数控机床常用对刀方法与机内对刀仪

合集下载

数控机床对刀的方式及其对刀步骤

数控机床对刀的方式及其对刀步骤

在进行加工之前,数控车床要进行对刀操作,以便确保产品加工的精度以及准度,在实际进行生产的过程中,数控车床对刀的操作有试切对刀和机外对刀仪这两种对刀方法,但是在进行对刀操作的时候也会出现一些问题,下面我们就来具体介绍一下数控车床对刀的操作步骤。

1、试切对刀试切对刀主要用在建立加工坐标系。

在安装好工件后,为了可以加工出需要的加工件,要将编程原点设定为加工原点,建立加工坐标系,用来确定刀具和工件的相对位置,使刀具按照编程轨迹进行运动,最终加工出所需零件。

试切对刀的步骤主要有:(1)选择机床的手动操作模式;(2)启动主轴,试切工件外圆,保持X方向不移动;(3)停主轴,测量出工件的外径值;(4)选择机床的MDI操作模式;(5)按下“off set sitting”按钮;(6)按下屏幕下方的“坐标系”软键;(7)光标移至“G54”;(8)输入X及测量的直径值;(9)按下屏幕下方的“测量”软键;(10)启动主轴,试切工件端面,保持Z方向不移动;2、机外对刀仪对刀机外对刀仪对刀需要将显微对刀仪固定于车床上,用于建立刀具之间的补偿值。

但是因为刀具尺寸会有一定差别,机床中刀位点的坐标值也会因此而出现不同。

如果不设立刀具之间的补偿值,运行相同的程序时就不可能加工出相同的尺寸,想要保证运行相同的程序时,运用不同的刀具得出相同的尺寸,则需要建立刀具间的补偿。

机外对刀仪对刀的步骤主要有:(1)移动基准刀,让刀位点对准显微镜的十字线中心;(2)将基准刀在该点的相对位置清零,具体操作是选择相对位置显示;(3)将其刀具补偿值清零,具体操作是按下“off set sitting”按钮,按下屏幕下方的“补正”软键,选择“形状”,在基准刀相对应的刀具补偿号上输入Xo、Zo;(4)选择机床的手动操作模式,移出刀架,换刀;(5)使其刀位点对准显微镜的十字线中心;(6)选择机床的MDI操作模式;(7)设置刀具补偿值,具体操作是按下“offset sitting”按钮,按下屏幕下方的“补正”软键,选择“形状”,在相对应的刀补号上输入X、Z;(8)移出刀架,执行自动换刀指令即可。

数控机床的对刀原理及常用的对刀方法

数控机床的对刀原理及常用的对刀方法

万方数据万方数据2.6百分表(或千分表)对刀法(一般用于圆形工件的对刀)1)并,Y向对刀。

将百分表的安装杆装在刀柄上,或将百分表的磁性座吸在主轴套筒上,移动工作台使主轴中心线(即刀具中心)大约移到工件中心,调节磁性座上伸缩杆的长度和角度,使百分表的触头接触工件的圆周面,(指针转动约0.1mill)用手慢慢转动主轴,使百分表的触头沿着工件的圆周面转动,观察百分表指针的便移情况,慢慢移动工作台的轴和轴,多次反复后,待转动主轴时百分表的指针基本在同一位置(表头转动一周时,其指针的跳动量在允许的对刀误差内,如0.02mm),这时可认为主轴的中心就是轴和轴的原点。

2)卸下百分表装上铣刀,用其他对刀方法如试切法、塞尺法等得到z轴坐标值。

2.6专用对刀器对刀法易撞坏)占用机时多(如试切需反复切量几次),人为带来的随机性误差大等缺点,已经适应不了数控加工的节奏,更不利于发挥数控机床的功能。

用专用对刀器对刀有对刀精度高、效率高、安全性好等优点,把繁琐的靠经验保证的对刀工作简单化了,保证了数控机床的高效高精度特点的发挥,已成为数控加工机上解决刀具对刀不可或缺的一种专用工具。

参考文献:[1]陈志雄.数控机床与数控编程技术[M].北京:电子工业出版社,2007.[2]华中数才全一操作说明书[z].武汉华中数控股份有限公司.[3]任国兴主编.数控铣床华中系统编程与操作实训[M].北京:中国劳动社会保障出版社,2007.传统对刀方法有安全性差(如塞尺对刀,硬碰硬刀尖收稿日期:2009一10—14(上接第38页)通过机床附带的后处理程序后即可得到控制机床运行的代码程序。

创建刀轨选择的加工参数及其他加工信息汇总列在表l中。

表I加工参数及其他加工信息加工设备加工工具直径/mm板料毛坯尺寸/mm3切削连接方式固定好板料,对好刀具后,将加工代码程序输入机床,既可实现壁板零件的自动加工成形。

