Smith圆图概述
史密斯圆图的原理及应用

史密斯圆图的原理及应用一、史密斯圆图的概述史密斯圆图(Smith Chart)是一种常用的电路设计工具,广泛应用于微波电路的设计与分析。
它可以通过坐标变换的方式将复抗匹配器的阻抗表示在一个圆图上,方便工程师快速计算和优化电路。
二、史密斯圆图的原理史密斯圆图的构建基于复平面的坐标转换技术,将复抗匹配器的阻抗表示在一个单位圆上。
具体步骤如下:1.将复抗匹配器的阻抗表示为复平面上的点,以阻抗的实部和虚部作为横纵坐标。
2.将复抗匹配器的阻抗归一化到一个标准的单位圆上,使得阻抗归一化到圆上的点表示为单位圆上的点。
3.在单位圆上绘制一系列等效电阻德曼圆,并标记常用的阻抗值。
这些等效电阻德曼圆的半径是固定的,通过变换得到的阻抗点在不同等效电阻德曼圆上的位置。
4.通过在复平面上作圆的平移和旋转操作,将复抗匹配器的阻抗点转换成单位圆上的点。
5.将复抗匹配器转换后的阻抗点与等效电阻德曼圆上的点连接,得到史密斯圆图。
三、史密斯圆图的应用1. 阻抗匹配•利用史密斯圆图可以方便地进行阻抗匹配的计算和设计。
通过在史密斯圆图上移动阻抗点,可以得到与之匹配的负载阻抗或源阻抗。
工程师可以根据需要,选择合适的匹配器或变换线来实现阻抗的最大传输。
2. 反射系数的计算•史密斯圆图也可以方便地计算反射系数。
通过在史密斯圆图上读取阻抗点对应的反射系数,工程师可以快速了解电路中的反射情况,并根据需要进行相应的优化调整。
3. 变换线设计•史密斯圆图可以帮助工程师设计不同类型的变换线,如电阻性变换线、电容性变换线和电感性变换线。
通过在史密斯圆图上进行阻抗点的变换,可以得到满足特定要求的变换线参数。
4. 频率扫描分析•在频率扫描分析中,史密斯圆图可以帮助工程师分析电路在不同频率下的阻抗变化情况。
通过在史密斯圆图上绘制多个频率下的阻抗点,可以得到电路的频率响应特性。
5. 负载匹配•史密斯圆图也可以应用于负载匹配。
通过在史密斯圆图上绘制负载阻抗曲线和源阻抗曲线,可以找到使得负载与源之间产生最小干扰的最佳匹配点。
Smith圆图概述

一、Smith圆图概述Smith圆图(Smith chart)是用来分析传输线匹配问题的有效方法。
它具有概念明晰、求解直观、精度高等特点,因而被广泛应用于射频工程中分析传输线问题。
高频与微波电路设计中,最基本且重要的课题为阻抗匹配。
透过阻抗匹配的运用与设计,可以使信号有效率的由电源端传送到负载端。
现阶段,阻抗匹配须借重史密斯图的运用才能快速、有效的达成。
随着时间的流转,阻抗匹配的方式也由过去在史密斯图上以手绘计算结果,转而经由计算机化的史密斯图达成,其优点在于:(1)免除复杂计算过程中可能产生的人为错误,(2)透过计算机化史密斯图的运用可以进一步达到宽频带阻抗匹配的目的。
电子SMITH圆图软件能将计算结果以图形和数据并行输出,处理包括复数的矩阵运算。
且拥有良好的用户界面以及函数本身会绘制图形、自动选取坐标刻度等优点。
本设计即是利用vb6.0针对阻抗匹配设计的计算机化史密斯图。
其优点在于图面功能非常清楚,并且运用可视化的安排,使匹配电路直接显示,使设计者可以轻松的了解如何进行阻抗匹配工作也同时可以观察加入各项组件后的输入阻抗变化情形。
二、Smith圆图结构阻抗圆导纳圆阻抗圆导纳圆反射系数圆软件界面电抗圆电阻圆三、Smith圆图基本原理史密斯圆图是由很多圆周交织在一起的一个图。
正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。
史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。
反射系数也可以从数学上定义为单端口散射参数,即s11。
史密斯圆图是通过验证阻抗匹配的负载产生的。
这里我们不直接考虑阻抗,而是用反射系数ΓL,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF频率的问题时ΓL更加有用。
我们知道反射系数定义为反射波电压与入射波电压之比:图3. 负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。
反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数。
Smith 圆图—原理与分析

