钢栈桥计算书
特大桥D4参考合同段钢栈桥设计计算书8篇
特大桥D4参考合同段钢栈桥设计计算书8篇第1篇示例:【特大桥D4参考合同段钢栈桥设计计算书】一、设计计算书编制目的为保证特大桥D4参考合同段钢栈桥工程的设计质量和施工安全,特制定本设计计算书。
本文将根据相关标准要求,以及工程实际情况,详细阐述钢栈桥设计的计算基础和设计要求,确保工程的顺利进行。
二、设计参数1. 桥梁跨度:XX米2. 桥面宽度:XX米3. 桥梁高度:XX米4. 钢材材质:XX5. 设计荷载:XXX级公路荷载三、荷载计算1. 永久荷载:包括桥梁自重、行车荷载等,按标准规定计算。
2. 变动荷载:考虑到车辆和人员的作用,根据实际情况进行模拟计算。
3. 风荷载:考虑到风力对桥梁的影响,进行风荷载计算,并按标准要求进行设计。
四、结构设计1. 桥梁结构采用XX设计标准,确保结构的强度和稳定性。
2. 确保桥梁结构的刚度和变形符合规范要求,避免桥梁在使用过程中发生变形和破坏。
3. 考虑到桥梁的使用寿命和维护情况,设计合理的结构形式和防护措施。
五、桥墩设计1. 桥墩的稳定性和承载能力是保证桥梁安全的关键,根据设计要求进行桥墩的设计和计算。
2. 考虑桥墩的地基条件和周围环境,设计合理的桥墩形式和尺寸,确保桥梁的稳定性和安全性。
六、施工质量控制1. 施工过程中要加强质量监控和安全管理,确保施工质量符合设计要求。
2. 对施工材料和工艺进行严格检验,发现问题及时处理,避免出现质量问题。
3. 施工过程中要与设计、监理等部门及时沟通,确保施工进度和质量符合标准要求。
七、总结与展望第2篇示例:特大桥D4参考合同段钢栈桥设计计算书随着城市化进程的加快,桥梁工程的建设也越来越受到人们的关注。
特大桥D4参考合同段钢栈桥设计计算书是一项重要的工程文件,其承载的是一座特大桥D4的桥梁工程。
栈桥设计计算书是工程设计过程中的一项关键文档,它包含了工程设计所需要的各种参数和计算方法,是桥梁工程设计的基础。
下面我们就来详细介绍一下特大桥D4参考合同段钢栈桥设计计算书的编制内容。
钢栈桥计算书
钢栈桥计算书目录1、设计概况 (3)2、设计目标 (3)3、设计规范 (3)4、设计等级 (3)5、材料及参数 (4)6、设计荷载 (4)6.1 恒载 (5)6.2 活载 (5)7、荷载组合 (5)8、计算结果 (5)8.1 计算模型及边界条件设置 (5)8.2 计算结果分析 (6)8.2.1 桥面板强度计算结果 (6)8.2.2 桥面纵向分配梁强度计算结果 (7)8.2.3 贝雷片强度计算结果 (8)8.2.4 贝雷梁刚度计算结果 (10)8.2.5 花架强度计算结果 (10)8.2.6 桩顶分配梁强度计算结果 (11)8.2.7 桩顶分配梁刚度计算结果 (12)8.2.8 桩间联系强度计算结果 (13)8.2.9 钢管桩强度计算结果 (15)8.2.10 钢管桩稳定性计算结果 (16)9、施工注意事项 (19)主钢栈桥计算书1、设计概况栈桥平台通道宽为 6.0m,为多跨型钢连续梁桥,计算跨径布置为 12m。
桥梁结构布置形式为:桥面板采用 8mm 厚钢板,钢板下设 I10a纵向分配梁,间距为 30cm;纵向分配梁下采用 321 型贝雷梁,贝雷梁每隔 3 米设置一道支撑架,支撑架采用 L63*5 角钢,贝雷梁与桥面横向分配梁采用卡扣螺栓固定,贝雷梁与栈桥下部结构采用柱顶分配梁与钢管桩,柱顶分配梁采用双拼I45b,跨中钢管桩采用φ630×10mm,间距4.5m,为了保证钢管立柱结构的稳定,钢管间设剪刀撑,剪刀撑采用槽钢[16b,结构杆件之间采用栓接连接。
栈桥每隔4-5跨设置一处制动墩。
由于钢管桩支撑位置贝雷片竖杆应力集中,故在钢管桩支撑位置处的贝雷片竖杆采用双拼8#槽钢进行加强,保证竖杆强度。