2.2.4成形零件机床加工完成后,得到的实际零件如图5所示。

对刀的方法

对刀的方法

以下内容只有回复后才可以浏览一、对刀对刀的目的是确定程序原点在机床坐标系中的位置,对刀点可以设在零件上、夹具上或机床上,对刀时应使对刀点与刀位点重合。

数控车床常用的对刀方法有三种:试切对刀、机械对刀仪对刀(接触式)、光学对刀仪对刀(非接触式),如图 3-9 所示。

1、试切对刀1 )外径刀的对刀方法如图 3-10 所示。

Z 向对刀如 (a) 所示。

先用外径刀将工件端面 ( 基准面 ) 车削出来;车削端面后,刀具可以沿 X 方向移动远离工件,但不可 Z 方向移动。

Z 轴对刀输入:“ Z0 测量”。

X 向对刀如 (b) 所示。

车削任一外径后,使刀具 Z 向移动远离工件,待主轴停止转动后,测量刚刚车削出来的外径尺寸。

例如,测量值为Φ 50.78mm, 则 X 轴对刀输入:“ X50.78 测量”。

2 )内孔刀的对刀方法类似外径刀的对刀方法。

Z 向对刀内孔车刀轻微接触到己加工好的基准面(端面)后,就不可再作 Z 向移动。

Z 轴对刀输入:“ Z0 测量”。

X 向对刀任意车削一内孔直径后,Z 向移动刀具远离工件,停止主轴转动,然后测量已车削好的内径尺寸。

例如,测量值为Φ 45.56mm, 则 X 轴对刀输入:“ X45.56 测量”。

3 )钻头、中心钻的对刀方法如图 3-11 所示。

Z 向对刀如( a )所示。

钻头 ( 或中心钻 ) 轻微接触到基准面后,就不可再作 Z 向移动。

Z 轴对刀输入:“ Z0 测量”。

X 向对刀如( b )所示。

主轴不必转动,以手动方式将钻头沿 X 轴移动到钻孔中心,即看屏幕显示的机械坐标到“ X0.0 ”为止。

X 轴对刀输入:“ X0 测量”。

2、机械对刀仪对刀将刀具的刀尖与对刀仪的百分表测头接触,得到两个方向的刀偏量。

有的机床具有刀具探测功能,即通过机床上的对刀仪测头测量刀偏量。

3、光学对刀仪对刀将刀具刀尖对准刀镜的十字线中心,以十字线中心为基准,得到各把刀的刀偏量。

二、刀具补偿值的输入和修改根据刀具的实际参数和位置,将刀尖圆弧半径补偿值和刀具几何磨损补偿值输入到与程序对应的存储位置。

数控机床对刀的原理分析以及常用对刀方法

数控机床对刀的原理分析以及常用对刀方法

数控机床对刀的原理分析以及常用对刀方法进行数控加工时,数控程序所走的路径均是主轴上刀具的刀尖的运动轨迹。

刀具刀位点的运动轨迹自始至终需要在机床坐标系下进行精确控制,这是因为机床坐标系是机床唯一的基准。

编程人员在进行程序编制时不可能知道各种规格刀具的具体尺寸,为了简化编程,这就需要在进行程序编制时采用统一的基准,然后在使用刀具进行加工时,将刀具准确的长度和半径尺寸相对于该基准进行相应的偏置,从而得到刀具刀尖的准确位置。

所以对刀的目的就是确定刀具长度和半径值,从而在加工时确定刀尖在工件坐标系中的准确位置。

对刀仪演示视频(时长1分10秒,建议wifi下观看)一、对刀的原理和对刀中出现的问题1、刀位点刀位点是刀具上的一个基准点,刀位点相对运动的轨迹即加工路线,也称编程轨迹。