Smith 圆图—原理与分析
Smith 圆图是一种用于分析电路中的匹配网络的工具。
它由美国电气工程师Phillip H. Smith于1950年提出,并被广泛应用于射频电路设计和天线设计领域。
Smith 圆图的原理基于复阻抗的概念。
在Smith 圆图中,电路中的每个点都可
以表示为一个复阻抗,即由实部和虚部组成的复数。
这样,整个电路可以表示为一个复阻抗的集合。
Smith 圆图将复阻抗表示为一个圆形图形,其中圆心表示纯电阻,圆的边界表
示纯电抗。
圆的半径表示电阻的大小,而圆的位置表示电抗的大小和相位。
通过在Smith 圆图上绘制电路中的复阻抗,可以直观地分析电路的匹配情况。
当电路的复阻抗位于Smith 圆图的边界上时,表示电路是纯电抗的,即无功。
当电路的复阻抗位于Smith 圆图的圆心时,表示电路是纯电阻的,即有功。
通过分析Smith 圆图上的复阻抗,可以确定电路的匹配情况。
匹配是指电路中
的负载阻抗与发射源或传输线的特性阻抗相匹配。
在Smith 圆图中,当负载阻抗与特性阻抗相匹配时,负载阻抗位于Smith 圆图的边界上,此时电路的反射系数为零,表示无反射。
Smith 圆图还可以用于计算电路中的反射系数、驻波比、传输线的特性阻抗等
参数。
通过在Smith 圆图上测量复阻抗的位置,可以直接读取这些参数的数值。
总之,Smith 圆图是一种简单直观的工具,可以帮助工程师分析电路中的匹配
情况,并优化电路设计。
它在射频电路设计和天线设计中具有重要的应用价值。
史密斯圆图

史密斯圆图
史密斯圆图(Smith chart)是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。
史密斯图的基本原理在于以下的算式:
反射系数Γ(reflection coefficient)和阻抗z L均为复数,z L是归一化负载值,即z L = ZL/ Z0。
ZL是电路的负载值,Z0是传输线的特性阻抗值,通常使用50Ω。
这是一双线性变换,属于复变函数中的保角变换。
它将z
复平面上实部r=常数和虚部x=常数的两族正交直线变换为Γ
复平面上的正交圆族。
该图表是由菲利普·史密斯(Phillip Smith)于1939年发明的,当时他在美国的RCA公司工作。
史密斯也许不是图表的第一位发明者,一位名为Kurakawa的日本工程师声称早于其一年发明了这种图表。
史密斯曾说过,“在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣。
”
Smith 圆图
图表中的圆形线代表阻抗的实部,即等电阻圆;中间的横线与向上和向下散出的弧线则代表阻抗的虚部,即等电抗圆。
上半圆是正值,下半圆是负值。
在图边的数字代表反射系数的角度(0-180度)和波长(由零至半个波长)。
有一些图表是以导纳值(admitt ance)来表示,把上面的阻抗圆图旋转180度即可导纳圆图。
自从有了计算机后,此种圆图的使用率随之而下,但仍常用来表示特定的资料。
对于就读电磁学及微波电子学的学生来说,在解决课本问题仍然很实用,因此史密斯图至今仍是重要的教学工具。
在学术论文里,结果也常会以史密斯图来表示。
3_smith圆图

XL
先进行归一化,然后 再确定电长度dmin/ 、 dmax/ 。 波节
ji
dmax、
r
RL
波腹 dmin
注意:顺时针旋转
例题
例3、已知负载归一化阻
抗 Z L,求VSWR和L。
Rmax VSWR
ji
XL
例题
例1、已知 Z L 和距离l,求 Zin 。
ji
Rin
XL
RL X in
rl Leabharlann 例题例2、负载阻抗 Z L 30 j 60 与长为d=2cm的50欧传输线相 连,工作频率为2GHz。求输入阻抗 Zin 。假定相速度是光 速的50%。 解题思路: ZL Z0 j 71.56o L Z Z 2 / 5e L 0 2 f 2 83.77 m1 vp
X 与 1 x 圆与单位圆的交 点关于虚轴对称; X 与 1 x 圆与单位圆的 交点关于原点对称;
x0
r
x
x 0.5
x 1
x 2
3.2.2 阻抗圆图
3.2.2 阻抗圆图
Smith阻抗圆图的特点: 上半圆内的阻抗为感抗, X L 0 下半圆内的阻抗为容抗, X C 0 实轴上的阻抗为纯电阻;
1 r
2
2 i
j
1 r
2i
2
i2
电阻圆
