系统建模与仿真习题2
系统建模与仿真答案
1名词解释:(1)系统:按照某种规律组合起来,互相作用、互相依存的所有实体的集合或总和(2)连续系统:系统状态量随时间连续变化,可以通过微分方程或者偏微分方程来描述。
(3)离散事件系统:系统状态是在离散的随机时点上发生变化,且状态在一段时间内保持不变(4)系统仿真过程:建立模型并通过模型在计算机上的运行对模型进行检验、修正和分析的过程2、什么是系统建模与仿真技术?系统建模与仿真技术是以相似原理、模型理论、系统技术、信息技术以及建模与仿真应用领域的有关专业技术为基础,以计算机系统、与应用相关的设备及仿真器为工具,利用模型参与已有或设想的系统进行研究、分析、设计、加工、生产、试验、运行、评估、维护和报废(全生命周期)活动的一门多学科的综合技术。
3、画图说明计算机仿真的三要素及三个基本活动。
系统仿真有三个基本的活动,即系统建模、仿真建模和仿真实验,联系这三个活动的是仿真三要素:系统、模型、计算机(包括硬件和软件)。
它们关系如图所示。
4、什么是数学模型的有效性?解释复制有效、预测有效和结构有效的含义。
数学模型所产生的行为数据与实际过程系统数据源的相似程度称为模型的有效性。
通常数学模型的有效性按复制有效、预测有效和结构有效分为三级,后面的相似程度高于前面的相似程度(1)若数学模型产生的数据与过程系统数据源相匹配,称为复制有效。
(2)在过程系统数据源取得之前,可以得到数学模型产生的数据与过程系统数据源的匹配情况,称为预测有效。
(3)数学模型不仅具有预测有效特性,而且可以反映出产生这些行为数据的内在原因,称为结构有效。
5、动态数学模型求解的实时性要求是什么?常用哪些方法提高实时性?动态数学模型运行特点是按选定的积分时间步长,每跨进一个步长,需将全部数据模型求解一遍,一直运行到收到停止命令。
经验证明:积分步长选1s 可以达到实时要求。
提高模型实时性常用的方法有:(1)通过预先试算找出规律,尽量避开非线性代数方程组的迭代计算;(2)使用回归或者辨识的方法获取简化降阶模型;(3)使用欧拉法求解高阶微分方程;(4)偏微分方程简化为常微分方程;(5)采用稳态加动态补偿方法获取动态响应。
系统建模控制与仿真 习题及解答
1、工业控制系统可分为几种大类型,各有什么特点?适合的应用领域。
答:工业控制系统可分为分布式控制系统(DCS )和可编程逻辑控制器(PLC )两大类型。
分布式控制系统(DCS ))是以微处理机为基础,以危险分散控制,操作和管理集中为特性的新型控制系统,它具有高可靠性、开放性、灵活性、协调性、易于维护、控制功能齐全等特点,属于过程控制系统,主要控制手段是PID ,适用于流程工业; 可编程逻辑控制器(PLC )是一种专门为在工业环境下应用而设计的数字运算操作的电子装置,它的特点有可靠性高、抗干扰能力强、硬件配套齐全、功能完善、适用性强、易学易用、容易改造、体积小、重量轻、能耗低等,属于离散控制系统,主要控制手段是顺序与逻辑控制,适用于制造业,目前,已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。
2、根据自己的理解简述现代控制理论的发展历史,分析为什么现代控制理论在过程控制系统中难以应用?答:现代控制理论是为了分析多输入多输出系统、非线性系统和时变系统而出现的,先是贝尔曼等人提出状态分析法,接着卡尔曼等人提出状态空间法,后来,罗森布洛克等人将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,与此同时,系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。
现代控制理论之所以难以在过程控制系统中应用,有以下几个主要原因:1) 现代控制理论获得较好效果的前提是系统内部结构参数完全已知,并且很精确,而过程控制系统中系统参数一般都是经常变化的,在每次重新开机之后系统参数都会发生变化2) 现代控制理论对系统状态变量采用的是微分运算,对各种干扰非常敏感,而过程控制系统中的干扰非常多,因此在过程控制系统中运用现代控制理论经常得不到好的结果,甚至出现错误的结果,现代控制理论适用于航天、实验室等干扰很少的场合3) x Ax Bu ∙=+;y Cx =中,输出并不在闭环内部,因此现代控制理论不能保证输出具有稳定性4) 现代控制理论在解决现实问题中为了保证系统的稳定性,一般会采用模糊化,这样做的代价是大大降低系统的精确性、快速性5) 在过程控制系统中应用现代控制理论后得到的结果往往不如直接运用PID 后得到的结果好3、什么是串级控制系统?其两个回路各有什么特点?答:串级控制系统是两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。
《系统建模与仿真》作业题
第1题——最小二乘法的具体应用例子[题目]已知某一单输入单输出线性系统的差分方程形式为101()(1)()(1)()y k a y k b u k b u k k ξ=--++-+但其参数1a ,0b ,1b 为未知数,且()k ξ为不相关的随机序列。
经过辨识试验,测得5组输入输出数据为(1) 1.5u =,(2) 3.8u =-,(3) 3.1u =,(4) 2.99u =,(5) 5.12u =和(1)0.8y =,(2)0.1y =-,(3)0.45y =,(4)0.34y =,(5)0.12y =。
试求出其最优参数估计。
解:编写MATLAB 程序如下:u(1)=1.5;u(2)=-3.8;u(3)=3.1;u(4)=2.99;u(5)=5.12;y(1)=0.8;y(2)=-0.1;y(3)=0.45;y(4)=0.34;y(5)=0.12;c=10000;P=diag([c,c,c]);f=[-y(1) u(2) u(1)];K=P*f'*inv((1+f*P*f'));x=K*y(3);for n=1:1:2f=[-y(n+1) u(n+2) u(n+1)];%f2P=P-P*f'*inv((1+f*P*f'))*f*P;%P1K=P*f'*inv((1+f*P*f'));%K2x=x+K*(y(n+3)-f*x);%x2end其中x 中存储最终的结果:a1=-0.023;b0=-0.018;b1=0;第2题——以M 文件的形式编写一个MATLAB 仿真程序[题目]给定被控系统模型(1)()0.8()()y k y k u k f k +=++,其中干扰()0.20.1sin 0.01f k k =+,初值(0)0.2y =,(0)0u =。