2、对刀和对刀点对刀是指操作员在启动数控程序之前,通过一定的测量手段,使刀位点与对刀点重合。

可以用对刀仪对刀,其操作比较简单,测量数据也比较准确。

还可以在数控机床上定位好夹具和安装好零件之后,使用量块、塞尺、千分表等,利用数控机床上的坐标对刀。

对于操作者来说,确定对刀点将是非常重要的,会直接影响零件的加工精度和程序控制的准确性。

在批生产过程中,更要考虑到对刀点的重复精度,操作者有必要加深对数控设备的了解,掌握更多的对刀技巧。

(1)对刀点的选择原则在机床上容易找正,在加工中便于检查,编程时便于计算,而且对刀误差小。

对刀点可以选择零件上的某个点(如零件的定位孔中心),也可以选择零件外的某一点(如夹具或机床上的某一点),但必须与零件的定位基准有一定的坐标关系。

提高对刀的准确性和精度,即便零件要求精度不高或者程序要求不严格,所选对刀部位的加工精度也应高于其他位置的加工精度。

选择接触面大、容易监测、加工过程稳定的部位作为对刀点。

对刀点尽可能与设计基准或工艺基准统一,避免由于尺寸换算导致对刀精度甚至加工精度降低,增加数控程序或零件数控加工的难度。

数控加工常见的对刀方法

数控加工常见的对刀方法

数控加工常见的对刀方法对刀是数控加工中的主要操作和重要技能。

在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。

仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件等。

一、对刀原理对刀的目的是为了建立工件坐标系,直观的说法是,对刀是确立工件在机床工作台中的位置,实际上就是求对刀点在机床坐标系中的坐标。

对于数控车床来说,在加工前首先要选择对刀点,对刀点是指用数控机床加工工件时,刀具相对于工件运动的起点。

对刀点既可以设在工件上(如工件上的设计基准或定位基准),也可以设在夹具或机床上,若设在夹具或机床上的某一点,则该点必须与工件的定位基准保持一定精度的尺寸关系。

对刀时,应使指刀位点与对刀点重合,所谓刀位点是指刀具的定位基准点,对于车刀来说,其刀位点是刀尖。

对刀的目的是确定对刀点(或工件原点)在机床坐标系中的绝对坐标值,测量刀具的刀位偏差值。

对刀点找正的准确度直接影响加工精度。

在实际加工工件时,使用一把刀具一般不能满足工件的加工要求,通常要使用多把刀具进行加工。

在使用多把车刀加工时,在换刀位置不变的情况下,换刀后刀尖点的几何位置将出现差异,这就要求不同的刀具在不同的起始位置开始加工时,都能保证程序正常运行。

为了解决这个问题,机床数控系统配备了刀具几何位置补偿的功能,利用刀具几何位置补偿功能,只要事先把每把刀相对于某一预先选定的基准刀的位置偏差测量出来,输入到数控系统的刀具参数补正栏指定组号里,在加工程序中利用T指令,即可在刀具轨迹中自动补偿刀具位置偏差。

刀具位置偏差的测量同样也需通过对刀操作来实现。

二、对刀方法在数控加工中,对刀的基本方法有试切法、对刀仪对刀和自动对刀等。

本文以数控铣床为例,介绍几种常用的对刀方法。

1、试切对刀法这种方法简单方便,但会在工件表面留下切削痕迹,且对刀精度较低。

数控铣床的对刀原理及对刀方法

数控铣床的对刀原理及对刀方法

数控铣床的对刀原理及对刀方法数控铣床是一种由数控设备控制的铣床,它通过控制系统精确地控制刀具在工件上的运动,从而实现对工件的加工。

对刀是数控铣床加工程序中的首要步骤,它决定了刀具与工件之间的相对位置,直接影响到加工结果的准确性和质量。

对刀原理:数控铣床的对刀原理主要是通过探针测量工件和刀具的相对位置,以确定刀具与工件表面之间的距离,从而确定刀具的切削深度和位置。

常用的对刀原理有一次性对刀和分次对刀两种。

一次性对刀原理:一次性对刀是在数控铣床上使用专用的对刀仪器进行的,它包括一个探针和一个数显表。

首先用手动操作将刀具移动到离工件表面一定距离的位置,并将数显表的指针归零。

然后将探针轻轻触碰工件表面,此时数显表的读数就是刀具与工件的相对位置。

根据需要调整刀具的位置,使得数显表的读数达到所需的数值,完成对刀。

分次对刀原理:分次对刀是在定位基准上进行的,基准有工件表面、加工基准台等。

首先将刀具装夹到铣床刀柄上,并用手动操作将刀具轻轻接触工件或基准台的表面。

然后通过微调螺杆来调整刀具的位置,直到刀具与工件或基准台之间的距离满足要求,完成对刀。

对刀方法:数控铣床的对刀方法根据具体情况有多种选择,下面介绍一些常用的方法。

1.轴线对刀法:将铣刀轴线与工件轴线重合,然后调整刀具的加工深度和侧向位置,使得刀具能够正常切削工件。

2.检测刀具圆心位置:将刀具移动到工件上方,通过探针检测刀具圆心位置。

然后根据检测结果调整刀具的位置,使得刀具与工件圆心的距离满足要求。

3.检测刀具的倾角:将刀具沿着X、Y轴移动到工件上方,并通过探针检测刀具的倾角。

然后根据检测结果调整刀具的位置,使得刀具与工件的倾角满足要求。

数控车对刀操作

数控车对刀操作

本课学习对刀过程中是先对的X轴坐标, 然后对Z轴坐标。可以不可以先对Z轴坐标, 然后对X轴坐标?
1、试切对刀的几个步骤
2、退刀的时候坐标轴一定原路退回 2、测量一定要准确 3、输入坐标数据的时候不要输错
通过学习对刀的操作结合对刀的几个 步骤。自己归纳并总结对刀的方法,后在 数控机床上进行实际对刀操作。
返回
上页
下页
图库
看一看数控加工产品
返回
上页
下页
图库
目录
一、对刀的几种方式 二、试切 对刀法 详细讲解
返回
上页
下页
图库
一、对刀的几种方式
1、试切 对刀法 2、定点对刀法 3、自动对刀法(自动对刀仪器)
返回
上页
下页
图库
二、试切对刀法
试切对刀法的步骤:
1、在机床上装夹好试切工件,选择一把刀具安装在刀架 上(一般习惯把刀按在第一个刀位号上)。
Hale Waihona Puke 2、选择合适的 主轴转速(一般在S600~S800),启动 主轴,在手动或手脉的方式下移动(进给倍率在2%~ 10%)刀具向Z负方向移动在工件上切出一个小的台阶。
3、在X轴不移动的情况下沿Z正方向将刀具移到安全位置 停止主轴(按原路退出刀具)。
返回
上页
下页
图库
4、 测量所切出台阶的直径,在操作面板上按刀补 刀具偏 置磨损界面 在X轴的对话框内输入测量的值(直径) 确认。
数控车对刀操作
一、引入
在数控加工零件中,数控车床为了默认我们 编写程序加工我们需要的零件,所以我们就需要 在工件上人为的找一个基准坐标点,只有找准了 一个基准点,在加工中数控车床就以找到基准坐 标来进行加工,所以我们就需要对刀,对刀是数控 加工中的主要操作方法和重要技能,对刀的准确性 决定零件加工精度。