r 1 2 r i 1 r 1 r
2 2
2
2
圆心坐标
r , 0 ,半 1 r
径
1 1 r。
Smith圆图简介

Smith圆图简介对于射频人员来讲,做的最多的,可能就是匹配。
而做匹配,最常用到的就是Smith圆图。
当年在学校的时候,觉着Smith圆图好难;工作久了,再加上软件的帮助,觉着Smith圆图还是比较好理解的。
要用好Smith圆图,关键是熟悉它的构成。
主要包括等电阻圆,等电导圆,等Q线,等电抗圆,等电纳圆。
通常匹配的话,一般都采用电感和电容,所以用的最多的,是等电阻圆和等电导圆,如图1和图2所示。
图 1 等电阻圆图 2 等电导圆Smith圆图的上半部分代表感抗,下半部分代表容抗。
在等电阻圆上顺时针旋转,相当于串联电感;逆时针旋转,相当于串联电容。
在等电导圆上顺时针旋转,相当于并联电容;逆时针旋转,相当于并联电感(我一般这样记忆,从圆图中心点,沿着等电阻圆往上旋转为顺时针旋转,而一般串联电路用电阻来标称阻值,且圆图上半部分为感抗,所以顺时针旋转时,相当于串联电感;同理,沿着等电导圆往上旋转为逆时针,一般并联电路用电导来表示,且圆图上半部分为感抗,所以沿电导圆逆时针旋转时,相当于并联电感)。
具体如图3所示。
图 3 串并联电容电感如果想设计宽带匹配电路的话(适合于源阻抗和负载阻抗不随频率变化的情况),就需要用到等Q线了,如图4所示。
Q值越低,也就是等Q线越接近圆图横轴,越容易设计出宽带匹配电路。
而且,沿着低等Q线,规划匹配路线,也会使得匹配电路里的值有较大的容差范围,减少调试难度。
图 4 等Q线了解了这些知识,在已知源阻抗和负载阻抗的情况下,在现有Smith圆图软件的帮助下,很容易就能设计出匹配电路。
注意,设计时,要遵循‘往前看,向后退’的原则。
如图5所示。
图 5 往前看,向后退原则。
(完整word版)smith史密斯圆图(个人总结),推荐文档

smith chart史密斯圆图总结史密斯圆图(Smith chart)是一款用于电机与电子工程学的圆图,是最著名和最广泛的用于求解传输线问题的图解技术。
主要用于传输线的阻抗匹配上。
一条传输线(transmission line)的电阻抗力(impedance)会随其长度而改变,要设计一套匹配(matching)的线路,需要通过不少繁复的计算程序,史密斯圆图的特点便是省却一些计算程序。
Smith圆图的构成:等反射系数圆、阻抗圆图、导纳圆图。
史密斯圆图的基础在于以下的算式Γ= (Z - 1)/(Z+ 1)Γ代表其线路的反射系数(reflection coefficient),即S-parameter里的S11,Z是归一负载值,即ZL / Z0。
当中,ZL是线路的负载值Z0是传输线的特征阻抗值,通常会使用50Ω。
圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。
圆形线代表等电阻圆,每个圆的圆心为1/(R+1),半径为R/(R+1).R为该圆上的点的电阻值。
中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为1/X,半径为1/X.由于反射系数是小于等于1的,所以在等电抗圆落在单位圆以外的部分没有意义。
当中向上发散的是正数,向下发散的是负数。
圆图最中间的点(Z=1+j0, Γ=0)代表一个已匹配(matched)的电阻数值(此ZL=Z0,即Z=1),同时其反射系数的值会是零。
圆图的边缘代表其反射系数的幅度是1,即100%反射。
在图边的数字代表反射系数的角度(0-180度)。
有一些圆图是以导纳值(admittance)来表示,把上述的阻抗值版本旋转180度即可。
圆图中的每一点代表在该点阻抗下的反射系数。
该电的阻抗实部可以从该电所在的等电阻圆读出,虚部可以从该点所在的等电抗圆读出。
同时,该点到原点的距离为反射系数的绝对值,到原点的角度为反射系数的相位。
由反射系数可以得到电压驻波比和回波损耗。
第3章 Smith圆图

量子力学中的波函数
电磁学中的麦克斯韦方程
光学中的干涉和衍射
量子力学中的薛定谔方程
确定化学键类型: 通过Smith圆图 可以确定分子中 的化学键类型, 如单键、双键和
三键等。
预测化学反应: Smith圆图可 以预测某些化 学反应能否发 生以及反应的 产物。
确定分子在分子中的排
添加文档副标题
目录
01.
