2019年山西中考考前适应性训练·数学·试题及答案

合集下载

山西省太原市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

山西省太原市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

山西省太原市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x = C .11x =-,23x = D .13x =-,21x =2.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( )A .12B .59C .49D .233.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .124.下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数5.cos60°的值等于( )A .1B .12C .22D .3 6.如图,数轴上有M 、N 、P 、Q 四个点,其中点P 所表示的数为a ,则数-3a 所对应的点可能是( )A .MB .NC .PD .Q7.如图,已知E ,F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,O 为BD 的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB ;③∠BMO=90°;④MD=2AM=4EM ;⑤23AM MF =.其中正确结论的是( )A .①③④B .②④⑤C .①③⑤D .①③④⑤8.如图是正方体的表面展开图,则与“前”字相对的字是( )A .认B .真C .复D .习9.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >m x的解集为( )A .602x x <-<<或B .602x x -<或C .2x >D .6x <-10.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9分B .8分C .7分D .6分11.下列事件中为必然事件的是( )A .打开电视机,正在播放茂名新闻B .早晨的太阳从东方升起C .随机掷一枚硬币,落地后正面朝上D .下雨后,天空出现彩虹12.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰( )丙 丁 平均数8 8 方差 1.2 1.8A.甲B.乙C.丙D.丁二、填空题:(本大题共6个小题,每小题4分,共24分.)13.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.14.因式分解:212x x--=.15.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF 上,若AB=2,则AD=________.16.如图,点A,B在反比例函数kyx=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.17.如图,在平面直角坐标系中有一正方形AOBC,反比例函数kyx=经过正方形AOBC对角线的交点,半径为(422-的圆内切于△ABC,则k的值为________.18.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=22,则CE的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:AB=DE20.(6分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?21.(6分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD2时,直接写出BC的值.22.(8分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.23.(8分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围.24.(10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x 之间的函数表达式;求小张与小李相遇时x的值.25.(10分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A 种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.26.(12分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.27.(12分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D 作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.2.D【解析】【分析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是23.故选D. 【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.3.A【解析】作AH ⊥BC 于H ,作直径CF ,连结BF ,先利用等角的补角相等得到∠DAE=∠BAF ,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=12BF=1.∴2222534BH AB AH-=-=,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.4.C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.5.A【解析】【分析】根据特殊角的三角函数值直接得出结果.【详解】解:cos60°=12 故选A.【点睛】识记特殊角的三角函数值是解题的关键.6.A【解析】解:∵点P 所表示的数为a ,点P 在数轴的右边,∴-3a 一定在原点的左边,且到原点的距离是点P 到原点距离的3倍,∴数-3a 所对应的点可能是M ,故选A .点睛:本题考查了数轴,解决本题的关键是判断-3a 一定在原点的左边,且到原点的距离是点P 到原点距离的3倍.7.D【解析】【分析】根据正方形的性质可得AB=BC=AD ,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF ,然后利用“边角边”证明△ABF 和△DAE 全等,根据全等三角形对应角相等可得∠BAF=∠ADE ,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB ,然后求出∠BAF≠∠EDB ,判断出②错误;根据直角三角形的性质判断出△AED 、△MAD 、△MEA 三个三角形相似,利用相似三角形对应边成比例可得2AM MD AD EM AM AE===,然后求出MD=2AM=4EM ,判断出④正确,设正方形ABCD 的边长为2a ,利用勾股定理列式求出AF ,再根据相似三角形对应边成比例求出AM ,然后求出MF ,消掉a 即可得到AM=23MF ,判断出⑤正确;过点M 作MN ⊥AB 于N ,求出MN 、NB ,然后利用勾股定理列式求出BM ,过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,然后求出OK 、MK ,再利用勾股定理列式求出MO ,根据正方形的性质求出BO ,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【详解】在正方形ABCD 中,AB=BC=AD ,∠ABC=∠BAD=90°,∵E 、F 分别为边AB ,BC 的中点,∴AE=BF=12BC , 在△ABF 和△DAE 中,AE BF ABC BAD AB AD ⎧⎪∠∠⎨⎪⎩=== ,∴△ABF ≌△DAE (SAS ), ∴∠BAF=∠ADE ,∵∠BAF+∠DAF=∠BAD=90°, ∴∠ADE+∠DAF=∠BAD=90°, ∴∠AMD=180°-(∠ADE+∠DAF )=180°-90°=90°, ∴∠AME=180°-∠AMD=180°-90°=90°,故①正确; ∵DE 是△ABD 的中线,∴∠ADE≠∠EDB ,∴∠BAF≠∠EDB ,故②错误; ∵∠BAD=90°,AM ⊥DE ,∴△AED ∽△MAD ∽△MEA , ∴2AM MD AD EM AM AE=== ∴AM=2EM ,MD=2AM ,∴MD=2AM=4EM ,故④正确;设正方形ABCD 的边长为2a ,则BF=a , 在Rt △ABF 中,== ∵∠BAF=∠MAE ,∠ABC=∠AME=90°, ∴△AME ∽△ABF ,∴AM AE AB AF= ,即2AM a =解得AM=5∴=55-,∴AM=23MF ,故⑤正确; 如图,过点M 作MN ⊥AB 于N ,则MN AN AM BF AB AF== 即25525MN AN a a a== 解得MN=a 52,AN=45a , ∴NB=AB-AN=2a-45a =65a , 根据勾股定理,22226221055NB MN a a ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭ 过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,则OK=a-a 52=a 53,MK=65a -a=15a , 在Rt △MKO 中,2222131055MK OK a a ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭根据正方形的性质,BO=2a×22a =, ∵BM 2+MO 2=222210102a ⎫⎫+=⎪⎪⎝⎭⎝⎭)22222BO a a ==∴BM 2+MO 2=BO 2,∴△BMO 是直角三角形,∠BMO=90°,故③正确;综上所述,正确的结论有①③④⑤共4个.故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.8.B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”.故选B.点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.9.B【解析】【分析】根据函数的图象和交点坐标即可求得结果.【详解】解:不等式kx+b>mx的解集为:-6<x<0或x>2,故选B.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.10.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.【解析】【分析】求出甲、乙的平均数、方差,再结合方差的意义即可判断.【详解】x 甲=110(6+10+8+9+8+7+8+9+7+7)=8, 2S 甲=110 [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2] =110×13 =1.3;x 乙=(7+10+7+7+9+8+7+9+9+7)=8,2S 乙=110[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2] =110×12 =1.2;丙的平均数为8,方差为1.2,丁的平均数为8,方差为1.8,故4个人的平均数相同,方差丁最大.故应该淘汰丁.故选D .【点睛】本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π.考点:圆锥的计算.14.()()34x x +-;根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【详解】x 2﹣x ﹣12=(x ﹣4)(x+3).故答案为(x ﹣4)(x+3).15.22 【解析】 如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF ='⎧⎨=⎩, ∴Rt △EA ′F ≌Rt △EDF (HL ),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt △BCF 中,BC=22223122BF CF -=-=.∴AD=BC=22 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.16.【解析】试题解析:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点,∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC=2BD ,∴OD=2OC .∵CD=k ,∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92, ∴CD=k=22229376()22AB AF -=-=. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键.17.1【解析】试题解析:设正方形对角线交点为D ,过点D 作DM ⊥AO 于点M ,DN ⊥BO 于点N ;设圆心为Q ,切点为H 、E ,连接QH 、QE .∵在正方形AOBC 中,反比例函数y =k x经过正方形AOBC 对角线的交点, ∴AD=BD=DO=CD ,NO=DN ,HQ=QE ,HC=CE ,QH ⊥AC ,QE ⊥BC ,∠ACB=90°,∴四边形HQEC 是正方形,∵半径为(1-22)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-22)2,∴QC2=18-322=(12-1)2,∴QC=12-1,∴CD=12-1+(1-22)=22,∴DO=22,∵NO2+DN2=DO2=(22)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.18.210或226.【解析】【分析】本题有两种情况,一种是点G在线段BD的延长线上,一种是点G在线段BD上,解题过程一样,利用正方形和三角形的有关性质,求出MD、MG的值,再由勾股定理求出AG的值,根据SAS证明≌,可得CE AG=,即可得到CE的长.V VAGD CED【详解】解:当点G在线段BD的延长线上时,如图3所示.⊥于M,过点G作GM ADBD Q 是正方形ABCD 的对角线,45ADB GDM ∴∠=∠=︒,GM AD DG ⊥=Q , 2MD MG ∴==,在Rt AMG V 中,由勾股定理,得:AG ==在AGD V 和CED V 中,GD ED =,,AD CD =90ADC GDE ∠=∠=︒Q ,ADG CDE ∴∠=∠AGD CED ∴V V ≌CE AG ∴==当点G 在线段BD 上时,如图4所示.过G 作GM AD ⊥于M .BD Q 是正方形ABCD 的对角线,45ADG ∴∠=︒GM AD DG ⊥=Q , 2MD MG ∴==,6AM AD MD ∴==﹣在Rt AMG V 中,由勾股定理,得:AG ==在AGD V 和CED V 中,GD ED =,,AD CD =90ADC GDE ∠=∠=︒Q ,ADG CDE ∴∠=∠AGD CED ∴V V ≌CE AG ∴==故答案为【点睛】本题主要考查了勾股定理和三角形全等的证明.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.证明见解析.【解析】证明:∵AC//DF ∴在和中∴△ABC≌△DEF(SAS)20.(1)A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装2套.【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.试题解析:(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.根据题意得:2002.5x+=2×75x,解得:x=7.5,经检验,x=7.5为分式方程的解,∴x+2.5=1.答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元.(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,根据题意得:(13﹣1)a+(9.5﹣7.5)(2a+4)>120,解得:a>16,∵a为正整数,∴a取最小值2.答:最少购进A品牌工具套装2套.点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.21.(1)相等或互补;(2)①BD+AB=2BC;②AB﹣BD2BC;(3)BC3131. 【解析】【分析】(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;当点C,D在直线MN两侧时,如图2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D与∠MAC之间的数量是相等或互补;(2)①猜想:BD+AB2BC如图3,在射线AM上截取AF=BD,连接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF2BC∵AF+AB=BF2BC∴BD+AB2BC;②如图2,在射线AM上截取AF=BD,连接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=2BC∵AB﹣AF=BF=2BC∴AB﹣BD=2BC;(3)①当点C,D在直线MN同侧时,如图3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,过点D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD2,∴DG=BG=1,在Rt △CGD 中,∠BCD =30°,∴CG =3,DG =3,∴BC =CG+BG =3+1,②当点C ,D 在直线MN 两侧时,如图2﹣1,过点D 作DG ⊥CB 交CB 的延长线于G ,同①的方法得,BG =1,CG =3,∴BC =CG ﹣BG =3﹣1即:BC =31+ 或31-,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键. 22.(1)150;(2)详见解析;(3)35. 【解析】【分析】(1)用A 类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A 、C 、D 得到B 类人数,再计算出它所占的百分比,然后补全两个统计图; (3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解.【详解】解:(1)15÷10%=150, 所以共调查了150名学生;(2)喜欢“立定跳远”学生的人数为150﹣15﹣60﹣30=45,喜欢“立定跳远”的学生所占百分比为1﹣20%﹣40%﹣10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12, 所以刚好抽到不同性别学生的概率123.205== 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.23.(1)y=-2x+31,(2)20≤x≤1【解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y 与x 的函数关系式;(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x 的取值范围.试题解析:(1)设y 与x 的函数关系式为y=kx+b ,根据题意,得: 2030030280k b k b +=⎧⎨+=⎩解得:2340k b =-⎧⎨=⎩ ∴y 与x 的函数解析式为y=-2x+31,(2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元, ∴自变量x 的取值范围是20≤x≤1.24.(1)300米/分;(2)y=﹣300x+3000;(3)7811分. 【解析】【分析】(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B (10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD 的解析式,列出方程,求解即可.【详解】解:(1)由题意得:240012003004-=(米/分), 答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B (10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩ 解得:3003000,k b =-⎧⎨=⎩∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间:24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.25.(1)A 、B 两种奖品的单价各是10元、15元;(2)W (元)与m (件)之间的函数关系式是W=﹣5m+1,当购买A 种奖品75件时,费用W 的值最少.【解析】【分析】(1)设A 种奖品的单价是x 元、B 种奖品的单价是y 元,根据题意可以列出相应的方程组,从而可以求得A 、B 两种奖品的单价各是多少元;(2)根据题意可以得到W (元)与m (件)之间的函数关系式,然后根据A 种奖品的数量不大于B 种奖品数量的3倍,可以求得m 的取值范围,再根据一次函数的性质即可解答本题.【详解】(1)设A 种奖品的单价是x 元、B 种奖品的单价是y 元,根据题意得:32605395x y x y +=⎧⎨+=⎩解得:1015x y =⎧⎨=⎩. 答:A 种奖品的单价是10元、B 种奖品的单价是15元.(2)由题意可得:W=10m+15(100﹣m )=﹣5m+1.∵A 种奖品的数量不大于B 种奖品数量的3倍,∴m≤3(100﹣m ),解得:m≤75∴当m=75时,W 取得最小值,此时W=﹣5×75+1=2.答:W (元)与m (件)之间的函数关系式是W=﹣5m+1,当购买A 种奖品75件时,费用W 的值最少.【点睛】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.26.(1)一共调查了300名学生.(2)(3)体育部分所对应的圆心角的度数为48°.(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.【解析】【分析】(1)用文学的人数除以所占的百分比计算即可得解.(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.(3)用体育所占的百分比乘以360°,计算即可得解.(4)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)∵90÷30%=300(名),∴一共调查了300名学生.(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.补全折线图如下:(3)体育部分所对应的圆心角的度数为:40300×360°=48°.(4)∵1800×80300=1(名),∴1800名学生中估计最喜爱科普类书籍的学生人数为1.27.(1)证明见解析;(2)BD=3【解析】【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出CE CDBD AB,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.【详解】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴CE CD BD AB=,∴BD•CD=AB•CE,∵BD=CD,∴BD2=AB•CE,∵⊙O半径为3,CE=2,∴BD62⨯=3【点睛】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.。