数控车床的对刀方法

数控车床的对刀方法

数控车床的对刀方法
数控车床是一种高精度、高效率的机床,广泛应用于各种机械加工领域。

在使用数控车床进行加工时,对刀是非常重要的一步,它直接影响到加工质量和效率。

下面我们来介绍一下数控车床的对刀方法。

数控车床的对刀需要使用专门的对刀仪器,如ZK21系列数控车床对刀仪。

对刀仪器的使用可以大大提高对刀的精度和效率。

对刀前需要进行准备工作。

首先要检查数控车床的各个部件是否正常,如刀架、主轴、进给系统等。

然后要清洁工作台和工件,以确保加工质量。

最后要选择合适的刀具和切削参数,如切削速度、进给速度、切削深度等。

接下来,进行对刀操作。

首先要将对刀仪器安装在数控车床上,并将其与数控系统连接。

然后将刀具安装在刀架上,并将对刀仪器的感应头放置在刀具上方。

接着,启动数控系统,进入对刀程序。

在程序中,需要输入刀具的直径、长度和刀尖半径等参数。

然后,按照程序提示,将刀具逐步接近感应头,直到感应头发出信号。

此时,数控系统会自动计算出刀具的位置和偏差,并进行补偿。

最后,将刀具固定好,对刀完成。

需要注意的是,对刀时要保持工件和刀具的稳定,避免产生振动和误差。

同时,要根据加工要求选择合适的刀具和切削参数,以确保
加工质量和效率。

数控车床的对刀是一项非常重要的工作,需要认真对待。

通过使用专门的对刀仪器和正确的操作方法,可以提高对刀的精度和效率,从而保证加工质量和效率。

数控机床对刀的方法

数控机床对刀的方法

数控机床对刀的方法
数控机床对刀主要有以下几种方法:
1. 手动对刀法:在机床的加工台面上放置一个薄片或指示器,以手动调整工件与刀具之间的距离,直到达到所需的精度。

2. 触发式自动对刀:通过在刀具上安装一个触发式探头,自动测量刀具和工件之间的距离,自动调节刀具高度。

3. 光电式自动对刀:通过光电感应器检测工件或刀具的位置,自动调整刀具高度。

4. 激光对刀:使用激光传感器或激光测距仪器,测量刀具和工件之间的距离,通过控制器自动调节刀具高度。

5. 视觉对刀:通过一台高精度的摄像系统,获取工件表面的图像,使用图像处理软件计算出刀具的位置和高度,自动调整刀具高度。

每种方法都有其优缺点,具体应根据工件材料和加工方式选择合适的对刀方法。

数控铣(加工中心)的对刀方式

数控铣(加工中心)的对刀方式

数控铣(加工中心)的对刀方式对刀的目的是通过刀具或对刀工具确定工件坐标系与机床坐标系之间的位置关系,并将对刀数据输入到相应的存储位置,是数控加工中最重要的操作内容,其准确性将直接影响零件的加工精度。

对刀时可以采用铣刀接触工件或通过塞尺接触工件对刀,但精度较低。

实际加工中常用寻边器和Z 向设定器对刀,效率高,且能保证对刀精度。

对刀操作分为X 、Y 向对刀和Z 向对刀。

1.对刀方法根据现有设备条件和加工精度要求选择对刀方法,可采用试切法、寻边器对刀、机内对刀仪对刀、自动对刀和机外对刀仪对刀等。

其中试切法对刀精度较低,实际加工中常用寻边器和Z 向设定器对刀。

2.对刀工具(1)寻边器(2)Z 轴设定器偏心式寻边器光电式寻边器Z 轴设定器3.对刀实例(1)对刀及工件坐标系设定如图所示为内轮廓型腔图,采用寻边器对刀,其详细步骤如下:●X 、Y 向对刀①将工件通过夹具装在机床工作台上,装夹时,工件的四个侧面都应留出寻边器的测量位置。

②快速移动工作台和主轴,让寻边器测头靠近工件的左侧;③改用微调操作,让测头慢慢接触到工件左侧,直到寻边器发光,记下此时机床坐标系中的X 坐标值,如-310.300 ;④抬起寻边器至工件上表面之上,快速移动工作台和主轴,让测头靠近工件右侧;⑤改用微调操作,让测头慢慢接触到工件左侧,直到寻边器发光,记下此时机械坐标系中的X 坐标值,如-200.300 ;⑥若测头直径为10mm ,则工件长度为-200.300-(-310.300)-10=100 ,据此可得工件坐标系原点W 在机床坐标系中的X 坐标值为-310.300+100/2+5= -255.300 ;⑦同理可测得工件坐标系原点W 在机械坐标系中的Y 坐标值。