02.
03.
04.
05.
06.
Smith圆图是一种用于表示复数平 面上的点的方法
Smith圆图是一种方便的图形化表 示方法,可以直观地展示复数的几 何意义
添加标题
添加标题
添加标题
添加标题
它通过极坐标形式将复数表示为点, 其中实部为极径,虚部为极角
在Smith圆图中,每个点都对应一 个唯一的复数,反之亦然
改进算法:优化 Smith圆图的算法, 提高计算效率和准 确性
拓展应用场景:将 Smith圆图应用于更 多场景,如数据分 析、可视化等领域
推广普及:加强 Smith圆图的推广和 普及工作,提高公众 认知度和应用水平
物理学:Smith圆图 可用于描述量子力学 中的波函数和角动量, 以及在量子计算中实 现量子门操作。
信号处理:Smith圆图 可用于分析信号的频率 和相位响应,以及在通 信系统中实现调制和解 调。
控制系统:Smith圆图 可用于分析和设计控制 系统,帮助工程师更好 地理解和优化系统的性 能。
直观性:Smith圆图以图形的方式表示了复数平面,使得数据的表示更加直观。
方便性:Smith圆图可以方便地表示复数的模和幅角,并且可以通过旋转和缩放等操 作来方便地观察和分析数据。
高效性:Smith圆图可以有效地利用空间,将多个复数数据以紧凑的方式表示在同一 个平面上。
第3章 Smith圆图资料讲解

和
r
12
i
1 x
2
1 x
2
一般形式: r a2 i b2 c2
其中a,b表示沿实部和虚部Γ轴的位移,c是圆的半径。
r = 0,r2 i2 1 圆心在原点, 半径为1
r = 1,r 1/ 22 i2 1/ 22
x→∞, r 12 i2 0 x =1, r 12 x 1 1
圆心都在 Γ=r +1 的 垂直线上
r→∞ r 12 i2 0
x =0, r 12 x x 越大
随着r 增加,圆心沿着+Γ 轴r 从0 移到+1 x =-1, r 12 x 1 1 半径越小
x 等电阻线(r=常数)r=0Γx +1
r=1/3 r=1
r
r=3
x 等电抗线(x=常数) Γx +1
分别与50Ω传输线相连,找出反射系数、SWR圆和回波损耗。
解:azL
1,0
zL zL
1 1
0
RL 20log 0
SWR 1 0 1 1 0
bzL 0.97,0 0.015
RL 36.5,SWR 1.03
zL=1.5+-j0.5
zL=0.97
SWR=5.05
zL=0.2-j0.1 SWR=1.03 SWR=1.77
开始顺时针旋转的度数即为2β d(β=360 /λO)。
例3.5 工作在3GHz终端开路的50Ω传输线,vp=0.77c,求出形成 2pF和5.3nH的线长度。
解:根据3.16和3.18式:d1=13.27+n38.5mm,d2=32.81+n38.5mm xC=0.53,xL=2,λ=vp/f=77mm,d1=13.24mm,d2=32.8mm
Smith 圆图—原理与分析

2-5 Smith 圆图微波工程,即传输线工程问题,主要讨论(最基本的运算是)工作参数ρΓ, Z, 之间的数量关系和传输匹配问题――怎样传输得好,没有反射,而没有反射传输就是匹配。
一般是在已知特征参数βZ和长度l 的基础上进行。
、Smith圆图正是把特征参数和工作参数形成一体,用图论的方法解决工程问题。
它是一种专用Chart,自三十年代出现以来,已历经六十年而不衰,可见其简单,方便和直观.一、Smith图圆的基本思想Smith圆图,亦称阻抗圆图。
其基本思想有三条:1. 归一化思想――特征参数归一化特征参数归一思想,是形成统一Smith圆图的最关键点,它包含了阻抗归一和电长度归一。
阻抗千变万化,极难统一表述。
现在用Z0归一,统一起来作为一种情况加以研究。
在应用中可以简单地认为Z0=1。
电长度归一不仅包含了特征参数β,而且隐含了角频率ω。
由于上述两种归一使特征参数Z0不见了;而另一特征参数β连同长度均转化为反射系数Γ的转角。
――什么阻抗都通用,什么波长都能用。
2. 反射系数Γ作基底①以系统不变量|Γ|作为Smith圆图的基底――它是一个有限量,②在无耗λ为一个周期。
所传输线中,|Γ|是系统的不变量,③Γ是频率的周期量,以2以由|Γ|从0到1的同心圆作为Smith圆图的基底,使我们可能在一有限空间表示全部工作参数Γ、Z(Y)和ρ。
ϕϕϕβj l j l z j l e e e z l ||||) ()2( 2Γ=Γ=Γ=Γ--θ的周期是1/2λg 。
这种以|Γ|圆为基底的图形称为Smith 圆图。
