<C .x z y <<D .y x z <<【答案】C【分析】由题意可得0cos sin 1,tan 1αααα<<<<>,然后利用对数函数的单调性比较大小 【详解】因为31,2α⎛⎫∈ ⎪⎝⎭,所以0cos sin 1,tan 1αααα<<<<>, 所以cos cos log log 10x ααα=<=, sin sin log cos log sin 1y αααα=>=,cos cos cos 1log tan log (cos tan )log sin z ααααααα=+==,因为0cos sin 1αα<<<,所以cos cos cos log cos log sin log 1ααααα>>, 所以cos 1log sin 0αα>>,即01z <<, 综上,x z y <<, 故选:C8.已知()f x 是定义在[]1,1-上的奇函数,且()11f -=-,当,1,1a b且0a b +≠时()()0f a f b a b+>+.已知,22ππθ⎛⎫∈- ⎪⎝⎭,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则θ的取值范围是( )A .,62ππ⎛⎫- ⎪⎝⎭B .,23ππ⎛⎫-- ⎪⎝⎭ C .,32ππ⎛⎫- ⎪⎝⎭ D .,26ππ⎛⎫- ⎪⎝⎭【答案】A【解析】由奇偶性分析条件可得()f x 在[]1,1-上单调递增,所以()max 1f x =,进而得2143sin 2cos θθ<+-,结合角的范围解不等式即可得解. 【详解】因为()f x 是定义在[]1,1-上的奇函数, 所以当,1,1a b且0a b +≠时()()()()00()f a f b f a f b a b a b +-->⇔>+--,根据,a b 的任意性,即,a b -的任意性可判断()f x 在[]1,1-上单调递增, 所以()max (1)(1)1f x f f ==--=,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则2143sin 2cos θθ<+-,整理得(sin 1)(2sin 1)0θθ++>,所以1sin 2θ>-,由,22ππθ⎛⎫∈- ⎪⎝⎭,可得,62ππθ⎛⎫∈- ⎪⎝⎭,故选:A.【点睛】关键点点睛,本题解题的关键是利用()()()()00()f a f b f a f b a b a b +-->⇔>+--,结合变量的任意性,可判断函数的单调性,属于中档题.二、多选题9.已知全集U =R ,集合M ,N 的关系如图所示,则( )A .NM M =B .()U M N ⋂=∅C .()()U U M N ⊇D .()()U U UM N N ⋂=【答案】AB【分析】根据韦恩图,结合集合的交并补运算逐个选项分析即可.【详解】由图可知()()()()(),,,U U U U UUN M M M N M N M N M ==∅⊆=.故选:AB10.幂函数21*()(22),N m f x m m x m --=+-∈,则下列结论正确的是( ) A .1m = B .函数()f x 是偶函数 C .(2)(3)f f -< D .函数()f x 的值域为(0,)+∞【答案】ABD【分析】根据幂函数定义可知2221m m +-=,即可解得m 的值,结合m 是正整数即可对选项做出判断.【详解】由幂函数定义可知,系数2221m m +-=,解得1m =或32m =-,又因为*N m ∈,所以1m =;故A 正确; 1m =时,221()f x xx -==,其定义域为(,0)(0,)-∞+∞,且满足2()()1f f x x x ==-,所以函数()f x 是偶函数,即B 正确; 由21()f x x=可知,函数()f x 在(0,)+∞为单调递减,所以(2)(2)(3)f f f -=>,所以C 错误; 函数21()f x x=的值域为(0,)+∞,即D 正确; 故选:ABD.11.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则( )A .函数解析式()2sin 23f x x π⎛⎫=+ ⎪⎝⎭B .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位长度可得函数()f x 的图象C .直线1112x π=-是函数()f x 图象的一条对称轴 D .函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值为2【答案】ABC【分析】根据图像得到解析式,利用函数的性质进项判断即可. 【详解】由题图知:函数()f x 的最小正周期453612T πππ⎛⎫=⨯-=⎪⎝⎭,则22πωπ==,2A =,所以函数()()2sin 2f x x ϕ=+.将点,212π⎛⎫⎪⎝⎭代入解析式中可得22sin 6πϕ⎛⎫=+ ⎪⎝⎭,则()262k k Z ππϕπ+=+∈,得()23k k Z πϕπ=+∈, 因为2πϕ<,所以3πϕ=,因此()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,故A 正确.将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图像向左平移4π个单位长度可得函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图像,故B正确.()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,当1112x π=-时,()2f x =,故C 正确.当,02x π⎡⎤∈-⎢⎥⎣⎦时,23x π+∈2,33ππ⎡⎤-⎢⎥⎣⎦,所以()f x ⎡∈-⎣故D 错误. 故选:ABC .12.已知正实数x ,y ,z 满足236x y z ==,则( ) A .111x y z+=B .236x y z >>C .236x y z >> D .24xy z ≥【答案】ACD【分析】令236x y z t ===则1t >,可得:2log x t =,6log z t =,进而结合对数运算与换底公式判断各选项即可得答案.;【详解】解:令236x y z t ===,则1t >,可得:2log x t =, 3log y t =,6log z t =, 对于选项A :因为()231111lg 2lg 31lg 61lg 2lg 3log 6log log lg lg lg lg t x y t t t t t t z+=+=+=+===, 所以111x y z+=,故选项A 正确;对于选项B ,因为1t >,故lg 0t >,所以232lg 3lg 2log 3log lg 2lg323t t t x t y -=-=-()23lg lg3lg 2lg 2lg3t -=⋅9lg lg80lg 2lg3t =>⋅,即23x y >; ()3663lg lg3lg lg 62lg33lg 6lg 9363log 6log 0lg3lg 6lg3lg 6lg3lg 6t t t t y z t t ⋅--=-=-==<⋅⋅,即36y z <,故B 选项错误. 对于选项C :log lg lg a t t a a a =,因为02lg 23lg36lg 6<<<,所以1112lg 23lg 36lg 6>>, 因为lg 0t >,所以lg lg lg 2lg 23lg 36lg 6t t t >>,即362log log log 236t t t >>,即236x y z>>,故选项C 正确;对于选项D :()223lg lg lg log log lg 2lg3lg 2lg3t t txy t t =+=⋅=⨯, ()()()222262lg 444log 4lg lg 6lg 6t z t t ⎛⎫=== ⎪⎝⎭, 因为()22lg 6lg 2lg30lg 2lg324+⎛⎫<⨯<=⎪⎝⎭,因为lg 2lg3≠所以等号不成立, 所以()214lg 2lg3lg 6>⨯,即()()()222lg 4lg lg 2lg 3lg 6t t >⨯, 所以24xy z >,根据“或”命题的性质可知选项D 正确. 故选:ACD三、填空题13.如图所示,终边落在阴影部分(包括边界)的角α的集合是__________.【答案】{}90180120180,k k k Z αα+⋅≤≤+⋅∈ 【分析】写出终边落在边界上的角,即可求出.【详解】因为终边落在y 轴上的角为90180,k k Z ︒+⋅︒∈, 终边落在图中直线上的角为1203601202180,k k ︒︒+⋅︒=+⋅︒Z k ∈; 3003601201802180120(21)180,n n n n Z ︒︒︒+⋅︒=+︒+⋅︒=++⋅︒∈,即终边在直线上的角为120180k ︒+⋅︒,Z k ∈,所以终边落在阴影部分的角为90180120180,k k k Z α︒+⋅︒≤≤︒+⋅︒∈, 故答案为:{}90180120180,k k k Z αα︒+⋅︒≤≤︒+⋅︒∈14.已知正数x ,y 满足21x y +=,则12xx y +的最小值为__________.【答案】5【分析】根据基本不等式即可求解最值.【详解】()212121124y x x y x y x y-+=+=+-, 由于0,0x y >>,21x y +=,所以()12122222241125x y x y xx y x y x y x y x y ⎛⎫+=++-=++≥+⋅= ⎪⎝⎭, 当且仅当13x y == 时,取等号,故12x x y +最小值为5,故答案为:515.数学中处处存在着美,机械学家莱洛沷现的莱洛三角形就给人以对称的美感.莱洛三角形的画法:先画等边三角形ABC ,再分别以点A ,B ,C 为圆心,线段AB 长为半径画圆弧,便得到莱洛三角形.若线段AB 长为2,则莱洛三角形的面积是________.【答案】2π23-232π-【分析】由题意,可先求解出正三角形扇形面积,再利用莱洛三角形与扇形之间的关系转化即可求解.【详解】由已知得2π3AB BC AC ===, 则AB =BC =AC =2,故扇形的面积为2π3, 由已知可得,莱洛三角形的面积扇形面积的3倍减去三角形面积的2倍, ∴所求面积为22π33222π233⨯-=- 故答案为:2π23-32π-.四、双空题16.已知定义在R 上的奇函数12,(0)()(),(0)x x f x g x x ⎧-≥=⎨<⎩,则(1)f -=________;不等式(())7≤f f x 的解集为________.【答案】 1 (,2]-∞【解析】由奇函数关于原点对称的性质,即可求得(1)f -;不等式(())7≤f f x 的解集等价于()3f x ≥-的解集,即可求得答案.【详解】解:∵12,(0)()(),(0)x x f x g x x ⎧-≥=⎨<⎩是定义在R 上的奇函数,当0x <时,()()()()1221x xg x f x f x --==--=-=--,12,(0)()21,(0)x x x f x x -⎧-≥∴=⎨-<⎩,∴(1)211f -=-=;又12,(0)()21,(0)x x x f x x -⎧-≥=⎨-<⎩在()0,∞+和()0-∞,上都单调递减,而且函数又是连续性函数,图像没有断开,所以函数12,(0)()21,(0)x x x f x x -⎧-≥=⎨-<⎩在R 上单调递减,∵不等式(())7,(3)7f f x f ≤-=,()3f x ∴≥-,123xx ≥⎧∴⎨-≥-⎩或0213x x -<⎧⎨-≥-⎩, 解得:2x ≤,即不等式(())7≤f f x 的解集为(,2]-∞. 