利用霍尔元件测磁场
根据霍尔效应测磁场的几种方法归纳总结
根据霍尔效应测磁场的几种方法归纳总结霍尔效应是一种常用于测量磁场强度的物理现象。
通过研究霍尔效应,人们发展出了多种方法来测量磁场。
本文将对根据霍尔效应测磁场的几种方法进行归纳总结。
1. 霍尔元件法:霍尔元件是一种基于霍尔效应原理的传感器。
当电流通过霍尔元件时,磁场会引起霍尔电压的产生。
通过测量霍尔电压的大小,可以确定磁场的强度。
霍尔元件法是一种简单而常用的测磁场方法。
霍尔元件法:霍尔元件是一种基于霍尔效应原理的传感器。
当电流通过霍尔元件时,磁场会引起霍尔电压的产生。
通过测量霍尔电压的大小,可以确定磁场的强度。
霍尔元件法是一种简单而常用的测磁场方法。
2. 霍尔传感器法:与霍尔元件法相似,霍尔传感器也是基于霍尔效应原理的传感器。
不同之处在于,霍尔传感器一般具有更高的灵敏度和更广的工作范围。
它可以通过将霍尔传感器放置在需要测量的磁场中,并测量其输出电压来确定磁场的强度。
霍尔传感器法:与霍尔元件法相似,霍尔传感器也是基于霍尔效应原理的传感器。
不同之处在于,霍尔传感器一般具有更高的灵敏度和更广的工作范围。
它可以通过将霍尔传感器放置在需要测量的磁场中,并测量其输出电压来确定磁场的强度。
3. 霍尔探针法:霍尔探针是一种用于测量磁场强度的工具。
它通常由霍尔元件和测量电路组成。
通过将霍尔探针置于磁场中,并测量输出电压,可以得到磁场的强度值。
霍尔探针法在磁场测量和磁场分布研究中得到广泛应用。
霍尔探针法:霍尔探针是一种用于测量磁场强度的工具。
它通常由霍尔元件和测量电路组成。
通过将霍尔探针置于磁场中,并测量输出电压,可以得到磁场的强度值。
霍尔探针法在磁场测量和磁场分布研究中得到广泛应用。
4. 霍尔效应测试仪:霍尔效应测试仪是一种专门用于测量磁场强度的设备。
它通常具有较高的精度和稳定性。
通过将样品放置在霍尔效应测试仪中,仪器可以直接测量并显示磁场的强度值。
霍尔效应测试仪一般用于科研、工业生产等领域。
霍尔效应测试仪:霍尔效应测试仪是一种专门用于测量磁场强度的设备。
霍尔法测磁场
霍尔法测磁场
霍尔法是一种测量磁场强度的方法,利用霍尔效应的原理。
霍尔效应是指当电流通过一块具有特定材料的导体时,垂直于电流和磁场方向的电压差产生。
这个电压差被称为霍尔电压,它与通过导体的电流和磁场强度成正比。
霍尔法测量磁场强度的步骤如下:
1. 准备霍尔元件:选择一块具有霍尔效应的材料,通常为霍尔片或霍尔传感器。
2. 连接电路:将霍尔元件连接到电路中,通常包括一个电流源以供电流通过霍尔元件,以及一个电压测量器来测量霍尔电压。
3. 设置磁场:将待测磁场放置在霍尔元件附近,确保磁场垂直于电流方向。
4. 测量电压:通过调节电流源使得电流通过霍尔元件,同时使用电压测量器测量霍尔电压。
5. 计算磁场强度:利用已知的电流值和比例关系,根据测量到的霍尔电压计算出磁场强度。
需要注意的是,为了准确测量磁场强度,霍尔元件应该被放置在磁场的均匀区域,并且不受其他电磁干扰。
另外,不同的霍尔元件对应不同的电路连接方式和计算公式,具体操作需要根据具体的霍尔元件和电路要求来确定。
用霍尔元件测量磁场的实验报告
用霍尔元件测量磁场的实验报告
实验背景
霍尔元件是利用霍尔效应来测量磁场的一种器件。
霍尔效应是指在一个导体中,当其被垂直于电流方向的磁场所穿过时,会在导体的一侧产生电势差,这个现象就被称为霍尔效应。
实验目的
利用霍尔元件测量磁场,掌握霍尔元件的工作原理和使用方法。
实验器材
霍尔元件、电源、万用表、磁铁。
实验步骤
1. 将霍尔元件接到电源上,并连接万用表,将电流调整到一定值。
2. 将磁铁靠近霍尔元件,移动磁铁时,观察万用表读数的变化。
3. 更换磁铁位置,重复步骤2,记录数据。
实验结果
在实验中,我们发现当磁铁靠近霍尔元件时,万用表的读数会随着磁铁的移动而发生变化。
并且,我们还发现磁铁离霍尔元件越近,
读数的变化越明显。
实验分析
根据霍尔效应的原理,当磁场与电流垂直时,电子在器件中的运动方向会发生偏转,从而在器件的两侧产生出电势差。
因此,当磁铁靠近霍尔元件时,会产生磁场,从而引起电势差的变化,进而影响了万用表的读数。
实验总结
本次实验中,我们成功地利用霍尔元件测量了磁场,并掌握了霍尔元件的工作原理和使用方法。
同时,我们还发现在实验中,磁场的强度对读数的影响非常明显,因此在实际应用中,需要根据具体情况选择合适的霍尔元件和磁铁。