3. 套覆上jx r Z +=――――把阻抗(或导纳),驻波比关系套覆在|Γ|圆上。
这样,Smith 圆图的基本思想可描述为:消去特征参数Z 0,把β归于Γ相位;工作参数Γ为基底,套覆Z(Y)和ρ。
二、Smith 圆图的基本构成1. 反射系数Γ图为基底图 7-1 反射系统Γ图反射系数图最重要的概念是相角走向。
smith圆图介绍

二、Smith圆图的基本构成
分开实部和虚部得两个方程
r
1
2 r
2 i
1 r
2
2 i
x
1
2i
r 2
2 i
先考虑(7-4)中实部方程
r2rr rr2 ri2 1r2 i2
1rr2 2rr 1ri2 1r
三、Smith圆图的基本功能
Z in 0 .4 5 3
i
2 + j1 Z l 0 .2 1 3
0
r
向电源
Zin0.24j0.25
反归一 ZinZinZ021j12.5
三、Smith圆图的基本功能
[例4]在Z 0为50的无耗线上=5,电压波节点距负载/3,求负载阻抗Z l
i j1 .4 8 0 .3 3
b
b= sh o rte d .c
i b= 1
b = 0 .5
容纳
b= 0
0
o p e n .c r
感纳 b = -0 .5 b= -1
图 7-6 等电纳圆
二、Smith圆图的基本构成
在很多实际计算时,我们要用到导纳(特别是对于并联 枝节)。对比阻抗和导纳,在归一化情况下,
恰好是反演关系。
非归一情况
sh o rted .c
0
x= o p en .c r
容抗
x= -1/2 x= -1
图 7-3 等电抗图
3. 标定电压驻波比实轴表示阻抗纯阻点。因此,可 由电阻r 对应出电压驻波比。
4. 导纳情况
二、Smith圆图的基本构成
Y(z ) 1(z ) 1(z)
微波技术-史密斯圆图

1.圆图的概念
由于阻抗与反射系数均为复 数,而复数可用复坐标来表示, 因此共有两组复坐标: • 归一化阻抗或导纳的实部和虚 部的等值线簇;
x
r =const
r x =const
Z (d ) z (d ) = = r (d ) + jx(d ) = z e jq Z0
• 反射系数的模和辐角的等值线簇。
骣 1÷ 圆心坐标 ç1, ÷ 在 GRe = 1 的直线上 ç ç x÷ 桫
GRe
半径
1 x
x =∞:圆心(1,0)半径=0
x =+1:圆心(1,1)半径=1 x =-1:圆心(1,-1)半径=1
x =0:圆心(1, ∞ )半径= ∞
c.等驻波比圆
VSWR =
1+ G 1- G
驻波比:对应于反射系数也是一簇同心圆 (1,∞)
GIm
半径
1 1+ r
GRe
r =∞:圆心(1,0) 半径=0 r =1:圆心(0.5,0)半径=0.5
r =0:圆心(0,0) 半径=1
1 x 圆 (G - 1)2 + 骣 - 1 鼢= 骣 珑 Im G 鼢 珑 Re 珑 桫 x鼢 桫 x
2
2
GIm
为归一化电抗的轨迹方程, 当 x 等于常数时,其轨 迹为一簇圆弧;
0.343
z L 0.57 j1.5
Z L 28.5 j 75
例2.5-3 在Z0为50Ω 的无耗线上测得 VSWR为5,电压驻波最小点
出现在距负载λ /3处,求负
载阻抗值。 解:电压驻波最小点:
rmin = K = 1/ VSWR = 1/ 5 = 0.2
在阻抗圆图实轴左半径上。以rmin点沿等 VSWR=5的
史密斯圆图简介

史密斯圆图(Smith chart )分析长线的工作状态离不开计算阻抗、反射系数等参数,会遇到大量繁琐的复数运算,在计算机技术还未广泛应用的过去,图解法就是常用的手段之一。
在天线和微波工程设计中,经常会用到各种图形曲线,它们既简便直观,又具有足够的准确度,即使计算机技术广泛应用的今天,它们仍然对天线和微波工程设计有着重要的影响作用。
Smith chart 就是其中最常用一种。
1、Smith chart 的构成在Smith chart 中反射系数和阻抗一一对应;Smith chart 包含两部分,一部分是阻抗Smith 圆图(Z-Smith chart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smith chart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smith chart 。
阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。