故答案为:1;(,2]-∞.【点睛】本题考查奇函数的性质以及求解方法,考查复合不等式的求解,属于中档题.五、解答题 17.(1)计算20.5231103522216274--⎛⎫⎛⎫⎛⎫-⨯-⨯÷ ⎪⎪⎪⎝⎭⎝⎭⎝⎭(2)计算31log 242766194log 3log 8log 82log 3--⋅+-【答案】(1)0;(2)3【分析】(1)利用有理数指数幂性质以及运算法则求解; (2)利用对数性质及运算法则求解.【详解】(1)20.5231103522216274--⎛⎫⎛⎫⎛⎫-⨯-⨯÷ ⎪⎪⎪⎝⎭⎝⎭⎝⎭12223816442216273-⎛⎫⎛⎫⎛⎫=-⨯-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22933220444⎛⎫⎛⎫=-⨯-⨯= ⎪ ⎪⎝⎭⎝⎭. (2)31log 242766194log 3log 8log 82log 33--⋅+-3212log 2323662134log 3log 2log 22log 33=-⨯++3log 42366134log 3log 2log 2log 32=-⨯⨯++()642log 23213=-+⨯=+=.18.如图,以Ox 为始边作角α与(0)ββαπ<<<,它们的终边分别与单位圆相交于P ,Q 两点,已知点P 的坐标为34,55⎛⎫- ⎪⎝⎭.(1)求sin 2cos 211tan ααα+++的值;(2)若cos cos sin sin 0αβαβ+=,求()sin αβ+的值. 【答案】(1)1825(2)725【分析】(1)由三角函数的定义首先求得sin ,cos αα的值,然后结合二倍角公式和同角三角函数基本关系化简求解三角函数式的值即可;(2)由题意首先求得,αβ的关系,然后结合诱导公式和两角和差正余弦公式即可求得三角函数式的值. 【详解】(1)由三角函数定义得3cos 5α=-,4sin 5α, ∴原式2222sin cos 2cos 2cos (sin cos )3182cos 2sin sin cos 5251cos cos αααααααααααα++⎛⎫====⨯-=⎪+⎝⎭+. (2)∵cos cos sin sin cos()0αβαβαβ+=-=,且0βαπ<<<, ∴2παβ-=,2πβα=-,∴3sin sin cos 25πβαα⎛⎫=-=-= ⎪⎝⎭,4cos cos sin 25πβαα⎛⎫=-== ⎪⎝⎭.∴44337sin()sin cos cos sin 555525αβαβαβ⎛⎫+=+=⨯+-⨯= ⎪⎝⎭.【点睛】本题主要考查三角函数的定义,二倍角公式及其应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.19.已知函数π()2sin()(0)3f x x ωω=->图象的相邻两条对称轴间的距离为π.2(1)求函数()f x 的单调递增区间和其图象的对称轴方程; (2)先将函数()y f x =的图象各点的横坐标向左平移π12个单位长度,纵坐标不变得到曲线C ,再把C 上各点的横坐标保持不变,纵坐标变为原来的12,得到()g x 的图象,若1()2g x ≥,求x 的取值范围. 【答案】(1)单调递增区间为π5ππ,π(Z)1212k k k ⎡⎤-+∈⎢⎥⎣⎦,对称轴方程为π5π(Z)212k x k =+∈; (2)πππ,π(Z).62k k k ⎡⎤++∈⎢⎥⎣⎦【分析】(1)由条件可得函数()f x 的最小正周期,结合周期公式求ω,再由正弦函数性质求函数()f x 的单调递增区间和对称轴方程;(2)根据函数图象变换结论求函数()g x 的解析式,根据直线函数性质解不等式求x 的取值范围.【详解】(1)因为()f x 图象的相邻两条对称轴间的距离为π.2,所以()f x 的最小正周期为π,所以2ππω=,2ω=,所以π()2sin(2)3f x x =-, 由πππ2π22π232k x k -≤-≤+,可得π5πππ1212k x k -≤≤+,()k ∈Z , 所以函数()f x 的单调递增区间为π5ππ,π(Z)1212k k k ⎡⎤-+∈⎢⎥⎣⎦, 由()ππ2πZ 32x k k -=+∈得π5π(Z)212k x k =+∈,所以所求对称轴方程为π5π(Z)212k x k =+∈ (2)将函数()y f x =的图象向左平移π12个单位长度得到曲线π:2sin(2)6C y x =-,把C 上各点的横坐标保持不变,纵坐标变为原来的12得到π()sin(2)6g x x =-的图象, 由1()2g x ≥得π1sin(2)62x -≥,所以ππ5π2π22π666k x k +≤-≤+,Z k ∈,所以ππππ62k x k +≤≤+,Z k ∈,所以x 的取值范围为πππ,π(Z).62k k k ⎡⎤++∈⎢⎥⎣⎦20.已知函数()y f x =的定义域为R ,且对任意a ,b ∈R ,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立.(2)证明函数()y f x =是R 上的减函数; (3)若2(2)()0f x f x -+<,求x 的取值范围. 【答案】(1)证明见解析 (2)证明见解析 (3){1x x >或}2x <-【分析】(1)利用特殊值求出(0)0f =,从而证明()()f x f x -=-即可;(2)证明出[]121222()()()()f x f x f x x x f x ∴-=-+-12()f x x =-,再利用当0x >时,()0f x <恒成立即可得解;(3)利用函数的单调性和奇偶性进行证明即可得解. 【详解】(1)证明:由()()()f a b f a f b +=+, 令0a b 可得(0)(0)(0)f f f =+, 解得(0)0f =,令,==-a x b x 可得()()()f x x f x f x -=+-, 即()()(0)f x f x f +-=,而(0)0f =,()()f x f x ∴-=-,而函数()y f x =的定义域为R ,故函数()y f x =是奇函数.(2)证明:设12x x >,且1R x ∈,2x R ∈,则120x x ->, 而()()()f a b f a f b +=+[]121222()()()()f x f x f x x x f x ∴-=-+-1222()()()f x x f x f x =-+- 12()f x x =-,又当0x >时,()0f x <恒成立,即12()0f x x -<,12()()f x f x ∴<, ∴函数()y f x =是R 上的减函数;(3)(方法一)由2(2)()0f x f x -+<, 得2(2)()f x f x -<-, 又()y f x =是奇函数, 即2(2)()f x f x -<-,22x x ∴->-解得1x >或 2.x <-故x 的取值范围是{1x x >或}2x <-. (方法二)由2(2)()0f x f x -+<且(0)0f =,得2(2)(0)f x x f -+<, 又()y f x =在R 上是减函数, 220x x ∴-+>,解得1x >或 2.x <-故x 的取值范围是 {1x x >或}2x <-.21.已知函数()2f x x bx c =++,满足()()1f x f x =-,其一个零点为1-.(1)当0m ≥时,解关于x 的不等式()()21mf x x m ≥--; (2)设()()313f x x h x +-=,若对于任意的实数1x ,[]22,2x ∈-,都有()()12h x h x M -≤,求M 的最小值.【答案】(1)答案见解析 (2)242【分析】(1)根据条件求出,b c ,再分类讨论解不等式即可; (2)将问题转化为()()max min M h x h x ≥-,再通过换无求最值即可. 【详解】(1)因为()()1f x f x =-,则()()2211x bx c x b x c ++=-+-+,得1b又其一个零点为1-,则()1110f c -=++=,得2c =-,则函数的解析式为()22f x x x =--则()()2221m x x x m --≥--,即()()()222210mx m x mx x -++=--≥当0m =时,解得:1x ≤当0m >时,①2m =时,解集为R ②02m <<时,解得:1x ≤或2x m≥, ③m>2时,解得:2x m≤或1x ≥, 综上,当0m =时,不等式的解集为}{1x x ≤;当2m =时,解集为R ;当02m <<时,不等式的解集为{1x x ≤或2x m ⎫≥⎬⎭; 当m>2时,不等式的解集为2x x m ⎧≤⎨⎩或}1x ≥.(2)对于任意的1x ,[]22,2x ∈-,都有()()12h x h x M -≤, 即()()max min M h x h x ≥-令()222314t x x x =+-=+-,则()3th t =因为[]2,2x ∈-,则min 0t =,max 5t =可得()5max 3h t =,()0min 31h t ==则()()max min 2431242h x h x -=-=, 即242M ≥,即M 的最小值为242.22.某同学用“五点法”画函数()()cos 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请根据上表数据,求函数()f x 的解析式;(2)关于x 的方程()f x t =区间0,2π⎡⎤⎢⎥⎣⎦上有解,求t 的取值范围;(3)求满足不等式()()52043f x f f x f ππ⎡⎤⎡⎤⎛⎫⎛⎫-⋅--> ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦的最小正整数解. 【答案】(1)()2cos 26f x x π⎛⎫=- ⎪⎝⎭;(2)2⎡⎤⎣⎦; (3)2.【分析】(1)由表格中的数据可得出A 的值,根据表格中的数据可得出关于ω、ϕ的方程组,解出这两个量的值,可得出函数()f x 的解析式;(2)利用余弦型函数的基本性质求出函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域,即可得出实数t 的取值范围;(3)分析可得()0f x <或()1f x >,分别解这两个不等式,得解集,令0k =,得解集的一部分,由此可得出解集中的最小正整数解.【详解】(1)解:由表格数据知,2A =,由325362πωπϕπωπϕ⎧+=⎪⎪⎨⎪+=⎪⎩,解得26ωπϕ=⎧⎪⎨=-⎪⎩,所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.(2)解:当2,0x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,则cos 262x π⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦, 所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为2⎡⎤⎣⎦, 因为方程()f x t =区间0,2π⎡⎤⎢⎥⎣⎦上有解,所以t的取值范围为2⎡⎤⎣⎦. (3)解:因为552cos 2sin 14266f ππππ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,2432cos 2cos 03362f ππππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以不等式即:()()10f x f x ⎡⎤-⋅>⎣⎦,解得()0f x <或()1f x >,由()0f x <得cos 206x π⎛⎫-< ⎪⎝⎭,所以()3222Z 262k x k k πππππ+<-<+∈, 所以5,36x k k ππππ⎛⎫∈++ ⎪⎝⎭,Z k ∈; 由()1f x >得1cos 262x π⎛⎫-> ⎪⎝⎭,所以()222Z 363k x k k πππππ-+<-<+∈,所以,124x k k ππππ⎛⎫∈-++ ⎪⎝⎭,Z k ∈.令0k =可得不等式解集的一部分为5,,12436ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,因此,解集中最小的正整数为2.。