试编写一个M 文件,对该系统在PD 控制律(1)()()u k u k u k +=+∆12()[()()]{[(1)()][(1)()]}r r r u k B y k y k B y k y k y k y k ∆=-++--+-作用下的输出()y k 进行仿真,将系统的实际输出()y k 与参考输出()r y k 画在同一张坐标图上。
(完整)系统建模与仿真习题答案(forstudents)
第一章习题1-1什么是仿真?它所遵循的基本原则是什么?答:仿真是建立在控制理论,相似理论,信息处理技术和计算技术等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假想的系统进行试验,并借助专家经验知识,统计数据和信息资料对试验结果进行分析和研究,进而做出决策的一门综合性的试验性科学。
它所遵循的基本原则是相似原理。
1-2在系统分析与设计中仿真法与解析法有何区别?各有什么特点?答:解析法就是运用已掌握的理论知识对控制系统进行理论上的分析,计算。
它是一种纯物理意义上的实验分析方法,在对系统的认识过程中具有普遍意义。
由于受到理论的不完善性以及对事物认识的不全面性等因素的影响,其应用往往有很大局限性.仿真法基于相似原理,是在模型上所进行的系统性能分析与研究的实验方法.1-3数字仿真包括那几个要素?其关系如何?答: 通常情况下,数字仿真实验包括三个基本要素,即实际系统,数学模型与计算机。
由图可见,将实际系统抽象为数学模型,称之为一次模型化,它还涉及到系统辨识技术问题,统称为建模问题;将数学模型转化为可在计算机上运行的仿真模型,称之为二次模型化,这涉及到仿真技术问题,统称为仿真实验.1—4为什么说模拟仿真较数字仿真精度低?其优点如何?.答:由于受到电路元件精度的制约和容易受到外界的干扰,模拟仿真较数字仿真精度低但模拟仿真具有如下优点:(1)描述连续的物理系统的动态过程比较自然和逼真。
(2)仿真速度极快,失真小,结果可信度高。
(3)能快速求解微分方程.模拟计算机运行时各运算器是并行工作的,模拟机的解题速度与原系统的复杂程度无关.(4)可以灵活设置仿真试验的时间标尺,既可以进行实时仿真,也可以进行非实时仿真.(5)易于和实物相连。
1-5什么是CAD技术?控制系统CAD可解决那些问题?答:CAD技术,即计算机辅助设计(Computer Aided Design),是将计算机高速而精确的计算能力,大容量存储和处理数据的能力与设计者的综合分析,逻辑判断以及创造性思维结合起来,用以加快设计进程,缩短设计周期,提高设计质量的技术.控制系统CAD可以解决以频域法为主要内容的经典控制理论和以时域法为主要内容的现代控制理论。
《系统建模与仿真》作业题1
《系统建模与仿真》作业第一次(共两次)布置作业时间:“经典建模法”结束后 要求交作业时间:从布置日开始不超过1周 作业量:共3道题第1题——体现电气系统经典建模[题目] 在如图所示的电路中,R 表示一个电阻,L 表示一个电感,C 表示一个电容,i 表示电流强度,u 表示输入电压,c u 表示电容器的输出电压。
试写出一个状态空间数学模型。
u图1 典型的RLC 电路第2题——体现机械系统经典建模[题目]如图2是一个文字处理器打印轮轴控制系统的简化图。
打印轮轴由一个直流电动机通过皮带和滑轮进行控制。
假设皮带是刚性的,电动机与皮带轮之间的连接也是刚性的,并定义如下的参数和变量:m ()T t 是电动机的力矩;m ()t 是电动机的角位移;()y t 是打印轮轴的线性位移;m J 式电动机的惯量;m B 是电动机的粘性摩擦系数;K 是扭转轴的刚性系数;r 是滑轮的半径;M 是打印轮轴的质量。
(1)写出系统的微分方程;(2)写出系统的传递函数模型m ()()Y s T s 。
T打印轮轴图2 打印轮轴控制系统简化图第3题——体现热工过程经典建模汽轮机高压加热器疏水系统的原理框图如图3所示,其中各段抽汽的压力大小关系为321p p p >>,抽汽温度大小关系为321T T T >>。
给水流量w 和给水温度T 一般来说为两个随机变量。
三个疏水管道阀门的开度为归一化量,即]1,0[,,321∈u u u 。
三个高压加热器的疏水水位分别为1y ,2y ,3y 。
它们的关系可描述为),,,(111111T w T p f u k y+-= ),,,(22223122T w T p f u k u k y+-= ),,,(T w T p f u k u k y+-=图3 汽机高加疏水系统原理框图式中的),,,(111T w T p f ,),,,(222T w T p f ,),,,(333T w T p f 表示系统的不确定干扰,1k ,2k ,3k ,4k ,5k 表示适当的正常数。
《控制系统建模与仿真》课后习题-2021版
《控制系统建模与仿真》课程习题(1)一、“投针实验”的历史价值在人类数学文化史中,对圆周率 精确值的追求吸引了许多学者的研究兴趣。
在众多的圆周率计算方法中,最为奇妙的是法国物理学家布丰(Boffon)在1777年提出的“投针实验”。
试回答下列问题:1、试对“投针实验”的机理给出一种直观形象的物理解释?2、有人说“布丰/ Boffon(投针实验)是仿真技术的奠基者”,为什么?3、试用MATLAB语言编制“投针实验”的仿真程序,仿真证明之。
二、自平衡式两轮电动车的安全问题近年来,自平衡式两轮电动车产品成为“抢眼”的代步工具,但也出现很多问题(如上图所示);试根据你所了解的情况就“平衡车产品是否可以合法上路?”问题,给出你的意见与建议。
提示:可从“技术、安全、法律、可持续”等方面,有理有据地展开讨论。
参考书:张晓华《控制系统数字仿真与CAD》 (第4版) 机械工业出版社 2020张晓华《系统建模与仿真》(第2版)清华大学出版社 2016《控制系统建模与仿真》课程习题(2)一、一阶直线倒立摆系统的建模问题对于教材中图2-7所示的一阶直线倒立摆系统,基于牛顿定律所建立的数学模型(如教材的图2-8所示),试问:这个数学模型是否正确,给出你的分析与证明。
提示:(1)基于MATLAB仿真进行模型验证(参见教材第四章第三节);(2)应用“拉格朗日方程”方法建模,进行结果对比。
