四年级数学思维拓展:乘法原理
四年级下册数学讲义奥数导引 21 加法原理与乘法原理

一、 基本原理1、加法原理:如果完成一件事有k 类方式,每类分别有1n 、2n 、…、k n 种不同方法,那么这件事共有12k N n n n =+++种完成方法.2、乘法原理:如果完成一件事要分为k 个步骤,每个步骤分别有1n 、2n 、…、k n 种不同方法,那么这件事共有12k N n n n =⨯⨯⨯种完成方法.二、 判断方法分类用加法,分步用乘法是基本原则,但难点是如何判定问题属于分类还是分步. 类与类之间满足:只选一类即可完成整件事,且不能同时选多类;步与步之间满足:每步只是整件事的一个步骤,只选一步无法完成整件事,必须全部完成,且步与步之间通常有先后顺序.若光做A 之后整件事情就已经全部完成了,那么A 就是一类做法,应用加法原理;若做完A 后整件事情并没有完成,那么A 就只是整件事的其中一步,应用乘法原理.三、 其它说明(1)枚举法和加乘原理是整个计数模块的最基础内容,重要性极强,所有后续讲次的内容全是由它们推导出来的,务必记住相应方法结论并理解其原理.(2)点标数法本质上是加乘原理和倒推法的结合,标数前需把上一步的位置考虑周全. (3)只用加法原理或乘法原理就能解答的通常是中低档题,在用乘法原理前务必检验是否满足“前不影响后”,即前面步骤可以影响下一步的具体方法,但不能影响下一步的方法数.(4)难题通常是加乘混合型,即“类里套步”或“步里套类”,特别是需分很多类的题目.当乘法原理无法解决问题时,一定要分类,切忌“强行使用”乘法原理.当类别过多时,可考虑使用排除法,从反面考虑问题.第9讲 加法原理与乘法原理知识点【例1】爸爸、妈妈带小高去吃西餐.餐厅里有米饭和面条2种主食,烤牛排、烤羊排和烤鸡排3种主菜,奶油蘑菇汤1种汤,以及蛋糕和布丁2种甜点.如果小高想要点1种主食和1种主菜,汤和甜点可点可不点,而且种类不限.请问:小高一共有多少种点菜方法?【例2】如图所示,在一个34的方格表内放入4枚相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?如果放入4枚互不相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?【例3】如下图所示,将图中的八个部分用红、黄、绿、蓝这4种不同的颜色染色,而且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.请问:这幅图共有多少种不同的染色方法?超越篇题目A B C DEFGH【例4】 用4种不同的颜色给下图中的圆圈染色,有线段相连的两个圆圈不能同色,一共有多少种不同的染色方法?【例5】 一只甲虫沿着下图中的方格线从A 爬到B ,每次只能向右爬一格或向上爬一格.图中画着黑点的地方不能通过.请问:这只甲虫可以选择多少条不同的路线?【例6】 王老师家装修新房,需要2个木匠和2个电工.现有木匠3人、电工3人,另有1人既能做木匠也能做电工.要从这7人中挑选出4人完成这项工作,共有多少种不同的选法?ABDCB【例7】 如下图所示,一只小甲虫要从A 点出发沿着线段爬到B 点,不能重复经过任何点.试问:这只甲虫有多少种不同的走法?【例8】 如图所示,国际象棋中的棋子“皇后”从左下角走到右上角,每步只能向右、向上或者向右上移动任意多格,一共有多少种不同的走法?【习题1】元旦前,小芳给她的五位同学做贺卡,将贺卡装入信封时她装错了,五位同学都没收到小芳给自己做的贺卡,收到的是小芳给别人的贺卡.则一共有几种可能出现的情?补充题目【习题2】如图,有一个48的棋盘,现将一枚棋子放在棋盘左下角格子A处,要求每一步只能向棋盘右上或右下走一步(如从C走一步可走到D或E),那么将棋子从A走到棋盘右上角B处共有多少种不同的走法?【习题3】用4种颜色给右图中的9个小圆圈染色,要求有线段相连的两个圆圈的颜色不能相同.那么一共有几种不同的染法?【习题4】甲、乙两人玩抓石子游戏,共有12个石子,甲先乙后轮流抓取.每次可以抓取其中的2个、3个或4个,直到最后抓取完毕为止,那么共有多少种抓取石子的方案?。
小学思维数学讲义:简单乘法原理-带答案解析