用霍尔元件测量磁场
用霍尔元件测量磁场1879年,24岁的美国人霍尔发现,如果在载流导体的垂直方向上加上磁场,则在与电流和磁场都垂直的方向上将建立一个电场,这种现象被称为霍尔效应。
利用霍尔效应,可以测量磁场和半导体材料的有关参数;在自动控制和测量技术等方面霍尔效应也得到广泛应用。
[实验目的](1)了解霍尔效应的原理。
(2)学习用霍尔元件测量通电螺线管内部的磁场。
[实验仪器]霍尔元件测螺线管磁场装置、电流与电压数字显示器、开关等。
[实验原理]一、用霍尔元件测量磁场的工作原理霍尔元件是根据霍尔效应原理研制的一种磁电转换元件,是由半导体材料做成的。
如图25-1所示,把一块n 型(即参加导电的载流子是电子)半导体薄片放在垂直于它的磁场中,在薄片的四个侧面A 、A′及D 、D′分别引出两对导线,当沿A 、A′方向通过电流I 时,薄片内定向移动的电子将受到洛仑兹力f B 的作用, f B = evB (25—1)式中e 、v 分别是电子的电量和移动的速度。
电子受力偏转的结果,使得电荷在D 、D′ 两侧聚积而形成电场,这个电场又给电子一个与f B 相反方向的电场力f E ,两侧电荷积累越多,f E 便越大。
最后,当上述两力相等时(f B = f E ),电荷的积累才达到动态平衡。
此时,在薄片D 、D′之间建立的电场称为霍尔电压V H ,这种现象即为霍尔效应。
设b 、d 为薄片的宽度和厚度,n 为电子浓度,则有:f B = f E b V e evB H = (25—2) evbdn I -= (25—3)由(25-2)式和(25-3)式可得:IB K end IB V H H =-= (25—4) 式中endK H 1-=叫做霍尔元件的灵敏度。
同理,如果霍尔元件是P 型(即参加导电的载图25-1流子是空穴)半导体,则epd K H 1-=其中p 为空穴浓度。
因为K H 和载流子的浓度成反比,而半导体的载流子浓度又远比金属的载流子浓度低,所以采用半导体材料制作霍尔元件,并且将此元件做得很好。
利用霍尔片测量磁场的原理
利用霍尔片测量磁场的原理霍尔片是一种基于霍尔效应的传感器,可以用来测量磁场的强度和方向。
霍尔效应是指当电流通过一条导线时,如果将一块垂直于电流方向的磁场施加在导线附近,那么导线的两侧会形成一种电势差,这个现象就是霍尔效应。
霍尔片就是利用这个效应来测量磁场的。
霍尔片通常由三层材料构成:霍尔元件、导电层和绝缘层。
霍尔元件是一个半导体材料,通常是硅或镓砷化物。
当电流通过霍尔元件时,霍尔效应会导致霍尔元件两侧产生一种电势差,即霍尔电压。
这个霍尔电压与通过霍尔元件的电流和施加在其附近的磁场强度成正比。
为了测量磁场,我们需要将霍尔片放置在要测量的磁场中。
当磁场施加在霍尔片附近时,霍尔元件两侧会产生不同的霍尔电压。
根据霍尔效应的原理,这个电压差与磁场的强度和方向有关。
为了测量霍尔电压,我们需要将霍尔片连接到一个电路中。
通常,我们会使用差分放大器电路来放大和测量霍尔电压。
差分放大器电路可以将两个输入端之间的电压差放大到一个可测量的范围。
通过调整差分放大器电路的增益,我们可以使得测量结果更加准确。
在实际应用中,我们可以使用霍尔片测量磁场的强度和方向。
例如,在汽车中,霍尔片可以用来检测车速和转向角度。
当车辆行驶时,车轮会带动磁铁旋转,产生一个磁场。
将霍尔片放置在磁场中,可以测量出车速和转向角度。
霍尔片还可以用于磁力计、电机控制等领域。
在磁力计中,霍尔片可以测量磁场的强度,从而判断物体是否具有磁性。
在电机控制中,霍尔片可以用来检测电机转子位置,从而控制电机的运动。
利用霍尔片测量磁场的原理是基于霍尔效应。
通过测量霍尔电压,我们可以准确地测量磁场的强度和方向。
霍尔片在许多领域都有广泛的应用,如汽车、磁力计和电机控制等。
通过不断改进和研究,霍尔片的测量精度和稳定性将会得到进一步提高,为各种应用提供更加可靠的数据支持。
霍尔元件测量磁场实验报告
霍尔元件测量磁场实验报告1. 引言嘿,大家好,今天咱们来聊聊一个酷炫的实验,那就是用霍尔元件测量磁场。
这玩意儿听起来可能有点高深,但其实也没那么复杂。
就像喝水一样,简单明了,来,跟我一块儿探究吧!霍尔元件,它的工作原理就像魔法一样。
你只需把它放到磁场中,它就能告诉你磁场的强度。