1.1 等反射系数圆在如图1所示的带负载的传输线电路图中,由长线理论的知识我们可以得到负载处的反射系数0Γ为:000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+ 其中00arctan(/)Lv u θ=ΓΓ。
图1 带负载的传输线电路图在离负载距离为z 处的反射系数Γ为:2000L j j z in u v in Z Z j e eZ Z θβ--Γ==Γ+Γ=Γ+ 其中220u v Γ=Γ+Γ,arctan(/)L v u θ=ΓΓ。
椐此我们用极坐标当负载和传输线的特征阻抗确定下来之后,传输线上不同位置处的反射系数辐值(1Γ≤)将不再改变,而变得只是反射系数的辐角;辐角的变化为2z β-∆,传输线上的位置向负载方向移动时,辐角逆时针转动,向波源方向移动时,辐角向顺时针方向转动,如图2所示。
图2 等反射系数圆传输线上不同位置处的反射系数的辐角变化只与2z β-,其中传波常数2/p βπλ=,所以Γ是一个周期为0.5p λ的周期性函数。
2.5 史密斯圆图

圆图就是将两组等值线簇画在同一张图上即可。
圆图所依据的关系为: z (d ) Z (d ) 1 (d )
Z0
1 ( d )
或
z (d ) 1 ( d ) z (d ) 1
存在一一 对应关系
圆图就是将二者的归一化关系画在同一张图上就行了. 从z→平面,用极坐标表示---史密斯圆图; 从→z平面,用直角坐标表示---施密特圆图;
此时
1+ G 1+ G z= r= = = r 1- G 1- G
rmax = r ,
Rmax = Z0 r
B
A
则Vmax线上以r 的标度作为ρ的标度。
Vmin线(电压最小线)—左半实轴
OB线上,
G(d ) = G(d ) e jf (d ) = - G(d )
V (d ) = V + [1 + G(d )]= V + 轾 1- G(d ) = V min 臌
1 r 2 (1 Re )
2 Re
2
2 Im 2 Im
2 1 2 Re Im j Im r jx (1 Re )2 2 Im
2 (r 1)2 ( r 1) Im Re 2r Re 1 r
骣 r 鼢 2 骣1 珑 可得珑 GRe + GIm = 鼢 鼢 珑 桫 桫 1+ r 1+ r GIm 同理x = (1- GRe )2 + G2 Im
1,VSWR , ZL
A
开路点
对应电压驻 波波腹点
VL = VL+ (1 + GL ) = 2VL+
短路点
1,VSWR ,z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、Smith圆图概述Smith圆图(Smith chart)是用来分析传输线匹配问题的有效方法。
它具有概念明晰、求解直观、精度高等特点,因而被广泛应用于射频工程中分析传输线问题。
高频与微波电路设计中,最基本且重要的课题为阻抗匹配。
透过阻抗匹配的运用与设计,可以使信号有效率的由电源端传送到负载端。
现阶段,阻抗匹配须借重史密斯图的运用才能快速、有效的达成。
随着时间的流转,阻抗匹配的方式也由过去在史密斯图上以手绘计算结果,转而经由计算机化的史密斯图达成,其优点在于:(1)免除复杂计算过程中可能产生的人为错误,(2)透过计算机化史密斯图的运用可以进一步达到宽频带阻抗匹配的目的。
电子SMITH圆图软件能将计算结果以图形和数据并行输出,处理包括复数的矩阵运算。
且拥有良好的用户界面以及函数本身会绘制图形、自动选取坐标刻度等优点。
本设计即是利用vb6.0针对阻抗匹配设计的计算机化史密斯图。
其优点在于图面功能非常清楚,并且运用可视化的安排,使匹配电路直接显示,使设计者可以轻松的了解如何进行阻抗匹配工作也同时可以观察加入各项组件后的输入阻抗变化情形。
二、Smith圆图结构阻抗圆导纳圆阻抗圆导纳圆反射系数圆软件界面电抗圆电阻圆三、Smith圆图基本原理史密斯圆图是由很多圆周交织在一起的一个图。
正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。
史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。
反射系数也可以从数学上定义为单端口散射参数,即s11。
史密斯圆图是通过验证阻抗匹配的负载产生的。
这里我们不直接考虑阻抗,而是用反射系数ΓL,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF频率的问题时ΓL更加有用。
我们知道反射系数定义为反射波电压与入射波电压之比:图3. 负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。