简单乘法原理1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.教学目标知识要点【例 1】 邮递员投递邮件由A 村去B 村的道路有3条,由B 村去C 村的道路有2条,那么邮递员从A 村经B 村去C 村,共有多少种不同的走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 把可能出现的情况全部考虑进去.第一步 第二步A 村村C 村中A 村村 C 村北南C 村村A 村由分析知邮递员由A 村去B 村是第一步,再由B 村去C 村为第二步,完成第一步有3种方法,而每种方法的第二步又有2种方法.根据乘法原理,从A 村经B 村去C 村,共有3×2=6种方法.【答案】6【巩固】 如下图所示,从A 地去B 地有5种走法,从B 地去C 地有3种走法,那么李明从A 地经B 地去C地有多少种不同的走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 从A 地经B 地去C 地分为两步,由A 地去B 地是第一步,再由B 地去C 地为第二步,完成第一步有5种方法,而每种方法的第二步又有3种方法.根据乘法原理,从A 地经B 地去C 地,共有5×3=15种方法.【答案】15【例 2】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 从家到中间结点一共有2种走法,从中间结点到学校一共有3种走法,根据乘法原理,一共有3×2=6种走法.【答案】6【巩固】 在下图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?例题精讲CBA【考点】简单乘法原理【难度】1星【题型】解答【解析】甲虫要从A点沿着线段爬到B点,需要经过两步,第一步是从A点到C点,一共有3种走法;第二步是从C点到B点,一共也有3种走法,根据乘法原理一共有3×3=9种走法.【答案】9【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,有1种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有3×1×3=9种走法.【答案】9【巩固】在右图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?BDCA【考点】简单乘法原理【难度】2星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,第一步,A点到C点的走法是3种;第二步,从C点到D点,有1种走法;但第三步,从D点到B点的走法并不是3种,由D出去有2条路选择,到下一岔路口又有2条路选择,所总共有2×2=4(种)走法,根据乘法原理,这只蚂蚁最多有31412⨯⨯=(种)不同走法.【答案】12【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,一共也有3种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有33327⨯⨯=种走法.【答案】27【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?BCA【考点】简单乘法原理【难度】3星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,A点到C点的走法不是3种,而是4种,C点到B点的走法也是4种,根据乘法原理,这只甲虫最多有4416⨯=种走法.【答案】16【例3】如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成种不同的信号。
四年级数学思维训练(乘法原理

四年级数学思维训练(乘法原理)学校____________姓名______________成绩___________例1、从甲地到乙地有2条路可以走,从乙地到丙地有3条路可以走,试问从甲地经乙地到丙地共有()种不同的走法。
例2、“IMO”是国际数学奥林匹克的缩写,把这3个字母写成三种不同的颜色。
现在共有5种不同颜色的笔。
问能写出()种不同颜色搭配的“IMO”。
例3、在自然数中,用两位数做被减数,用一位数做减数。
共可以组成()个不同的减法算式。
例4、如右图,在三条平行线上分别有一个 A点,四个点,三个点(且不在同一条直线上的三个点不共线)。
在每条直线上 B C D E各取一个点,可以画出一个三角形。
问:一共可以画出()个这样的三角形。
F G H例5、书架上有6本不同的数学书,4本不同的语文书。
(1)从中任取一本书,有()种不同的取法。
(2)数学、语文各取一本,有()种不同的取法。
练习1、班级推选区“三好生”,男生中有5个候选人,女生有4个候选人,现要从男、女生中分别选出一人,共有()种选法。
2、王芳有4件上衣、3条裤子,她能用()种不同的穿戴装束。
3、用3、2、5、0四个数字能组成()个没有重复数字的四位数。
4、在第一口袋中有5个小球,在第二个口袋中有4个小球,第三个口袋中有6个小球。
这些小球的颜色各不相同。
要从每个口袋中各取一个球,有()种不同的取法。
5、某校六年级学生毕业时,40名同学互相赠送各自的照片一张留作纪念,请你统计一下全班共要赠送()张照片。
思考:如右图中共有16个方格,要把A、B、CD四个不同的棋子放在方格里,并使每行每列只能出现一个棋子,问共有()种不同的放法。
2、某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复。
那么,这个城市最多可容纳()部电话机。
3、地图上A、B、C、D四个国家如下图,现有红、蓝、黄、绿四种颜料给地图染色,使相邻国家的颜色不同,问有多少种不同染色方法?4、一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上。
乘法的原理

乘法的原理
乘法的原理是一种数学运算方法,用于计算两个或多个数字相乘的结果。
乘法操作可以表示为"a乘以b"或"a×b",其中a和b是要相乘的数字。
在乘法中,有几个基本的原理需要注意:
1. 任何数乘以1都等于它本身。
例如:3乘以1等于3。
2. 任何数乘以0都等于0。
例如:5乘以0等于0。
3. 乘法满足交换律,即a乘以b等于b乘以a。
例如:2乘以3等于3乘以2。
4. 乘法满足结合律,即(a乘以b)乘以c等于a乘以(b乘以c)。
例如:(2乘以3)乘以4等于2乘以(3乘以4)。
以上的原理是乘法运算中最常用和基本的规则。
通过灵活运用这些原理,可以更有效地进行乘法计算。
四年级奥数详解答案乘法原理