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。

2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上册期末数学质量测试题一、单选题1.已知1sin3α=,,2παπ⎛⎫∈ ⎪⎝⎭,则tanα的值为()A.4BC.-D.【正确答案】A根据同角三角函数的基本关系求出cosα,tanα;【详解】解:因为1sin3α=,22sin cos1αα+=,所以cos3α=±,因为,2παπ⎛⎫∈ ⎪⎝⎭,所以cos3α=-,所以1sin3tancos43ααα==-故选:A2.已知命题:0p x∀>,2log2x x>,则命题p的否定为()A.0x∀>,2log2x x≤B.00x∃>,002log2x x≤C.00x∃>,002log2x x<D.00x∃≤,002log2x x≤【正确答案】B根据全称命题的否定是特称命题,可得选项.【详解】因为全称命题的否定是特称命题,所以命题:0p x∀>,2log2x x>,则命题p的否定为“00x∃>,002log2x x≤”,故选:B.3.已知函数()xf x a=(0a>且1a≠)在(0,2)内的值域是2(1,)a,则函数()y f x=的函数大致是()A .B.C .D .【正确答案】B【详解】试题分析:由题意可知21a>,所以1a>,所以()f x是指数型的增函数.故选B.指数函数的图象与性质.4.若正实数a ,b ,c 满足1b a c c c <<<,则a ,b 的大小关系为()A .01a b <<<B .01b a <<<C .1b a <<D .1a b<<【正确答案】A【分析】根据已知可得01c <<,根据指数函数的单调性,即可得出答案.【详解】因为c 是正实数,且1c <,所以01c <<,则函数x y c =单调递减.由1b a c c c <<<,可得10b a c c c c <<<,所以01a b <<<.故选:A.5.若0a >且1a ≠,函数()(),140.52,1x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩,满足对任意的实数12x x ≠都有11222112()()()()x f x x f x x f x x f x +>+成立,则实数a 的取值范围是()A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)【正确答案】D【分析】由已知可得函数()f x 在R 上单调递增,根据分段函数的单调性列出不等式组,即可求得实数a 的取值范围.【详解】解:11222112()()()()x f x x f x x f x x f x +>+ ,∴对任意的实数12x x ≠都有1212()[()()]0x x f x f x -->成立,可知函数()f x 在R 上单调递增,1140.50(40.5)12a a a a >⎧⎪∴->⎨⎪≥-⨯+⎩,解得[4,8)a ∈,故选:D.6.已知1:12p x ≥-,:2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为()A .(],4-∞B .[]1,4C .(]1,4D .()1,4【正确答案】C【分析】求出p 、q 中的不等式,根据p 是q 的充分不必要条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】解不等式112x ≥-,即131022x x x --=≤--,解得23x <≤,解不等式2x a -<,即22x a -<-<,解得22a x a -<<+,由于p 是q 的充分不必要条件,则(]2,3()2,2a a -+,所以2223a a -≤⎧⎨+>⎩,解得14a <≤.因此,实数a 的取值范围是(]1,4.故选:C.本题考查利用充分不必要条件求参数,同时也考查了分式不等式和绝对值不等式的求解,考查计算能力,属于中等题.7.已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,且当π3x =时,函数()f x 取最小值,若函数()f x 在[,0]a 上单调递减,则a 的最小值是()A .π6-B .5π6-C .2π3-D .π3-【正确答案】A【分析】根据最小正周期求出2ω=,根据当π3x =时,函数取最小值,求出π3ϕ=,从而π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,由[,0]x a ∈得到22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,由单调性列出不等式,求出06π,a ⎡⎫∈-⎪⎢⎣⎭,得到答案.【详解】因为0ω>,所以2π2π2πT ω===,故13πcos(2)ϕ⨯+=-,所以2ππ2π,Z 3k k ϕ+=+∈,解得:ππ,Z k k ϕ=+∈23,因为π||2ϕ<,所以只有当0k =时,π3ϕ=满足要求,故π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,因为[,0]x a ∈,所以22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,故π2,33π0a ⎡⎫∈⎪⎢⎣⎭+,解得:06π,a ⎡⎫∈-⎪⎢⎣⎭,故a 的最小值为π6-.故选:A8.质数也叫素数,17世纪法国数学家马林·梅森曾对“21p -”(p 是素数)型素数作过较为系统而深入的研究,因此数学界将“21p -”(p 是素数)形式的素数称为梅森素数.已知第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,则下列各数中与NM最接近的数为()(参考数据:lg 20.3010≈)A .18010B .17710C .14110D .14610【正确答案】B【分析】根据题意,得到6076075901717212==2212N M -≈-,再结合对数的运算公式,即可求解.【详解】由第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,,可得6076075901717212=212N M -≈-,令5902k =,两边同时取对数,则590lg 2lg k =,可得lg 590lg 2k =,又lg 20.3010≈,所以lg 5900.3010177.59k ≈⨯=,17710k ≈与NM最接近的数为17710.故选:B.二、多选题9.下列结论正确的是()A .若,a b 为正实数,a b ¹,则3223+a b a b b a +>B .若,,a b m 为正实数,a b <,则a m ab m b+<+C .若,a b R ∈,则“0a b >>”是“11a b <”的充分不必要条件D .当0,2x π⎛⎫∈ ⎪⎝⎭时,2sin sin x x +的最小值是【正确答案】AC利用作差法可考查选项A 是否正确;利用作差法结合不等式的性质可考查选项B 是否正确;利用不等式的性质可考查选项C 是否正确;利用均值不等式的结论可考查选项D 是否正确.【详解】对于A ,若a ,b 为正实数,a b ¹,()()()233220a b a b ab a b a b +-+=-+>,3322a b a b ab ∴+>+,故A 正确;对于B ,若a ,b ,m 为正实数,a b <,()()0m b a a m a b m b b b m -+-=>++,则a m ab m b+>+,故B 错误;对于C ,若11a b <,则110b aa b ab--=<,不能推出0a b >>,而当0a b >>时,有0>0b a ab -<,,所以0b aab -<成立,即11a b<,所以“0a b >>”是“11a b<”的充分不必要条件,故C 正确;对于D ,当0,2x π⎛⎫∈ ⎪⎝⎭时,0sin 1x <<,2sin sin x x +≥=,当且仅当()sin 0,1x =时取等号,故D 不正确.故选:AC.易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10.已知关于x 的方程23xm -=有两个不等实根,则实数m 的取值可能是()A .2B .3C .4D .5【正确答案】CD【分析】化简方程得23x m =±,利用指数函数的值域,列式求解得出答案.【详解】23xm -= ,23x m ∴-=±,23x m -= 有两个不等实根,即23x m =±有两个不等实根,则3030m m +>⎧⎨->⎩,解得3m >,显然选项A ,B 不满足,选项C ,D 满足.故选:CD.11.定义在R 上的函数()f x 满足()(2)f x f x =+,当[3,5]x ∈时,()2|4|f x x =--,则下列说法正确的是()A .ππsin cos 66f f⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭B .(sin1)(cos1)f f <C .2π2πcos sin 33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D .(cos 2)(sin 2)f f >【正确答案】BD【分析】根据函数的周期性可得()f x 在[]1,1-上的解析式以及函数在[0,1]上的单调性.比较自变量的大小,即可根据单调性判断A 、B 项;又易知()f x 在[1,1]-上为偶函数,则根据()()f x f x =,可将[1,0]-上的自变量转化为[0,1]上,进而根据单调性,即可判断C 、D 项.