反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数。
为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。
这里Z0 (特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50Ω、75Ω、100Ω和600Ω。
于是我们可以定义归一化的负载阻抗:据此,将反射系数的公式重新写为:从上式我们可以看到负载阻抗与其反射系数间的直接关系。
但是这个关系式是一个复数,所以并不实用。
我们可以把史密斯圆图当作上述方程的图形表示。
为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。
首先,由方程2.3求解出;并且令等式2.5的实部和虚部相等,得到两个独立的关系式:重新整理等式2.6,经过等式2.8至2.13得到最终的方程2.14。
这个方程是在复平面(Γr, Γi)上、圆的参数方程(x - a)² + (y - b)² = R²,它以[r/(r + 1), 0]为圆心,半径为1/(1 + r)。
更多细节参见图4a。
R=0图4a.圆周上的点表示具有相同实部的阻抗。
例如,r = 1的圆,以(0.5, 0)为圆心,半径为0.5。
它包含了代表反射零点的原点(0, 0) (负载与特性阻抗相匹配)。
以(0, 0)为圆心、半径为1的圆代表负载短路。
负载开路时,圆退化为一个点(以1, 0为圆心,半径为零)。
与此对应的是最大的反射系数1,即所有的入射波都被反射回来。
在作史密斯圆图时,有一些需要注意的问题。
下面是最重要的几个方面:∙所有的圆周只有一个相同的,唯一的交点(1, 0)。
∙代表0Ω、也就是没有电阻(r = 0)的圆是最大的圆。
∙无限大的电阻对应的圆退化为一个点(1, 0)∙实际中没有负的电阻,如果出现负阻值,有可能产生振荡。
∙选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。
作图经过等式2.15至2.18的变换,2.7式可以推导出另一个参数方程,方程2.19。
同样,2.19也是在复平面(Γr, Γi)上的圆的参数方程(x - a)² + (y - b)² = R²,它的圆心为(1, 1/x),半径1/x。
更多细节参见图4b。
图4b. 圆周上的点表示具有相同虚部x的阻抗。
例如,× = 1的圆以(1, 1)为圆心,半径为1。
所有的圆(x为常数)都包括点(1, 0)。
与实部圆周不同的是,x既可以是正数也可以是负数。
这说明复平面下半部是其上半部的镜像。
所有圆的圆心都在一条经过横轴上1点的垂直线上。
四、Smith圆图设计流程开始、load精确匹配(元件)大致匹配(鼠标)鼠标跟踪(估算)选择元件,自动会出对应图形,修改元件参数进行匹配根据动态圆用鼠标点击对应位置进行粗略匹配读取大致匹配数据结束五、Smith圆图实现方法史密斯圆图是由很多圆周交织在一起的一个图。
包括阻抗圆、导纳圆、反射系数圆、对应的刻度。
还要根据选择的原件属性与参数开自动会出对应的曲线来进行匹配和复杂计算,从而进行实际上的工程应用。
5.1 新建坐标系要实现通过Smith圆图软件进行阻抗匹配和计算,在同一个图上首先要根据visual basic的picture控件来定义一个新的坐标系。
因为原有的坐标系是以picture控件的左上角为中心点位坐标原点,height向下为正,width向右为正。
而以这样的坐标系来进行计算和绘图都会增加计算量和计算难度。
所以要自定义一个新的坐标系,来简化设计难度和程序的冗余,经过计算分析将坐标原点定义在picture控件的中心而正方向不变。
即:Picture1.ScaleTop = -6000Picture1.ScaleLeft = -6000Picture1.Circle (0, 0), 5500, vbbrownPicture1.Line (-5500, 0)-(5500, 0), vbbrownPicture1.Line (0, -5500)-(0, 5500), vbbrown注:picture控件大小12000*120005.2 阻抗圆及数据计算实现电阻圆的特点为圆心在实轴(横轴)(1/(1+r),0)半径为1/(1+r)。
体现在软件中就是picture控件中的坐标系模式下将归一化电阻圆半径乘5500,即r=0所在圆半径。