四年级奥数详解答案第九讲乘法原理一、知识概要如果要完成一件任务需要分成几个步骤进行做,第一步有m1种方法,做第二步有m2种方法……,做第n步有m n种方法,即么,按这样的步骤完成这件任务共有N= m1×m2×…×m n种不同的方法。
这就是乘法原理。
乘法原理和加法原理的区别是:加法原理是指完成一件工作的方法有几类,之间不相关系,每类都能独立完成一件工作任务;而乘法原理是指完成一件工作的方法是一类中的几个不同步骤,互相关联,缺一不可,共同才能完成一件工作任务。
二、典型例题精讲1. 从甲地到乙地有两条路可走,从乙地到丙地有三条路可走,试问:从甲地经乙地到丙地共有多少种不同的走法?分析:如图,很明显,这是个乘法原理的题目。
要完成“从甲到丙的行走任务”必须分两步完成。
第一步:甲分别通过乙的三条路线到达丙,故有3种走法。
第二步:甲从第二条路线出发又分别通过乙的三条路线到达丙,故又有3种走法。
这两种走法相类似,共同完成“从甲到丙”的任务。
解:3×2=6(种) 答:共有6种不同的走法。
2. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行、每列只能出现一个棋子,共有多少种不同的放法?分析:(如图二)摆放四个棋子分四步来完成。
第一步放棋子A,A可任意摆放,有16种摆放;第二步摆B,由于A所在的位置那一行,那一列都不能放,故只有9种放法;第三步摆C子,也由A、B所在的那一行,那一到都不能,只有四格可任意放,故有4种放法;第四步,只剩一格放D子,当然只有一种放法。
解:16×9×4×1=576(种) 答:共有576种不同的放法。
3. 有五张卡片,分别写有数字1,2,4,5,8。
现从中取出3张片排在一起,组成一个三位数,如□1□5□2,可以组成个不同的偶数。
分析:分三步取出卡片:1.个位,个位只能放2、4、8;故有3种放法;2.百位,因个位用去1张,所以百位上还有四张可选,故有4种放法;3.十位,因个位和百位共放了两张,所以还有3张可选放,有3种放法。
四年级数学思维训练导引(奥数)第15讲 加法原理与乘法原理

第十五讲加法原理与乘法原理1.阿奇去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个.他准备找一家餐厅吃饭,一共有多少种不同的选择?2.阿奇进入一家中餐厅后,发现主食有3种,热菜有20种.他打算主食和热菜各买1种,一共有多少种不同的买法?3.老师要求冬冬在黑板上写出一个减法算式,而且被减数必须是两位数,减数必须是一位数,冬冬共有多少种不同的写法?4.传说地球上有7颗不同的龙珠,如果找齐这7颗龙珠,并且按照特定顺序排成一行就会有神龙出现.邪恶的沙鲁找到了这7颗龙珠,但是他不知道排列的特定顺序.请问:运气不好的沙鲁最坏要试几次才能遇见神龙?5.用红、黄、蓝三种颜色给图15-1的三个圆圈染色,一个圆圈只能染一种颜色,并且相连的两个圆圈不能同色,一共有多少种不同的染色方法?6.在图15-2中,从“北”字开始,每次向下移动到一个相邻的字可以读出“北京奥运会”,那么一共有多少种不同的读法?7.运动会中有四个跑步比赛项目,分别为50米、100米、200米、400米,规定每个参赛者只能参加其中的一项.甲、乙、丙、丁四名同学报名参加这四个项目,请问:(1)如果每名同学都可以任意报这四个项目,一共有多少种报名方法?(2)如果这四名同学所报的项目各不相同,一共有多少种报名方法?8.冬冬的书包里有5本不同的语文书、6本不同的数学书、3本不同的英语书,请问:(1)如果从中任取1本书,共有多少种不同的取法?(2)如果从中取出语文书、数学书、英语书各l本,共有多少种不同的取法?9.如图15-3,甲、乙两地之间有4条路,乙、丙两地之间有2条路,甲、丙两地之间有3条路,那么从甲地去丙地一共有多少条不同的路线?10.图15-4中有一个从A到曰的公路网络,一辆汽车从A行驶到曰,可以选择的最短路线一共有多少条?1.阿奇一家人外出旅游,可以乘火车,也可以乘汽车,还可以坐飞机,经过网上查询,出发的那一天中火车有4班,汽车有3班,飞机有2班,他们乘坐这些交通工具,一共可以有多少种不同的选择?2.“IMO”是“国际数学奥林匹克”的缩写,要求把这三个字母涂上三种不同的颜色,且每个字母只能涂一种颜色.现有五种不同颜色的笔,按上述要求能有多少种不同颜色搭配的“IMO”?3.书架上有三层书,第一层放了15本小说,第二层放了10本漫画,第三层放了5本科普书,并且这些书各不相同,请问:(1)如果从所有的书中任取1本,共有多少种不同的取法?(2)如果从每一层中各取1本,共有多少种不同的取法?(3)如果从中取出2本不同类别的书,共有多少种不同的取法?4.如图15-5,从甲地到乙地有3条路,从乙地到丙地有3条路,从甲地到丁地有2条路,从丁地到丙地有4条路.如果要求所走路线不能重复,那么从甲地到丙地共有多少条不同的路线?5.如图15-6,四张卡片上写有数字2、4、7、8.从中任取三张卡片,排成一行,就可以组成一个三位数.请问:一共可以组成多少个不同的三位数?其中有多少个不同的三位奇数?6.奥运场馆实行垃圾分类处理.每个地方放置五个垃圾桶,从左向右依次标明:电池、塑料、废纸、易拉罐、不可再造,如图15-7.现在准备把五个垃圾桶染成红、绿、蓝这3种颜色之一,要求相邻两个垃圾筒颜色不同,且回收废纸的垃圾桶不能染成红色,一共有多少种染色方法?7.如图15-8,把A、曰、C、D、E这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色,请问:这幅图共有多少种不同的染色方法?8.如图15-9,用红、蓝两种颜色来给图中的小圆圈染色,每个小圆圈只能染一种颜色.请问:(1)如果每个小圆圈可以随意染色,一共有多少种不同的染法?(2)如果要求关于中间那条竖线左右对称,一共有多少种不同的染法?9.甲、乙、丙、丁、戊五人要驾驶A、B、C、D、E这五辆不同型号的汽车.会驾驶汽车A的只有甲和乙,汽车E必须由甲、乙、丙三人中的某一人驾驶,则一共有多少种不同的安排方案?10.如图15-10,4枚相同的棋子放入4x4的方格内,每个方格只能放1枚,且要求每行每列最多只能放1枚,一共有多少种不同的放法?11.图15-11是一个阶梯形方格表,在方格中放入5枚相同的棋子,使得每行、每列中都只有1枚棋子,这样的放法共有多少种?12.如图15-12和图15-13,蚂蚁在线段上爬行,只能按照箭头的方向行走,请问:(1)按图15-12所示,从A点走到B点的不同路线有多少条?(2)按图15-13所示,从A点走到B点的不同路线有多少条?1.爸爸、妈妈带阿奇去吃西餐,餐厅里有米饭和面条2种主食,烤牛排、烤羊排和烤鸡排3种主菜,奶油蘑菇汤1种汤,以及蛋糕和布丁2种甜点,如果阿奇想要点1种主食和1种主菜,汤和甜点可点可不点,而且种类不限.请问:阿奇一共有多少种点菜方法?2.如图15-14,在一个3x4的方格表内放人4枚相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?如果放人4枚互不相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?3.如图15-15,将图中的八个部分用红、黄、绿、蓝这4种不同的颜色染色,而且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.请问:这幅图共有多少种不同的染色方法?4.用4种不同的颜色给图15-16中的圆圈染色,有线段相连的两个圆圈不能同色,一共有多少种不同的染色方法?5.一只甲虫沿着图15-17中的方格线从A爬到B,每次只能向右爬一格或向上爬一格.图中画着黑点的地方不能通过.请问:这只甲虫可以选择多少条不同的路线?6.王老师家装修新房,需要2个木匠和2个电工.现有木匠3人、电工3人,另有1人既能做木匠也能做电工,要从这7人中挑选出4人完成这项工作,共有多少种不同的选法?7.如图15-18所示,一只小甲虫要从A点出发沿着线段爬到B点,不能重复经过任何点,试问:这只甲虫有多少种不同的走法?8.如图15-19所示,国际象棋中的棋子“皇后”从左下角走到右上角,每步只能向右、向上或者向右上移动任意多格,一共有多少种不同的走法?。
小学四年级奥数-乘法原理共24页