2019-2020年最新山西省中考考前适应性训练数学试卷及答案解析

2019-2020年最新山西省中考考前适应性训练数学试卷及答案解析

2019-2020年最新山西省中考考前适应性训练数学试卷及答案解析山西省中考考前适应性训练数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2014年,山西省公共财政同比增长2.2%,记作+2.2%,那么,一般公共服务支出同比下降6.3%,应记作()A.6.3% B.﹣6.3% C.8.5% D.﹣8.5%2.如图,已知BE∥AC,图中和∠C相等的角是()A.∠ABE B.∠A C.∠ABC D.∠D BE3.计算:(﹣x2y)3,结果正确的是()A.﹣B.﹣C.﹣D.4.2015 年2月,山西省教育厅公布了中考理化实验操作考试的物理、化学试题各24道,某考生从中随机任选一题解答,选中物理试题的概率是()A.B.C.D.5.如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,若三角尺的一边长为8cm,则这条边在投影中的对应边长为()A.8cm B.12cm C.16cm D.24cm6.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad ﹣bc,例如=1×4﹣2×3=﹣2,如果>0,则x的解集是()A.x>1 B.x<﹣1 C.x>3 D.x<﹣37.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)8.如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,则图中阴影部分的总面积是()A.B.C.D.9.2014年,山西省某地实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.=+C.+10=D.﹣10=10.在?ABCD中,BE平分∠ABC交AD于点E,AF⊥CD于点F,交BE于点G,AH⊥BC 于点H,交BE于点I.若BI=IG,且AI=3,则AE的长为()A.3 B.2 C.6 D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.请写出一个实数a,使得实数a﹣1的绝对值等于1﹣a成立,你写出的a的值是.12.已知m﹣n=,则代数式(m+1)2+n(n﹣2m)﹣2m的值是.13.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.14.一个不透明的文具袋装有型号完全相同的3支红笔和2支黑笔,小明、小红两人先后从袋中随机取出一支笔(不放回),两人所取笔的颜色相同的概率是.15.如图,已知函数y=kx+2与函数y=mx﹣4的图象交于点A,根据图象可知不等式kx+2<mx﹣4的解集是.16.如图,在Rt△ABC中,∠ACB=90°,tanB=,点D,E分别在边AB,AC上,DE⊥AC,DE=6,DB=20,则tan∠BCD的值是.三、解答题(本大题共8个小题,共72分,解答应写出文字说明,过程或演算步骤)17.(1)计算:﹣|﹣|+2﹣4+3tan30°(2)化简:÷(a﹣)18.某服装网店李经理用11000元购进了甲、乙两种款式的童装共150件,两种童装的价格如右图所示,请你求出李经理购买甲乙两种款式的童装各多少件?19.如图,已知△ABC.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)①作BC边上的高AD;②作△ABC的角平分线BE;(2)综合与运用;若△ABC中,AB=AC且∠CAB=36°,请根据作图和已知写出符合括号内要求的正确结论;结论1:;(关于角)结论2:;(关于线段)结论3:.(关于三角形)20.某学习小组想了解某县每个居民一天的平均健身时间,准备采用以下调查方式中的一种进行调查:(1)从一个乡镇随机选取400名居民作为调查对象;(2)从该县体育活动中心随机选取400名锻炼身体的居民作为调查对象;(3)从该县公安局户籍管理处随机抽取400名城乡居民作为调查对象.(1)在上述调查方式中,你认为最合理的是(填序号);(2)该活动小组采用一种调查方式进行了调查,并将所得到的数据制成了如图所示的条形统计图,写出这400名居民每天平均健身时间的众数是小时,中位数是小时;(3)小明在求这400名居民每人每天平均健身时间的平均数时,他是这样分析的:小明的分析正确吗?如果不正确,请求出正确的平均数.(4)若该县有40万人,根据抽样结果估计该县每天健身2小时及以上的人数是多少人?你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.21.如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=2,点D是AB的中点,连接DO并延长交⊙O于点P,过点P作PF⊥AC于点F.(1)求劣弧PC的长;(结果保留π)(2)求阴影部分的面积.(结果保留π).22.已知某电路的电压U(V),电流I(A),电阻R(Ω)三者之间有关系式U=IR,且电路的电压U恒为220V.(1)求出电流I关于电阻R的函数表达式;(2)如果该电路的电阻为250Ω,则通过它的电流是多少?(3)如图,怎样调整电阻箱R的值,可以使电路中的电流I增大?若电流I=1.1A,求电阻R 的值.23.【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)24.如图,已知二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,点A的坐标为(﹣2,0),且当x=﹣1和x=3时,二次函数的值y 相等,直线AD交抛物线于点D(2,m).(1)求二次函数的表达式;(2)点P是线段AB上的一动点,(点P和点A,B不重合),过点P作PE∥AD,交BD于E,连接DP,当△DPE的面积最大时,求点P的坐标;(3)若直线AD 与y轴交于点G,点M是抛物线对称轴l上的动点,点N是x轴上的动点,当四边形CMNG的周长最小时,求出周长的最小值和点M,点N的坐标.山西省中考考前适应性训练数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2014年,山西省公共财政同比增长2.2%,记作+2.2%,那么,一般公共服务支出同比下降6.3%,应记作()A.6.3% B.﹣6.3% C.8.5% D.﹣8.5%【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵2014年,山西省公共财政同比增长2.2%,记作+2.2%,∴一般公共服务支出同比下降6.3%,应记作﹣6.3%,故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.如图,已知BE∥AC,图中和∠C相等的角是()A.∠ABE B.∠A C.∠ABC D.∠DBE【考点】平行线的性质.【分析】直接根据平行线的性质即可得出结论.【解答】解:∵BE∥AC,∴∠C=∠DBE.故选D.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.计算:(﹣x2y)3,结果正确的是()A.﹣B.﹣C.﹣D.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算化简求出即可.【解答】解:(﹣x2y)3=﹣x6y3.故选:C.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.4.2015 年2月,山西省教育厅公布了中考理化实验操作考试的物理、化学试题各24道,某考生从中随机任选一题解答,选中物理试题的概率是()A.B.C.D.【考点】概率公式.【分析】用物理试题的个数除以题目的总个数即可求得为物理试题的概率.【解答】解:∵物理、化学试题各24道,∴从中随机任选一题解答,选中物理试题的概率是=,故选A.【点评】考查了概率的公式,解题时用到的知识点为:概率=所求情况数与总情况数之比.5.如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,若三角尺的一边长为8cm,则这条边在投影中的对应边长为()A.8cm B.12cm C.16cm D.24cm【考点】位似变换.【分析】利用相似比为2:3,可得出其对应边的比值为2:3,进而求出即可.【解答】解:∵三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,三角尺的一边长为8cm,∴设这条边在投影中的对应边长为:x,则=,解得:x=12.故选:B.【点评】此题主要考查了位似变换,利用相似比得出对应边的比值是解题关键.6.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad ﹣bc,例如=1×4﹣2×3=﹣2,如果>0,则x的解集是()A.x>1 B.x<﹣1 C.x>3 D.x<﹣3【考点】解一元一次不等式.【专题】新定义.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:由题意可得2x﹣(3﹣x)>0,解得x>1.故选A.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.7.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】坐标确定位置.【专题】数形结合.【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.8.如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,则图中阴影部分的总面积是()A.B.C.D.【考点】正多边形和圆.【分析】六边形ABCDEF和A1B1C1D1E1F1都是正多边形,两个多边形的面积的差的一半就是阴影部分的面积.【解答】解:边长是2cm的正六边形ABCDEF的面积是:6××sin60°×22=6cm2.作出连接中心O,连接OD1,OC.在直角△OCD1中,∠O=30°,CD1=CD=1(cm).则OD1=CD1=,OG=OD1=,C1D1=.则A1B1C1D1E1F1的面积是:6××sin60°×()2=cm2.则图中阴影部分的总面积是(6﹣)=.故选A.【点评】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为正多边形的计算,理解两个多边形的面积的差的一半就是阴影部分的面积是关键.9.2014年,山西省某地实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.=+C.+10=D.﹣10=【考点】由实际问题抽象出分式方程.【分析】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程.【解答】解:设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,由题意得,﹣=,即=+.关系B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.在?ABCD中,BE平分∠ABC交AD于点E,AF⊥CD于点F,交BE于点G,AH⊥BC 于点H,交BE于点I.若BI=IG,且AI=3,则AE的长为()A.3 B.2 C.6 D.3【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由平行四边形的性质得到对边平行,得出内错角相等,因为BE平分∠ABC,得到∠1=∠3,证得∠2=∠3,得到AB=AE,由△ABC∽△ADF,得到∠4=∠5,通过三角形全等推出BI=EG,由BI=IG,得到GE=IG,应用直角三角形的性质得出IE的长度,根据勾股定理解出结果.【解答】解:在?ABCD中,∵AD∥BC,∴∠1=∠2∵∠1=∠3,∴∠2=∠3,∴AB=AE,∵AF⊥CD,AH⊥BC,∴∠AHB=∠AFD=90°,在平行四边形ABCD中,∠ABH=∠ADF,∴△ABH∽△ADF,∴∠4=∠5在△ABI与△AEG中,,∴△ABI≌△AEG,∴BI=EG,∵BI=IG,∴GE=IG,∵AD∥BC,∴∠DAH=∠AHB=90°,∴IE=2AG=2AI=6,∴AE==3.故选D.【点评】此题考查了平行四边形的性质、勾股定理,相似三角形的判定和性质,全等三角形的判定与性质,直角三角形的性质,解题的关键是证出△AIE是直角三角形并应用其性质.二、填空题(本大题共6个小题,每小题3分,共18分)11.请写出一个实数a,使得实数a﹣1的绝对值等于1﹣a成立,你写出的a的值是0 .【考点】实数的性质.【专题】开放型.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:由实数a﹣1的绝对值等于1﹣a成立,得a﹣1<0,a是小于1的数,故答案为:0.【点评】本题考查了实数的性质,利用负数的绝对值等于它的相反数,a只要小于1即可.12.已知m﹣n=,则代数式(m+1)2+n (n﹣2m)﹣2m的值是 6 .【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,变形后整体代入,即可得出答案.【解答】解:∵m﹣n=,∴(m+1)2+n(n﹣2m)﹣2m=m2+2m+1+n2﹣2mn﹣2m=m2﹣2mn+n2+1=(m﹣n)2+1=()2+1=6,故答案为:6.【点评】本题考查了整式的混合运算和求值的应用,能根据整式的运算法则进行化简是解此题的关键,用了整体代入思想.13.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 3 种.【考点】利用轴对称设计图案.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.14.一个不透明的文具袋装有型号完全相同的3支红笔和2支黑笔,小明、小红两人先后从袋中随机取出一支笔(不放回),两人所取笔的颜色相同的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人所取笔的颜色相同的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,两人所取笔的颜色相同的有8种情况,∴两人所取笔的颜色相同的概率是:=.故答案为:.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,已知函数y=kx+2与函数y=mx﹣4的图象交于点A,根据图象可知不等式kx+2<mx﹣4的解集是x<﹣3 .【考点】一次函数与一元一次不等式.【分析】观察函数图象得到当x<﹣3时,y=kx+2的图象位于y=mx﹣4的下方,即kx+2<mx﹣4.【解答】解:∵观察图象知当<>﹣3时,y=kx+2的图象位于y=mx﹣4的下方,根据图象可知不等式kx+2<mx﹣4的解集是x<﹣3,故答案为:x<﹣3.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,在Rt△ABC中,∠ACB=90°,tanB=,点D,E分别在边AB,AC上,DE⊥AC,DE=6,DB=20,则tan∠BCD的值是.【考点】解直角三角形.。

