开关可调稳压电源的设计与制作

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关可调稳压电源的设计与制作

设计思想:

交直流转换,稳压:变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电变压器原理图流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)变压器由铁芯(或磁芯)和线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器输送的电能的多少由用电器的功率决定. 将 220V 交流电压首先通过隔离变压器降压为 18V 的交流电压,隔离变压器的主要作用是:使一次侧与二次侧的电气完全绝缘,也使该回路隔离。另外,利用其铁芯的高频损耗大的特点,从而抑制高频杂波传入控制回路。用隔离变压器使二次对地悬浮,只能用在供电范围较小、线路较短的场合,此时,系统的对地电容电流小得不足以对人身造成伤害。还有一个很重要的作用就是保护人身安全。足以对人身造成伤害。隔离危险电压.18V 交流电压经过滤波二极管和电容 C2 进行滤波,经过lm7818 输出稳定的 18V 电压,电容 C1C3 是为了滤掉直流电压的毛刺,使其输出稳定

设计方案:

方案中使用隔离变压器提高抗电磁干扰能力,使用脉宽调制电路控制电压输出,采用 DC-DC 变换器,提高电源效率。

设计原理图如下:

电路原理图如下:

电路仿真结果如下:

各元器件与模块:

N7818 稳压芯片介绍: 共有三种外形封装形式,,管脚 1 是电压输入脚,2 是接地脚,3 是稳定电压输出脚,用于稳压,原件如图所示:

DC—DC 升压模块,DC-DC 升压变换器的工作原理:DC-DC 功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的 DC-DC 变换器又可分为降压式、升压式、极性反转式等几种;隔离型的 DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等

几种变换器的工作原理。本设计采用的是非隔离型升压式 DC-DC 变换器的工作原理。下图是变换器升压式 DC-DC 变换器的主电路。

它主要由功率开关管 VT、、储能电感 L、、滤波电容 C 和续流二极管VD 组成。电路的工作原理是:当控制信号 Vi 为高电平时,开关管 VT 导通,能量从输入电源流入,

储存于电感 L 中,由于 VT 导通时其饱和压降很小,所以二极管 D 反偏而截止,此时存储在滤波电容 C 中的能量释放给负载。当控制信号 Vi 为低电平时,开关管 VT 截止,由于电感 L 中的电流不能突变,所产生的感应电势将阻止电流的减小,感应电势的极性是左负右正,使二极管 D 导通,此时存储在电感 L 中的能量经二极管 D 对滤波电容C充电,同时提供给负载。

DC-DC 升压变换器输入、输出电压的关系: 假定储能电感 L 充电回路的电阻很小,即时间常数很大,当开关管 VT 导通时,忽略管子的导通压降,通过电感 L 的电流近似是线性

DC-DC 变换器稳压原理通过输出电压的关系式可以看出,在输入电压或负载变化,要保证输出电压保持稳定时,可以采用两种方案。第一可以维持开关管的截止时间 TOFF 不变,通过改变脉冲的频率 f 来维持输出电压 U0 的稳定,这便是脉冲频率调制(PFM)控制方式 DC-DC 变换器;第二可以保持这便是脉冲频率调制(PFM) DC-DC变换器, 第二可以保持脉冲的周期 T 不变,通过改变开关管的导通时间 TON,即脉冲的占空比 q,以实现输出电压的稳定,这就是脉宽调制( PWM)控制方式 DC-DC 变换器。由于目前已经有各种型号的集成PWM 控制器,所以 DC-DC 控制方式。变换器普遍采用 PWM 控制方式.升压稳压变换器主要有取样电路、比较放大、 PWM 控制器和 DC-DC升压变换器组成。其稳压原理是,假如输入电压 UI 增大,则通过取样电阻将输出电压的变化(增大)采样,和基准电压相比较通过比较放大器输出信号去控制 PWM 控制器输出脉冲占空比 q 的变化减小, PWM 控制器输结果可使输出电压保持稳定。反之,当输入电压减小时,出脉冲占空比 q 也自动变化(增大)输出电压仍能稳定

TL494 集成电路内部电路如图所示,它由振荡器、D 触发器、死区时间比较器、PWM 比较器、两个误差放大器、5V 基准电压源和两个驱动三极管等组成。当 TL494 正常工作时,输出脉冲的频率取决于 5 脚和 6 脚所接的电容和电阻,在电容 CT 两端形成的是锯齿波,该锯齿波同时加给死区时间控制比较器和PWM 比较器,死区时间控制比较器根据 4 脚所设置的电压大小输出脉冲的死区宽度,利用该脚可以设计电源的软启动电路、欠压或过压电路等。输出调制脉冲宽度是由电容 CT 端的正向锯齿波和 3、4 脚输入的两个控制信号综合比较后确定的。当外接控制信号电压大于 5 脚电压时,9,10 脚输出脉冲为低电平,所以随着输入控制信号幅值的增加,TL494 输出脉冲占空比减小,13脚为输出脉冲模式控制端,当该端为高电平时,两路脉冲输出分别有触发器的Q 和 Q 反端控制,两路信号输出互补,即推挽输出,此时 PWM 脉冲输出频率为振荡器频率的一半,最大占空比为 48%。若 13 脚接地,触发器控制不起作用,两路输出脉冲相同,其频率与振荡器频率相同,最大占空比为 96%,为了增大驱动电流的能力,一般使用时可将两路并联输出TL494 内部包含两个误差放大器,若两个误差放大器的反相输入端2.15脚的参考电位一定,当它们的同相输入端电位升高时,输出脉冲的宽度变窄;反之脉冲宽度变宽。所以一般将两个误差放大器的同相和反相输入端分别接到基准信号和反馈信号,实现控制对象的稳定。在实际使用中,常利用 TL494 内部基准电源向外提供+5V 基准参考电压再通过电阻分压网络给误差放大器提供基准电位

基于 555 的 PWM 设计方案,DC-DC 变换器的开关电路需要 PWM 控制晶体管的开关,补充设计选择用 555 来调节占空比,使输出电压能在 30~36V 变化

相关文档
最新文档