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
小学四年级奥数-乘法原理
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
乘法原理和加法原理

乘法原理和加法原理首先,我们来介绍乘法原理。
乘法原理是指如果一个事件发生的方式有m种,另一个事件发生的方式有n种,那么这两个事件同时发生的方式有mn种。
乘法原理常常用于计算多个事件同时发生的总数。
例如,如果有一条裤子有3种颜色,一件衬衫有2种颜色,那么一套搭配的上衣和裤子的方式有32=6种。
在实际生活中,乘法原理也常常用于计算排列组合、密码锁密码的可能性等。
接下来,我们来介绍加法原理。
加法原理是指如果一个事件发生的方式有m种,另一个事件发生的方式有n种,且这两个事件没有共同的发生方式,那么这两个事件发生的总方式有m+n种。
加法原理常常用于计算多个事件中至少有一个发生的总数。
例如,某人去购物可以选择去商场或者超市,那么他购物的方式有2种。
在实际生活中,加法原理也常常用于计算不同情况下的总数,比如考试中选择题的得分可能性等。
乘法原理和加法原理在解决实际问题时常常需要结合使用。
比如,某人有3种颜色的上衣和2种颜色的裤子可以搭配,他又有4种颜色的鞋子可以选择,那么他搭配上衣、裤子和鞋子的方式有324=24种。
这个例子中就是使用了乘法原理。
又比如,某人去购物可以选择去商场或者超市,他又可以选择购买衣服或者食品,那么他购物的方式有2+2=4种。
这个例子中就是使用了加法原理。
总结来说,乘法原理和加法原理是数学中的两个基本计数原理,在实际生活和工作中也有着广泛的应用。
通过学习和掌握乘法原理和加法原理,我们可以更好地解决实际问题,提高计算能力和逻辑思维能力。
希望大家通过本文的介绍,对乘法原理和加法原理有更深入的了解,并能够灵活运用于实际生活和工作中。
小学四年级数学思维专题训练—乘法原理(含答案解析)