山西省长治市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

山西省长治市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

山西省长治市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一艘在南北航线上的测量船,于A 点处测得海岛B 在点A 的南偏东30°方向,继续向南航行30海里到达C 点时,测得海岛B 在C 点的北偏东15°方向,那么海岛B 离此航线的最近距离是( )(结果保留小数点后两位)(参考数据:≈1.732,≈1.414)A .4.64海里B .5.49海里C .6.12海里D .6.21海里2.如果将直线l 1:y =2x ﹣2平移后得到直线l 2:y =2x ,那么下列平移过程正确的是( ) A .将l 1向左平移2个单位B .将l 1向右平移2个单位C .将l 1向上平移2个单位D .将l 1向下平移2个单位3.已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36°,则该圆锥的母线长为( ) A .100cm B .10cm C .10cm D .1010cm 4.如图:将一个矩形纸片ABCD ,沿着BE 折叠,使C D 、点分别落在点11,C D 处.若150C BA ∠=︒,则ABE ∠的度数为( )A .15︒B .20︒C .25︒D .30°5.如图,矩形ABCD 中,AD=2,AB=3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )A 5B .136C .1D .566.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ). A .众数 B .中位数 C .平均数 D .方差7.如图1,点E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿BE→ED→DC 运动到点C 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们运动的速度都是1cm/s .若点P 、Q 同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤8.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x 之间的函数关系的是()A.B.C.D.9.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;1410.函数y=113xx+--x的取值范围是( )A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤311.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A.中位数不变,方差不变B.中位数变大,方差不变C.中位数变小,方差变小D.中位数不变,方差变小12.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=3,则BC的长是_____.14.如图,在△ABC中,AB=AC=25,BC=1.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF 与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为_______.15.方程3x(x-1)=2(x-1)的根是16.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.17.如图,点M是反比例函数2yx(x>0)图像上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为A.1 B.2 C.4 D.不能确定18.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在ABCD Y 中,6090B ︒<∠<︒,且2AB =,4BC =,F 为AD 的中点,CE AB ⊥于点E ,连结EF ,CF .(1)求证:3EFD AEF ∠=∠;(2)当BE 为何值时,22CE CF -的值最大?并求此时sin B 的值.20.(6分)计算(﹣12)﹣2﹣(π﹣3)0+|3﹣2|+2sin60°; 21.(6分)已知函数y=3x (x >0)的图象与一次函数y=ax ﹣2(a≠0)的图象交于点A (3,n ). (1)求实数a 的值;(2)设一次函数y=ax ﹣2(a≠0)的图象与y 轴交于点B ,若点C 在y 轴上,且S △ABC =2S △AOB ,求点C 的坐标.22.(8分)如图,已知△ABC ,分别以AB,AC 为直角边,向外作等腰直角三角形ABE 和等腰直角三角形ACD ,∠EAB=∠DAC=90°,连结BD,CE 交于点F ,设AB=m ,BC=n.(1)求证:∠BDA=∠ECA .(2)若m=2,n=3,∠ABC=75°,求BD 的长.(3)当∠ABC=____时,BD 最大,最大值为____(用含m ,n 的代数式表示)(4)试探究线段BF,AE,EF 三者之间的数量关系。

2019年 中考适应性考试数学试卷及答案

2019年 中考适应性考试数学试卷及答案

2019年 中考适应性考试数学试卷说明1.全卷共4页,考试用时100分钟,满分120分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,请将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的, 请把答题卡对应题目所选的选项涂黑. 1.-34的相反数是A .-43B .-34C .-43D .342.化简(a 3)2的结果是 A .a 6B .a 5C .a 9D .2a 33.圆心角为60°,且半径为3的扇形的弧长为 A .π2B .πC .3π2D .3 π4.已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是 A .10 B .9C .8D .75.若分式2aa +b中的a 、b 的值同时扩大到原来的10倍,则此分式的值 A .是原来的20倍 B .是原来的10倍 C .是原来的110D .不变二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题 卡相应的位置上6.分解因式ax 2-4a =_ ▲ . ax 2-4a =a (x 2-4)=a(x +2)(x -2)。

7.方程组⎩⎨⎧x +y =62x -y =3的解为_ ▲ .8.写出一个图象位于第二、第四象限的反比例函数的解析式_ ▲ . 9.在ABCD 中,AB =6cm ,BC =8cm ,则ABCD 的周长为_ ▲ cm .10.不等式组⎩⎨⎧2x -6<4x >2的解集为_ ▲ .三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:|-2|+(13)-1-(π-5)0-16.12.某校为了调查学生视力变化情况,从该校2008年入校的学生中抽取了部分学生进 行连续三年的视力跟踪调查,将所得数据处理,制成折线统计图和扇形统计图,如图所示:(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2010 年有多少名学生视力合格.13.如图,在Rt △ABC 中,∠C =90°.(1)求作:△ABC 的一条中位线,与AB 交于D 点,与BC 交于E 点.(保 留作图痕迹,不写作法)(2)若AC =6,AB =10,连结CD ,则DE =_ ▲ ,CD =_ ▲ .14.八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,过了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求 骑自行车同学的速度.15.如图,在正方形ABC 1D 1中,AB =1.连接AC 1,以AC 1为边作第二个正方形AC 1C 2D 2;连接AC 2,以AC 2 为边作第三个正方形AC 2C 3D 3.(1)求第二个正方形AC 1C 2D 2和第三个正方形的边长AC 2C 3D 3; (2)请直接写出按此规律所作的第7个正方形的边长. 四、解答题(二)(本大题4小题,每小题7分,共28分) 16.如图,在鱼塘两侧有两棵树A 、B ,小华要测量此两树之间的距离.他在距A 树30 m 的C 处测得∠ACBBAC 1C 2C 3D 3D 2D 1B=30°,又在B 处测得∠ABC =120°.求A 、B 两树之间的距离 (结果精确到0.1m )≈1.414≈1.732)17.某校为庆祝国庆节举办游园活动,小军来到摸球兑奖活动场地,李老师对小军说:“这里有A 、B 两个盒子,里面都装有一些乒乓球,你只能选择在其中一只盒子中摸球.”获将规则如下: 在A 盒中有白色乒乓球4个,红色乒乓球2个,一人只能摸一次且一次摸出一个球,若为红球则可获 得玩具熊一个,否则不得奖;在B 盒中有白色乒乓球2个,红色乒乓球2个,一人只能摸一次且一次 摸出两个球,若两球均为红球则可获得玩具熊一个,否则不得奖.请问小军在哪只盒子内摸球获得玩具 熊的机会更大?说明你的理由.18.如图,Rt △OAB 中,∠OAB =90°,O 为坐标原点,边OA 在x 轴上,OA =AB =1个单位长度.把Rt △OAB 沿x 轴正方向平移1个单位长度后得△AA 1B . (1)求以A 为顶点,且经过点B 1的抛物线的解析式; (2)若(1)中的抛物线与OB 交于点C ,与 y 轴交于点 D ,求点D 、C 的坐标.19.如图,将一个钝角△ABC (其中∠ABC =120°)绕点B 顺时针旋转得△A 1BC 1,使得C 点落在AB 的延长线上的点C 1处,连结AA 1.(1)写出旋转角的度数; (2)求证:∠A 1AC =∠C 1.五、解答题(三)(本大题3小题,每小题9分,共27分)20.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a 、b 、m 、n 均为整数),则有 a +b 2=m 2+2n 2+2mn 2. ∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a +b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=(m +n 3)2,用含m 、n 的式子分别表示a 、b ,得 a =_ ▲ ,b =_ ▲ ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空:_ ▲ +(_ ▲ +2; (3)若a +43=(m +n 3)2,且a 、m 、n 均为正整数,求 a 的值.21.已知:如图,锐角△ABC 内接于⊙O ,∠ABC =45°;点D 是⌒BC 上一点,过点D 的切线DE 交AC 的延长线于点E ,且DE ∥BC ;连结AD 、 BD 、BE ,AD 的垂线AF 与DC 的延长线交于点F . (1)求证:△ABD ∽△ADE ;(2)记△DAF 、△BAE 的面积分别为S △DAF 、S △BAE ,求证:S △DAF >S △BAE .22.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =AB =1,BC =2.将点A 折叠到CD 边上,记折叠后A 点对应的点为P (P 与D 点不重合),折痕EF 只与边AD 、BC交点分别为E 、F .过点P 作PN ∥BC 交AB 于N 、交EF 于M 连结PA 、PE 、AM ,EF 与PA 相交于O . (1)指出四边形PEAM 的形状(不需证明);(2)记∠EPM =α,△AOM 、△AMN 的面积分别为S 1、S 2. ① 求证:1S tan2α=18PA 2. ② 设AN =x ,y =12S S tan2α-,试求出以x 为自变量的函数y 的解析式,并确定y 的取值范围.参考答案一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡对应题目所选的选项涂黑. 1.-34的相反数是A .-43B .-34C .-43D .34【答案】D 。