【详解】当[1,1]x ∈-时,则[45]3,x +∈,于是()(2)(4)2||f x f x f x x =+=+=-,当01x ≤≤时,()2f x x =-,所以函数()f x 在[0,1]上单调递减;当10x -≤<时,()2f x x =+,所以函数()f x 在[1,0]-上是增函数.()f x 的定义域[1,1]-关于原点对称,且此时()()22-=--=-=f x x x f x则()f x 在[1,1]-上为偶函数.对于A 项,因为ππ0sincos 166<<<,所以ππsin cos 66f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B 项,因为0cos1sin11<<<,所以(cos1)(sin1)f f >,故B 正确;对于C项,因为2π12π0cossin 1323<==<,所以2π2πcossin 33f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,所以2π2πcos sin 33f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 错误;因为ππ0|cos 2|cos sin |sin 2|144<<=<<,所以(|cos2|)(|sin 2|)f f >,所以(cos 2)(sin 2)f f >,故D 正确.故选:BD.12.已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<≤⎪=⎨>⎪-⎩,下列说法中错误的是()A .当121122x x -<<<时,恒有()()12f x f x >B .若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17,26⎡⎤⎢⎥⎣⎦C .存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D .若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,则34a =-【正确答案】ACD【分析】根据奇函数的定义确定()f x 在(1,0)-上单调性与性质,然后由函数值大小可判断A ,由函数解析式分段求函数值的范围后可判断B ,由直线y kx =与函数()f x 的图象交点个数判断C ,求出3()4f x =的根是17,26,然后确定a 值使()f x a =根的和为53-即可判断D .【详解】选项A ,()f x 是奇函数,10x -≤<时,22()()[()()1]1f x f x x x x x =--=----+=---213()24x =-+-,在1(,0)2-上递减,且()0f x <,()f x 是奇函数,则(0)0f =,01x <≤时,2213()1()24f x x x x =-+=-+,在1(0,)2上递减,但()0f x >,因此()f x 在11(,)22-上不是增函数,A 错;选项B ,当01x <≤时,2213()1()24f x x x x =-+=-+,13()24f =,因此12m ≥,当1m >时,1()21f x x =-是减函数,由13214x =-得76x =,因此76m ≤,综上有1726m ≤≤,B 正确;选项C ,易知0x =是()F x 的一个零点,由于(1)1f =,y kx =过点(1,1)时,1k =,此时由21y xy x x =⎧⎨=-+⎩得21x x x -+=,2(1)0x -=,121x x ==,即直线y x =与21y x x =-+在点(1,1)处相切,因此1k >时,直线y kx =与21(01)y x x x =-+<<的图象只有一交点,在01k <<时,直线y kx =与1(1)21y x x =>-只有一个交点,从而0k >时,直线y kx =与()F x 的图象有三个交点,而0x >时,()0f x >,因此0k ≤,直线y kx =与()F x 的图象无交点,所以直线y kx =与()F x 的图象不可能是5个交点,即函数()()F x f x kx =-不可能有5个不相等的零点,C 错;选项D ,由上讨论知3()4f x =的解为12x =和76x =,因此若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,由()f x 是奇函数知若34a =-,则()f x a =的解是12x =-和76x =-,符合题意,但513(537213f ==⨯-(由此讨论知3()7f x =只有一解),即53()37f -=-,即37a =-时,关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和也为0,D 错.故选:ACD .方法点睛:解决分段函数的零点与交点问题,把零点问题转化为直线与函数图象交点问题进行处理,从而利用函数的性质确定出函数解析式,作出函数图象,观察出结论并找到解题思路.三、填空题13.已知弧长为πcm 3的弧所对圆周角为6π,则这条弧所在圆的半径为____________cm .【正确答案】1【分析】由弧度制公式lrα=求解即可得出答案.【详解】已知弧长为πcm 3的弧所对圆周角为6π,则所对的圆心角为π3,lrα=,313l r ππα∴===,故1.14.已知函数()()22,1log 1,1x ax f x x x ⎧+≤⎪=⎨->⎪⎩,若()02f f ⎡⎤=⎣⎦,则实数a 的值为_________.先求()03f =,再代入求()3f ,求实数a 的值.【详解】()00223f =+=,()()03log 22a f f f ⎡⎤===⎣⎦,即22a =,又0a >,且1a ≠,所以a =15.若函数()log a f x x =(0a >且1a ≠)在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为m,函数()(32g x m =+[0,)+∞上是增函数,则a m -的值是____________.【正确答案】3【分析】根据对数函数的单调性,分类讨论,再结合已知进行求解得出a 和m 的值,最后根据()g x 的单调性检验即可得到.【详解】当1a >时,函数()log a f x x =是正实数集上的增函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有(4)log 42a f ==,解得2a =,所以21log 12m ==-,此时()g x =[)0,∞+上是增函数,符合题意,因此()213a m -=--=;当01a <<时,函数()log a f x x =是正实数集上的减函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有11log 222a f ⎛⎫== ⎪⎝⎭,a =44m ==-,此时()g x =-在[)0,∞+上是减函数,不符合题意.综上所述,2a =,1m =-,3a m -=.故3.16.若函数()()()sin cos 0f x x x ϕϕ<π=++<的最大值为2,则常数ϕ的值为_______.【正确答案】2π根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+,可得2=,即可解出.【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,因为0ϕπ<<,所以2ϕπ=.故答案为.2π四、解答题17.在①22{|1}1x A x x -=<+,②{||1|2}A x x =-<,③23{|log }1xA x y x -==+这三个条件中任选一个,补充在下面的横线上,并回答下列问题.设全集U =R ,______,22{|0}.B x x x a a =++-<(1)若2a =,求()()U UC A C B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.【正确答案】(1)1{}1|x x x ≤-≥或(2)(][),34,-∞-⋃+∞【分析】(1)根据除法不等式,绝对值不等式,对数函数的定义域即可分别求出三种情形下的集合A ;(2)对集合B 中不等式进行因式分解,再根据充分必要条件和集合包含关系即可求解.【详解】(1)若选①:222213{|1}{|0}{|0}{|13}1111x x x x A x x x x x x x x x --+-=<=-<=<=-<<++++,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选②:{|12}{|212}{|13}A x x x x x x =-<=-<-<=-<<()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选③:()(){}233{|log }031011x x A x y x x x x x x ⎧⎫--====-+=⎨⎬++⎩⎭{|13}x x -<<,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.(2)由(1)知{|13}A x x =-<<,()22{|0}{|()10}B x x x a a x x a x a ⎡⎤=++-<=++-<⎣⎦,因为“x A ∈”是“x B ∈”的充分不必要条件,(i )若(1)a a -<--,即12a >,此时{|(1)}B x a x a =-<<--,所以1,3(1)aa -≥-⎧⎨≤--⎩等号不同时取得,解得4a ≥.故4a ≥.(ii )若(1)a a -=--,则B =∅,不合题意舍去;(iii )若(1)a a ->--,即12a <,此时{|(1)}B x a x a =--<<-,1(1),3a a -≥--⎧⎨≤-⎩等号不同时取得,解得3a ≤-.综上所述,a 的取值范围是(][),34,-∞-⋃+∞.18.(1)已知sin 2cos 0αα-=,求22sin cos sin 3sin cos 2cos αααααα--的值;(2)已知4sin()5απ+=,且sin cos 0αα<,求()()()2sin 3tan 34cos παπααπ----的值.【正确答案】(1)12-;(2)73.【分析】(1)先求出tan 2α=,再进行弦化切代入即可求解;(2)先求出4sin 5α=-,3cos 5α=,得到4tan 3α=-,再进行诱导公式和弦化切变换,代入即可求解.【详解】(1)由sin 2cos 0αα-=知tan 2α=∴原式=2tan 21tan 3tan 24622ααα==-----(2) 4sin()5απ+=∴4sin 05α=-<又sin cos 0αα<∴cos 0α>∴3cos 5α==∴4tan 3α=-原式=()()2sin 3tan 4cos απαπα---=2sin 3tan 4cos ααα+-=44237533345⎛⎫⎛⎫⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭=-⨯19.已知函数()323log 1x f x x -=-.(1)求函数()f x 的解析式及定义域;(2)求函数()f x 在()(),00,2x ∈-∞⋃时的值域.