是不是很神奇?而且我们用这个实验,不仅能让大家对物理有更直观的认识,还能让学习变得更有趣,谁不想当个科学小达人呢?2. 实验原理2.1 霍尔效应首先,咱们得聊聊霍尔效应。
简单来说,就是当电流流过一个导体,放在垂直磁场里时,导体的一侧会出现电压差,这就是霍尔电压。
哇,这个原理听起来就像是在讲故事一样,对吧?电流、磁场、电压,这些元素混在一起,真的是一场科学的盛宴。
霍尔元件通过这种效应,能把磁场的强度转化成电信号,太厉害了!2.2 实验准备在实验之前,咱们得准备一些材料。
别担心,所需的东西可不复杂:一个霍尔元件、一块电源、一根电流表,还有一个可以调节磁场的装置。
哦,对了,还有个小黑板,用来记录数据。
只要把这些东西都准备好,就可以开始这场科学之旅啦!记得保持耐心哦,科学可不是一蹴而就的事情。
3. 实验步骤3.1 连接电路接下来,咱们开始实验。
首先,把霍尔元件连上电源。
电流一开,霍尔元件就开始“工作”了。
真是好像打开了一扇新世界的大门!记得检查一下连接是不是牢靠,别让电流跑了。
这就像养花,浇水的时候要保证水分足够,也不能太多,否则就容易烂根。
3.2 测量磁场好了,现在就轮到咱们测量磁场了。
把霍尔元件放进调节好的磁场里,慢慢调整磁场强度。
每次调整后,看看电流表上的数值,哇,真的是一目了然,数据在眼前一闪一闪的,就像星星一样。
记得要记录下每个强度对应的电压哦,数据可不能遗漏!这些数据将来可是你展示成果的“秘密武器”呢!4. 数据分析4.1 结果讨论当数据收集完后,咱们就要进行数据分析了。
看看这些数值有没有规律,能不能从中找到一些有趣的结论。
霍尔元件测磁场的原理
霍尔元件测磁场的原理
霍尔元件是一种常用的测量磁场的器件,其原理是基于霍尔效应。
霍尔效应是
指当导体内有电流通过时,如果将导体置于磁场中,磁场会对电流产生作用,从而在导体的两侧产生电压差,这种现象就是霍尔效应。
而霍尔元件正是利用了这一效应来测量磁场的。
霍尔元件通常由霍尔片、电源、电压输出、信号处理等部分组成。
当霍尔元件
置于磁场中时,磁场会使霍尔片上的载流子偏转,从而在霍尔片的两侧产生电压差。
这个电压差与磁场的强度成正比,因此可以通过测量霍尔片两侧的电压差来确定磁场的强度。
在实际应用中,霍尔元件可以用于测量磁场的大小、方向和分布等信息。
例如,在电机控制系统中,可以利用霍尔元件来检测电机转子的位置,从而实现精确的控制。
在磁传感器中,霍尔元件也可以用来检测磁场的变化,从而实现磁场传感和磁场监测等功能。
除了测量磁场外,霍尔元件还可以应用于其他领域。
例如,在汽车行业中,霍
尔元件可以用于测量车速和转速,从而实现车辆的精准控制。
在工业自动化领域,霍尔元件可以用于检测传送带的速度和位置,实现物料的精准输送。
在医疗器械中,霍尔元件也可以用于测量心脏起搏器的工作状态,从而确保患者的健康。
总的来说,霍尔元件作为一种测量磁场的器件,具有灵敏度高、响应速度快、
精度高等优点,因此在工业、汽车、医疗等领域有着广泛的应用前景。
随着科技的不断进步,相信霍尔元件在未来会有更广泛的应用,为人们的生活带来更多的便利和舒适。
整理物理实验报告3-利用霍尔效应测磁场
20 年 月 日A4打印 / 可编辑参考资料利用霍尔元件测量磁场的误差来源参考资料利用霍尔元件测量磁场的误差来源在测量霍尔电压U H时,不可避免地会产生一些副效应,由于这些副效应产生的附加电势差会叠加到霍尔电压U H上,形成测量中的系统误差。
这些副效应有1.不等位电势差Uσ由于霍尔元件的材料本身不均匀,以及由于工艺制作时,很难保证将霍尔片的电压输出电极(A、B)焊接在同一等势面上,因此当电流流过样品时,即使已不加磁场,在电压输出电极A、B之间也会产生一电势差。
称为不等位电势差Uσ,Uσ=Ir (r为沿x轴方向A、B间的电阻)。
Uσ只与电流有关,与磁场无关。
实验时应测量不同的I对应的Uσ,并对霍尔电势差进行修正。
2.厄廷豪森效应1897年厄廷豪森发现,当样品x方向通以电流I,z方向加一磁场时,由于霍尔片内部的载流子速度服从统计分布,有快有慢,它们在磁场作用下,慢速的载流子与快速的载流子将在霍尔电场和洛仑兹力共同作用下,沿y轴向相反的两侧偏转。
向两侧偏转的载流子的动能将转化为热能,使两侧的温度不同,因而造成在y方向上两侧的温度差(T A-T B)。
因为霍尔电极和样品两者材料不同,电极和样品就形成热电偶,这一温度在A、B间产生温差电动势U EU E∝IBU E的正负,大小与I、B的大小和方向有关,这一效应称为厄廷豪森效应。