山西省太原市2019-2020学年中考中招适应性测试卷数学试题(1)含解析

山西省太原市2019-2020学年中考中招适应性测试卷数学试题(1)含解析

山西省太原市2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1 B.y=﹣12x+2 C.y=﹣3x﹣2 D.y=﹣x+22.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个3.如图,在平面直角坐标系中,P是反比例函数kyx=的图像上一点,过点P做PQ x⊥轴于点Q,若OPQ△的面积为2,则k的值是( )A.-2 B.2 C.-4 D.44.cos30°的值为()A.1 B.12C.33D.35.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B.C.D.6.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )A.4个B.3个C.2个D.1个7.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b28.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A.B.C.D.9.下列计算正确的是()A.x2x3=x6B.(m+3)2=m2+9C.a10÷a5=a5D.(xy2)3=xy610.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是1011.下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A.B.C.D.12.-10-4的结果是()A.-7 B.7 C.-14 D.13二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组512324x xx x+>+⎧⎨+⎩…的解集是__.14.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于__.15.如图,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于__.16.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为______m.(精确到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)17.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.18.用一条长 60 cm 的绳子围成一个面积为 2162cm 的矩形.设矩形的一边长为 x cm ,则可列方程为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标. 20.(6分)如图,在平面直角坐标系xOy 中,以直线52x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于点D .(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使90APB ∠=︒,求k 的值.21.(6分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题: (1)本次抽样调查中的样本容量是 ; (2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.22.(8分)先化简22442x x x x -+-÷(x-4x),然后从55x 的值代入求值.23.(8分)小明遇到这样一个问题:已知:1b ca-=. 求证:240b ac -≥. 经过思考,小明的证明过程如下: ∵1b ca-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:42a cb+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 24.(10分)先化简,再求值:242a a a a⎛⎫--÷ ⎪⎝⎭,其中a 满足a 2+2a ﹣1=1. 25.(10分)解方程组:113311x x y x x y⎧+=⎪+⎪⎨⎪-=⎪+⎩ 26.(12分)如图,已知矩形ABCD 中,连接AC ,请利用尺规作图法在对角线AC 上求作一点E 使得△ABC ∽△CDE .(保留作图痕迹不写作法)27.(12分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D 的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【详解】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=12OA=1,OF=DG=BG=CG=12BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:32k bb-+=⎧⎨=⎩,解得:12kb=-⎧⎨=⎩.则这条直线解析式为y=﹣x+1. 故选D .【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键. 2.B 【解析】 【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答. 【详解】解:①两车在276km 处相遇,此时快车行驶了4个小时,故错误. ②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km ,可求出速度为69km/h ,错误. ④慢车6个小时走了276km ,可求出速度为46km/h ,正确.⑤慢车走了18个小时,速度为46km/h ,可得A,B 距离为828km ,正确. ⑥快车2时出发,14时到达,用了12小时,错误. 故答案选B . 【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键. 3.C 【解析】 【分析】根据反比例函数k 的几何意义,求出k 的值即可解决问题 【详解】解:∵过点P 作PQ ⊥x 轴于点Q ,△OPQ 的面积为2, ∴|2k|=2, ∵k <0, ∴k=-1.本题考查反比例函数k 的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 4.D 【解析】cos30° 故选D . 5.C 【解析】试题解析:观察二次函数图象可知: 00m n ,,∴一次函数y=mx+n 的图象经过第一、二、四象限,反比例函数mny x的图象在第二、四象限. 故选D. 6.B 【解析】 【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x=﹣2ba=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误; ∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点. 7.B根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A选项:4x3•1x1=8x5,故原题计算正确;B选项:a4和a3不是同类项,不能合并,故原题计算错误;C选项:(-x1)5=-x10,故原题计算正确;D选项:(a-b)1=a1-1ab+b1,故原题计算正确;故选:B.【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则.8.C【解析】试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.考点:二次函数图象与几何变换.9.C【解析】【分析】根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.【详解】x2•x3=x5,故选项A不合题意;(m+3)2=m2+6m+9,故选项B不合题意;a10÷a5=a5,故选项C符合题意;(xy2)3=x3y6,故选项D不合题意.故选:C.【点睛】本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.10.A根据方差、算术平均数、中位数、众数的概念进行分析. 【详解】数据由小到大排列为1,2,6,6,10,它的平均数为15(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=15[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.11.D【解析】【详解】A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;C、根据函数的图象可知,当x<0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x<0时,y随x的增大而减小;故本选项正确.故选D.【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.12.C【解析】解:-10-4=-1.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2≤x<1【解析】【分析】分别解两个不等式得到x<1和x≥2,然后根据大小小大中间找确定不等数组的解集.【详解】解:512(1) 324(2)x xx x+>+⎧⎨+⎩…,解①得x<1,解②得x≥2,所以不等式组的解集为2≤x<1.故答案为2≤x<1.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.23【解析】【分析】连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.【详解】解:如图,连接PB、PC,由二次函数的性质,OB=PB,PC=AC,∵△ODA是等边三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等边三角形,∵A(4,0),∴OA=4,∴点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×32=23,即两个二次函数的最大值之和等于23.故答案为23.【点睛】本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.【解析】连接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案为18.16.40.0【解析】【分析】首先过点A作AE∥BD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.【详解】过点A作AE∥BD,交CD于点E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四边形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE•tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒仓CD的高约40.0m,故答案为:40.0此题考查解直角三角形的应用−仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.17.1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.18.(30)216x x -=【解析】【分析】根据周长表达出矩形的另一边,再根据矩形的面积公式即可列出方程.【详解】解:由题意可知,矩形的周长为60cm ,∴矩形的另一边为:(30)x cm -,∵面积为 2162cm ,∴(30)216x x -=故答案为:(30)216x x -=.【点睛】本题考查了一元二次方程与实际问题,解题的关键是找出等量关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:(1)2y x 2x 3=--;(2)存在,P (2,2);(1)Q 点坐标为(0,-72)或(0,32)或(0,-1)或(0,-1).【解析】【分析】(1)已知点A 坐标可确定直线AB 的解析式,进一步能求出点B 的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B 的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C 的坐标,在△POB 和△POC 中,已知的条件是公共边OP ,若OB 与OC 不相等,那么这两个三角形不能构成全等三角形;若OB 等于OC ,那么还要满足的条件为:∠POC=∠POB ,各自去掉一个直角后容易发现,点P 正好在第二象限的角平分线上,联立直线y=-x 与抛物线的解析式,直接求交点坐标即可,同时还要注意点P 在第二象限的限定条件.(1)分别以A 、B 、Q 为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.【详解】解:(1)把A (1,﹣4)代入y =kx ﹣6,得k =2,∴y =2x ﹣6,令y =0,解得:x =1,∴B 的坐标是(1,0).∵A 为顶点,∴设抛物线的解析为y =a (x ﹣1)2﹣4,把B (1,0)代入得:4a ﹣4=0,解得a =1,∴y =(x ﹣1)2﹣4=x 2﹣2x ﹣1.(2)存在.∵OB =OC =1,OP =OP ,∴当∠POB =∠POC 时,△POB ≌△POC ,此时PO 平分第二象限,即PO 的解析式为y =﹣x .设P (m ,﹣m ),则﹣m =m 2﹣2m ﹣1,解得m (m 0,舍),∴P (2,2). (1)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB ,∴1DQ ADOD DB =,即6DQ 1=52, ∴OQ 1=72,即Q 1(0,-72); ②如图,当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴2OQ OB OD OB =,即2363OQ =, ∴OQ 2=32,即Q 2(0,32); ③如图,当∠AQ 1B =90°时,作AE ⊥y 轴于E ,则△BOQ 1∽△Q 1EA , ∴33OQ OB Q E AE =,即33341OQ OQ =- ∴OQ 12﹣4OQ 1+1=0,∴OQ 1=1或1,即Q 1(0,﹣1),Q 4(0,﹣1).综上,Q 点坐标为(0,-72)或(0,32)或(0,﹣1)或(0,﹣1). 20.(1)255y x x =-+.;(2)点G 坐标为()13,1G -;2931767317G +-⎝⎭.(3)261k =-+. 【解析】分析:(1)根据已知列出方程组求解即可;(2)作AM ⊥x 轴,BN ⊥x 轴,垂足分别为M ,N ,求出直线l 的解析式,再分两种情况分别求出G 点坐标即可;(3)根据题意分析得出以AB 为直径的圆与x 轴只有一个交点,且P 为切点,P 为MN 的中点,运用三角形相似建立等量关系列出方程求解即可.详解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =. ∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==.32MQ =Q ,2NQ ∴=,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪∴⎨+=⎪⎩,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x ∴=+,102D ,⎛⎫ ⎪⎝⎭. 同理,152BC y x =-+. BCD BCG S S ∆∆=Q ,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x ∴-+=-+,即22990x x -+=,123,32x x ∴==. 52x >Q ,3x ∴=,()3,1G ∴-. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x ∴=-+,21195522x x x ∴-+=-+,22990x x ∴--=. 52x >Q ,93174x +∴=931767317,48G ⎛⎫+-∴ ⎪ ⎪⎝⎭. 综上所述,点G 坐标为()13,1G -;2931767317G +-⎝⎭. (3)由题意可得:1k m +=.1m k ∴=-,11y kx k ∴=+-,2155kx k x x ∴+-=-+,即()2540x k x k -+++=.11x ∴=,24x k =+,()24,31B k k k ∴+++.设AB 的中点为'O , P Q 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ∴⊥轴,P ∴为MN 的中点,5,02k P +⎛⎫∴ ⎪⎝⎭.AMP PNB ∆∆Q ∽,AM PN PM BN ∴=,••AM BN PN PM ∴=, ()2551314122k k k k k ++⎛⎫⎛⎫∴⨯++=+-- ⎪⎪⎝⎭⎝⎭,即23650k k +-=,960∆=>. 0k >Q ,64626163k -+∴==-+. 点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.21.(1)100;(2)作图见解析;(3)1.【解析】试题分析:(1)根据百分比=所占人数总人数计算即可; (2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=30÷30%=100, 故答案为100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人. 22.当x=-1时,原式=1=11+2-; 当x=1时,原式=11=1+23【解析】【分析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.【详解】 原式=22(2)4(2)x x x x x--÷-=()2(2)•(2)2(2)x x x x x x --+- =12x +∵x x 为整数,∴若使分式有意义,x 只能取-1和1当x=1时,原式=13.或:当x=-1时,原式=1 23.证明见解析【解析】 解:∵42a c b+=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根.∴240b ac -≥,∴24b ac ≥.24.a 2+2a ,2【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后根据a 2+2a−2=2,即可解答本题.【详解】 解:242a a a a⎛⎫--÷ ⎪⎝⎭ =2242a a a a -⋅- =2(2)(2)2a a a a a +-⋅- =a (a+2)=a 2+2a ,∵a 2+2a ﹣2=2,∴a 2+2a =2,∴原式=2.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.10.5x y =⎧⎨=-⎩【解析】【分析】设1x=a,1x y+=b,则原方程组化为331a ba b+=⎧⎨-=⎩①②,求出方程组的解,再求出原方程组的解即可.【详解】设1x=a,1x y+=b,则原方程组化为:331a ba b+=⎧⎨-=⎩①②,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即1112 xx y⎧=⎪⎪⎨⎪=+⎪⎩,解得:10.5 xy=⎧⎨=-⎩,经检验10.5xy=⎧⎨=-⎩是原方程组的解,所以原方程组的解是10.5 xy=⎧⎨=-⎩.【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.26.详见解析【解析】【分析】利用尺规过D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.【详解】解:过D作DE⊥AC,如图所示,△CDE即为所求:【点睛】本题主要考查了尺规作图,相似三角形的判定,解决问题的关键是掌握相似三角形的判定方法.27.(1)相切,理由见解析;(1)1.【解析】【分析】(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;(1)根据勾股定理得出方程,求出方程的解即可.【详解】(1)直线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴直线BC与⊙O的位置关系是相切;(1)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB=BD+OD,即(R+1) =(1)+R,解得:R=1,即⊙O的半径是1.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.。