绘图语句:picture.circle(圆心),半径,颜色绘电阻圆的代码为:'归一化电阻圆Picture1.Circle (0 + 5500 / 6, 0), 5500 * 5 / 6, vbRed 'r=1/5Picture1.Circle (0 + 5500 / 3, 0), 5500 * 2 / 3, vbRed 'r=1/2Picture1.Circle (0 + 5500 / 2, 0), 5500 / 2, vbRed 'r=1Picture1.Circle (0 + 5500 * 2 / 3, 0), 5500 / 3, vbRed 'r=2Picture1.Circle (0 + 5500 * 4 / 5, 0), 5500 / 5, vbRed 'r=4Picture1.Circle (0 + 5000, 0), 500, vbRed 'r=10电抗圆的特点为圆心在(1,1/x)半径为1/x,同样要将归一化的尺寸还原。
实现代码:Picture1.Circle (5500, 0 - 5500 / 10), 5500 / 10, vbRed, pi * 3 / 2 - 2 * Atn(10), 3 * pi / 2 'x=10 Picture1.Circle (5500, 0 - 5500 / 4), 5500 / 4, vbRed, pi * 3 / 2 - 2 * Atn(4), 3 * pi / 2 'x=4Picture1.Circle (5500, 0 - 5500 / 2), 5500 / 2, vbRed, pi * 3 / 2 - 2 * Atn(2), 3 * pi / 2 'x=2Picture1.Circle (5500, 0 - 5500 / 1), 5500 / 1, vbRed, pi * 3 / 2 - 2 * Atn(1), 3 * pi / 2 'x=1Picture1.Circle (5500, 0 - 5500 / 0.5), 5500 / 0.5, vbRed, pi * 3 / 2 - 2 * Atn(0.5), 3 * pi / 2 'x=0.5Picture1.Circle (5500, 0 - 5500 / 0.2), 5500 / 0.2, vbRed, pi * 3 / 2 - 2 * Atn(0.2), 3 * pi / 2 'x=0.2Picture1.Circle (5500, 0 + 5500 / 10), 5500 / 10, vbRed, pi / 2, pi / 2 + 2 * Atn(10) 'x=-10Picture1.Circle (5500, 0 + 5500 / 4), 5500 / 4, vbRed, pi / 2, pi / 2 + 2 * Atn(4) 'x=-4Picture1.Circle (5500, 0 + 5500 / 2), 5500 / 2, vbRed, pi / 2, pi / 2 + 2 * Atn(2) 'x=-2Picture1.Circle (5500, 0 + 5500 / 1), 5500 / 1, vbRed, pi / 2, pi / 2 + 2 * Atn(1) 'x=-1Picture1.Circle (5500, 0 + 5500 / 0.5), 5500 / 0.5, vbRed, pi / 2, pi / 2 + 2 * Atn(0.5) 'x=-0.5 Picture1.Circle (5500, 0 + 5500 / 0.2), 5500 / 0.2, vbRed, pi / 2, pi / 2 + 2 * Atn(0.2) 'x=-0.25.3 导纳圆及数据计算实现导纳圆与阻抗圆图生成方法类似,参考阻抗圆。
5.4 反射系数圆及数据计算实现反射系数圆是一坐标中心为圆心反射系数为半径一系列的同心圆。
实现代码:Public Sub fanshexishu()'反射系数圆Picture1.Circle (0, 0), 5500 * 0.25, vbWhitePicture1.Circle (0, 0), 5500 * 0.5, vbWhitePicture1.Circle (0, 0), 5500 * 0.75, vbWhitePicture1.Circle (0, 0), 5500 * 1, vbWhiteEnd Sub5.5 匹配实现该软件分为组略匹配和精确匹配两种,使用者可以通过粗略匹配来实现电路的组建和个元件的大概数值,从而方便的进行精确匹配。