●Z 向对刀①卸下寻边器,将加工所用刀具装上主轴;②将Z 轴设定器(或固定高度的对刀块,以下同)放置在工件上平面上;③快速移动主轴,让刀具端面靠近Z 轴设定器上表面;④改用微调操作,让刀具端面慢慢接触到Z 轴设定器上表面,直到其指针指示到零位;⑤记下此时机床坐标系中的Z 值,如-250.800 ;⑥若Z 轴设定器的高度为50mm ,则工件坐标系原点W 在机械坐标系中的Z 坐标值为-250.800-50-(30-20)=-310.800 。

数控车床的对刀原理及对刀方法

数控车床的对刀原理及对刀方法

数控车床的对刀原理及对刀方法班级:XXX 姓名:XXX 学号:XXX摘要:对刀是数控加工中的主要操作和重要技能。

在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。

数控车床的对刀操作是一项非常重要的工作,对刀的目的是在机床上建立工件坐标系,并使计算机数控系统(CNC)掌握刀具在工件坐标系中的位臵。

不正确的对刀会导致工件报废,甚至发生撞刀事故,因此掌握正确的对刀方法是学习数控机床操作中的一项关键内容。

但由于很多人不理解对刀操作的原理,使得大部分操作者只会盲目的按步骤进行对刀,对刀操作缺乏灵活性,遇到一些特殊零件时就容易发生对刀错误。

所以要成为一名优秀的数控车床操作员,就应该理解对刀方法的原理,才能在对刀过程中保持清晰的思路,对刀错误的发生。

关键词: 参考点工件坐标系试切对刀对刀原理Abstract:A knife is for nc machining of the main operation and important skills.Under certain conditions, the accuracy of the tool can be decided to part machining precision, at the same time, the tool also directly affect the efficiency of nc machining efficiency.Numerical control lathe to knife operation is a very important work, the tool in the machine tool is the purpose of building the workpiece coordinate system and make the computer numerical control (CNC) system master tool in the position of the workpiece coordinate system.Not the right to DaoHui lead to workpiece scrap, even happen colliding accidents, so the right to knife method is the study of the nc machine tool operation a key content.But because a lot of people do not understand the tool operation principle, make most of the operator will only blind according to the steps of cutter.The tool operation lack of flexibility, meet some special parts is prone to error of knife.So to be a good CNC lathe operator,you should understand the tool, the principle of method, can in the knife remains during the process of clear thinking, the tool error.Keywords: reference point Workpiece Coordinate System Try to cut knife method Principle of the tool1 绪论:数控车床的对刀问题一直是一个难题, 这一问题已成为数控加工中的瓶颈, 阻碍了数控加工效率和质量的提高。

数控铣床常用对刀方法【专业研究】

数控铣床常用对刀方法【专业研究】

数控铣床常用对刀方法【专业研究】
数控铣床常用的对刀方法有以下几种:
1. 轴向对刀法:首先将刀具装入主轴,并使其与工作台面呈水平面相切,然后在Z轴上逐步调整刀具位置,直至刀尖与工
作台面接触。

2. 刀尖对刀法:先将刀具安装在主轴上,并将刀尖与工作台面接触,然后在X、Y轴上逐步调整刀具位置,直至刀尖在工件上切削出一定长度的痕迹为止。

3. 工件对刀法:先将工件固定在工作台面上,然后将刀具装入主轴,调整Z轴位置,使刀具切削到工件表面,然后在X、Y
轴上逐步调整刀具位置,直至刀具切削出一定长度的痕迹为止。