2019年中考适应性考试数学试卷及答案

2019年中考适应性考试数学试卷及答案

2019年中考适应性考试数学试卷说明:1.全卷共4页,考試時間為100分鐘,满分120分.2.选择题每小題选出答案后,用2B 铅笔把答题卡上对应题的标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生务必保持答题卡的整洁.考试结束时,将本试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上. 1.—3的倒数是 A .3B .—3C .13D .— 132.数据2、2、3、4、3、1、3的众数是 A .1B .2C .3D .43.图中几何体的主视图是4.据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用 科学记数法可表示为 A .0.68×109B .6.8×108C .6.8×107D .68×1075.下列选项中,与x y 2是同类项的是 A .—2x y 2B .2x 2yC .x yD .x 2y 26.已知∠α=35°,则∠α的余角是 A .35°B .55°C .65°D .145°7.不等式x —1>2的解集是 A .x >1B .x >2C .x >3D .x <38.如图,点A 、B 、C 在⊙O 上,若∠BAC =20º,则∠BOC 的度数为B . A .C .D .A .20ºB .30ºC .40ºD .70º9.一次函数2y x =+ 的图象大致是10.如图,若要使平行四边形 ABCD 成为菱形,则需要添加的条件是 A .AB =CDB .AD =BCC .AB =BCD .AC =BD二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应师号的答题卡.11.计算:2x 2·5x 3= _ ▲ . 12.分解因式:2x 2-6x =_ ▲ . 13.反比例函数ky x=的图象经过点P(-2,3),则k 的值为 ▲ . 14.已知扇形的圆心角为60°,半径为6,则扇形的弧长为_ ▲ .(结果保留π)15.为了甲、乙、丙三位同学中选派一位同学参加环保知识竞赛,老师对他们的五次环保知识测验成绩进行了统计,他们的平均分均为85分,方差分别为S 2甲=18,S 2乙=12,S 2丙=23.根据统计结果,应派去参加竞赛的同学是 ▲ .(填“甲”、“乙”、“丙”中的一个) 16.如图,在ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若△ECF 的面积为1,则四边形ABCE 的面积为 _ ▲ .三、解答题(本大题共5小题,每小题6分,共30分) 17.计算:9+2cos60º+(12)-1-20110.18.解方程:x 2-x x -1=0.19.△ABC 在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位. (1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.20.先化简、再求值:21111x x x ⎛⎫-÷ ⎪+⎝⎭-,其中x =2+1. 21.如图,小明以3米/秒的速度从山脚A 点爬到山顶B 点,已知点B 到山脚的垂直距离BC 为24米,且山坡坡角∠A 的度数为28º,问小明从山脚爬上山顶需要多少时间?(结果精确到0.1).(参考数据:sin28º=0.46,cos28º=0.87,tan28º=0.53)四、解答题(本大题共3小题,每小题8分,共24分)22.如图,AB 是⊙O 的直径,AC 与⊙O 相切,切点为A ,D 为⊙O 上一点,AD与OC 相交于点E ,且∠DAB =∠C .(1)求证:OC ∥BD ;(2)若AO =5,AD =8,求线段CE 的长.23.在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余相同),其中黄球有1个,从袋中任意摸出一个球是黄球的概率为13.(1)求袋中白球的个数;(2)第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画状图 的方法求两次都摸到黄球的概率.24.如图,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:AB =DF ;(2)若AD =10,AB =6,求tan ∠EDF 的值. 五、解答题(本大题共2小题,每小题9分,共18分)25.某电器城经销A 型号彩电,今年四月份每台彩电售价为2000元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元.AC(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电.已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获得最大?最大利润是多少?26.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,-3).(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标.参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上. 1.—3的倒数是 A .3 B .—3C .13D .— 13【答案】D 。

2019届山西省中考模拟试卷数学试卷【含答案及解析】

2019届山西省中考模拟试卷数学试卷【含答案及解析】

2019届山西省中考模拟试卷数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 在下列四个数中,比0小的数是()A.0.2 B.|﹣1| C. D.2. “珍惜生命,注意安全”是一永恒的话题.在现代化的城市,交通安全晚不能被忽视,下列几个图形是国际通用的几种交通标志,其中不是中心对称图形是()A. B.C. D.3. 如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图(1)变到图(2),不改变的是()A.主视图 B.主视图和左视图C.主视图和俯视图 D.左视图和俯视图4. 一条直线y=kx+b,其中k+b=﹣5,kb=6,那么该直线经过()A.第二、四象限 B.第一、二、三象限C.第一、三象限 D.第二、三、四象限5. 在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合 B.转化思想 C.模型思想 D.特殊到一般6. 如图,已知E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,按比例尺2:1把△EFO缩小,则E点对应点E′的坐标为()A.(2,1) B.(,) C.(2,﹣1) D.(2,﹣)7. 如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4 B.4+4 C.8﹣4 D. +18. 正六边形的边心距为,则该正六边形的边长是()A. B.2 C.3 D.29. 某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:10. 候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392<td><td><td><td><td><td>td11. 如图,正方形ABCD的对角线BD长为,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1 B.2 C.3 D.4二、填空题12. 如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 度.13. 如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于.14. 请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x=(写出一个x的值即可).15. 某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.16. 如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF= .17. 如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下列四个结论:①AE=6cm;②sin∠EBC=;③当0<t≤10时,y=t2;④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是.三、解答题18. (1)计算:(﹣2)2sin60°﹣(﹣)•﹣(﹣)0;(2)已知x,y满足方程组,求2x﹣2y的值.19. 已知A=.(1)化简A;(2)当x满足不等式组,且x为奇数时,求A的值.20. (1)如图,在△ABC中用直尺和圆规作AB边上的高CD(保留作图痕迹,不写作法).(2)图中的实线表示从A到B需经过C点的公路,且AC=10km,∠CAB=25°,∠CBA=37°.现因城市改造需要在A、B两地之间改建一条笔直的公路.问:公路改造后比原来缩短了多少千米?(参考数据:sin25°≈0.41,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75,结果精确到0.01)21. 暑假快要到了,某市准备组织同学们分别到A、B、C、D四个地方进行夏令营活动,前往四个地方的人数如图所示:(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数.(2)若把同学们去A、B、C、D四个地点的人数情况绘制成扇形统计图,则“去B地”的扇形圆心角为多少?(3)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?说明理由.22. 如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.(1)若AB=4,求的长;(结果保留π)(2)求证:四边形ABMC是菱形.23. 如图,一次函数y1=mx+n的图象分别交x轴、y轴于A、C两点,交反比例函数y2=(k>0)的图象于P、Q两点.过点P作PB⊥x轴于点B,若点P的坐标为(2,2),△PAB的面积为4.(1)求一次函数与反比例函数的解析式.(2)当x为何值时,y1<y2?24. 问题情境:如图将边长为8cm的正方形纸片ABCD折叠,使点B恰好落在AD边的中点F处,折痕EG分别交AB、CD于点E、G,FN与DC交于点M,连接BF交EG于点P.独立思考:(1)AE= cm,△FDM的周长为 cm;(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.拓展延伸:如图2,若点F不是AD的中点,且不与点A、D重合:①△FDM的周长是否发生变化,并证明你的结论.②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).25. 如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

2019年山西省中考适应性训练数学试卷及答案(word解析版)

2019年山西省中考适应性训练数学试卷及答案(word解析版)