3.能斯脱效应由于两个电流电极与霍尔样品的接触电阻不同,样品电流在电极处产生不同的焦耳热,引起两电极间的温差电动势,此电动势又产生温差电流(又称热电流)Q,热电流在磁场的作用下将发生偏转,结果在y方向产生附加的电势差U N,且U N∝QBU N的正、负只与B的方向有关,这一效应称为能斯托效应。
4.里纪─勒杜克效应以上谈到的热流Q在磁场作用下,除了在y方向产生电势差外,还由于热流中的载流子的迁移率不同,将在y方向引起样品两侧的温差,此温差在y方向上产生附加温差电动势U R∝QB,U R只和B有关,和I无关。
用霍尔效应测量磁场实验报告
用霍尔效应测量磁场实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪测量霍尔电压,并计算磁场强度。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。
设导体的厚度为 d,宽度为 b,通过的电流为 I,磁场强度为 B,电子的电荷量为 e,电子的平均漂移速度为 v,则霍尔电压 VH 可以表示为:VH = KHIB/d其中,KH 为霍尔元件的灵敏度。
三、实验仪器1、霍尔效应实验仪。
2、直流电源。
3、数字电压表。
4、特斯拉计。
四、实验步骤1、按照实验仪器的说明书连接好电路,确保连接正确无误。
2、打开直流电源,调节电流输出,使通过霍尔元件的电流达到一个预定的值,例如 I = 500mA。
3、将特斯拉计探头放置在霍尔元件附近,测量磁场强度 B。
记录此时的磁场强度值 B1。
4、改变磁场方向,再次测量磁场强度 B,记录为 B2。
5、移动霍尔元件在磁场中的位置,测量不同位置处的霍尔电压VH。
6、改变通过霍尔元件的电流大小,重复步骤3 5,测量多组数据。
五、实验数据记录与处理|电流 I (mA) |磁场强度 B1 (T) |磁场强度 B2 (T) |霍尔电压 VH1 (mV) |霍尔电压 VH2 (mV) |||||||| 500 | 010 |-010 | 250 |-250 || 1000 | 020 |-020 | 500 |-500 || 1500 | 030 |-030 | 750 |-750 |根据实验数据,计算霍尔元件的灵敏度 KH。
以电流 I = 500mA 为例:KH = VH1 /(I × B1 × d) = 250 /(500 × 010 × d)同理,可计算其他电流下的 KH 值,并取平均值。
六、实验误差分析1、系统误差实验仪器本身的精度限制,如直流电源的输出稳定性、数字电压表的测量精度等。
霍尔元件测磁场实验报告
霍尔元件测磁场实验报告实验目的,通过实验测量霍尔元件在不同磁场强度下的霍尔电压,验证霍尔元件对磁场的敏感性,并探究霍尔元件在磁场中的工作原理。
实验仪器,霍尔元件、直流电源、数字电压表、磁铁、导线等。
实验原理,霍尔元件是一种利用霍尔效应测量磁场强度的元件,当电流通过霍尔元件时,磁场会使电子在导体中受到洛伦兹力的作用,使电子在导体中产生偏转,从而在导体两侧产生电势差,即霍尔电压。
霍尔电压与磁场强度成正比,因此可以通过测量霍尔电压来间接测量磁场强度。
实验步骤:1. 将霍尔元件固定在实验台上,连接直流电源和数字电压表。
2. 将磁铁放置在霍尔元件的周围,调节磁铁的位置和方向,使磁场垂直于霍尔元件的面。
3. 逐步增加直流电源的电压,同时记录数字电压表上的霍尔电压数值。
4. 改变磁铁的位置和方向,重复步骤3,记录不同条件下的霍尔电压数值。
实验数据处理:根据实验记录的霍尔电压数值和相应的磁场强度,绘制霍尔电压与磁场强度的曲线图。
通过曲线图可以直观地观察到霍尔电压随磁场强度的变化规律。
实验结果分析:根据实验数据处理的曲线图,可以看出霍尔电压随着磁场强度的增加而增加,且呈线性关系。
这验证了霍尔元件对磁场的敏感性,并说明了霍尔元件在磁场中的工作原理。
当磁场强度增加时,霍尔电压也随之增加,这为利用霍尔元件测量磁场提供了可靠的依据。
实验结论:通过本次实验,我们成功验证了霍尔元件对磁场的敏感性,并探究了霍尔元件在磁场中的工作原理。
实验结果表明,霍尔电压与磁场强度成正比,可以通过测量霍尔电压来间接测量磁场强度。
因此,霍尔元件可以作为一种有效的磁场测量元件,具有广泛的应用前景。
实验中可能存在的误差:1. 实验中磁场的均匀性可能会对实验结果产生一定影响。