4. 外形对刀法:根据零件的轮廓或孔的特征,使用专用的对刀工具进行对刀,可以辅助调整X、Y、Z三个轴的位置,以确
保刀具与工件表面接触。

数控铣床应用中的几种对刀方法

数控铣床应用中的几种对刀方法

数控铣床应用中的几种对刀方法数控铣床是一种高精度、高效率的金属加工设备,广泛应用于工业制造领域。

在使用数控铣床进行加工时,对刀是一个非常关键的环节,它直接影响到加工成品的质量和精度。

为了获得更好的加工效果,现在主要有以下几种数控铣床的对刀方法:1.手动对刀法手动对刀法是最基础、最常见的一种对刀方法,它不需要特殊的设备。

通过手动将刀具逐步接触工件表面,调整工件和刀具的相对位置,直到取得适合的参数。

手动对刀法的优点是简单易行,但操作过程繁琐,对精度要求较高,不适合于重复加工和高精度加工。

2.机床自动对刀法机床自动对刀法是借助机床自身的测距装置,在加工前进行自动调节,仅需输入参数即可完成调整,大大提高了对刀效率和精度。

此种对刀方法多用于毛坯加工,可以大量节省工作量和时间,以及防止人为操作引入误差,其适用于形状复杂、多角度、角度变换复杂的工件加工。

3.脱离式工件定位法脱离式工件定位法是通过固定一个“基准点”,利用编程指令测量刀具和工件相对位置的一种对刀方法。

当工件进入机床时,根据编程指令,先对工件和刀具分别获得接触点,在计算两点之间的距离,以此来确定实际位置和方向,实现对刀。

此种法对产量要求高的批量加工效果好。

4.非接触式测量法非接触式测量法是一种无接触、无误差的对刀方式,通过引入激光或光电等射线采集器采集测量数据,以此来确定刀具的准确位置。

它不仅提高了测量的准确性,而且能够在较短的时间内完成整个对刀过程。

但由于硬件成本较高,使用范围相对较窄。

综上所述,针对不同的加工需求,数控铣床有不同的对刀方法,需要根据具体情况选择。

对于加工工艺要求较高的产品,可以采用机床自动对刀或脱离式工件定位法来实现高精度、高效率的加工过程。

而对于成本较低、加工精度要求不高的产品,可以考虑手动对刀法。

此外,非接触式测量法虽然目前不太普及,但其准确性和速度让人期待,未来有望成为主流趋势。

数据分析是实践中广泛应用于各种领域的技术,它涉及到数据的收集、处理和解释等步骤,据此得出相关结论和建议。

数控对刀与对刀仪

数控对刀与对刀仪

1对刀的基础知识1.1对刀的基本原理所谓数控加工,实际上就是通过NC程序精确地、自动地控制刀具,使之相对于工件的运动按照人们预先设计的轨迹或位置进行。

NC程序是在建立工件坐标系之后,编程人员以工件坐标系为基准编写的,而刀具加工工件是在数控机床上进行的,如何确定工件坐标系与机床坐标系之间的位置关系,需要通过对刀来完成,具体就是确定刀具的刀位点在工件坐标系中的起始位置,通常把这个位置称为对刀点。

对刀点是刀具相对于工件运动的起点。

由于程序段从该点开始执行,所以对刀点又称为“起刀点”或“程序起点”,往往也作为程序的终点。

对刀点的选择原则是:第一应方便数学处理和简化程序编制;第二在机床上容易找正,在加工中便于检查;第三引起的加工误差要小。

第三条,对刀点应尽量选在零件的设计基准或工艺基准上。

要确定对刀点在工件坐标系中的起始位置,则需要首先确定刀位点。

1.2 对刀的基本方法在数控加工中,对刀的基本方法有试切法、对刀仪对刀、ATC对刀和自动对刀等。

1.2.1 经济型数控机床的对刀方法根据数控机床所用的位置检测装置不同,试切法分为相对式和绝对式两种。

在相对式试切法对刀中,可采用三种方法:一是用量具(如钢板尺等)直接测量,对准对刀尺寸,这种对刀方法简便但不精确;二是通过刀位点与辅助测量用的定位块的工作面对齐后,移开刀具至对刀尺寸,这种方法的对刀准确度,取决于刀位点与定位块工作面对齐的精确度;三是将工件加工面先光一刀,测出工件尺寸,间接算出对刀尺寸,这种方法最为精确。

1.2.2 标准型数控机床的对刀方法对刀仪对刀分为机内对刀仪对刀和机外对刀仪对刀两种。

机内对刀仪对刀是将刀具直接安装在机床某一固定位置上(对车床,刀具直接安装在刀架上或通过刀夹再安装在刀架上),此方法比较多地用于车削类数控机床中。

而机外对刀仪对刀必须通过刀夹再安装在刀架上(车床),连同刀夹一起,预先在机床外面校正好,然后把刀装上机床就可以使用了,此方法目前主要用于镗铣类数控机床中,如加工中心等。

数控车床对刀方法

数控车床对刀方法

数控车床对刀方法机床能对加工对象的适应性强,适应模具等产品单件生产的特点,为模具的制造提供了合适的加工方法。

下面店铺给大家整理了数控车床对刀方法大全,欢迎大家前来阅读参考。

一,直接用刀具试切对刀1. 用外园车刀先试车一外园,记住当前X 坐标,测量外园直径后,用 X 坐标减外园直径,所的值输入 offset 界面的几何形状 X 值里。

2. 用外园车刀先试车一外园端面,记住当前 Z 坐标,输入 offset 界面的几何形状 Z 值里。

二,用 G50 设置工件零点1. 用外园车刀先试车一外园,测量外园直径后,把刀沿Z 轴正方向退点,切端面到中心( X 轴坐标减去直径值)。

2. 选择 MDI 方式,输入 G50 X0 Z0 ,启动 START 键,把当前点设为零点。

3. 选择 MDI 方式,输入 G0 X150 Z150 ,使刀具离开工件进刀加工。

4. 这时程序开头:G50 X150 Z150 …… . 。

5. 注意:用G50 X150 Z150 ,你起点和终点必须一致即X150 Z150 ,这样才能保证重复加工不乱刀。

6. 如用第二参考点 G30 ,即能保证重复加工不乱刀,这时程序开头 G30 U0 W0 G50 X150 Z1507. 在FANUC 系统里,第二参考点的位置在参数里设置,在Yhcnc 软件里,按鼠标右键出现对话框,按鼠标左键确认即可。