山西省2019年中考适应性训练数学试卷一、选择题(共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一项符合题目要求,请选择并在答题卡上将该项涂黑)243.(2分)(2019•山西模拟)在一个不透明的袋子中装有5个除颜色外完全相同的小球,其4.(2分)(2019•山西模拟)如图,将直角三角板ABC沿BC方向平移,得到△A′CC′.已知∠B=30°,∠ACB=90°,则∠BAA′度数为()5.(2分)(2019•山西模拟)如图,将正方体的平面展开图重新折成正方体后,“西”字对面的字是()7.(2分)(2019•山西模拟)2019年1月份,太原市某周的日最高气温统计如下表:则这七8.(2分)(2019•山西模拟)分式方程的解是()9.(2分)(2019•山西模拟)在一定温度下的饱和溶液中,溶质、溶剂质量和溶解度之间存在下列关系:.已知20℃时,硝酸钾的溶解度是31.6克,在此温度下,=,即10.(2分)(2019•山西模拟)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于()米.,11.(2分)(2019•山西模拟)某班学生毕业时,每个同学都要给其他同学写一份留言作为.12.(2分)(2019•山西模拟)如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合.若AB=4,则菱形ABCD的面积为()2ADAD=DE=CD=2CE=2×.二、填空题(本大题共6小题,每小题3分,共18分,把答案写在题中横线上)13.(3分)(2019•山西模拟)计算﹣4sin45°的结果是.×故答案为:14.(3分)(2019•山西模拟)经过一年的广泛征集、反复提炼,“山西精神”的表述语“信义、坚韧、创新、图强”于2019底正式对外公布.据不完全统计,山西全省共约121万人参与了征集提炼活动.121万人用科学记数法表示为 1.21×106人.15.(3分)(2019•山西模拟)在一个不透明的盒子里装有4个分别标有数字1、2、3、4的小球,它们除数字外其他均相同.充分摇匀后,先摸回1个球不放回,再摸出一个球.那么这两个球上数字之和为奇数的概率为..故答案为:.16.(3分)(2019•山西模拟)如图所示,在直角梯形ABCD中,AB∥CD,点E为AB的中点,点F为BC的中点,AB=4,EF=2,∠B=60°,则AD的长为2.MB=×=2.17.(3分)(2019•山西模拟)如图,若将平面直角坐标系中“鱼”以原点O为位似中心,按照相似比缩小,则点A的对应点的坐标是(3,﹣2)或(﹣3,2).为位似中心,相似比为18.(3分)(2019•山西模拟)在一次猜数字游戏中,小红写出如下一组数:1,,,,…,小军猜想出的第六个数字是,也是正确的,根据此规律,第n个数是.先把原数据整理得到,,,个数是.,,,,,变形得到,,,,,即,,所以第六个数字是=个数是故答案为三、解答题(本大题共8小题,共78分,解答应写出文字说明、证明过程或演算步骤)19.(12分)(2019•山西模拟)(1)计算:m(m+2)﹣(m﹣1)(m+3)+(﹣2m)2(2)化简分式+﹣1,并选取一个你认为合适的整数a代入求值.•﹣,==220.(6分)(2019•山西模拟)如图1利用正方形各边中点和弧的中点设计的正方形瓷砖图案,用四块如图1所示的正方形瓷砖拼成一个新的正方形,使拼成的图案既是轴对称图形,又是中心对称图形.请你在图2和图3中各画一种拼法(要求两种拼法各不相同).21.(9分)(2019•山西模拟)某科学技术协会为倡导青少年主动进行研究性学习,积极研究身边的科学问题,组织了以“体验、创新、成长”为主题的青少年科技创大赛,在层层选拔的基础上,所有推荐参赛学生分别获得了一、二、三等奖和纪念奖,工作人员根据获奖情况绘制成如图所示的两幅不完整的统计图,根据图中所给出的信息解答下列问题:(1)这次大赛获得三等奖的学生有多少人?(2)请将条形统计图补充完整;(3)扇形统计图中,表示三等奖扇形的圆心角是多少度?(4)若给所有推荐参赛学生每人发一张相同的卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出写有一等奖学生名字卡片的概率.200=.22.(8分)(2019•山西模拟)如图,在平面直角坐标系中,点O为坐标原点,一次函数y1=kx+b 与反比例函数y2=的图象相交于A(﹣2,m),B(n,4)两点,与y轴交于点C.(1)求一次函数的解析式(关系式);(2)根据函数图象,写出:①当﹣2≤y1≤4时,自变量x的取值范围是﹣2≤x≤1;②当y2≤4时,自变量x的取值范围是x<0或x≥1;(3)连接OA、OB,求△AOB的面积.的解析式,求=4=,解得.=××23.(9分)(2019•山西模拟)如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD.已知BC=BD,AB=4.(1)若BC=2,求证:BD是⊙O的切线;(2)BC=3,求CD的长.=,=,即=.24.(8分)(2019•山西模拟)2019年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?,,25.(12分)(2019•山西模拟)操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)再(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是相等;结论2:DM、MN的位置关系是垂直;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.AE MN=DM=26.(14分)(2019•山西模拟)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)求点A的坐标和∠AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.y=(令,由此可得抛物线x(y=y=x,且过顶点y=x==2,AC=2xxy=(=0。

2019年山西中考考前适应性训练试题+答案·数学

2019年山西中考考前适应性训练试题+答案·数学

y=-1.
(2)去分母得:2(2x-1)-(1-x)>6, ………………………………………………… 6分
去括号得:4x-2-1+x>6, …………………………………………………………… 7分
移项得:4x+x>2+1+6, ……………………………………………………………… 8分
合并同类项:5x>9, ………………………………………………………………… 9分
系数化为1:x>
9 5

………………………………………………………………… 10分
姨 姨 17.
解:原式=
2x (x+2)·(x-2)
-
1 x-2
·2(x3+x2)
…………………………………………
2分
=(x+22x)-(x-x-22)·2(x3+x2) …………………………………………………… 3分
∵CD=CE-ED,
∴CD=AF-BE=AD-DF-BE=AD-2BE. ∴AD-CD=2BE.
(第 22 题答图 3)
∵CD=3,AD=9,
∴BE=ED=3,CE=CD+ED=6.
∵DH∥EB,

DH EB
=
CD CE
.

DH 3
=
3 6
.
∴DH= 3 . 2
23. 解:(1)当y=0时,x2-2x-3=0,解得x1=3,x2=-1,
又∵A在B的左侧,
∴A(-1,0),B(3,0), ……………………………………… 2分
当x=0时,y=x2-2x-3=-3,∴C(0,-3). ……………………… 3分
(2)∵D的横坐标为m,D在抛物线上.

山西省长治市2019-2020学年中考中招适应性测试卷数学试题(1)含解析

山西省长治市2019-2020学年中考中招适应性测试卷数学试题(1)含解析

山西省长治市2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2•a3=a6D.5a+2b=7ab2.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°3.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角 的余切值为()A.2 B.12C.55D.54.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 25.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是().A.B.C.D.6.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.主视图既是中心对称图形又是轴对称图形D.俯视图既是中心对称图形又是轴对称图形7.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 18.如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( )A .∠ADCB .∠ABDC .∠BACD .∠BAD9.一、单选题 小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( )A .1201806x x =+B .1201806x x =-C .1201806x x =+D .1201806x x=- 10.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是( ) A .94m < B .94m … C .94m > D .94m … 11.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )A .B .C .D .12.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y =k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为_____.14.若332y x x =-+-+,则y x = .15.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km .16.如果一个矩形的面积是40,两条对角线夹角的正切值是43,那么它的一条对角线长是__________. 17.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.18.已知关于x 的一元二次方程(k ﹣5)x 2﹣2x+2=0有实根,则k 的取值范围为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .试判断DE 与⊙O 的位置关系,并说明理由;过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.20.(6分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.21.(6分)如图,Rt △ABC 中,∠ABC =90°,点D ,F 分别是AC ,AB 的中点,CE ∥DB ,BE ∥DC .(1)求证:四边形DBEC 是菱形;(2)若AD =3, DF =1,求四边形DBEC 面积.22.(8分)问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.23.(8分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.24.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB 上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF 交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.25.(10分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形.26.(12分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.27.(12分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.(3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D选项:两项不是同类项,故不能进行合并.【详解】A选项:a6÷a2=a4,故本选项错误;B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;C选项:(-a)2•a3=a5,故本选项错误;D选项:5a与2b不是同类项,不能合并,故本选项错误;故选:B.【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.2.C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.3.B【解析】【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2α=.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.4.D【解析】【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.5.C【解析】分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.解答:解:掷骰子有6×6=36种情况.根据题意有:4n-m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选C.点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.6.D【解析】【分析】先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.【详解】解:A、主视图不是中心对称图形,故A错误;B、左视图不是中心对称图形,故B错误;C、主视图不是中心对称图形,是轴对称图形,故C错误;D、俯视图既是中心对称图形又是轴对称图形,故D正确.故选:D.【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.7.D【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.【详解】解:∵反比例函数y=﹣1x中k=﹣1<0,∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,∵y1<0<y2<y3,∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,∴x2<x3<x1.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.8.D【解析】【详解】∵∠ACD对的弧是»AD,»AD对的另一个圆周角是∠ABD,∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),又∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴与∠ACD互余的角是∠BAD.故选D.9.C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.10.A【解析】【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<94,故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.12.C【解析】【详解】如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C .考点:勾股定理的证明.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8【解析】【分析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC 的顶点A 的坐标为(-3,-4),22345,+=则点B 的横坐标为-5-3=-8,点B 的坐标为(-8,-4),点C 的坐标为(-5,0)则点E 的坐标为(-4,-2),将点E 的坐标带入y=k x (x <0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.14.1.【解析】 试题分析:332y x x =--有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x =23=1.故答案为1.考点:二次根式有意义的条件.15.1.【解析】【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.【详解】解:设A 港与B 港相距xkm ,根据题意得:3262262x x +=+- , 解得:x=1,则A 港与B 港相距1km .故答案为:1.【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程. 16.1.【解析】【分析】如图,作BH ⊥AC 于H .由四边形ABCD 是矩形,推出OA=OC=OD=OB ,设OA=OC=OD=OB=5a ,由tan ∠BOH 43BH OH ==,可得BH=4a ,OH=3a ,由题意:212⨯⨯1a×4a=40,求出a 即可解决问题. 【详解】如图,作BH ⊥AC 于H .∵四边形ABCD 是矩形,∴OA=OC=OD=OB ,设OA=OC=OD=OB=5a .∵tan ∠BOH 43BH OH ==,∴BH=4a ,OH=3a ,由题意:212⨯⨯1a×4a=40,∴a=1,∴AC=1. 故答案为:1.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.17.3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2.18.1152k k≤≠且【解析】【分析】若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.【详解】解:∵方程有两个实数根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤112且k≠1,故答案为k≤112且k≠1.【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣332.【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO ,∴∠EBD=∠BDO ,∴DO ∥BE ,∵DE ⊥BC ,∴∠DEB=∠EDO=90°,∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE ⊥BE ,DF ⊥AB ,∴DE=DF=3,∵∴=6, ∵sin ∠DBF=31=62, ∴∠DBA=30°,∴∠DOF=60°,∴sin60°=32DF DO DO ==,∴,则1322π=-. 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键.20.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.21. (1)见解析【解析】【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC 为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD ,得证;(1)由三角形中位线定理和勾股定理求得AB 边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【详解】(1)证明:∵CE ∥DB ,BE ∥DC ,∴四边形DBEC 为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=12 AC,∴平行四边形DBEC是菱形;(1)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=1AD=6,S△BCD=12S△ABC∴BC=1DF=1.又∵∠ABC=90°,∴AB=22AC BC-= 2262-= 42.∵平行四边形DBEC是菱形,∴S四边形DBEC=1S△BCD=S△ABC=12AB•BC=12×42×1=42.点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBEC=S△ABC是解(1)的关键.22.(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.23.(1)A(﹣1,﹣6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);(1)如图,△A1B1C1为所作.24.(1)AE=DF,AE⊥DF,理由见解析;(2)成立,2或2;(3)51【解析】试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出2a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出2a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可.试题解析:(1)AE=DF ,AE ⊥DF ,理由是:∵四边形ABCD 是正方形,∴AD=DC ,∠ADE=∠DCF=90°,∵动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动,∴DE=CF ,在△ADE 和△DCF 中AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF ∆≅∆,∴AE=DF ,∠DAE=∠FDC ,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE ⊥DF ;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理得, 222AC CE a a a ==+=,则:2:2CE CD a a ==;②如图2,当AE=AC 时,设正方形ABCD 的边长为a ,由勾股定理得: 222AC AE a a a ==+=,∵四边形ABCD 是正方形,∴∠ADC=90°,即AD ⊥CE ,∴DE=CD=a ,∴CE:CD=2a:a=2;即22;(3)∵点P 在运动中保持∠APD=90°, ∴点P 的路径是以AD 为直径的圆,如图3,设AD 的中点为Q ,连接CQ 并延长交圆弧于点P ,此时CP 的长度最大,∵在Rt △QDC 中,2222215QC CD QD =+=+=∴51CP QC QP =+=,即线段CP 51.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大. 25.见解析【解析】【分析】(1)根据平行四边形的性质可得AB ∥DC ,OB=OD ,由平行线的性质可得∠OBE=∠ODF ,利用ASA 判定△BOE ≌△DOF ,由全等三角形的性质可得EO=FO ,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF 是平行四边形;(2)添加EF ⊥BD (本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF 为菱形.【详解】(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,又∵∠BOE=∠DOF ,∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)EF ⊥BD .∵四边形BEDF 是平行四边形,∵EF ⊥BD ,∴平行四边形BEDF 是菱形.【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.26.(1)详见解析;(2【解析】【分析】(1)因为AC 平分∠BCD ,∠BCD =120°,根据角平分线的定义得:∠ACD =∠ACB =60°,根据同弧所对的圆周角相等,得∠ACD =∠ABD ,∠ACB =∠ADB ,∠ABD =∠ADB =60°.根据三个角是60°的三角形是等边三角形得△ABD 是等边三角形.(2)作直径DE ,连结BE ,由于△ABD 是等边三角形,则∠BAD=60°,由同弧所对的圆周角相等,得∠BED =∠BAD =60°.根据直径所对的圆周角是直角得,∠EBD =90°,则∠EDB =30°,进而得到DE =2BE.设EB =x ,则ED =2x ,根据勾股定理列方程求解即可.【详解】解:(1)∵∠BCD=120°,CA 平分∠BCD ,∴∠ACD=∠ACB=60°,由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD 是等边三角形;(2)连接OB 、OD ,作OH ⊥BD 于H ,则DH=12BD=32, ∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt △ODH 中,OD=sin DH DOH,∴⊙O【点睛】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.27.(1)抽样调查(2)150°(3)180件(4)25 【解析】分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C 班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷90360=24件, C 班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C 班作品数量所对应的圆心角度数360°×1024=150°; 故答案为150°;(3)∵平均每个班244=6件, ∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为82= 205.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=mn,求出P(A)..。