2、设计目标本次计算的设计目的为:(1)确定通行车辆荷载;(2)确定各构件计算模型及边界约束条件;(3)验算各构件强度与刚度;(4)验算钢管桩稳定性。
3、设计规范(1) 装配式公路钢桥多用途使用手册[M] (人民交通出版社)(2) 《公路桥涵设计通用规范》(JTG D60-2015)(3) 《公路桥涵施工技术规范》(JTG/T3650—2020)(4) 《港口工程荷载规范》JTS144-1-2010(5) 《钢结构设计规范》(GB50017-2017)(6) 《公路工程技术标准》(JTGB01-2014)(7) 《路桥施工计算手册》(人民交通出版社)4、设计等级(1) 设计荷载:验算荷载考虑单车道 70t 砼罐车、80t履带吊整机工作质量、80t旋挖钻机,履带长度为6.054m,冲击系数采用1.3Hz,由于考虑验算荷载较大,故此处忽略行人荷载及其它荷载。
钢栈桥计算书
目录1 编制依据 (1)2 工程概况 (1)3 钢栈桥及钢平台设计方案 (2)3.1钢栈桥布置图 (2)3.2钢平台布置图 (2)4 栈桥检算 (3)4.1设计方法 (3)4.2桥面板承载力验算 (4)4.3 I20a工字钢分配梁承载力验算 (5)4.4贝雷片纵梁承载力验算 (6)4.5 I45b工字钢横梁承载力验算 (9)4.6桥面护栏受力验算 (10)5 桩基检算 (13)5.1钢管桩承载力验算 (13)5.2桩基入土深度计算 (13)5.3钢管桩自身稳定性验算 (14)5.4钢管桩抗倾覆性验算 (15)5.5钢管桩水平位移验算 (15)6 钻孔平台 (16)*********钢栈桥计算书1 编制依据1、现场踏勘所获得的工程地质、水文地质、当地资源、交通状况及施工环境等调查资料;2、国家及地方关于安全生产及环境保护等方面的法律法规;3、《钢结构设计规范》GB50017-2011;4、《公路桥涵设计通用规范》JTG D60-20155、《公路桥涵地基与基础设计规范》JTG D63-20076、《公路工程施工安全技术规范》(JTG F90-2015)7、《路桥施工计算手册》(人民交通出版社)8、*********设计图纸。
2 工程概况*********位于顺昌县水南镇焕仔坑附近,跨越富屯溪。
本项目起点桩号K7+154,终点桩号K7+498.5,桥梁全长344.5m。
*********场区属于剥蚀丘陵夹冲洪积地貌,桥址区地形较起伏,起点台较坡度约15°-20°,终点台较坡度约5°-10°。
桥梁跨越富屯溪,勘查期间水深约3-9m,溪宽约180-190m。
*********桩基施工是本工程的控制工期工程,我项目部经过对富屯溪水文、地质及其现场情况的详细调查,为保证工期,加快施工进度,跨富屯溪水中主墩计划采用钢栈桥+钢平台施工方案。
*********河中墩共7组,距河岸边最近的8#墩距岸边约20m,根据富屯溪历年洪水水位,富屯溪上下游都有水电站,无通航要求,宜搭设全桥贯通栈桥。
栈桥荷载计算书
栈桥荷载计算书XX大桥钢栈桥总宽6m,计算跨径为12m。
栈桥结构自下而上分别为:φ600钢管桩、28b型工字钢下横梁、“321”军用贝雷梁、25b 型工字钢分配横梁(间距0.40m)、20a型槽钢桥面。