【正确答案】(1)()()12031xf x x =-≠-,()f x 的定义域为()(),00,∞-+∞U (2)()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭【分析】(1)利用换元法求得函数的解析式,根据函数定义域的求法,求得函数的定义域.(2)结合3x 的取值范围来求得()f x 在()(),00,2x ∈-∞⋃时的值域.【详解】(1)对于3log x ,需0x >;对231x x --,需1x ≠;则()()3log ,00,x ∈-∞⋃+∞,令3log t x =,则0t ≠,3t x =,()()231123312313131tt t t t f t ⋅--⋅-===----,所以()()12031x f x x =-≠-,即()f x 的定义域为()(),00,∞-+∞U .(2)当0x <时,11031,1310,1,13131x xxx <<-<-<<-->--,12331x ->-.当02x <<时,1111139,0318,,318318x xx x <<<-<>-<---,1115223188x-<-=-.所以()f x 在()(),00,2x ∈-∞⋃时的值域为()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭.20.已知函数()24f x x π⎛⎫=- ⎪⎝⎭,x R ∈.(1)求函数()f x 的最小正周期和单调递减区间;(2)求函数()f x 在区间,82ππ⎡⎤-⎢⎣⎦上的最小值和最大值,并求出取得最值时x 的值.【正确答案】(1)最小正周期为π,单调减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2)max ()f x =,此时8x π=,min ()1f x =-,此时2x π=.【分析】(1)直接利用周期公式计算周期,再利用整体代入法求余弦型函数的单调减区间即可;(2)先求出24x π-的取值范围,再利用余弦函数的性质求最值及取最值的条件即可.【详解】解:(1)()f x 的最小正周期22||2T πππω===.令2224k x k ππππ≤-≤+,解得588k x k ππππ+≤≤+,Z k ∈,此时时,()f x 单调递减,()f x ∴的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2),82x ππ⎡⎤∈-⎢⎥⎣⎦,则32,424x πππ⎡⎤-∈-⎢⎥⎣⎦,故cos 2,142x π⎡⎤⎛⎫-∈⎢⎥ ⎪⎝⎭⎣⎦,()24f x x π⎛⎫⎡=-∈- ⎪⎣⎝⎭,max ()f x ∴=cos 214x π⎛⎫-= ⎪⎝⎭,即204x π-=,即8x π=;min ()1f x =-,此时cos 242x π⎛⎫-=- ⎪⎝⎭,即3244x ππ-=,即2x π=.方法点睛:解决三角函数()cos y A x ωϕ=+的图象性质,通常利用余弦函数的图象性质,采用整体代入法进行求解,或者带入验证.21.2022年冬天新冠疫情卷土重来,我国大量城市和地区遭受了奥密克戎新冠病毒的袭击,为了控制疫情,某单位购入了一种新型的空气消毒剂用于环境消毒,已知在一定范围内,每喷洒1个单位的消毒剂,空气中释放的浓度(y 单位:毫克/立方米)随着时间(x 单位:小时)变化的关系如下:当04x 时,1618y x =--;当410x <时,15.2y x =-若多次喷洒,则某一时刻空气中的消毒剂浓度为每次投放的消毒剂在相应时刻所释放的浓度之和.由实验知,当空气中消毒剂的浓度不低于4(毫克/立方米)时,它才能起到杀灭空气中的病毒的作用.(1)若一次喷洒4个单位的消毒剂,则有效杀灭时间可达几小时?(2)若第一次喷洒2个单位的消毒剂,6小时后再喷洒(14)a a 个单位的消毒剂,要使接下来的4小时中能够持续有效消毒,试求a 的最小值.(精确到0.1取1.4)【正确答案】(1)8(2)1.6【分析】(1)根据喷洒4个单位的净化剂后浓度为()644,048202,410x f x x x x ⎧-≤≤⎪=-⎨⎪-<≤⎩,由()4f x ≥求解;(2)得到从第一次喷洒起,经()610x x ≤≤小时后,浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,化简利用基本不等式求解.【详解】(1)解:因为一次喷洒4个单位的净化剂,所以其浓度为()644,0448202,410x f x y x x x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,64448x-≥-,解得0x ≥,此时04x ≤≤,当410x <≤时,2024x -≥,解得8x ≤,此时48x <≤,综上08x ≤≤,所以若一次喷洒4个单位的消毒剂,则有效杀灭时间可达8小时;(2)设从第一次喷洒起,经()610x x ≤≤小时后,其浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,1616101441414a ax a x a x x=-+-=-+----,因为[][]144,8,1,4x a -∈∈,所以161444414a x a a a x -+--≥--=---,当且仅当161414ax x-=-,即14x =-时,等号成立;所以其最小值为4a --,由44a -≥,解得244a -≤,所以a 的最小值为24 1.6-≈.22.我们知道,指数函数()xf x a =(0a >,且1a ≠)与对数函数()log a g x x =(0a >,且1a ≠)互为反函数.已知函数()2xf x =,其反函数为()g x .(1)求函数()()()223F x g x tg x =-+⎡⎤⎣⎦,[]2,8x ∈的最小值;(2)对于函数()x ϕ,若定义域内存在实数0x ,满足()()00x x ϕϕ-=-,则称()x ϕ为“L 函数”.已知函数()()()223,1,3,1f x mf x x h x x ⎧⎡⎤--≥-⎪⎣⎦=⎨-<-⎪⎩为其定义域上的“L 函数”,求实数m 的取值范围.【正确答案】(1)答案见解析(2)[)1,∞-+【分析】(1)利用换元法令2log ,[1,3]p x p =∈,可得所求为关于p 的二次函数,根据二次函数的性质,分析讨论,即可得答案.(2)根据题意,分别讨论在[1,1]-、(,1)-∞-和(1,)+∞上存在实数0x ,满足题意,根据所给方程,代入计算,结合函数单调性,分析即可得答案.【详解】(1)由题意得2()log g x x=所以()()()()222223log 2log 3F x g x tg x xt x =-+=-+⎡⎤⎣⎦,[]2,8x ∈,令2log ,[1,3]p x p =∈,设2()23,[1,3]M p p tp p =-+∈则()M p 为开口向上,对称轴为p t =的抛物线,当1t ≤时,()M p 在[1,3]上为单调递增函数,所以()M p 的最小值为(1)42M t =-;当13t <<时,()M p 在(1,)t 上单调递减,在(,3)t 上单调递增,所以()M p 的最小值为2()3M t t =-;当3t ≥时,()M p 在[1,3]上为单调递减函数,所以()M p 的最小值为(3)126M t =-;综上,当1t ≤时,()F x 的最小值为42t -,当13t <<时,()F x 的最小值为23t -,当3t ≥时,()F x 的最小值为126t-(2)①设在[1,1]-上存在0x ,满足()()00x x ϕϕ-=-,则0000114234230x x x x m m +--+-⋅-+-⋅-=,令0022x x t -=+,则2t ≥=,当且仅当00x =时取等号,又0[1,1]x ∈-,所以115222t -≤+=,即52,2t ⎡⎤∈⎢⎥⎣⎦,所以00001124234232260x x x x m m t mt +--+-⋅-+-⋅-=---=,所以28471,2220t t m t t -⎡⎤==---⎢⎥⎣⎦所以71,20m ⎡⎤∈--⎢⎥⎣⎦②设在(,1)-∞-存在0x ,满足()()00x x ϕϕ-=-,则00134230x x m --+-+-⋅-=,即001232x x m --=-⋅有解,因为1232x x y --=-⋅在(,1)-∞-上单调递减,所以12m >-,同理当在(1,)+∞存在0x ,满足()()00x x ϕϕ-=-时,解得12m >-,所以实数m 的取值范围[)1,∞-+解题的关键是理解新定义,并根据所给定义,代入计算,结合函数单调性及函数存在性思想,进行求解,属难题。

2022-2023学年云南省保山市文山州高一年级上册学期期末考试数学试题【含答案】

2022-2023学年云南省保山市文山州高一年级上册学期期末考试数学试题【含答案】

2022-2023学年云南省保山市文山州高一上学期期末考试数学试题一、单选题1.已知集合,,则( ){}ln 1A x x =<{}1,0,1,2,3,4B =-A B = A .B .C .D .{}1,2{}0,1,2{}1,2,3{}1,2,3,4【答案】A【分析】解对数不等式化简集合,再由交集运算即可求解.A 【详解】由得,所以,所以,ln 1x <0e x <<{}0e A x x =<<{}1,2A B = 故选:A.2.命题“,”的否定是( )0x ∃>sin 1x x =A .,B .,0x ∃>sin 1x x ≠0x ∀>sin 1x x =C .,D .,0x ∀>sin 1x x ≠0x ∀≤sin 1x x ≠【答案】C【分析】特称命题的否定是全称命题,根据命题“,”的否定是“,”解决x M ∃∈()p x x M ∀∈()p x ⌝即可.【详解】由题知,命题“,”是特称命题,0x ∃>sin 1x x =于是其否定是“,”,0x ∀>sin 1x x ≠故选:C3.若,则“”是“”的( )0,0a b >>4a b +=4ab ≤A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据充分必要条件的概念验证题中的命题即可得出答案.【详解】,,根据基本不等式可得,0,0a b >>4a b +=,当且仅当 时取等号242a b ab +⎛⎫≤= ⎪⎝⎭2a b ==“”是“”充分条件;∴4a b +=4ab ≤时,显然不一定成立,4ab ≤4a b +=“”不是“”的必要条件.∴4a b +=4ab ≤“”是“”的充分不必要条件,选项A 正确.∴4a b +=4ab ≤故选:A.4.下列函数既是偶函数,又在上单调递增的是( )()0,∞+A .B .C .D .cos y x =2y x=-1y x=y x=【答案】D【分析】根据基本初等函数的单调性与奇偶性判断即可.【详解】对于A :为偶函数,但是在上不具有单调性,故A 错误;cos y x =()0,∞+对于B :为偶函数,但是在上单调递减,故B 错误;2y x =-()0,∞+对于C :为奇函数,故C 错误;1y x =对于D :,则,所以为偶函数,()y f x x==()()f x x f x -=-=y x=且当时,则函数在上单调递增,故D 正确;0x >y x =()0,∞+故选:D5.