2019山西省中考适应性考试数学试卷

2019山西省中考适应性考试数学试卷

2019年山西省中考适应性考试注意事项:1.本试卷共6页,满分120分,考试试卷120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.下列各数中是无理数的是.3A 1.3B 5.3C -.3D -2.如图所示,//,90,30,110a b BAC C ∠=∠=∠= ,则2∠=.40A.50B .30C.20D3.下列计算正确的是.532A -=()235.B a a -=()22.24C a a -=-325.326D a a a ⋅=4.在平面直角坐标系中,把AOB ∆以原点为旋转中心逆时针旋转90 ,得到A OB ''∆,若()2,3A ,则点A 的对应点A '的坐标为().3,2A ().3,2B -().2,3C -().2,3D --5.若3331n n n ++=,则n =.1A -.2B .0C .1D 6.下列命题是假命题的是.A 平行于同一条直线的两条直线平行.B 三个角是直角的四边形是矩形.C 内错角相等.D 如果三角形的三个内角的比是2:3:5,那么这个三角形是直角三角形7.某校创新小组8名学生的身高分别是1.72,1.73,1.68,1.64,1.72,1.73,1.8,1.81m m m m m m m m ,这组数据的众数是.1.72A m .1.73B m .1.72C m 和1.73m .1.74D m8.若直线1l 经过点()0,4,2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为().2,0A -().2,0B ().6,0C -().6,0D 9.如图,在矩形ABCD 中,点,,,E F G H 分别是边,,,AD AB BC CD 的中点,连接,,EF FG GH 和HE .若2AD AB =,则下列结论正确的是.A EF AB =3.2B EF AB =.3C EF AB =5.2D EF AB =10.如图,阴影部分是从一块直径为40cm 的圆形铁板中截出的一个工件示意图,其中ABC ∆是等边三角形,则阴影部分的面积为2.800A cm π2400.20033B cm π⎛⎫+ ⎪⎝⎭2400.10033C cm π⎛⎫+ ⎪⎝⎭2.200D cm π二、填空题(本大题共5个小题,每小题3分,共15分)11.已知关于x 的方程240x x m -+=有一根为3,则m 的值为__________.12.小明和小兵进行投靶游戏,如图所示,靶中两个同心圆的半径OA 与OB 的比为3:4,随机投一次,若投在阴影部分,小明获胜;投在环形部分,小兵获胜;小明获胜的概率记为()P 小明,小兵获胜的概率为()P 小兵,则()()______P P 小明小兵.(用“<”“>”“=”填空)13.某校校门口有一个底面为等腰三角形的三棱柱(如图).学校假话在三棱柱的侧面上,从顶点A 绕三棱柱侧面一周到顶点A '安装灯带,已知此三棱柱的高为5m ,底面边长为2m ,则灯带的长度至少为______m .14、已知反比例函数5y =,当2x <-时,y 的取值范围是_____________.15、如图,在Rt ABC ∆中,90,8,ACB BC CD ∠== 是斜边AB 上的中线,将ACD ∆沿直线CD 翻折至ECD ∆的位置,连接AE ,若//DE AC ,计算四边形ACED 的面积等于__________.三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16.(每小题5分,共10分)(1)解方程组:38,30;x y x y +=⎧⎨+=⎩(2)解不等式:211136x x --->.17.(本题7分)先化简,再求值:22134224x x x x x ⎛⎫-÷ ⎪--+⎝⎭,其中3x =-.18.(本题8分)2019年8月,山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备状态.太原学院足球场作为一个重要比赛场馆,占地面积约24300平方米,总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018面3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结果比原计划提前4天完成安装任务,求原计划每天安装多少个座位.19.(本题7分)一声汽笛长鸣,火车开进了蔡家崖.这是我省吕梁革命老区人民期盼已久的客运列车.蔡家崖列车的开通,带动老区驶入了发展红色旅游的快车道.某旅行社对去年“国庆”期间到吕梁观光的旅客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,回答下列问题:(1)求本次抽样调查的总人数;(2)补全条形统计图;(3)扇形统计图中“其他”部分扇形的圆心角度数为________;(4)去年“国庆”期间到吕梁观光的旅游者为275万人,则选择自驾方式出行的有多少万人.20.(本题8分)阅读下列材料,并完成相应任务古希腊数学家,天文学家欧多克索斯(Eudoxus,约前400-前347)曾提出:能否将一条线段分成不相等的两部分,使较短线段与较长线段的比等于较长线段与原线段的比,这个相等的比就是510.6180339887492-= ,黄金分割在我们生活中有广泛运用,黄金分割点也可以用折纸的方式得到.第一步:裁一张正方形的纸片ABCD,先折出BC的中点E,然后展平,再折出线段AE,再展平;第二步:将纸片沿EM折叠,使EB落到线段EA上,B的对应点为B',展平;第三步:沿AN折叠,使AB落在AE上,B'的对应点为B'',展平,这时B''就是AB的黄金分割点.任务:(1)试根据以上操作步骤证明B''就是AB的黄金分割点;(2)请写出一个生活中应用黄金分割的实际例子.21.(本题9分)某市在创建文明城市活动中,对道路进行美化.如图,道路两旁分别有两个高度相同的路灯AB和CD.两个路灯之间的距离BD长为24米,小明在点E(,,,B D E G在一条直线上)处测得路灯AB 顶部A点的仰角为45 ,然后沿BE方向前进8米到达点G处,测得路灯CD顶部的C点仰角为30 .已知小明的两个观测点,F H距地面的高度,EF GH均为1.6米,求路灯AB的高度.(精确到0.1米,参考数据:2 1.41,3 1.73≈≈)22.(本题13分)综合与实践:如图1,将一个等腰直角三角尺ABC 的顶点C 放置在直线l 上,90,ABC AB BC ∠==,过点A 作AD l ⊥于点D ,过点B 作BE l ⊥于点E .观察发现:(1)如图1,当,A B 两点均在直线l 的上方时,①猜测线段,AD CE 与BE 的数量关系,并说明理由;②直接写出线段,DC AD 与BE 的数量关系;操作证明:(2)将等腰直角三角尺ABC 绕着点C 逆时针旋转至图2位置时,线段,DC AD 与BE 又有怎样的数量关系,请写出你的猜想,并写出证明过程;拓广探索:(3)将等腰直角三角尺ABC 绕着点C 继续旋转至图3位置时,AD 与BC 交于点H ,若3,9CD AD ==,请直接写出DH 的长度.23.(本题13分)如图,在平面直角坐标系中,二次函数223y x x =--交x 轴于,A B 两点,(点A 在点B 的左侧)与y 轴交于点C ,连接AC .(1)求点A 、点B 和点C 的坐标;(2)若点D 为第四象限内抛物线上一动点,点D 的横坐标为m ,BCD ∆的面积为S .求S 关于m 的函数关系式,并求出S 的最大值;(3)抛物线的对称轴上是否存在点P ,使BCP ∆为等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.。