2. 霍尔元件的位置和方向调整不够精确也会引入一定的误差。
3. 实验中数字电压表的精度和灵敏度也会对实验结果产生一定影响。
实验改进方向:1. 提高磁场的均匀性,可以采用更强的磁场源或者增加磁场均匀化装置。
用霍尔元件测量磁场实验报告
用霍尔元件测量磁场实验报告实验报告:用霍尔元件测量磁场实验目的:本实验旨在通过实验操作,掌握使用霍尔元件对磁场进行测量的方法,以及训练实验者的实验操作技能和数据处理能力。
实验仪器:1. 霍尔元件;2. 强磁铁;3. 安培计;4. 电源;5. 其他所需器材和工具。
实验原理:霍尔效应是在电场和磁场同时存在时,载流子在材料中受到的洛伦兹力的影响,从而引起跨导电势的现象。
跨导电势可以通过安装在载流子流经处的霍尔元件进行测量。
通过对霍尔电势的测量可以得到材料所处磁场的磁感应强度。
实验步骤:1. 准备实验所需器材和工具,将强磁铁放于霍尔元件所在位置;2. 打开电源,将电流调节到所需实验数值,记录下电流的值;3. 记录下安培计测量到的受载流子极板宽度的值;4. 根据实验要求调整强磁铁的位置,使磁场方向达到要求;5. 将电源参数改变后,重新记录电流和安培计测量到的受载流子极板宽度的值;6. 对实验数据进行处理,得到所需结果。
实验结果:通过实验操作,测得不同磁场条件下的霍尔电势值,得到所需数据。
根据计算得到的数值,可以得到所需结果。
实验结论:1. 本实验通过实验操作,掌握了使用霍尔元件对磁场进行测量的方法。
2. 经过实验数据的处理,根据计算所得结果可以知道,在不同磁场强度下,测得的霍尔电势值不同,强度越大,电势值越大。
3. 本实验通过实验操作,训练了实验者的实验操作技能和数据处理能力,使其掌握了实验分析的方法和技巧。
实验注意事项:1. 在实验过程中,应该注意安全,不得使用过大的电流和磁场。
2. 在实验前,需要对实验器材及仪器进行严格的检查和调试,确保器材完好、仪器可靠。
3. 在实验过程中,需要仔细观察实验现象,正确记录和处理数据,尽量避免误差和偏差。
4. 在实验后,及时整理数据并进行结果分析,撰写实验报告。
总之,本实验是一次较为全面、系统的实验,不仅为学生提供了掌握物理实验技能的机会,也为他们以后从事相关工作打下了坚实的基础。
利用霍尔效应测量磁场的原理
利用霍尔效应测量磁场的原理一、引言霍尔效应是一种用于测量磁场的重要原理,它利用了材料中的载流子在磁场中受到洛伦兹力的作用而产生的电势差来进行测量。
本文将详细介绍利用霍尔效应测量磁场的原理。
二、霍尔效应基础知识1. 霍尔效应定义霍尔效应是指当把一个导体置于外加磁场中时,在导体内部会形成一定大小和方向的电势差,这种现象称为霍尔效应。
2. 霍尔电压公式在一个宽度为w、长度为l、厚度为t的导体内,当通过该导体沿着x 轴方向有电流I流过时,如果该导体放置在磁感强度B垂直于x轴方向的外加磁场中,则在y轴方向会出现一个电势差VH。
其中,VH与I、B以及l、w和t之间存在如下关系:VH = RHB * I * B其中RHB称为霍尔系数或霍尔常数,它与材料有关。
3. 霍尔系数公式对于n型半导体材料而言,其霍尔系数RHB可表示为:RHB = 1/ne其中,n为半导体中的载流子浓度,e为电子电荷。
4. 霍尔效应的应用霍尔效应广泛应用于磁场测量、传感器、电子元件等领域。
其中,利用霍尔效应进行磁场测量是其最重要的应用之一。
三、利用霍尔效应测量磁场的原理1. 测量原理利用霍尔效应进行磁场测量的原理基于以下两个方面:(1)材料中载流子在磁场中受到洛伦兹力的作用而产生电势差;(2)在材料内部形成沿着磁场方向的电势差,在外部形成垂直于磁场方向的电势差。
根据这两个方面,可以通过将一个材料放置在外加磁场中,并通过测量该材料内部沿着磁场方向和垂直于磁场方向的电势差来确定外加磁场强度大小和方向。
2. 测量步骤利用霍尔效应进行磁场测量需要按以下步骤进行:(1)选择合适的半导体材料:选择具有良好霍尔效应的半导体材料,如InSb、InAs等。
(2)制备霍尔元件:将半导体材料制成一定尺寸的薄片,然后在薄片上制作电极。
(3)放置在磁场中:将霍尔元件放置在外加磁场中,并通过电流源给霍尔元件提供一定大小的电流。
(4)测量电势差:通过两个电极间的电势差来测量沿着磁场方向和垂直于磁场方向的电势差,从而确定外加磁场强度大小和方向。
用霍尔效应法测定磁场
注意 1.开机(或关机)前应将IS、IM旋钮逆时针旋到底。仪器接 通电源后,预热数分钟即可进行实验。 2.在调节IS、IM两旋钮时一定要注意切换“测量选择”,不可 过大。