二、一阶直线双倒立摆系统的可实现问题如下图所示的一阶直线双倒立摆系统,试问:能否通过控制力F实现“在保持两杆不倒的条件下,使小车在直线X方向的位置任意移动”?提示:(1)建立系统数学模型;(2)应用现代控制理论的“能控性定理”进行分析。
参考书:张晓华《控制系统数字仿真与CAD》 (第4版) 机械工业出版社 2020张晓华《系统建模与仿真》(第2版)清华大学出版社 2016《控制系统建模与仿真》课程习题(3)一、水箱液位控制系统设计问题如下图所示的“水箱液位系统”,试回答下列问题:1、试给出含有(控制器+传感器)的“水箱液位控制系统”方案;2、试依据“流体力学”的基本概念,建立系统的数学模型;3、若使系统液位控制实现稳态无静差,试给出PID控制器设计方案;二、水箱液位控制的拓展问题试回答下述问题:1、某人在上述“水箱液位控制系统”中,采用单片机作控制器,程序设计为“增量式PI控制算法”,如果控制系统在“阶跃给定”下存在稳态误差,试问这种情况是否合理?为什么?2、对于上图所示的“水箱液位系统”,在下排水出口处流体呈“紊流”状态,试证明:其流量与液位高度的关系为Q=K∙√H。
系统建模与仿真_考题答案
共10题每题10分1、什么是数学建模形式化的表示?试列举一例说明形式化表示与非形式化表示的区别;模型的非形式描述是说明实际系统的本质,但不是详尽描述。
是对模型进行深入研究的基础。
主要由模型的实体、包括参变量的描述变量、实体间的相互关系及有必要阐述的假设组成。
模型的非形式描述主要说明实体、描述变量、实体间的相互关系及假设等。
例子:环形罗宾服务模型的非形式描述:实体CPU,USR1,…,USR5描述变量CPU:Who,Now(现在是谁)----范围{1,2,…,5}; Who.Now=i表示USRi由CPU服务。
USR:Completion.State(完成情况)----范围[0,1];它表示USR完成整个程序任务的比例。
参变量-----范围[0,1];它表示USRi每次完成程序的比率。
实体相互关系(1)CPU 以固定速度依次为用户服务,即Who.Now为1,2,3,4,5,1,2…..循环运行。
(2)当Who.Now=I,CPU完成USRi余下的工作。
假设:CPU对USR的服务时间固定,不依赖于USR的程序;USRi的进程是由各自的参变量决定。
2、模型描述变量化简的四种方法比较;建模过程中,在能满足建模的前提下,系统的描述变量应是愈简单愈好。
模型描述变量一般有以下四种方法:(1)、淘汰一个或多个实体、描述变量或相互关系规则;建模者决定淘汰那些次要因素,只要忽略的因素不会显著地改变整个模型行为,相反却使不必要的复杂了。
淘汰一个实体可能要淘汰或修改其他实体:淘汰一个实体,需要淘汰所有涉及这个实体的描述变量;淘汰一个描述变量,需要淘汰或修改涉及该变量的相互关系。
(2)、随机变量取代确定性变量;在一个确定性模型中,相互关系的规则控制着整个描述变量的值。
有些随机值也是由相互关系的规则确定,为了使模型相对简化,可利用概率原理,用随机变量来取代某些变量的相互关系规则,从而将影响变量转换成随机变量。
(3)、粗化描述变量;描述变量是描述模型实体条件的一种方法,变量可能出现的值表示在某一时间可找到这个实体的一种可能条件,其变量的范围集是变量可能出现的所有值的集合。
《系统建模与仿真》复习题
《系统建模与仿真》复习题样例一、单项选择题(每题0.5分,共32题)1、WITNESS建模过程中,需要修改布局窗口的名称和背景颜色,可以通过下列哪个菜单操作完成()。
----序号473A、VIEW->Screen EditorB、Window->Interact BoxC、Window->ControlD、Window->Designer Elements2、在程序执行时,根据不同的条件,选择执行不同的程序语句,用来解决有选择、有转移的诸多问题的结构是.()。
----序号237A、顺序结构B、循环结构C、分支结构D、模块结构3、零件(part)到达系统的时间间隔规律在零件详细设计对话框的()中进行设置。
----序号148A、typeB、first arrivalC、inter arrivalD、to4、机器(machine)元素的静态显示图标是由()显示项目确定的----序号99A、nameB、iconC、styleD、text5、图标代表的是那种类型的元素()。
----序号461A、FluidB、PipeC、ProcessorD、Tank6、在Index型输送链中对其长度进行设置需要在conveyor详细设计对话框中的()进行设置。
----序号168A、length in partsB、index timeC、actions on finishD、from7、如果要对容器的轮廓进行可视化设计以便能看到流体经过该容器,我们需要对容器的()属性进行设置。
----序号309A、tankB、contentsC、mixD、laborqueue8、一系统中有一流体(fluid)元素oil,系统运行100min后检查该流体在某一处理器Processor 中的在制品库存,所用到的函数是()。
----序号301A、VcontsB、VwipC、VinD、Vout9、下列哪个图标表示作业员Labor元素()。
浙江工商大学系统建模与仿真课后习题答案
参考教材:离散事件系统建模仿真及GPSSWorld 教程,译作者:谢毅缪亚萍,出版社:清华大学出版社,年代:2011部分习题答案:(具体题目信息省略)第二章:2.16(双理发师手工仿真)理发师1利用率:49/58理发师2利用率:28/58时钟系统状态时间表统计计数器StQ (t )StS1(t )StS2(t )C B1B2W 0000A (1,5)00005010D (1,23),A (2,11)00011012D (1,23),D (2,31),A (3,19)060019112D (1,23),D (2,31),A (4,38)0148023032D (2,31),D (3,38),A (4,38)11812431030D (3,38),A (4,38)2262043800A (4,38)333204040D (4,54),A (5,50)33320450045D (4,54),D (5,66),A (6,58)34520454005D (5,66),A (6,58)4492445865D (6,74),D (5,66),A (7,…)449284平均等待时间:4/6(min)第三章:3.3(货物出库)GENERATE10,5 TERMINATE10 GENERATE15 TERMINATE20 GENERATE30,10 TERMINATE50START20003.4(零件加工)GENERATE20,5ADD1QUEUE Q_ASEIZE ADEPART Q_AADVANCE16,5RELEASE AQUEUE Q_BSEIZE BDEPART Q_BADVANCE15,10RELEASE BQUEUE Q_CSEIZE CDEPART Q_CADVANCE10,2RELEASE C TRANSFER0.05,ADD2,ADD1ADD2TERMINATEGENERATE60TERMINATE1START40(仿真4个小时)若为生产200个合格零件,则ADD2改为:ADD2TERMINATE1START200(仿真4个小时)3.6(加工中心)S_A STORAGE2S_B STORAGE1S_C STORAGE3S_D STORAGE5GENERATE20,10QUEUE Q_AENTER S_ADEPART Q_AADVANCE30,15LEAVE S_ATRANSFER0.6,ADDC,ADDBADDC ENTER S_CADVANCE70,20LEAVE S_CTRANSFER,ADDDADDB ENTER S_BADVANCE20,10LEAVE S_BTRANSFER0.2,ADDD,ADDC ADDD ENTER S_DADVANCE90,30LEAVE S_DTERMINATEGENERATE60TERMINATE1START1003.7(汽车清洗店,顾客有偏好)注:可用BOTH或是ALL模式,但是相对比较复杂,可用SELECT,实现更简单。
系统建模与仿真
《系统建模与仿真》考试试卷班级姓名学号一、模型分析(15分)模型是系统本质的抽象与简化,模型分为两大类:物理模型和数学模型,图1中a/b两图表达了两个不同的物理系统,其中图1-a为一机械系统,图1-b为一电系统,请从数学模型的角度分析这两个系统具有相似性。
(提示:假设Xi、Xo、y 分别为从它们各自稳态位置出发进行测量的位移量,ei、eo分别为输入和输出电压,可从传递函数角度进行分析)a b图1二、系统建模(15分)图2所示为一种简化的汽车悬架系统模型,其中k1为轮胎的弹性系数,m1为车轮质量,k2为悬架的弹性系数,C为悬架阻尼系数,m2为车体质量,忽略其它参数。
当车辆沿着道路行驶时,由道路凹凸引起的垂直位移作为系统的输入激励u,由此传递到车体,引起车体的垂直位移为y。
(1)试求系统的传递函数Y(S)/U(S);(2)在作用于轮胎上的激励u一定情况下,试分析减小车体响应y的措施(可通过仿真分析)。
图2三、 仿真工具Matlab 应用(20分)(1)设一个双输入双输出系统的状态空间表达式为试用MATLAB 控制系统工具箱提供的相关转换函数,求解上述系统的传递函数。
(2)已知某系统的传递函数为试用MATLAB 控制系统工具箱提供的相关转换函数,求解上述系统的状态空间表达式。
(3)已知某系统的传递函数为试用MATLAB 控制系统工具箱提供的相关转换函数,求解上述系统的零点和极点。
(4)已知某系统的传递函数为试用MATLAB 控制系统工具箱提供的相关函数,绘制上述系统的单位阶跃响应曲线。
四、 建模与仿真分析(50分)倒立摆实际上是一个空间起飞助推器的姿态控制模型,图3所示为一倒立摆简化模型:质量为M 的小车在驱动力u 的作用下可以沿x 轴做直线运动,其位置为x ,摆杆长度为l ,下端通过无摩擦的铰链固定于小车的P 点,摆杆上端固连一个集中质量m ,摆杆质量不计。
摆杆l 和m 可以绕P 点铰链只能在x-y 平面内自由旋转,其u x t x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=202264510623421)( x y ⎥⎦⎤⎢⎣⎡=02010016332)(232+++++=s s s s s s G 13316)(232++++=s s s s s G 15.01)(2++=s s s G它方向受机械约束。
西工大2022年4月机考《系统建模与仿真》作业参考答案
西工大2022年4月机考《系统建模与仿真》作业参考答案试卷总分:100 得分:100本科目3次作答机会,每次试题内容相同,只是题目和选项顺序是随机调整的,大家可放心下载使用一、单选题(共20 道试题,共40 分)1.数学模型根据模型的状态变量可以分为()。
A.连续变化模型和离散变化模型B.连续时间模型和离散时间模型C.确定性模型和随机性模型D.同构模型和同态模型正确答案:A2.在仿真模型一样,所要仿真的时间长度也一样的情况下,采用()可获得最高的效率。
A.固定步长时间推进机制B.下次事件时间推进机制C.混合时间推进机制D.随机步长时间推进机制正确答案:B3.忽略具体事物的特殊性,着眼于整体和一般规律,这种研究方法是()。
A.抽象B.归纳C.演绎D.推导正确答案:A4.()是把过程调用和响应调用执行码结合在一起的过程A.汇编B.联编C.调试D.执行正确答案:B5.在系统与模型之间,如果在行为一级等价,则称之为()。
A.同构模型B.同态模型C.数学模型D.本构模型正确答案:B6.一种产品进入市场之后,一般会经过销售速度先不断增加然后又逐渐下降的过程,这称为产品的()。
A.生命周期B.保质期C.生产周期D.销售周期正确答案:A7.由于大多数微分方程是求不出其解析解的,因此研究其()和数值解法是十分重要的手段。
A.离散性B.连续性C.非稳定性D.稳定性正确答案:D8.根据事件调度法建立的仿真模型称为()仿真模型。
A.面向事件的B.面向对象的C.面向用户的D.面向系统的正确答案:A9.能够预定事件发生时间的策略方法是()。
A.事件调度法B.活动扫描法C.进程交互法D.结果预测法正确答案:A10.系统在有确定输入时,得到的输出却不确定,这种事物发展变化没有确定因果关系的模型是()。
A.连续变化模型B.离散变化模型C.随机性模型D.因果模型正确答案:C11.系统数学模型的建立需要按照模型论对输入、输出状态变量及其间的函数关系进行抽象,这种抽象理论称为()。
清华出版社 系统仿真导论 答案Chapter 2习题答案 经典的连续系统仿真建模方法学