小学四年级数学思维专题训练—乘法原理1、奥运吉祥物中的5个福娃取“北京欢迎您”的谐音:贝贝,晶晶,欢欢,迎迎,妮妮,如果在盒子中从左向右放5个不同的福娃,那么,有中不同的方法。
2、豆豆用数字卡片做游戏,剩下许多写有4、7和8的卡片,而其余数字卡片都用完了,他用这些剩下的卡片可以组成不同的三位数。
3康康到麦当娜买套餐,一份套餐包含了一个汉堡,一份小吃喝一杯饮料,服务员告诉他店里有8种汉堡,4中小吃,5中饮料可供选择,那么康康一共可以搭配出种套餐。
4、用4种颜色的水彩笔给MATH四和字母涂颜色,要求不同字母用不同的笔去涂,共有种不停的颜色搭配方式。
5、有红黄蓝三种颜色的上衣和裤子,同学们任意选择一种颜色的上衣和裤子穿,问:①上衣和裤子的搭配方式有种。
②至少要名学生,才能保证有两人穿的上衣和裤子的颜色相同。
6、在下图中的每个方格中各放1枚围棋子(黑字或白子),有种方法。
7、一副扑克牌有4中花色的牌,共52张,每种花色都写有数字为1,2,3,…,13的牌,如果在5张牌中,同一种数字的4种花色的牌都出现,便称这5张牌为天王,不同的天王共有种。
8、从1,2,3,4,5中选出四个数填入下图的方格中,使得右边的数比左边的大,下面的数比上面的大,那么共有中方法。
9、在一个国家竞赛联盟中有16支曲棍球队,他们被分成两组,每组8队,在一个赛季中,每支球队要同本组中的其他每支球队打一场球,然后同另一组的所有队各打一场球,试问在这个赛季中共有进行多少场比赛?10、右图是一个轴对称图形,若将图中某些黑色的图形去掉后,得到一些新的图形,则其中轴对称图形共有个。
A9B8C7D611、如下图所示,把ABCDE这五部分用四种不同颜色着色,且相邻的部分不能使用同一种颜色,不想相邻的部分可以使用同一种颜色,那么,这幅图一共有种不同的着色方法。
12、下图是一个区域地图,可以用红白黄蓝绿五种颜色给地图着色,要求相邻的区域必须着不同的颜色,那么不同的着色方法有种。
四年级思维拓展-加法原理与乘法原理 (1)

加法原理和乘法原理☜知识要点1.加法原理做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有:N= m1+ m2+…+ m n种不同的方法,这就是加法原理。
2.乘法原理做一件事,完成它需要分成m个步骤,做第一步有a1种不同的方法,做第二步有a2种不同的方法,…,做第n步有a n种不同的方法,那么完成这件事共有:M= a1×a2×…× a n种不同的方法,这就是乘法原理。
3.运用加法原理和乘法原理解题常用的方法:枚举法、分类法、配对法、图表法。
☜精选例题【例1】下图是某街区人行路示意图,从A到D有多少种走法?DA☝思路点拨:从A到D的走法有两类:第一类从A经C到D有3走法,分别经过P,M,N;第二类从A经B到D,有2种走法,分别经过E,F。
两类走法种每种走法都能独立完成从A到D。
☝标准答案:3+2=5(种)答:从A到D有5种走法。
✌活学巧用1.从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种方法?2. 一个盒子里装有5个小球,另一个盒子里装有9个小球,所有这些小球颜色各不相同。
若从两个盒子里任取一球,有多少种不同的取法?3.上海去江苏某地,每天有5班火车、3班汽车。
试问:乘坐这些交通工具有多少种不同的走法?4.学校羽毛球队有12名男队员,10名女队员。
现要推选一名运动员去台上领奖,有多少种选法?【例2】学校四年级有3个班,各班分别有男生18人、20人、16人。
从中任选一人当升旗手,有多少种选法?☝思路点拨:解决这个问题有3类办法,分别从(1)班、(2)班、(3)班男生中选1人。
从四(1)班18名男生中任意选一人有18种选法;同理从四(2)班20名男生中任意选一人有20种选法;从四(3)班16名男生中任意选一人有16种选法;所以根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:☝标准答案:18+20+16=54(种)答:共有54种选法。
四年级数学专题讲义第十三讲 加乘原理

第十四讲 乘法原理与加法原理乘法原理:一般的,如果完成一件事情需要几个步骤,其中,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,做第三步有3m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:N=1m ×2m ×3m ×……×n m 种不同的方法,这就是乘法原理。
乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关。
”加法原理:一般的,如果完成一件事情有几类方法,其中,第一类有1m 种不同的方法,第二类有2m 种不同的方法,第三类有3m 种不同的方法,……,第n 类有n m 种不同的方法,那么完成这件事共有:N=1m +2m +3m +…+n m 种不同的方法。
这就是加法原理。
加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”。
事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理. 〖经典例题〗例1、一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一小球,有多少种不同的取法?分析:①中,从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法.所以是加法原理的问题.共有3+8=11种不同的取法.②中,要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题.共有3×8=24种不同的取法.例2、①有5个人排成一排照相,有多少种排法?②5个人排成两排照相,前排2人,后排3人,共有多少种排法?③5个人排成一排照相,如果某人必须站在中间,有多少种排法?④5个人排成一排照相,某人必须站在两头,共有多少种排法分析:①5个人排成一排照相,从左到右共5个位置。
四年级奥数:乘法原理