三,用工件移设置工件零点1. 在 FANUC0-TD 系统的 Offset 里,有一工件移界面,可输入零点偏移值。

2. 用外园车刀先试切工件端面,这时 Z 坐标的位置如: Z200 ,直接输入到偏移值里。

3. 选择“ Ref ”回参考点方式,按 X 、 Z 轴回参考点,这时工件零点坐标系即建立。

4. 注意:这个零点一直保持,只有从新设置偏移值 Z0 ,才清除。

四,用 G54-G59 设置工件零点1. 用外园车刀先试车一外园,测量外园直径后,把刀沿Z 轴正方向退点,切端面到中心。

数控车床中常用刀具的对刀方法

数控车床中常用刀具的对刀方法

数控车床中常用刀具的对刀方法摘要:本论文是在《数控仿真》课程的基础上对数控机床中几种常见刀具的对刀方法进行了归纳与总结,符合高等职业教育的特点,充分利用数控编程仿真系统,提高学生学习兴趣的同时使学生掌握了数控机床的操作。

关键词:数控仿真数控操作职业教育1数控机床中常用的几种刀具的几何形状2工件的装夹、刀具安装与操作2.1工件装夹数控车床的夹具主要有液压动力卡盘和尾座。

在工件安装时,首先根据加工工件尺寸选择液压卡盘,再根据其材料及切削余量的大小调整好卡盘夹爪夹持直径、行程和夹紧力。

如有需要,可在工件尾座打中心孔,用顶尖顶紧。

使用尾座时应注意其位置、套筒行程和夹紧力的调整。

工件要留有一定的夹持长度,其伸出长度要考虑零件的加工长度及必要的安全距离。

工件中心尽量与主轴中心线重合。

如所要夹持部分已经经过加工,必须在外圆上包一层铜皮,以防止外圆面损伤。

2.2刀具的安装根据工件及加工工艺的要求选择恰当的刀具和刀片。

首先将刀片安装在刀杆上,再将刀杆依次安装到刀架上,之后通过刀具干涉和加工行程图检查刀具安装尺寸。

要注意以下几项:①安装前保证刀杆及刀片定位面清洁,无损伤。

②将刀杆安装在刀架上时,应保证刀杆方向正确。

③安装刀具时需注意使刀尖等高于主轴的回转中心。

④车刀不能伸出过长,以免干涉或因悬伸过长而降低刀杆的。

2.3手动换刀数控车床的自动换刀装置,可通过程序指令使刀架自动转位。

通过[MDI]和[自动]按钮加工程序均可。

也可通过面板手动控制刀架换刀。

2.4对刀对刀的目的是确定程序原点在机床坐标系中的位置,对刀点可以设定在零件、夹具或机床上,对刀时应使对刀点与刀位点重合。

虽然每把刀具的刀尖不在同一点上,但通过刀补,可使刀具的刀位点都重合在某一理想位置上。

编程人员只按工件的轮廓编制加工程序即可,而不用考虑不同刀具长度和刀尖半径的影响。

(1)外圆刀对刀(见图1)①按下功能键[PROG],进入程序画面。

再按下[MDI],进入[MDI]模式,通过操作面板在光标闪动输入“T0101; M03S500;”,按[INSERT]键,将程序插入,再按[循启动]按钮,执行程序,换1号刀,同时主轴正转,转速500r/min。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控机床常用对刀方法与机内对刀仪
基本的坐标关系一般来讲,通常使用的有两个坐标系:一个是机床坐标系,另外一个是工件坐标系。

机床坐标系是机床固有的坐标系,机床坐标系的原点称为机床原点或机床零点。

为了计算和编程方便,我们需要在机床坐标系中建立工件坐标系。

将工件上的某一点作为坐标系原点(也称为程序原点)建立坐标系,这个坐标系就是工件坐标系。

日常工作中,我们要尽量使编程基准与设计、装配基准重合。

通常情况下,一台机床的机床坐标系是固定的,而工件坐标系可以根据加工工艺的实际需求分别建立若干个,例如由G54、G55等来选择不同的工件坐标系。

对刀的目的进行数控加工时,数控程序所走的路径均是主轴上刀具的刀尖的运动轨迹。

刀具刀位点的运动轨迹自始至终需要在机床坐标系下进行精确控制,这是因为机床坐标系是机床唯一的基准。

编程人员在进行程序编制时不可能知道各种规格刀具的具体尺寸,为了简化编程,这就需要在进行程序编制时采用统一的基准,然后在使用刀具进行加工时,将刀具准确的长度和半径尺寸相对于该基准进行相应的偏置,从而得到刀具刀尖的准确位置。

所以对刀的目的就是确定刀具长度和半径值,从而在加工时确定刀尖在工件坐标系中的准确位置。

常用对刀方法机外对刀
刀具预调仪是一种可预先调整和测量刀尖长度、直径的测量仪器,该仪器若和数控机床组成DNC网络后,还可以将刀具长度、直径数据远程输入加工中心NC中的刀具参数中。

此种方法的优点是预先将刀具在机床外校对好,装上机床即可以使用,大大节省辅助时间。

但是主要缺点是测量结果为静态值,实际加工过程中不能实时地对刀具磨损或破损状态进行更新,并且不能实时对由机床热变形引起的刀具伸缩进行测量。

试切法对刀
试切法对刀就是在工件正式加工前,先由操作者以手动模式操作机床,对工件进行一个微小量的切削,操作者以眼观、耳听为判断依据,确定当前刀尖的位置,然后进行正式加工。