Chapter 2习题答案 经典的连续系统仿真建模方法学1. 数值积分法已知微分方程为1)0(,2=--=x t x x,取仿真步长2.0=h ,利用RK2计算4.0=t 时x 的值。
解:RK2公式为:),(),()(2121211hK x h t f K x t f K K K hx x k k k k k k ++==++=+,而k k k k t x x t f --=2),(则:ht h x h h t hK x hK x h t f K t x x t f K k k k k k k kk k k --+-=+-+-=++=--==)12()24()()(2),(2),(1121故:02.016.068.01--=+k k k t x x 列表计算:2. 仿真步长对计算稳定性的影响0)0(,x x x x==λ (1) 其中0<λ,讨论用梯形法计算该模型时,仿真步长h 与算法稳定性的关系。
解:梯形法计算公式的计算公式为)],(),([2111+++++=n n n n n n t x f t x f hx x (2)将(1)代入(2),有:112112)21()(2)(2+++++=++=++=n n n n n n n x h x h x x h x K K h x x λλλλ (3) 即: n n x h x h )21()21(1λλ+=-+ (4)设n x 为x 的一个仿真解,设n n x ε+为其准确解,即))(21())(21(11n n n n x h x h ελελ++=+-++ (5) (5)式减去(4)式,有:n n h h ελλε⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+=+21211(6)上面的(6)式可以认为描述的是一个离散时间系统,改系统稳定时,估计误差n ε会趋于零。
根据离散系统稳定性要求,有:12121<-+λλh h (7)显然0<λ时,上式恒成立,所以选取任何仿真步长都能使仿真稳定。
建模与仿真习题集
1. 以下关于神经元功能的表述中错误的是(A)A.时变特性B.输出与输入之间有固定的时滞,取决于突触延搁C.神经元有一定的阈值,并表现适应性D.时间和空间加和2.根据心肌缺血的严重程度和梗塞心肌的电气特性,可以将梗塞心肌分为三种类型,以下哪一个错误(B)A.坏死型心肌B.病理型心肌C.损伤型心肌D.缺血型心肌3.皮肤的散热可分为生理散热和物理散热,生理散热可分为血管运动和汗腺活动。
4.体温控制规律(即控制系统定律)的表达式为R—R0=—k(Ty—Ts).5.已知呼出气体的容量Ve等于吸入气体的容量V1减去耗氧量Vo2加上二氧化碳的产生量Vco2;耗氧量等于吸入气体的氧容量减去呼出气体的氧容量(Fio2,Feo2分别表示吸入,呼出气体中的O2浓度的百分数);CO2产出量等于呼出气体的CO2容量减去吸入气体的CO2容量(Fico2,Feco2分别为吸入,呼出气体中的CO2浓度的百分比,吸入气体中的CO2可忽略不计),求耗氧率?解: Ve=V1--Vo2+Vco2耗氧量 Vo2=Fio2 *V1--Feo2 *VeCO2产出量 Vco2=Feco2 *Ve联立以上三式,对时间求导,得把V1代入耗氧量公式,求的耗氧率1.以下不是系统概念特性的是(D)A.整体性B.抽象性C.模型性D.具体性2.人们将人体视为有三个不同层次的同心圆柱体,由里向外分别为体核,肌肉脂肪组织,皮肤,其中热容量最大的是(A)A.体核B.肌肉脂肪组织C.皮肤3.写出体温控制规律(R-R0=-k(Ty-Ts))4生理系统建模中常用的工程方法(用频域法解线性微分方程)(系统辨识)(方式分析)5.下图为电路的频域表示,其中各参数都采用了频域表示,求V0(t)解:1.(系统)是由相互制约的各个成分排列和连结成具有一定功能的整体。
2.(逆问题)是心电理论研究的最终目的。
1.归纳有关循环系统的仿真模型,不包括CA物理仿真B数字仿真C生物仿真D物理数字仿真2.确定等价系统的过程,也是建立模型的过程,正确的步骤为B①参数估计②模型结构的确定③试验设计④模型验证A ①②③④B ③②①④C ③①②④D ③④①②1如图所示,神经元i 有4个输入,分别为5,-10,6和-4,对应的权值分别为0.6、0.8、-1.5和-0.8,偏差为0.5。
系统建模与仿真课后作业
所以,蒙特卡罗方法的基本思想就是:当试验次数充分多时,某一事件出现的频率近似等于该事件发生的概率。
一般步骤:(1)构造或描述概率过程
(2)以已知概率分布进行抽样
(3)建立各种估计量
2.8、简述离散事件系统仿真的一般步骤。
(1)阐明问题与设定目标
(2)仿真建模
29
1023
511
0.998047
5
103
103
0.201172
30
2558
510
0.996094
6
518
6
0.011719
31
2553
505
0.986328
7
33
33
0.064453
32
2528
480
0.9375
8
168
168
0.328125
33
2403
355
0.693359
9
843
331
0.646484
34
1778
242
0.472656
10
1658
122
0.238281
35
1213
189
0.369141
11
613
101
0.197266
36
948
436
0.851563
12
508
508
0.992188
37
2183
135
0.263672
13
2543
495
0.966797
38
678
166
0.324219
系统建模与仿真考试题
1.根据系统状态随时间变化是连续性还是间断性的,可将系统划分为(_连续系统_)、(__离散系统__)。
2.系统仿真中的三个基本概念是系统、(__模型_)、仿真。
3.拟对某系统进行研究,首先要对系统作出明确的描述,即确定系统各个要素:实体、属性、活动、( __状态_)、(_事件___)。
•阶段性知识测试5.系统仿真有三个基本的活动,即系统建模、仿真建模和(__仿真实验__),联系这三个活动的是系统仿真的三要素,即系统、模型和计算机(硬件和软件)。
6.系统仿真的一般步骤是:(1)调研系统,明确问题、(2)(___设立目标,收集数据__)、(3)建立仿真模型、(4)编制程序、(5)运行模型,计算结果、(6)(_统计分析,进行决策__)•阶段性知识测试7.仿真软件发展经历了四个阶段(1)高级程序语言阶段;(2)仿真程序包、初级仿真语言阶段;(3)商业化仿真语言阶段;(4) (_一体化建模与仿真环境_)阶段。