四年级奥数:乘法原理让我们先看下面几个问题.例1马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋.问:小丑的帽子和鞋共有几种不同搭配?分析与解:由下图可以看出,帽子和鞋共有6种搭配.事实上,小丑戴帽穿鞋是分两步进行的.第一步戴帽子,有3种方法;第二步穿鞋,有2种方法.对第一步的每种方法,第二步都有两种方法,所以不同的搭配共有3×2=6(种).例2从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路.问:从甲地经乙、丙两地到丁地,共有多少种不同的走法?分析与解:用A1,A2表示从甲地到乙地的2条路,用B1,B2,B3表示从乙地到丙地的3条路,用C1,C2表示从丙地到丁地的2条路(见下页图).共有下面12种走法:A1B1C1 A1B2C1 A1B3C1A1B1C2 A1B2C A1B3C2A2B1C1 A2B2C1 A2B3C1A2B1C2 A2B2C2 A2B3C2事实上,从甲到丁是分三步走的.第一步甲到乙有2种方法,第二步乙到丙有3种方法,第3步丙到丁有2种方法.对于第一步的每种方法,第二步都有3种方法,所以从甲到丙有2×3=6(种)方法;对从甲到丙的每种方法,第三步都有2种方法,所以不同的走法共有2×3×2=12(种).以上两例用到的数学思想就是数学上的乘法原理.乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,做第2步有m2种方法……做第n步有m n种方法,那么按照这样的步骤完成这件任务共有N=m1×m2×…×mn种不同的方法.从乘法原理可以看出:将完成一件任务分成几步做,是解决问题的关键,而这几步是完成这件任务缺一不可的.例3用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?分析与解:组成一个三位数要分三步进行:第一步确定百位上的数字,除0以外有5种选法;第二步确定十位上的数字,因为数字可以重复,有6种选法;第三步确定个位上的数字,也有6种选法.根据乘法原理,可以组成三位数5×6×6=180(个).例4如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?分析与解:将染色这一过程分为依次给A,B,C,D,E染色五步.先给A染色,因为有5种颜色,故有5种不同的染色方法;第2步给B染色,因不能与A同色,还剩下4种颜色可选择,故有4种不同的染色方法;第3步给C 染色,因为不能与A,B同色,故有3种不同的染色方法;第4步给D染色,因为不能与A,C同色,故有3种不同的染色方法;第5步给E染色,由于不能与A,C,D同色,故只有2种不同的染色方法.根据乘法原理,共有不同的染色方法5×4×3×3×2=360(种).例5求360共有多少个不同的约数.分析与解:先将360分解质因数,360=2×2×2×3×3×5,所以360的约数的质因数必然在2,3,5之中.为了确定360的所有不同的约数,我们分三步进行:第1步确定约数中含有2的个数,可能是0,1,2,3个,即有4种可能;第2步确定约数中含有3的个数,可能是0,1,2个,即有3种可能;第3步确定约数中含有5的个数,可能没有,也可能有1个,即有2种可能.根据乘法原理,360的不同约数共有4×3×2=24(个).由例5得到:如果一个自然数N分解质因数后的形式为其中P1,P2,…,Pl都是质数,n1,n2…,nl都是自然数,则N的所有约数的个数为:(n1+1)×(n2+1)×…×(nl+1).利用上面的公式,可以很容易地算出某个自然数的所有约数的个数.例如,11088=24×32×7×11,11088共有不同的约数(4+1)×(2+1)×(1+1)×(1+1)=60(个).例6有10块糖,每天至少吃一块,吃完为止.问:共有多少种不同的吃法?分析与解:将10块糖排成一排,糖与糖之间共有9个空.从头开始,如果相邻两块糖是分在两天吃的,那么就在其间画一条线.下图表示10块糖分在五天吃:第一天吃2块,第二天吃3块,第三天吃1块,第四天吃2块,第五天吃2块.因为每个空都有加线与不加线两种可能,根据乘法原理,不同的加线方法共有29=512(种).因为每一种加线方法对应一种吃糖的方法,所以不同的吃法共有512种.练习191.有五顶不同的帽子,两件不同的上衣,三条不同的裤子.从中取出一顶帽子、一件上衣、一条裤子配成一套装束.问:有多少种不同的装束?2.四角号码字典,用4个数码表示一个汉字.小王自编一个“密码本”,用3个数码(可取重复数字)表示一个汉字,例如,用“011”代表汉字“车”.问:小王的“密码本”上最多能表示多少个不同的汉字?3.“IMO”是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色.现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的“IMO”?4.在右图的方格纸中放两枚棋子,要求两枚棋子不在同一行也不在同一列.问:共有多少种不同的放法?5.要从四年级六个班中评选出学习和体育先进集体各一个(不能同时评一个班),共有多少种不同的评选结果?6.甲组有6人,乙组有8人,丙组有9人.从三个组中各选一人参加会议,共有多少种不同选法?7.用四种颜色给右图的五块区域染色,要求每块区域染一种颜色,相邻的区域染不同的颜色.问:共有多少种不同的染色方法?答案练习191.30种.2.1000个.3.60种.4.400种.提示:第一枚棋子有25种放法,去掉这枚棋子所在的行和列,还有16个空格,所以第二枚棋子有16种放法.5.30种.6.432种.7.48种.8.24种.提示:504=23×32×7.。
四年级下册数学思维训练讲义-第九讲 简单乘法原理