该方法的优点是不需要额外投资添置工具设备,经济实惠。

主要缺点是效率低,对操作者技术水平要求高,并且容易产生人为误差。

在实际生产中,试切法还有许多衍生方法,如量块法、涂色法等。

机内对刀
此种机内对刀方式是利用设置在机床工作台面上的测量装置(对刀仪),对刀库中的刀具按事先设定的程序进行测量,然后与参考位置或者标准刀进行比较得到刀具的长度或直径并自动更新到相应的NC刀具参数表中。

同时,通过对刀具的检测也能实现对刀具磨损、破损或安装型号正确与否的识别。

机内对刀仪
机内对刀仪的组成
机内对刀仪一般由传感器、信号接口以及对刀宏程序软件组成。

按照传感器工作方式,机内对刀仪可以分为接触式对刀仪和激光对刀仪两类。

其中的接触式对刀仪自身的重复测量精度为1μm,又可以根据对刀仪信号传输方式的不同,进一步细分为以下几类:电缆式对刀仪;红外线式对刀仪;无线电式对刀仪。

电缆式对刀仪,由于不需要对刀信号的转换部件而有最佳的单件性价比,因此在工作中最为常见,但是其缺点是有电缆线的拖曳,限制了该对刀仪的应用场合,大多适用于中小规格的三轴铣床/加工中心。

红外线式对刀仪,信号传输范围一般在6m以内。

其优点是采用编码的HDR(高速数据传输)红外技术从而避免了电缆拖曳带来的不便和潜在的安全威胁,对刀后可以随时从工作台面取下不占用加工空间,并且可以多台机床共用一台对刀仪从而降低综合成本。

其缺点是在小型加工中心上使用时性价比不高。

由其特点决定,该类对刀仪多用于中型机床以及大型的数控立车等。

无线电式对刀仪,无线电信号传输范围一般在10米以上。

其优点是无线电信号传输范围大并且不易受到环境影响,对刀后可以随时从工作台面取下不占用加工空间,并且可以多台机床共用一台对刀仪从而可以降低综合成本。

该类对刀仪多用于大型/重型机床。

激光对刀仪,如海克斯康的LTS35.60,该产品的基本原理为采用聚焦激光光束为触发媒介,当激光光束被旋转的刀具遮蔽时,产生触发信号。

和接触式对刀仪有本质不同的是激光对刀仪采用非接触测量,在对刀时没有接触力,因而可以对极其细小的刀具进行测量而不用担心由于接触力导致细小刀具的折损,如LTS35.60可以测量的刀具直径可以小至0.008mm(例如钻头、丝锥类或者微型铣刀等),自身重复测量精度达到0.2μm。

同时,由于测量时,刀具以加工速度高速旋转,所以测量状态几乎完全等同于实际加工状态,提高了对刀的实用精度。

由于采用激光技术,该对刀仪可以对刀具外形进行扫描而测量刀具的轮廓,并可以对多刃刀具的单个刀刃进行破损监测。

其主要缺点是结构复杂,需要额外的高质量气源对内部结构进行保护,造价较高,主要适用于高速加工中心。

机内对刀仪的常见功能和优势
(1)刀具长度/直径的自动测量和参数更新:刀具在转动时进行长度/直径的动态测量,测量参数包含了机床主轴的端向跳动/径向跳动误差,从而得到了刀具在高速加工时的“动态”的偏置值;同时,可以随时进行刀具参数的自动测量,从而极大消除了由于机床热变形引起的刀具参数的“改变”;测量结果自动更新到相应刀具的参数表中,完全避免人为对刀和参数输入带来的潜在风险。

(2)刀具磨损/破损的自动监控:在实际生产过程中,当刀具磨损或者破损(折断)时,操作者很难及时发现并纠正(尤其是直径较小的钻头类刀具),从而造成更多后续刀具的损失甚至工件的报废。

使用机内对刀仪可以在刀具加工完毕后放回刀库前,自动对刀具长度进行一次测量,若发生正常磨损时可以自动将磨损数值更新到刀损参数中,若发生超长磨损可以当作刀具破损(折断)从而选择更换新刀进行下一个工件的加工或者自动停机报警提示操作者进行刀具更换。

这样,提高了产品质量并降低刀具损耗或废品率。

(3)机床热变形的自动补偿:机床进行生产加工时,随着周围环境温度的变化以及工作负荷的变化,机床的热变形随时都在发生进而带动刀具发生变化,其结果就是车间内同一台机床在早/中/晚不同时段加工出产品的尺寸精度发生很大的波动。

使用机内对刀仪后,可以在加工前或者加工过程中随时对刀具参数进行自动测量和更新,每次测量都是在当前机床热变形的状态下进行的刀具设置,从而极大的降低了由于机床热变形引入的误差。

(4)刀具轮廓的测量和监控:在特殊的加工中,如成型刀,使用机外对刀仪进行刀具轮廓的测量和刀具状态判断是费时而复杂的工作,同时对操作者的对刀技巧也有很高的要求。

这时,若使用机内激光对刀仪,可以随时利用激光光束进行刀具轮廓的扫描测量或监控,并根据需要进行相应参数的自动更新。

相关文档
最新文档