8.常用的仿真软件有Arena、Automod、MATLAB、Promodel、(__WITNESS______)、(______FLEXSIM___)。
9.求解简单系统问题的“原始”方法是(___解析解决____),借助(___实验__)可大大提高该方法的效率和精度。
•阶段性知识测试10.排队系统可简化表示为A/B/C/D/E。
其中A为到达模式;B为(服务模式)、C为服务台数量、D为系统容量;E为排队规则。
11.常见的排队规则有:先到先服务、后到后服务、优先级服务、最短处理时间优先服务、随机服务等。
请以连线方式将下列排队规则名称的中英文对照起来。
先进先出 FIFO后进先出 LIFO随机服务 SIRO最短处理时间优先 SPT优先级服务 PR•阶段性知识测试12.模型中,习惯称实体为成分。
成分可分为主动成分和被动成分。
请问排队系统中的随机到达的顾客属于(主动)成分(主动/被动)。
13.事件是改变系统状态的瞬间变化的事情。
系统建模与仿真课后作业
、系统、模型和仿真三者之间具有怎样的相互关系答:系统是研究的对象,模型是系统的抽象,仿真通过对模型的实验以达到研究系统的目的。
、通过因特网查阅有关蒲丰投针实验的文献资料,理解蒙特卡罗方法的基本思想及其应用的一般步骤。
答:蒲丰投针实验内容是这样的:在平面上画有一组间距为a的平行线,将一根长度为L(L<a)的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。
”布丰本人证明了,这个概率是:p=2L/(πa) (π为圆周率)利用这个公式可以用概率的方法得到圆周率的近似值。
所以,蒙特卡罗方法的基本思想就是:当试验次数充分多时,某一事件出现的频率近似等于该事件发生的概率。
一般步骤:(1)构造或描述概率过程(2)以已知概率分布进行抽样(3)建立各种估计量、简述离散事件系统仿真的一般步骤。
(1)阐明问题与设定目标(2)仿真建模(3)数据采集(4)仿真模型的验证(5)仿真程序的编制与校核(6)仿真模型的运行(7)仿真输出结果的统计分析、以第二章图2-5所示的并行加工中心系统为对象,试分别画出相应的实体流图和活动循环图,并比较它们两者有何区别和练习。
(1)实体流图(2)活动循环图、以第二章中图2-5所示的并行加工中心系统为对象,建立Petri 网模型。
3214Petri 网模型的运行过程,并将分析结果同例3-5相比较。
、任取一整数作为种子值,采用第三题中得到的随机数发生器生成随机数序列的前200项数据,并对其统计性能进行检验。
解:由第3题可得到一个随机数发生器: a=5 b=9 c=3 m=512取种子值,生成的随机数序列前200项数据如下: nn1500000332326458458t 4t 3 P 1 t 1P 2P 6 P 3 P 5 t 2 P 4(2)t 3发生后 t 4t 3 P 1 t 1P 2P 6 P 3 P 5 t 2P 4(3)t 2发生后 (4)t 1不能发生t 4t 3 P 1t 1 P 2 P 6 P 3 P 5 t 2 P 4 (5)t 4发生后2161882272293245 3413413281228204 4206820291023511 5103103302558510 65186312553505 73333322528480 8168168332403355 9843331341778242 101658122351213189 1161310136948436 12508508372183135 13254349538678166 14247843039833321 15215310540160872 165281641363363 178383421818282 18418418431413389 19209345441948412 2022822845206315 211143119467878 225988647393393 23433433481968432 242168120492163115 25603915057866n n 5133333376828316 52166813277158347 5366315178238238 54758246791193169 55123320980848336 56104824811683147 5712312382738226 58618106831133109 59533218454836 6010810885183183 615433186918406 62158158872033497 63793281882488440 641408384892203155 65192338790778266 661938402911333309 67201347792154812682388340936363 69170316794318318 7083832695159357 7116339796288288 72488488971443419 73244339598209850 74197844299253253 7522131651001268244n n 1011223199126478478 1029984861272393345 10324333851281728192 1041928392129963451 10519634271302258210 106213890131105329 107453453132148148 1082268220133743231 1091103791341158134 110398398135673161 1111993457136808296 11222882401371483459 11312031791382298250 1148983861391253229 11519333971401148124 1161988452141623111 117226321514255846 118107854143233233 1192732731441168144 1201368344145723211 1211723187146105834 122938426147173173 123213385148868356 