2019年山西中考考前适应性训练试题答案·数学

2019年山西中考考前适应性训练试题答案·数学

18. 解:设原计划每天安装x个座位,采用新技术后每天安装 ( 1+25%)x个座位, …… 2476-476 2476-476 由题意得: =4. …………………………………………… x ( 1+25%)x 解得:x=100. ………………………………………………………………………… 经检验:x=100是原方程的解. ……………………………………………………… 答:原计划每天安装100个座位. …………………………………………………… 19.( 1)1000÷40%=2500 ( 人). ………………………………………………………… 答:本次抽样调查的人数为2500人. ……………………………………………… 2) (
2分
∴CD-AD=2BE. …………………………………………………………………… 11分 3)DH的长度为 3 . ……………………………………………………………… 13分 ( 2 解析:如答图3,过点B作BF⊥AD,交DA于点F, 同理可证,△BAF≌△BCE,四边形DEBF为正方形. ∴CE=AF,ED=BE=DF. ∵CD=CE-ED, ∴CD=AF-BE=AD-DF-BE=AD-2BE. ∴AD-CD=2BE.
( 第 20 题答图)
4分 5分 6分 7分 1分
( 2)去分母得:2 ( 2x-1)( 1-x)>6, ………………………………………………… 6分 去括号得:4x-2-1+x>6, …………………………………………………………… 7分 移项得:4x+x>2+1+6, ……………………………………………………………… 8分 合并同类项:5x>9, ………………………………………………………………… 9分 系数化为1:x> 9 . ………………………………………………………………… 10分 5 17. 解:原式= 2x ( x+2) - 1 ·2 姨 ( x+2) · ( x-2) x-2 姨 3x ………………………………………… 2分

山西省晋城市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

山西省晋城市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

山西省晋城市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法判断2.下列图形中,是轴对称图形的是()A.B.C.D.3.已知a为整数,且3<a<5,则a等于()A.1 B.2 C.3 D.44.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.45.如图所示的几何体的俯视图是()A.B.C.D.6.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )A .5 cmB .6 cmC .8 cmD .10 cm7.关于x 的正比例函数,y=(m+1)23m x -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-128.﹣18的相反数是( ) A .8B .﹣8C .18D .﹣189.下列博物院的标识中不是轴对称图形的是( )A .B .C .D .10.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( ) A .14.4×103B .144×102C .1.44×104D .1.44×10﹣411.如图图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .12.﹣2的绝对值是( ) A .2B .12C .12-D .2-二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:a 2-2ab+b 2-1=______. 14.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.15.已知a、b 是方程x2﹣2x﹣1=0 的两个根,则a2﹣a+b 的值是_______.16.若关于x的分式方程2122x ax-=-的解为非负数,则a的取值范围是_____.17.分解因式8x2y﹣2y=_____.18.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.(1)求证:∠BDA=∠ECA.(2)若m=2,n=3,∠ABC=75°,求BD的长.(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)(4)试探究线段BF,AE,EF三者之间的数量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第 21 题图)
22.(本题 13 分)综合与实践: 如图 1,将一个等腰直角三角尺 ABC 的顶点 C 放置在直线 l 上,∠ABC=90°,AB=BC, 过点 A 作 AD⊥l 于点 D,过点 B 作 BE⊥l 于点 E. 观察发现: (1)如图 1,当 A,B 两点均在直线 l 的上方时, ①猜测线段 AD,CE 与 BE 的数量关系,并说明理由; ②直接写出线段 DC,AD 与 BE 的数量关系; 操作证明: (2)将等腰直角三角尺 ABC 绕着点 C 逆时针旋转至图 2 位置时,线段 DC,AD 与 BE 又有怎样的数量关系,请写出你的猜想,并写出证明过程; 拓广探索: (3)将等腰直角三角尺 ABC 绕着点 C 继续旋转至图 3 位置时,AD 与 BC 交于点 H, 若 CD=3,AD=9,请直接写出 DH 的长度.
第Ⅰ卷 选择题 (共 30 分)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有
一项符合题目要求,请选出并在答题卡上将该项涂黑)
1. 下列各数中是无理数的是
A. 3
B. 1
3
C.
-
5 3
D. -2姨 3
C
2. 如图所示,a∥b,∠BAC=90°,∠C=30°,∠1=10°,则∠2=
347)曾提出:能否将一条线段分成不相等的两部分,使较短线段与
较长线段的比等于较长线段与原线段的比, 这个相等的比就是
姨5 2
-1
=0.618
033
988
749…,
黄金分割在我们生活中有广泛运
用,黄金分割点也可以用折纸的方式得到.
第一步:裁一张正方形的纸片 ABCD,先折出 BC 的中点 E,然后展平,再折出线段
DE∥AC,计算四边形 ACED 的面积等于 ▲ .
(第 15 题图)
三、解答题(本大题共 8 个小题,共 75 分.解答题应写出文字说明、证明过程或演算步骤)
16.(每小题 5 分,共 10 分)
∥3x+y=8,
(1)解方程组: x+3y=0;
(2)解不等式:
2x-1 3
-
1-x 6
>1.
17.(本题 7 分)先化简,再求值:
400 3
π+200

3
cm2
%
△ △ C.
400 3
π+100

3
cm2
D. 200π cm2
数学 第 2 页 (共 6 页)
第Ⅱ卷 非选择题 (共 90 分)
二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分) 11. 已知关于 x 的方程 x2-4x+m=0 有一个根为 3,则 m 的值为 ▲ . 12. 小明和小兵进行投靶游戏,如图所示,靶中两个同心圆的半径 OA 与 OB 的比为 3∶4,
∴y=-1, ……………………………………………………………………………… 3分
把y=-1代入③得:x=3. ……………………………………………………………… 4分
姨x=3,
∴原方程组的解为
…………………………………………………………… 5分
y=-1.
(2)去分母得:2(2x-1)-(1-x)>6, ………………………………………………… 6分
AE,再展平;
第二步:将纸片沿 EM 折叠,使 EB 落到线段 EA 上,B 的对应点
为 B′,展平;
第三步:沿 AN 折叠,使 AB 落在 AE 上,B′的对应点为 B″,展平,
这时 B″就是 AB 的黄金分割点.
任务:(1)试根据以上操作步骤证明 B″就是 AB 的黄金分割点; (2)请写出一个生活中应用黄金分割的实际例子.
(第 22 题图 1)
(第 22 题图 2)
数学 第 5 页 (共 6 页)
(第 22 题图 3)
(第 23 题图 1)
(第 23 题图 2)
数学 第 6 页 (共 6 页)
山西省 2019 年中考考前适应性训练试题
数学参考答案及评分标准
一、选择题 1~5. DADBA 二、填空题
6~10. CCBDB
B
1
a
A. 40°
B. 50°
C. 30° 3. 下列计算正确的是
A. 姨 5 -姨 3 =姨 2
D. 20° B.(-a3)2=a5
2 A
b
(第 2 题图)
C.(-2a)2=-4a2
D. 3a·3 2a2=6a5
4. 在平面直角坐标系中, 把△AOB以原点为旋转中心逆时针旋转90°, 得到△A′OB′, 若A
A. EF=AB
B. EF= 姨 3 AB 2
C. EF=姨 3 AB
D. EF= 姨 5 AB 2
E
A
D
F
H
B
C
G
(第 9 题图)
(第 10 题图)
10. 如图,阴影部分是从一块直径为40 cm的圆形铁板中截出的一个工件示意图,其中
△ABC是等边三角形,则阴影部分的面积为
A. 800π cm2
△ △ B.
11. 3
12. >
13. 姨61
14.
-
5 2
<y<0
15.
32姨 3 3
三、解答题
姨3x+y=8, ①
16. 解:(1) x+3y=0; ②
由②得:x=-3y, ③………………………………………………………………… 1分
把③代入①得:3(-3y)+y=8, ……………………………………………………… 2分
(2,3),则点A的对应点A′的坐标为
A.(3,-2)
B.(-3,2)
C.(-2,3)
D.(-2,-3)
5. 若3n+3n+3n=1,则n=
A. -1
B. 2
C. 0
D. 1
数学 第 1 页 (共 6 页)
6. 下列命题是假命题的是
A. 平行于同一直线的两条直线平行
B. 三个角是直角的四边形是矩形
C. 内错角相等
姨 姨 17.
解:原式=
2x (x+2)·(x-2)
-
1 x-2
·2(x3+x2)
…………………………………………
2分
=(x+22x)-(x-x-22)·2(x3+x2) …………………………………………………… 3分
=(x+2x)( -2x-2)·2(x3+x2) ………………………………………………… 4分
姓名
准考证号
山西省 2019 年中考考前适应性训练试题
数学
沿 此 线 折 叠
扫描二维码 关注考试信息
注意事项: 1. 本试卷共 6 页,满分 120 分,考试时间 120 分钟. 2. 答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置. 3. 答案全部在答题卡上完成,答在本试卷上无效. 4. 考试结束后,将本试卷和答题卡一并交回.
数学 第 4 页 (共 6 页)
21.(本题 9 分)某市在创建文明城市活动中,对道路进行美化.如图,道路两旁分别有两个 高度相同的路灯 AB 和 CD, 两个路灯之间的距离 BD 长为 24 米, 小明在点 E(B,E, D,G 在一条直线上) 处测得路灯 AB 顶部 A 点的仰角为 45°, 然后沿 BE 方向前进 8 米到达点 G 处,测得路灯 CD 顶部的 C 点仰角为 30°.已知小明的两个观测点 F,H 距 离地面的高度 EF、GH 均为 1.6 米,求路灯 AB 的高度( . 精确到 0.1 米,参考数据:姨 2 ≈1.41,姨 3 ≈1.73)
从顶点 A 绕三棱柱侧面一周到顶点 A′安装灯带,已知此三棱柱的高为 5 m,底面边
长为 2 m,则灯带的长度至少为 ▲ m.
14. 已知反比例函数 y= 5 ,当 x<-2 时,y 的取值范围是 ▲ . x
15. 如图,在 Rt△ABC 中,∠ACB=90°,BC=8,CD 是斜边 AB 上的
中线,将△ACD 沿直线 CD 翻折至△ECD 的位置,连接 AE.若
23.(本题 13 分)如图,在平面直角坐标系中,二次函数 y=x2-2x-3 交 x 轴于 A、B 两点, (点 A 在点 B 的左侧)与 y 轴交于点 C,连接 AC. (1)求点 A、点 B 和点 C 的坐标; (2)若点 D 为第四象限内抛物线上一动点,点 D 的横坐标为 m,△BCD 的面积为 S.求 S 关于 m 的函数关系式,并求出 S 的最大值; (3)抛物线的对称轴上是否存在点 P,使△BCP 为等腰三角形? 若存在,请直接写出所 有点 P 的坐标;若不存在,请说明理由.
由题意得:
2476-476 x
-(214+7265-%47)6x
=4.
…………………………………………… 4分
解得:x=100. ………………………………………………………………………… 6分
经检验:x=100是原方程的解. ……………………………………………………… 7分
答:原计划每天安装100个座位. …………………………………………………… 8分
去括号得:4x-2-1+x>6, …………………………………………………………… 7分
移项得:4x+x>2+1+6, ……………………………………………………………… 8分
合并同类项:5x>9, ………………………………………………………………… 9分
系数化为1:x>
9 5

………………………………………………………………… 10分
D. 1.74 m
相关文档
最新文档