实验思考
霍尔电压是怎么产生的?如何判断材料的导电 类型?
实验中为什么要采用对称测量法?
霍尔效应特性研究试验中,提供的磁感觉强度 大小和方向如何确定?
用霍尔效应法测定磁场
实验目的
了解产生霍尔效应的机理 掌握用霍尔元件测量磁场的基本方法
实验仪器
HL-1型螺线管磁场测定组合仪
实验原理 实验内容
实验思考
实验原理
1. 霍尔效应:在磁场中,载流导体或半导体上 出现横向电势差的现象
1879年美国物理 学家霍尔发现
2.霍尔电压:霍尔效应中产生的电势差 上图中导体上下两端面出现电势差
B
VH fL f
m
B
电荷受电力 Fe qEH
fe Fe
I
v
b
当qEH qB 时
电势差为
VH EH b
E E d
Bb
4.霍尔系数 霍尔电阻 由电流强度的定义有
I nqdb
I nqdb
IB VH Bb nqd
n 单位体积中的粒子数
B
B
VH
fL f
实验思考 答案
然后求
、 、 和
的
代数平均值
V1 V2 V3 V4 VH 4
实验内容与步骤
霍尔输出特性测量
测绘元件的UH—IS曲线
测绘元件的UH—IM曲线 测出螺线管轴线的磁感觉强度的分布UH—x 曲线。
霍尔效应实验仪
IS是给霍尔片加电流的换向开关,IM是励磁电流的换向开关。
利用霍尔效应测磁场
1
(2)由RH求载流子浓度n。即 n RH e 。应该指出,这个关系式是假定 所有载流子都具有相同的漂移速度得到的,严格一点,如果考虑载流子
的速度统计分布,需引入 3 的修正因子(可参阅黄昆、谢希德著《半
导体物理学》)。8 Nhomakorabea(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 n以及迁移率 之间有如下关系:
霍尔效应实验仪示意图
【实验原理】
1 .霍尔效应
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引
起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转
就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的
横向电场,即霍尔电场 。
EH
霍尔电场 是阻止载流子
继续向侧面偏移,当载流子所受 的横向电场力 与洛仑兹力
然后求 、 、 和 的代数平均值。
VH
V1 V2
V3 V4 4
(6)
通过上述的测量方法,虽然还不能消除所有的副效应,但其引入的误
差不大,可以略而不计。
(2)电导率 的测量
【实验内容】
注意事项
【思考题】
只要测出 (伏)以及知道 (安)、(高斯)和 (厘米)可按下式计算
(厘米3/库仑):
(4)
2.霍尔系数与其它参数间的关系
根据 可进一步确定以下参数:
(1)由 的符号(或霍尔电压的正负)判断样品的导电类型。判别的
方法是按图1所示的 和 的方向,若测得的
即 点电位高于
点的电位,则 为负,样品属N型;反之则为P型。
相等,样品两侧电荷的积累就达 到动态平衡,故有
(1)
(a)
(b)
设试样的宽为b,厚度为d,
用霍尔效应测量磁场的实验报告
用霍尔效应测量磁场的实验报告
实验目的:掌握用霍尔效应测量磁场的方法,并测量出磁场的大小。
实验原理:当一个电流通过一块导体板时,如果与该板垂直方向的磁场发生变化,板上就会产生电势差,即霍尔电压,这就是霍尔效应。
霍尔效应的公式为:VH=B·IB·d,其中VH为霍尔电压,B为磁场大小,IB为电流大小,d为针对霍尔元件的厚度。
实验材料:磁铁、霍尔元件、导线、电流表、电压表、万用表。
实验步骤:
1. 在实验板上固定霍尔元件,并将元件上的三个接头与接线柱连接。
2. 连接电路:电流表与霍尔元件串联,接线柱连接电流源,电源的正电极通过导线连接与霍尔元件的横向端子相接,负极通过导线连接与霍尔元件的竖向端子相接。
3. 调节电流源的纹波电流为零,保证恒流源的输出电流稳定在一个合适的电流值。
4. 将磁铁从霍尔元件上方经过,记录其所在位置和霍尔电压。
5. 依次改变磁铁的位置,记录每个位置的霍尔电压。
6. 将上述实验结果整理,根据霍尔效应公式求出磁场大小B。
实验结果:
磁铁位置(cm)霍尔电压(V)
0 0
1 0.14
2 0.28
3 0.42
4 0.56