1244284281491783247 1252143951501238214n n 1511073491764848 152248248177243243 15312432191781218194 154109874179973461 1553733731802308260 1561868332181130327915716631271821398374 1586381261831873337 1596331211841688152 16060896185763251 1614834831861258234 16224183701871173149 1631853317188748236 1641588521891183159 165263263190798286 16613182941911433409 1671473449192204800 168224820019333 16910034911941818 17024584101959393 17120535196468468 17228281972343295 1731431431981478454 1747182061992273225 175103392001128104对上述数据进行参数检验如下:经计算可知,===因此可知统计量=()==()=假定显著性水平,则查表可知故可以认为:在显著性水平时,该随机数序列总体的均值和方差与均匀分布U(0,1)的均值和方差没有显著性的差异。
离散事件系统建模与仿真第二版课后习题答案
a 8L 3
x
取为奇数,则可以达到最长的周期
p2
k 2
(1)能达到; (2)不能达到; (3)当 x 取奇数时,能取得最长周期
0
(4)当
x0
取奇数时,能取得最长周期;
2.9[解答] 利用反变化法求解,求出
1
F ( x) y 的反函数得:
1 0 y 2 1 y 1 2
6y 3 x F ( y) 4 2 y 1
1 , 0 x 30 30
0 ,其 它
x〈0
x/30 , 0≤x≤30 1 , x〉30 乘客等待时间小于等于5min的概率为 p( x 5) p( x 0) p(15 x 20 )
则乘客等待时间大于5min的概率为
1 4 p( 5) 1 p( 5) 1 5 5
2
2 1 1 S ( n n ) 1 2
1 2
1 1 26.553 ( ) 8 8
1 2
1.261
由于 0.05,查表有 t0.05 (14) 2.145 。由于 t 1.261 2.145 所以不能拒绝均值相等的假设。
建模与仿真
作业
1、某公共汽车站按规定从上午6:40至上午8:40内每20min有一班公 共汽车到站,某个乘客不了解其调度规律,而是每天早上7:00到7:30 均匀地随机到达车站,问旅客等待公共汽车时间多于5min的概率是 多少?(10分) 解:乘客到达概率密度函数为
p( x)
0, 则分布函数F(x)=
F (0) F (20) F (15) 1 5 1 30 30 5
系统建模与仿真作业集课程设计 (2)
系统建模与仿真作业集课程设计引言本文档将介绍一个基于系统建模与仿真作业集的课程设计,详细说明系统设计和仿真的过程。
本课程设计旨在提高学生对系统建模与仿真的理解,并将这些理论知识应用到实际场景中。
通过本课程设计,学生将学习如何使用系统建模和仿真工具来设计和验证系统的性能和功能。
设计目标本课程设计的主要目标是通过实践帮助学生掌握以下技能:1.使用系统建模和仿真工具来设计和验证系统的性能和功能2.编写系统建模和仿真程序以完成建模和仿真任务3.将理论知识应用到实际场景中,提高学生对系统建模与仿真的理解设计步骤本课程设计的内容将围绕着以下三个方面进行:1.系统建模与仿真的理论2.使用系统建模与仿真工具进行系统建模与仿真3.实际案例的应用第一步:系统建模与仿真的理论在本课程设计的第一步中,学生将学习系统建模与仿真的理论。
这些理论将包括以下内容:1.系统建模与仿真的基本概念和原理2.系统建模与仿真的语言和工具3.系统建模与仿真的技术和方法课程设计者应该选择适合学生学习的教材和参考资料,并设计测试来帮助学生理解和掌握这些理论。
第二步:使用系统建模与仿真工具进行系统建模与仿真在本课程设计的第二步中,学生将学习如何使用系统建模与仿真工具来进行系统建模与仿真。
这些工具将包括以下内容:1.系统建模与仿真软件的介绍和应用2.系统建模与仿真的模型设计3.系统建模与仿真的参数设定与调整课程设计者应该提供示例程序和操作演示视频来帮助学生了解和熟悉这些工具。
第三步:实际案例的应用在本课程设计的第三步中,学生将学习如何将理论知识应用到实际场景中。
这些实际案例将包括以下内容:1.真实系统建模与仿真2.实际案例的模型和参数设定3.实际案例的仿真结果分析和评价课程设计者应该提供具有挑战性的案例和评估标准,来帮助学生提高实际运用系统建模与仿真技术的能力。
结论本课程设计基于系统建模与仿真作业集,通过三个步骤来帮助学生掌握和应用系统建模与仿真技术。
系统建模与仿真习题2及答案
系统建模与仿真习题二及答案1. 考虑如图所示的典型反馈控制系统框图(1)假设各个子传递函数模型为66.031.05.02)(232++-+=s s s s s G ,s s s G c 610)(+=,21)(+=s s H 分别用feedback ()函数以及G*Gc/(1+G*Gc*H)(要最小实现)方法求该系统的传递函数模型。
(2) 假设系统的受控对象模型为s e s s s G 23)1(12)(-+=,控制器模型为 ss s G c 32)(+=,并假设系统是单位负反馈,分别用feedback ()函数以及G*Gc/(1+G*Gc*H)(要最小实现)方法能求出该系统的传递函数模型?如果不能,请近似该模型。