第九讲简单乘法原理第一部分:趣味数学一共有多少条路线老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了。
这个时候我们的乘法原理就派上上用场了。
乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条。
乘法原理解题三部曲1.完成一件事分N个必要步骤;2.每步找种数(每步的情况都不能单独完成该件事);3.步步相乘乘法原理的考题类型1.路线种类问题——比如说老师举的这个例子就是个路线种类问题;2.字的染色问题——比如说要3个字,然后有5种颜色可以给每个字,然后问3个字有多少种染色方法;3.地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4.排队问题——比如说6个同学,排成一个队伍,有多少种排法;5.数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法。
【思维拓展】四年级数学思维拓展之乘法原理

四年级数学思维拓展之乘法原理1
1、某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?
2、书架有6本不同的外语书,4本不同的语文书,从中任取外语、语文各一本,有多少种不同的取法?
3、王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?
4、由数字0,1,2,3组成三位数,问可组成多少个不相等的三位数?可组成多少个没有重复数字的三位数?
5、由数字1,2,3,4,5,6共可组成多少个没有重复的四位奇数?
6、现有一角人民币4张,贰角人民币2张,壹圆人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?
参考答案1.3×5=15种
2.6×4=24种
3.4×4×4=64种
4. 48,18
5. 180个
6. 35种。
小学四年级奥数教程乘法原理

在现代数学中,乘法原理不仅是基础数学知识之一,还被广泛应用于数论、代数、组合数学等学科中,为解决实际问题提供了重要的理论支持。
乘法原理的历史与发展
02
乘法原理基3
整数乘法是把一个数与另一个数合并的运算。
整数乘法定义
按照从左到右的顺序进行乘法运算,也可以使用括号改变运算顺序。
乘法结合律
乘法的交换律和结合律
乘法分配律的定义
一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把所得的积相加。用字母表示为:a × (b + c) = a × b + a × c。
乘法分配律的应用
在解决实际问题时,常常会用到乘法分配律,例如购物时计算总价等。
乘法的分配律
03
乘法原理的应用
乘法原理公式
什么是乘法原理
基础数学知识
乘法原理是小学数学中的基础知识,对于理解乘法的本质和解决乘法问题具有重要意义。
数学思维的培养
学习乘法原理有助于培养学生的数学思维能力和逻辑推理能力,为后续学习更复杂的数学知识和解决实际问题打下基础。
乘法原理的重要性
古代数学中的乘法原理
在古代数学中,乘法原理已经得到广泛应用。例如,在古埃及和古希腊的数学文献中,都有关于乘法原理的记载和应用。
乘法运算的顺序
例如,3 × 4读作“3乘4”,或“三乘以四”。
乘法算式的读法
两个数相乘,交换因数的位置,积不变。例如,a × b = b × a。
乘法交换律
三个数相乘,先把前两个数相乘,再乘以第三个数,或者先把后两个数相乘,再乘以第一个数,积不变。例如,(a × b) × c = a × (b × c)。
乘法原理在商业中有着广泛的应用,如计算销售额、库存管理等。掌握乘法原理可以帮助我们更好地理解商业活动中的数量关系。
小学四年级逻辑思维学习—乘法原理

小学四年级逻辑思维学习—乘法原理知识定位我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.知识梳理一乘法原理完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,。
,第n步有N种不同的方法。
那么完成这件事情一共有A×B×.....×N种不同的方法。
二乘法原理的考题类型:1、路线种类问题——比如说老师举的这个例子就是个路线种类问题。
2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色的方法3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法。
4、排队问题——比如说6个同学,排成一个队伍,有多少种排法。
5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法。
三解题关键:1、分清有几个必要的步骤2. 分请每个步骤有多少种选择情况,有的时候要考虑前面几个步骤的选择结果,再考虑本步骤有多少个选择情况。
例题精讲【试题来源】【题目】邮递员投递邮件由A村去B村的道理有3条,由B村去C村的道路有2条,那么邮递员从A村经B 村去C村,共有多少种不同的走法?【题目】如下图,有个小蚂蚁要从A点,沿着线段爬到B点,要求任何点不得重复经过,问:这只小蚂蚁一共有几种不同走法【题目】按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?【题目】文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?【题目】“IMO”是国际数学奥林匹克的缩写,现有5种不同颜色的笔。
如果允许3个字母用相同的颜色,有多少种不同的写法?【题目】北京到上海之间一共有6个大站,车站应该准备多少种不同的车票?有多少种票价?(往返车票算不同的2种,比如说上海——北京;北京——上海,这两种票是不相同的;相同城市之间的往返票价相同,不同城市之间往返票价不一样)【题目】奥运吉祥物中有5个福娃,分别是贝贝、晶晶、欢欢、迎迎、妮妮。
四年级下册数学思维训练:乘法原理(解析版)全国通用