已知函数是上的减函数,则实数的取值范围是( )()()()1,2log 1,12a a x a x f x x x ⎧-+≥⎪=⎨-<<⎪⎩()1,+∞a A .B .C .D .21,52⎡⎫⎪⎢⎣⎭10,2⎛⎫⎪⎝⎭20,3⎛⎤ ⎥⎝⎦10,5⎛⎤ ⎥⎝⎦【答案】C【分析】根据分段函数的性质结合一次函数和对数函数的单调性,列出不等式组,即可求得实数的取值范围.a 【详解】由题意解得,10,01,log 122,a a a a a -<⎧⎪<<⎨⎪≥-+⎩203a <≤所以实数的取值范围是,a 20,3⎛⎤⎥⎝⎦故选:C.6.已知,,,则x ,y ,z 的大小关系是( )lg 9x =0.13y =1ln3z =A .B .y x z <<z x y <<C .D .y z x<<x y z<<【分析】由对数、指数得运算性质,分别将与比较大小,即可得到结果.,,x y z 0,1【详解】,即;0lg1lg 9lg101x =<=<=01x <<,即;00.1133y =<=1y >,即.1ln ln103z =<=0z <故.y x z >>故选:B.7.在中,若且则( )ABC tan tan tan B C B C ++=sin 2B =C =A .60°B .45°C .30°D .15°【答案】C【分析】根据利用两角和的正切公式可得,即可得tan tan tan B C B C +60B C +=,根据的范围可得,进而可求得.120A = sin 2B =B 30B = 30C =【详解】解:因为tan tan tan B C B C ++=所以,)tan tan 1tan tan B C B C +=-即()tan tan tan 1tan tan B CB C B C ++==-因为B ,C 为的内角,所以,即,ABC 60B C += 120A =所以,,因为所以,060B <<02120B <<sin 2B =260B = 即,所以.30B = 30C =故选:C8.重庆有一玻璃加工厂,当太阳通过该厂生产的某型防紫外线玻璃时,紫外线将被过滤为原来的,而太阳通过一块普通的玻璃时,紫外线只会损失10%,设太阳光原来的紫外线为,通13()0k k >过x 块这样的普通玻璃后紫外线为y ,则,那么要达到该厂生产的防紫外线玻璃()*0.9x y k x N =⋅∈同样的效果,至少通过这样的普通玻璃块数为( )(参考数据:)lg 30.477≈A .9B .10C .11D .12【解析】由题意得,化简得,两边同时取常用对数得,利用30.9(0)x k k k ⋅<>10.93x <110.913x g g<对数的运算性质可得选项.【详解】由题意得,化简得,两边同时取常用对数得,因为30.9(0)x k k k ⋅<>10.93x <110.913x g g<,所以,则至少通过11块玻璃.lg 0.90<11130.477310.37lg 0.92lg 310.046gg x -->=≈≈--故选:C.二、多选题9.下列说法正确的是( )A .若,则,a b ∈R 2ab ba+≥B .若,,则0a b >>0m n >>b b ma a n +<+C .若,则a b>22a b>D .若,,则a b >c d >22a c b d ->-【答案】BC【分析】当,异号时即可判断A ;利用作差法得,再根据题意判断a b ()b m b ma nba n a a n a+--=++的符号即可判断B ;根据,两边平方后不等式也成立即可判断C ;利用特殊值法ma nb -0a b >≥即可判断D .【详解】对于A ,,异号时,不等式不成立,故A 错误;a b 对于B ,由,()()()()b m a b a n b m b ma nba n a a n a a n a+-++--==+++又,,所以,即,故B 正确;0a b >>0m n >>0ma nb ->b b ma a n +<+对于C ,由,所以,故C 正确;a b >≥22a b >对于D ,,,,,则,,不满足,故D 错2a =1b =1c =0d =20a c -=21b d -=22a c b d ->-误.故选:BC .10.已知函数的部分图象如图所示,则下列说法正确的是()()sin f x A x =+ωϕπ0,0,2A ωϕ⎛⎫>>< ⎪⎝⎭( )A .,,2A =2ω=π3ϕ=B .函数的图象关于坐标原点对称π6f x ⎛⎫- ⎪⎝⎭C .函数的图象关于直线对称()f x 17π12x =-D .函数在上的值域为()f x ππ,124⎛⎤- ⎥⎝⎦(]1,2【答案】ABC【分析】最值求,周期求,特殊点求,观察图像找出特征值即可求出函数,后根据A ωϕ()f x 的性质可作出判断.()f x 【详解】A 选项:由图象知;2A =设的最小正周期为T ,,所以得,()f x 7ππ3π3T 12644⎛⎫--== ⎪⎝⎭2πT πω==2ω=当时,函数取得最小值,则,7π12x =()f x ()7ππ22π122k k ϕ⨯+=-∈Z 即,又,()52ππ3k k ϕ=-∈Z π2ϕ<则当时,符合题意.所以,,,所以A 正确.1k =π3ϕ=2A =2ω=π3ϕ=B 选项:为奇函数,所以B 正确.πππ2sin 22sin 2663f x x x⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦C 选项:令,解得,()ππ2π32x k k Z +=+∈()ππ212k x k Z =+∈所以函数图象的对称轴方程为,当时,,所以C 正确.()f x ()ππZ 212k x k =+∈3k =-17π12x =-D 选项:因为,,,ππ,124x ⎛⎤∈- ⎥⎝⎦ππ2,62x ⎛⎤∈- ⎥⎝⎦ππ5π2,366x ⎛⎤+∈ ⎥⎝⎦所以,所以,所以D 不正确.π1sin 2,132x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦()[]1,2f x ∈故选:ABC11.已知函数,下列说法正确的是( )2,1()2,1x x f x x x x ⎧+<⎪=⎨+≥⎪⎩A .((0))3f f =B .函数的值域为()y f x =[2,)+∞C .函数的单调递增区间为()y f x =[0,)+∞D .设,若关于x 的不等式在R 上恒成立,则a 的取值范围是a R ∈()2xf x a ≥+[2,2]-【答案】ABD【解析】作出函数的图象,先计算,然后计算,判断A ,根据图象判断BC ,而()f x (0)f ((0))f f利用参变分离可判断D .【详解】画出函数图象.如图,()f xA 项,,,(0)2f =((0))(2)3f f f ==B 项,由图象易知,值域为[2,)+∞C 项,有图象易知,区间内函数不单调[0,)+∞D 项,当时,恒成立,1x ≥22xx a x +≥+所以即在上恒成立,222x x a x x x --≤+≤+32222x x a x x --≤≤+[)1,+∞由基本不等式可得,当且仅当时等号成立,222x x +≥2x =,当且仅当时等号成立,322x x +≥x =所以.2a -≤≤当时,恒成立,所以在上恒成立,1x <22x x a +≥+222x x a x --≤+≤+(),1∞-即在上恒成立2222x xx a x ---≤≤+-(),1∞-令,()32,02222,012x x x g x x xx ⎧-+≤⎪⎪=+-=⎨⎪+<<⎪⎩当时,,当时,,故;0x ≤()2g x ≥01x <<()322g x <<()min 2g x =令,()12,022322,012x x x h x x xx ⎧-≤⎪⎪=---=⎨⎪--<<⎪⎩当时,,当时,,故;0x ≤()2h x ≤-01x <<()722h x -<<-()max 2h x =-所以.22a -≤≤故在R 上恒成立时,有.()2x f x a ≥+22a -≤≤故选:ABD .【点睛】关键点点睛:本题考查分段函数的性质,解题方法是数形结合思想,作出函数的图象,由图象观察得出函数的性质,绝对值不等式恒成立,可以去掉绝对值符号,再利用参变分离求参数的取值范围.12.设,用表示不超过的最大整数(例如:,,已知函数x ∈R []x x []2.83-=-[]2.52=,,下列结论中正确的是( )()sin sin f x x x =+()()x f x ϕ⎡⎤=⎣⎦A .函数是周期函数()x ϕB .函数的图象关于直线对称()x ϕπ2x =C .函数的值域是()x ϕ{}0,1,2D .函数只有一个零点()()π2g x x xϕ=-【答案】CD【分析】首先判断函数的性质,奇偶性和周期性,对的取值范围讨论,进而得出函数()f x x的解析式并且画出的图象,由的图象分别对选项ABC 进行判断,对于D()()x f x ϕ⎡⎤=⎣⎦()x ϕ()x ϕ选项,函数的零点个数可由与函数交点个数确定.()()π2g x x x ϕ=-2πy x=()y x ϕ=【详解】∵,,()sin sin f x x x=+x ∈R ∴,()()()sin sin sin sin f x x x x x f x -=-+-=+=∴函数为偶函数,()sin sin f x x x =+不是周期函数,是周期函数.sin y x =sin y x=对于,当,时,.0x ≥2π2ππk x k ≤≤+k ∈Z ()2sin f x x =当,时,,2ππ2π2πk x k +<<+k ∈Z ()0f x =∴当时,0x ≥()()π2,2π,Z 2π5π0,2π2π,2π2π2π,Z,66π5ππ1,2π2π,2π,Z 662x k k x f x k x k k x k k k x k x k k ϕ⎧=+∈⎪⎪⎪⎡⎤==≤<++<<+∈⎨⎣⎦⎪⎪+≤≤+≠+∈⎪⎩由函数为偶函数,可得的图象如图所示,()sin sin f x x x=+()x ϕ由图易知函数不是周期函数,所以A 错误;()x ϕ∵,,ππ222ϕϕ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭3π02ϕ⎛⎫=⎪⎝⎭∴函数的图象不关于直线对称,故B 错误;()x ϕπ2x =由上述可知函数的值域是,故C 正确;()x ϕ{}0,1,2由可得,()()π02g x x x ϕ=-=()2πx x ϕ=当时,,;20πx =0x =()00ϕ=当时,,;21πx =π2x =π22ϕ⎛⎫= ⎪⎝⎭当时,,,22πx =πx =()π0ϕ=故直线与的图象只有一个交点,即函数只有一个零点,故D 正确.2πy x =()y x ϕ=()()π2g x x x ϕ=-故选:CD.三、填空题13.已知角的顶点与原点重合,始边与x 轴正半轴重合,终边过点,则α()43P ,-______.sin cos 66ππαα⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭1225【分析】根据角终边过点,可求出角三角函数值,再利用正弦和余弦的和差角公式,α()43P ,-α以及同角三角函数的平方关系,即可求出结果.