解:(1)clc;clear;G=tf([2 0 0.5],[1 -0.1 3 0.66]);Gc=tf([10 6],[1 0]);H=tf(1,[1 2]);G1=feedback(G*Gc,H)G2=G*Gc/(1+G*Gc*H)Gmin=minreal(G2)结果:Transfer function:20 s^4 + 52 s^3 + 29 s^2 + 13 s + 6s^5 + 1.9 s^4 + 22.8 s^3 + 18.66 s^2 + 6.32 s + 3Transfer function:20 s^8 + 50 s^7 + 83.8 s^6 + 179.3 s^5 + 126 s^4 + 57.54 s^3 + 26.58 s^2 + 3.96 ss^9 + 1.8 s^8 + 25.61 s^7 + 22.74 s^6 + 74.11 s^5 + 73.4 s^4 + 30.98 s^3+ 13.17 s^2 + 1.98 s Transfer function:20 s^4 + 52 s^3 + 29 s^2 + 13 s + 6s^5 + 1.9 s^4 + 22.8 s^3 + 18.66 s^2 + 6.32 s + 3(2)由于s c e s s s s G s G 232)1(3624)(*)(-++= 方法1:将s e 2-转换为近似多项式。
《系统建模与仿真》复习题样例江苏大学
《系统建模与仿真》复习题样例江苏大学《系统建模与仿真》复习题样例:考试内容主要但不限于如下内容一、单项选择题(每题.5分,共32题)1、下列哪个图标表示输送链Conveyor元素(C)。
----序号17A、 B、 C、 D、2、某条生产线生产产品A,生产速率为1件/3分钟,生产的产品将送入仓库Buf 存储起来,假设生产线产出的第一件A在仿真时刻3,则运行至仿真时刻60,统计进入Buf的零件A的数量可以使用下面的函数(B)。
----序号507A、NPARTS(Buf)B、NPARTS(A)C、NPARTS2(Buf,A,1)D、APARTS(Buf)3、一次能处理多个部件,即n个部件输入n个部件输出的是:(B )。
----序号218A、单处理机B、批处理机C、装配机D、生产机4、在模型中有一属性元素process_time,表示不同的零件在某一机器上所需要的加工时间,那么,在机器详细设计中,对机器的加工时间cycle time栏中应输入()----序号144A、process_timeB、process_time()C、matchD、cycle time5、对缓冲器(buffer)中几个缓冲区用矩形框框起来的可视化设计,其所需要使用的可视化属性是(B )。
----序号134A、nameB、rectangleC、patchD、part queue6、零件(part)到达系统的时间间隔规律在零件详细设计对话框的( C)中进行设置。
----序号148A、typeB、first arrivalC、inter arrivalD、to7、有3个零件nut一次性进入系统缓冲区buf1中等待机器加工,机器加工该零部件的时间为3分钟,则计算Bmaxtime(buf1)的结果是()。
----序号261 A、3 B、6 C、8 D、98、可以用于机器(machine)输入(from)规则的是( A)。
----序号80A、pullB、pushC、sendD、take9、下列哪个图标表示时间序列曲线Timeseries元素(A )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统建模与仿真习题二
1. 考虑如图所示的典型反馈控制系统框图
(1)假设各个子传递函数模型为
66.031.05
.02)(232++-+=s s s s s G ,s s s G c 610)(+=,2
1)(+=s s H 分别用feedback ()函数以及G*Gc/(1+G*Gc*H)(要最小实现)方法求该系统的传递函数模型。
(2) 假设系统的受控对象模型为s e s s s G 23
)1(12
)(-+=,控制器模型为 s
s s G c 32)(+=,并假设系统是单位负反馈,分别用feedback ()函数以及G*Gc/(1+G*Gc*H)(要最小实现)方法能求出该系统的传递函数模型?如果不能,请近似该模型。
2. 假定系统为:
)(0001)(111000100001024269)(t u t x t x ⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----= [])(2110)(t x t y =
请检查该系统是否为最小实现,如果不是最小实现,请从传递函数的角度解释该模型为何不是最小实现,并求其最小实现。
3. 双输入双输出系统的状态方程:
)(20201000)()(20224264)(75.025.075.125
.1125.15.025.025.025.125.425.25.025.1525.2)(t x t y t u t x t x ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------= (1)试将该模型输入到MATLAB 空间,并求出该模型相应的传递函数矩阵。
(2)将该状态空间模型转化为零极点增益模型,确定该系统是否为最小实现模型。
如果不是,请将该模型的传递函数实现最小实现。
(3)若选择采样周期为s T 1.0=,求出离散后的状态方程模型和传递函数模型。
(4)对离散的状态空间模型进行连续变化,测试一下能否变回到原来的系统。
4. 假设系统的传递函数模型为:
222
)(2+++=s s s s G
系统状态的初始值为⎥⎦
⎤⎢⎣⎡-21,假设系统的输入为t e t u 2)(-=。
(1)将该传递函数模型转化为状态空间模型。
(2)利用公式 ⎰--+=t t t A t t A d Bu e t x e
t x 0
0)()()()(0)(τττ求解],0[t 的状态以及系统输出的解析解。
(3)根据上述的解析解作出s ]10,0[时间区间的状态以及系统输出曲线。
(4)采用lsim 函数方法直接作出s ]10,0[时间区间的状态以及系统输出曲线,并与(3)的结果作比较。
5. 已知矩阵 ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡----=212332110A (1)取1:1.0:0=t ,利用expm(At)函数绘制求A 的状态转移矩阵,看运行的速度如何?
(2)采用以下程序绘制A 的状态转移矩阵的曲线,看运行的速度如何? clc;clear;
A=[0 1 -1;-2 -3 3;2 1 -2];
t=0:0.1:2;
Nt=length(t);
for k=1:Nt
F(:,:,k)=expm(A*t(k));
end
z=reshape(F,[9,Nt]);
plot(t,z)
grid
title('系统的状态转移矩阵')。