公式计算:B=VH÷IB÷d,VH=0.56V,IB=0.5A,d=0.1mm。
B=0.56÷0.5÷0.1=11.2T。
实验结论:通过霍尔效应测量出磁场大小为11.2T。
霍尔元件测量磁场
4.1.1. 霍尔元件测量磁场置于磁场中的载流导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场。
这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。
根据霍尔效应,人们用半导体材料制成霍尔元件,它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点。
利用它可以测量磁场;可以研究半导体中载流子的类别和特性等;也可以利用它制作传感器,用于磁读出头、隔离器,转速仪等。
量子霍耳效应更是当代凝聚态物理领域最重要的发现之一,它在建立国际计量的自然基准方面也起了重要的作用。
【实验目的】1.了解霍耳效应法测量磁场的原理和方法。
2.测定所用霍耳片的霍耳灵敏度。
3.用霍耳效应法测量通电螺线管轴线上的磁场。
4.用霍耳效应法测量通电线圈和亥姆霍兹线圈轴线上的磁场,验证磁场叠加原理,验证亥姆霍兹线圈中央存在均匀磁场。
【实验原理】1.霍耳效应及其测磁原理把一块半导体薄片(锗片或硅片等)放在磁感应强度大小为B 的磁场中(B 的方向沿z 轴方向),如图4.5.1所示。
从薄片的四个侧面A 、A ’、D 、D ’上分别引出两对电极,沿纵向(即x 轴正向)通以电流I H ,则在薄片的两个横向面D 、D ’之间就会产生电势差,这种现象称为“霍耳效应”,产生的电势差称为霍耳电势差。
根据霍耳效应制成的磁电变换元件称为霍耳元件。
霍耳效应是由洛伦兹力引起的,当放在垂直于磁场方向的半导体薄片通以电流后,薄片内定向移动的载流子受到洛伦兹力F B :B v F B ⨯=q (4.5.1)式中,q 、v 分别是载流子的电荷和移动速度。
载流子受力偏转的结果使电荷在D 、D ’两端面积聚而形成电场(图4.5.1中设载流子是负电荷,故F B 沿y 轴负方向),这个电场又给载流子一个与F B 反设方向的电场力F E 。
设E 表示电场强度,U DD ’表示D 、D ’间的电势差,b 表示薄片宽度,则 b U q qE F DD E '== (4.5.2) 达到稳定状态时,电场力和洛伦兹力平衡,有E BF F =即bU q qvB DD '=图4.5.1 霍尔效应原理图载流子的浓度用n 表示,薄片厚度用d 表示,则电流nqvbd I H =,故得dB I R nqd B I U H H H DD ==' (4.5.3) 式中,nqR H 1=称为霍耳系数,它表示材料的霍耳效应的大小。
霍尔效应测磁场实验报告[共7篇]
篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。
由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。
六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。
利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。
由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。
此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。
近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。
在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。
了解这一富有实用性的实验,对今后的工作将大有益处。
教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。
2. 掌握用霍尔元件测量磁场的原理和方法。
3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。
教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。