【详解】∵的终边过点,α()43P ,-∴,(三角函数的概念),3sin 5α=4cos 5=-α∴11sin cos cos sin 6622ππαααααα⎫⎛⎫⎛⎫+-=++⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎭,)2212sin cos sin cos 25αααα=++=-.122514.已知,则___________.tan 3α=sin cos 2sin cos αααα=-【答案】65-【分析】首先利用二倍角公式化简,再变形为的齐次分式形式,用表示,代入即可sin ,cos ααtan α求解.【详解】()()22sin cos sin sin cos 2sin cos sin sin cos sin cos αααααααααααα-==-+--.()222222sin cos sin tan tan 336sin cos tan 1315αααααααα+++=-=-=-=-+++故答案为:65-15.已知,,则______.lg5a =104b =22a ab b ++=【答案】2【分析】根据给定条件,利用指数式与对数式互化及对数运算法则计算作答.【详解】因,则,又,104b=lg42lg2b ==lg5a =所以.22(2)lg5(2lg52lg2)2lg22(lg5lg2)lg52lg2a ab b a a b b ++=++=⋅++=+⋅+2lg52lg22=+=故答案为:2四、双空题16.已知函数满足,则_________;若函数()f x ()()226412f x f x x x +-=-+()f x =,若对任意,恒成立,则实数的取值范围是_________.()2816g x x x m=+-[]3,3x ∈-()()f xg x ≥m 【答案】 2244x x ++[)86,+∞【分析】将原式中的代换成,再消去即可得到的解析式;若对任意,x x -()f x -()f x []3,3x ∈-恒成立,利用参变分离,得到,转化为,即可求()()f xg x ≥26124m x x ≥+-()2max 6124m x x ≥+-得实数的取值范围.m 【详解】由知,()()226412f x f x x x +-=-+将原式中的代换成得x x -()()226412f x f x x x -+=++,消去得;()()()()222641226412f x f x x x f x f x x x ⎧+-=-+⎪⎨-+=++⎪⎩()f x -()2244f x x x =++由,得,()()f xg x ≥22244816x x x x m ++≥+-即对任意,恒成立,26124m x x ≥+-[]3,3x ∈-∴,()2max6124m x x ≥+-当时,取得最大值86.3x =26124x x +-∴实数的取值范围为.m [)86,+∞故答案为:;2244x x ++[)86,+∞五、解答题17.已知集合,.()(){}110A x x a x a =-+--<{}1139x B x -=≤≤(1)若,求;1a =A B ⋃(2)若是的必要不充分条件,求实数的值.x B ∈x A ∈a 【答案】(1){}03A B x x ⋃=<≤(2)2【分析】(1)将代入集合,解不等式求出集合与集合,再求并集即可;1a =A A B (2)由是的必要不充分条件确定集合是集合的真子集,由此求实数的值即可.x B ∈x A ∈A B a 【详解】(1)∵不等式等价于,且函数在上单调递增,1139x -≤≤012333x -≤≤3xy =R ∴,即,∴,012x ≤-≤13x ≤≤{}{}113913x B x x x -=≤≤=≤≤若,则,1a =(){}{}2002A x x x x x =-<=<<∴.{}03A B x x ⋃=<≤(2)不等式即,()()110x a x a -+--<()()110x a x a ---+<⎡⎤⎡⎤⎣⎦⎣⎦∵,∴解得,11a a -<+11a x a -<<+∴,()(){}{}11011A x x a x a x a x a =-+--<=-<<+由(1)知,{}13B x x =≤≤若是的必要不充分条件,即,,x B ∈x A ∈x B ∈ x A ∈x A ∈⇒x B ∈∴集合是集合的真子集,A B ∴,即,1311a a +≤⎧⎨-≥⎩22a a ≤⎧⎨≥⎩∴.2a =18.已知函数.()222sin sin 63f x x x xππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭(1)求的单调递增区间;()f x(2)将函数的图象向右平移个单位长度,得到函数的图象,若关于的方程()f x 3π()y g x =x在上有四个根,从小到大依次为,求的()g x 7,66x ππ⎡⎤∈⎢⎥⎣⎦1234x x x x <<<123422x x x x +++值.【答案】(1)()5,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z (2).92π【分析】(1)根据三角函数的诱导公、二倍角公式以及差角公式,整理函数,利用辅助角公式,化简为单角三角函数,结合整体思想,建立不等式,可得答案;(2)根据函数变换,写出新函数解析式,利用其对称性,可得答案.【详解】(1)()222sin cos 623f x x x x πππ⎡⎤⎛⎫⎛⎫=---+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦))2sin cos cos 21sin 2cos 21663x x x x x πππ⎛⎫⎛⎫⎛⎫=--+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1sin 22sin 223x x x π⎛⎫==+ ⎪⎝⎭令,解得,()222232k x k k πππππ-+≤+≤+∈Z 51212k x k ππππ-+≤≤+所以的单调递增区间为.()f x ()5,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z(2)由题意知:∴,()sin 23g x x π⎛⎫=- ⎪⎝⎭()23y g x x π⎛⎫=- ⎪⎝⎭因为和是在上的对称轴,512x π=1112π=x sin 23y x π⎛⎫=- ⎪⎝⎭7,66x ππ⎡⎤∈⎢⎥⎣⎦由对称性可知:,,1256x x π+=34116x x π+=所以.12349222x x x x π+++=19.已知函数().()21log 3f x ax a x ⎛⎫=++- ⎪⎝⎭0a ≥(1)当时,解关于的不等式:;0a =x ()2f x >(2)若在时都有意义,求实数的取值范围.()f x 0x >a【答案】(1)107x x ⎧⎫<<⎨⎬⎩⎭(2).{}1a a >【分析】(1)由时得到,再根据结合对数函数的单调性得到0a =()21log 3f x x ⎛⎫=- ⎪⎝⎭()2f x >,即可求解.130134x x ⎧->⎪⎪⎨⎪->⎪⎩(2)根据对数函数的定义域,得到在时都有意义,转化为在时()f x 0x >()2310ax a x +-+>0x >恒成立,分离参数得到在时恒成立,构造函数令(),22313111x x x a x x x -->=++0x >()23111x x g x x -=+0x >则只需即可,利用换元法令,得到,结合基本()maxa g x >10t x =>()()2341511t t h t t t t -==-+-+++不等式即可求解.【详解】(1)当时,,0a =()21log 3f x x ⎛⎫=- ⎪⎝⎭因为在上单调递增,且,2log y x =()0,∞+2log 42=由得,解得:,()2f x >130134x x ⎧->⎪⎪⎨⎪->⎪⎩107x <<即不等式解集为.107x x ⎧⎫<<⎨⎬⎩⎭(2)在时都有意义,即在上恒成立,()f x 0x >130ax a x ++->0x >即在时恒成立,()2310ax a x +-+>0x >即在时恒成立,22313111x x x a x x x -->=++0x >令,,则只需即可,()23111x x g x x -=+0x >()max a g x >令,,10t x =>()()2341511t t h t t t t -==-+-+++∵,,0t >()4141t t ++≥=+当且仅当,,且,即时等号成立,411t t +=+0t >1t =∴,()()44151545111h t t t t t ⎛⎫=-+-+=-+++≤-+= ⎪++⎝⎭∴,即最大值为1,()1g x ≤()g x ∴,1a >∴的取值范围为.a {}1a a >20.已知函数,.()124212x x x a a f x +-⋅++=a ∈R (1)判断是否有零点,若有,求出该零点;若没有,请说明理由;()f x (2)若函数在上为单调递增函数,求实数的取值范围.()f x []1,3x ∈a 【答案】(1)没有,理由见解析(2)a ≤≤【分析】(1)将问题转化为是否有解,设,判断在124210x x a a +-⋅++=2xt =22210t at a -++=时是否有解即可;0t >(2)设,利用在上为单调递增函数得恒成立,常数分离后1213x x ≤<≤()f x []1,3x ∈12211022x x a +->得的取值范围.a 【详解】(1)设有零点,则方程有解,即有解,()f x ()0f x =124210x x a a +-⋅++=设,,得(*),2xt =0t >22210t at a -++=,(*)方程无正解,()224410a a ∆=-+<所以没有零点.()f x (2),()12242112222x x xx x a a a f x a+-⋅+++==++设,恒成立,1213x x ≤<≤()()210f x f x ->,()()()2121211222221111222212222x x x x x x x x a a a f x f x ⎛⎫+++-=+--=-- ⎪⎝⎭因为,所以恒成立,21220x x ->12211022x x a +->所以恒成立,112221222x x x x a +=+<又,12121326x x x x ≤<≤⇒<+<所以,214+≤a 所以的取值范围为.a a ≤≤21.已知函数是定义在上的奇函数,且当时,.()f x R 0x >()ln f x x x=+(1)求的解析式;()f x (2)若正数m ,n 满足,求的最大值.22ln ln m m n n +=+n m -【答案】(1)()()ln ,0,0,0,ln ,0.x x x f x x x x x ⎧+>⎪==⎨⎪--<⎩(2).14【分析】(1)根据函数的奇偶性即可求出函数解析式;(2)根据题意,由(1)得,利用函数的单调性得,则()()2f m f n =20m n =>,结合二次函数的性质即可求解.21124n m n ⎛⎫-=--+⎪⎝⎭【详解】(1)当时,则,,0x <0x ->()()ln f x x x -=-+-函数是定义在上的奇函数,,()f x R ()()f x f x =--所以,当时,当时,0x <()()ln f x x x =--0x =()0f x =.