备课说明:1、本讲为第一期加法原理的延续,例1为乘法原理的基础题,目的在于让学生认识并理解乘法原理(15分钟),例2、5为乘法原理的应用(分别用时15分钟、20分钟)。
例3为乘法原理与加法原理的综合题,本题分类较为复杂,所需时间较长(25分钟左右)。
例4为染色问题(15分钟左右)。
思考题为较复杂的染色问题(20分钟左右)。
注:本讲内容对于部分班级可能题量偏少,上课教师可适当添加几道备用题。
2、重点:理解并能运用乘法原理,利用乘法原理与加法原理计数;难点:计数时,能合理分类,并准确判断出每一类事的步骤。
乘法原理:做一件事,完成它需要分成n 个步骤,第一个步骤有1m 种不同的方法,第二个步骤有2m 种不同的方法,……,第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m m N ⨯⨯⨯⨯= 321种不同的方法。
乘法原理的关键在于分步,它与加法原理是计数中最常用、也是最基本的两个原理。
如图,由A 村去B 村的道路有3条,由B 村去C 村的道路有2条。
从A 村经B 村去C 村,共有多少种不同的走法?分析:要从A 村到C 村要分两步进行,第一步从A 村到B 村,有3种方法;第二步从B 村到C村,有2种方法。
所以应用乘法原理计算。
解:623=⨯ (种)答:共有6种不同的走法。
某班级有男三好学生5人,女三好学生4人。
从中任意选出男、女三好学生各一人去参加座谈会,有 种不同的选法。
解:2045=⨯ (种)小琴、小惠、小梅三人报名参加运动会的跳绳、跳高和短跑三个项目的比赛,每人参加一项,报名的情况有_________种。
(希望杯,第一届1试)解:27333=⨯⨯(种)由1、2、3、4、5这5个数字,可组成多少个没有重复数字的三位数?多少个三位数?多少个数字不重复的三位数偶数?分析:没有重复数字的三位数,分三步来完成:第一步确定百位上的数字,有5种选择;第二步确定十位上的数字,去除百位上的数字,有4种选择;第三步确定个位上的数字,去除百位上和十位上的这两个数字,有3种选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【四年级数学思维拓展】趣味入门—神奇的森林王国(一)
------白猫侦探乘法原理
知道乘法原理的定义,会用乘法原理解决基本计数问题。
乘法原理的应用。
例题1:白猫侦探要从A村去C村办事,中途要经过B村。
A村到B村有3条路,B村到C村有4条路。
那么白猫侦探有多少种不同的路线可以到达C村?
例题2:白猫侦探要从甲村去丁村办事,中途要依次经过乙村和丙村。
甲村到乙村有3条路,乙村到丙村有4条路,丙村到丁村有4条路。
那么白猫侦探有多少种不同的路线可以到达丁村?
例题3:白猫侦探有很多衣服:帽子3顶,上衣4件,裤子5条,鞋6双。
每次从中选择进行搭配。
问一共有多少种不同的搭配?(可以不戴帽子)
例题4:森林里要从猩猩、狗熊、老虎、大象、犀牛中评出前三名的大力士称号。
最终的结果可能出现多少种不同的情况?
例题5:白猫侦探手头有4个案件,只能一个一个的侦破,那么白猫侦探有多少种不同的顺序来侦破这些案件?
(即是该课程的课后测试)
1、一个早点摊子有烧饼、油条、油饼、豆腐脑四种主食,有豆浆、粥、馄饨三种汤类。
如果每次点一份主食一份汤类。
那有多少种点法?
2、变速自行车前面有3个大齿轮,后面有4个小齿轮。
问这个自行车有多少种不同的速度模式?
3、从甲城到乙城有3条路,从乙城到丙城有5条路。
那么从甲到乙再到丙有多少种不同的路线?
4、用数字
5、
6、
7、8能组成多少个不同的3位数?
5、用数字5、
6、
7、8能组成多少个没有重复数字的3位数?
1、12种。
分两步,第一步选主食有4种选法,第二步选汤类有3种选法。
则根据乘法原理有4×3=12种不同的选择。
2、12种。
分两步,第一步选大轮有3种选法,第二步选小轮有4种选法。
则根据乘法原理有4×3=12种不同的选择。
3、15种。
分两步,第一步从甲到乙有3种走法,第二步从乙到丙有5种选法。
则根据乘法原理有3×5=15种不同的走法。
4、64个。
分成三步,百位十位个位都有4种选择,所以写出这个三位数有4×4×4=64种方法。
5、24个。
分成三步,第一步写百位有4种方法,第二步写十位有3种方法,第三步写个位有2种方法。
所以写出这个三位数有4×3×2=24种写法。