实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。
这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。
图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。
利用霍尔效应测磁场
实验6.17 利用霍尔效应测磁场1. 实验目的(1) 了解用霍尔器件测磁场的原理;(2) 掌握用霍尔器件测量长直螺线管内部磁场的方法;(3) 掌握检测一对共轴线圈耦合程度的方法。
2. 实验仪器HCC-1型霍尔效应测磁仪,HCC-1型交直流电源,长直螺线管和亥姆霍兹共轴线圈对。
3. 仪器简介HCC-1型霍尔效应测磁仪由下面五个分离部件组合而成:(1)霍尔测磁传感器霍尔测磁传感器又称为霍尔探杆。
探杆直径为6.0mm, 长度(含手柄)为520.0mm, 其前面400.0mm有毫米刻度, 可以方便地确定探杆前端(探头)在磁场中的位置。
探头内安装有HZ-2 型霍尔器件, 作为测磁传感器。
每个霍尔器件的灵敏度K H已标在霍尔探杆的手柄上。
(2)HCC-1 型霍尔效应测磁仪该仪器又称为霍尔电压测量仪。
它的前面板如图6.17-1所示。
将“调零与测量”开关拨至“× 1”档, 可以测量0 ~ 0.75mV的霍尔电压。
HCC-1型霍尔效应测磁仪还可以给霍尔器件提供0 ~ 20mA的控制电流。
图6.17-1 HCC-1型霍尔效应测磁仪的前面板图(3)HCC-1型交直流电源该电源可以提供交流4.0V、8.0V或直流0.0 ~ l0.0V、最大电流为2.0A的激磁电流。
它的前面板如图6.17-2所示。
(4)长直螺线管它是用线径Ф=1.0rnrn的漆包线在有效长度L =30.0cm的骨架上按n =36 ·匝cm-1 密度绕成直径为24.0mm的螺线管,两端口总长32.0cm。
(5)共轴线圈对它是装在一个带毫米刻度尺座架上的一对线圈, 其中一个线圈可以在座架上移动, 以改变两个线圈中心之间的距离。
线圈的线径Ф= 0.9mm, 每个线圈的匝数N =360匝, 直径D =13.6cm 。
4. 实验原理(1)用霍尔器件测磁场的原理如图6.17-3所示, 把一金属薄片放在磁场中, 磁感应强度B 垂直于薄片向上, 当在MN方向通入电流(称为控制电流)I 时, 在P 、Q 两侧面之间就会产生一定的电势差。
利用霍尔片测量磁场的原理
利用霍尔片测量磁场的原理霍尔片是一种基于霍尔效应的磁场测量器件,它能够将磁场的变化转换为电压信号,从而实现对磁场的测量。
霍尔片的工作原理是基于霍尔效应,即当电流通过导体时,若垂直于电流方向施加一个磁场,则会在导体两侧产生一种称为霍尔电压的电势差。
霍尔片通常由半导体材料制成,其内部结构包括一个电流引脚、一个电压引脚和一个地引脚。
当电流通过霍尔片时,电流引脚和地引脚之间会形成一个电势差,这就是霍尔电压。
而这个电势差与施加在霍尔片上的磁场的大小和方向有关。
当一个磁场垂直于霍尔片的方向施加在霍尔片上时,由于霍尔效应的作用,电势差会在电压引脚和地引脚之间形成。
根据右手定则,当电流方向与磁场方向垂直时,霍尔电压的极性会发生变化。
换句话说,当磁场方向改变时,电势差的极性也会发生变化。
通过测量霍尔电压的极性和大小,可以确定磁场的方向和强度。
为了测量磁场,首先需要将霍尔片与电路连接起来。
通常,霍尔片会被放置在一个特制的封装中,以便更好地与电路连接。
电路中通常包括一个电流源,用于提供电流给霍尔片,以及一个电压测量器,用于测量霍尔电压。
在测量时,首先需要将电流源连接到霍尔片的电流引脚上。
然后,将电压测量器的正负极分别连接到霍尔片的电压引脚和地引脚上。
接下来,将霍尔片放置在待测磁场中。
当有磁场施加在霍尔片上时,电压测量器会显示出相应的电势差。
根据电势差的极性和大小,可以确定磁场的方向和强度。
值得注意的是,为了保证测量的准确性,需要注意以下几点。
首先,霍尔片的安装位置要与待测磁场的方向垂直,以便获得最大的霍尔电压。
其次,霍尔片的工作温度范围要符合实际应用环境的要求,避免温度对测量结果的影响。
此外,电路的设计和选用也要符合霍尔片的特性和要求,以确保测量的精度和稳定性。
总结起来,利用霍尔片测量磁场的原理是基于霍尔效应,通过测量霍尔电压的极性和大小,可以确定磁场的方向和强度。
在实际测量中,需要将霍尔片与电路连接起来,并将其放置在待测磁场中进行测量。