()ln ,00,0ln(),0x x x f x x x x x +>⎧⎪==⎨⎪--<⎩(2)因为,22ln ln m m n n +=+由都为正数,得,,m n ()()2f m f n =设,则,120x x <<1111212122()()ln ln ()lnx f x f x x x x x x x x -=-+-=-+因为,所以,11220,lnln10x x x x -<<=11()()0f x f x -<故为单调递增的函数,()ln f x x x=+所以,,20m n =>221124n m n n n ⎛⎫-=-=--+ ⎪⎝⎭当且仅当时,求得最大值.12n =n m -1422.已知定义在上的函数,满足,且当时,.()0,∞+()f x ()()m f f m f n n ⎛⎫=- ⎪⎝⎭1x >()0f x >(1)讨论函数的单调性,并说明理由;()f x (2)若,解不等式.()21f =()()333f x f x +->【答案】(1)在上单调递增,理由见解析()f x ()0,∞+(2)30,23⎛⎫ ⎪⎝⎭【分析】(1)取,利用单调性的定义,进行取值,作差,变形,定号,结论即可得出结果;21,m x n x ==(2)先根据,求得,再利用抽象函数的式子化为,根据(1)中的单调性结()21f =()83f =()383x f f x +⎛⎫> ⎪⎝⎭论,列出不等式,解出即可.【详解】(1)解:在上单调递增,理由如下:()f x ()0,∞+因为定义域为,()f x ()0,∞+不妨取任意,且,则,()12,0,x x ∈+∞12x x <211x x >由题意,即,()()22110x f f x f x x⎛⎫=-> ⎪⎝⎭()()21f x f x >所以在上单调递增.()f x ()0,∞+(2)因为,令,由可得:,0m n ≠mnm n =()()m f f m f n n ⎛⎫=- ⎪⎝⎭,()()()mn f m f f mn f n n ⎛⎫==- ⎪⎝⎭即,()()()f mn f m f n =+由,可得,()21f =()()()4222f f f =+=令,,4m =2n =则,()()()8423f f f =+=所以不等式,()()333f x f x +->即,即,()()()338f x f x f +->()383x f f x +⎛⎫> ⎪⎝⎭由(1)可知在定义域内单调递增,()f x 所以只需,解得,3030383x x x x ⎧⎪>⎪+>⎨⎪+⎪>⎩0323x <<所以不等式的解集为.()()333f x f x +->30,23⎛⎫⎪⎝⎭。

2023-2024学年北京市海淀区高一上学期期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一上学期期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一上学期期末考试数学试题一、单选题:本题共14小题,每小题5分,共70分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知全集,集合,则()A. B. C. D.2.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查.已知在初中学生中随机抽取了100人,则在高中学生中抽取了()A.150人B.200人C.250人D.300人3.命题“”的否定是()A. B.C. D.4.方程组的解集是()A. B.C. D.5.某部门调查了200名学生每周的课外活动时间单位:,制成了如图所示的频率分布直方图,其中课外活动时间的范围是,并分成五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h的人数是()A.56B.80C.144D.1846.若实数a,b满足,则下列不等式成立的是()A. B. C. D.7.函数的零点所在的区间为()A. B. C. D.8.在同一个坐标系中,函数的部分图象可能是()A. B.C. D.9.下列函数中,既是奇函数,又在上单调递减的是()A. B. C. D.10.已知,则实数a,b,c的大小关系是()A. B. C. D.11.已知函数,则“”是“为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知函数,则不等式的解集为()A. B. C. D.13.科赫曲线是几何中最简单的分形.科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线……在分形中,一个图形通常由N个与它的上一级图形相似,且相似比为r的部分组成.若,则称D为该图形的分形维数.那么科赫曲线的分形维数是()A. B. C.1 D.14.已知函数,若存在非零实数,使得成立,则实数a的取值范围是()A. B. C. D.二、填空题:本题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.函数 在 上是减函数,则 的取值范围是.
13.函数 在 上最大值比最小值大 ,则 的值为.
14. 已知函数f(x)= 的定义域是一切实数,则m的取值范围是.

二.解答题
15、(1)解方程:lg(x+1)+lg(x-2)=lg4 ; (2)解不等式: ;
>
&
16.(本小题12分)二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.
(2)若 的倾斜角为 , 与圆C相交于P,Q两点,求线段PQ的中点M的坐标;
(3)若 与圆C相交于P,Q两点,求三角形CPQ的面积的最大值,并求此时 的直线方程.
^
$
19.(本题14分)已知圆 : ,定点A 在直线 上,点 在线段 上,过 点作圆 的切线 ,切点为 .(1)若 ,求直线 的方程;(2)经过 三点的圆的圆心是 ,求线段 长的最小值 .
答案:(1)先由 求得:
直线 与圆不相切,设直线PT: ,即:
圆心 到直线距离为1,得:
直线方程为:
?
(2)设 ,
经过 三点的圆的圆心为 的中点
所以 ,
讨论得:
20. (A)定义在D上的函数 ,如果满足;对任意 ,存在常数 ,都有 成立,则称 是D上的有界函数,其中M称为函数 的上界。已知函数 , 。
7.以点C(-1,5)为圆心,且与y轴相切的圆的方程为.
]
8.已知点 ,且 ,则实数 的值是_________.
9.满足条件{0,1}∪A={0,1}的所有集合A的个数是_____.
10.函数y=x2+x (-1≤x≤3)的值域是_________.
11.若点P(3,4),Q(a,b)关于直线x-y-1=0对称,则2a-b的值是_________.

(1)当l经过圆心C时,求直线l的方程;
(2)当直线l的倾斜角为45º时,求弦AB的长。
解:(1) ;(2)直线L方程为 ,圆心到直线L的距离为
可以计算得:
18.如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB= ,DC= , F是BE的中点。
求证:(1) FD∥平面ABC;(2) 平面EAB⊥平面EDB。
(1)当 时,求函数 在 上的值域,并判断函数 在 上是否为有界函数,请说明理由;
(2)若函数 在 上是以3为上界的函数,求实数 的取值范围;
}
(3)若 ,求函数 在 上的上界T的取值范围。
解:(1)当 时, ,设 , ,所以:
,值域为 ,不存在正数M,使 时, 成立,即函数在 上不是有界函数。
(2)由已知 时,不等式 恒成立,即:
证明:(1)取 中点G,连CG,FG
四边形 是平行四边形,得到

所以FD∥平面ABC;
?
(2)可以证明 ,
又 ,所以
,所以,平面EAB⊥平面EDB
另:可以用 ,证明:平面EAB⊥平面EDB
19. (A)已知圆 : ,定点A 在直线 上,点 在线段 上,过 点作圆 的切线 ,切点为 .(1)若 ,求直线 的方程;(2)经过 三点的圆的圆心是 ,求线段 长的最小值 。

20.已知⊙C1: ,点A(1,-3)
(Ⅰ)求过点A与⊙C1相切的直线l的方程;
(Ⅱ)设⊙C2为⊙C1关于直线l对称的圆,则在x轴上是否存在点P,使得P到两圆的切线长之比为 荐存在,求出点P的坐标;若不存在,试说明理由.
$
-
.

参考答案
一、填空题
1. 2. 3.1 4.6 5. 6. 7.
8.异面 9. 10. 相交 11. 12. 13.(A) (2)(4) (B)①③
要使 恒成立,即:
(3)由已知 时,不等式 恒成立,即:
设 , ,不等式化为
方法(一)
讨论:当 即: 时, 且 得:
%
当 即: 时, ,得
综上,
方法(二)
抓不等式 且 在 上恒成立,分离参数法得
且 在 上恒成立,得 。
(B)定义在D上的函数 ,如果满足;对任意 ,存在常数 ,都有 成立,则称 是D上的有界函数,其中M称为函数 的上界。已知函数 , 。
{
高一上学期期末考试
一、填空题集合 =___________.
2. 函数 的定义域为
3.过点(1,0)且倾斜角是直线 的倾斜角的两倍的直线方程是.
4.球的表面积与它的内接正方体的表面积之比是_______________
5.点 关于 平面的对称点的坐标是.
6.已知直线 与直线 平行,则它们之间的距离是_________
14.(A) (Bຫໍສະໝຸດ (1, )二、解答题:15.设 ,(其中 )。
(1)当 时,求 的值;(2)当 时,求 的取值范围。

答案:(1) ;(2)当 , ; 时,
16.在正方体 中。(1)求证: ;(2)求二面角 大小的正切值。
答案:
(1) ,
证到
(2) 是二面角的平面角
在 中,
17.已知圆C: 内有一点P(2,2),过点P作直线l交圆C于A、B两点。
⑴求f(x)的解析式;
⑵当 [-1,1]时,不等式:f(x) 恒成立,求实数m的范围.

}

17.如图,三棱柱 , 底面 ,且 为正三角形, , 为 中点.
(1)求三棱锥 的体积;
(2)求证:平面 平面 ;
(3)求证:直线 平面 .
|
18.已知圆 ,直线 过定点A(1,0).
(1)若 与圆C相切,求 的方程;
(1)当 时,求函数 在 上的值域,并判断函数 在 上是否为有界函数,请说明理由;
(2)求函数 在 上的上界T的取值范围;
(3)若函数 在 上是以3为上界的函数,求实数 的取值范围。
>
解:(1)当 时, ,设 , ,所以:
,值域为 ,不存在正数M,使 时, 成立,即函数在 上不是有界函数。
(2)设 , , 在 上是减函数,值域为
设 , ,不等式化为
方法(一)
讨论:当 即: 时, 且 得:
当 即: 时, ,得
?
综上,
方法(二)
抓不等式 且 在 上恒成立,分离参数法得
且 在 上恒成立,得 。
(3)当 时, 的取值范围是 ;当 时, 的取值范围是
答案:(1)先由 求得:
直线 与圆不相切,设直线PT: ,即:
圆心 到直线距离为1,得:
|
直线方程为: (2)设 ,经过 三点的圆的圆心为 的中点
所以, ,
时,得 的最小值
(B)已知圆 : ,设点 是直线 : 上的两点,它们的横坐标分别是 ,点 在线段 上,过 点作圆 的切线 ,切点为 .(1)若 , ,求直线 的方程;(2)经过 三点的圆的圆心是 ,求线段 长的最小值 .
相关文档
最新文档