单片贝雷:I=250497.2cm4,E=2×105Mpa,W=3578.5cm3[M]=788.2 kn•m, [Q]=245.2 kn则4EI=2004×106 kn•m2(一)荷载布置1、上部结构恒载(按12m跨度计)(1)20a型槽钢:q1=(6m/0.3+1)×22.63×10/1000=4.75kn/m(2)25b型工字钢分配横梁:q2=42.0×9/0.40×6×10/1000/9=6.3kn/m(3)“321”军用贝雷梁:每片贝雷重287kg(含支撑架、销子等):q3=287×4×10/3/1000=3.83kn/m(4)28a型工字钢下横梁:q4=6×43.4×10/1000=2.60 kn/根2、活载(1)按城—B级标准车辆计算(2)人群、机具、堆方荷载:q5=1.5kn/m2×6=9 kn/m考虑栈桥实际情况,同方向车辆间距大于15m,即一跨内同方向半幅桥内最多只布置一辆重车。
(二)上部结构内力计算1、贝雷梁内力计算荷载组合:q= q1+ q2+ q3+ q5=23.88kn/m(如下图)23.88KN·m贝雷梁均布荷载受力分布图汽车荷载分布图活载按城—B标准车辆荷载并考虑1.2的安全系数,采用“桥梁博士系统软件进行”验算,结果如下:恒载情况: M中=ql2/8=23.88×122/8=429.8kn·mR=143.3 kn活载情况:M中=1160kn·mR=425 kn荷载组合情况:M中=1589.8kn·m<[M]=788.2×4=3152.8 kn·mR=143.3+425=568.3kn<[Q]=245.2×4=980.8 kn·m故在恒载及活载组合条件下贝雷架满足强度要求。
特大桥D4参考合同段钢栈桥设计计算书3篇
特大桥D4参考合同段钢栈桥设计计算书3篇全文共3篇示例,供读者参考篇1特大桥D4参考合同段钢栈桥设计计算书一、工程概况特大桥D4参考合同段钢栈桥是位于某地区的一座重要桥梁工程,连接两侧城市的主要通道之一。
该桥总长600米,主跨跨度为120米,桥面宽度为30米,设计荷载等级为A级公路。
二、设计标准本设计按照相关国家桥梁设计规范进行设计,其中包括《公路钢结构桥梁设计规范》、《公路桥梁抗震设计规范》等相关规范标准进行考虑。
三、设计荷载1. 永久荷载:桥梁结构自重;2. 活载荷载:A级公路设计车辆荷载;3. 风荷载:按照规范要求进行考虑;4. 地震荷载:按照规范要求进行考虑。
四、结构形式该钢栈桥采用钢结构形式,主要由主梁、横梁、纵向支撑等构件组成。
主梁为钢箱梁结构,横梁为横向钢梁,纵向支撑为钢柱结构。
五、设计计算1. 主梁设计:主梁采用钢箱梁结构,根据桥梁跨度和荷载计算主梁的截面尺寸和钢材强度。
考虑主梁的承受弯矩和剪力情况,采用有限元分析进行计算,调整主梁的截面尺寸和钢材配筋;2. 横梁设计:横梁为横向钢梁,承受桥面荷载传递到主梁上。
根据横梁的跨度和荷载计算横梁的截面尺寸和钢材强度,调整横梁的截面形状和配筋;3. 纵向支撑设计:纵向支撑为钢柱结构,固定在桥墩上,支撑主梁受力传递。
根据支撑的高度和荷载计算支撑的截面尺寸和钢材强度,考虑支撑的承载能力和稳定性。
六、结构连接1. 主梁与横梁连接:采用高强螺栓连接,确保主梁和横梁之间的受力传递稳定可靠;2. 横梁与支撑连接:采用焊接连接,确保横梁和支撑之间的受力传递稳定可靠;3. 支撑与桥墩连接:采用预埋螺栓连接,确保支撑和桥墩之间的受力传递稳定可靠。
七、施工安全设计应考虑施工过程中的安全问题,包括吊装设备、搭建脚手架、焊接操作等工艺安全措施,确保施工过程中人员和设备的安全。
八、结语特大桥D4参考合同段钢栈桥设计计算书对桥梁结构的材料选择、构件设计、受力分析等方面进行了详细的设计和计算,确保结构的稳定性和安全性。
钢栈桥计算资料
XXXXXXXXXXXXXXX湘江大桥施工钢栈桥计算书计算:复核:审核:批准:XXXXXXXXXXXXXXXXXXXXXXXX项目经理部2010年10月目录一、前言 (1)二、工程概况 (1)三、计算依据 (1)四、计算条件 (2)1.水文条件及高程 (2)2.地质条件 (2)3.栈桥使用荷载 (2)4.河床冲刷计算 (2)五、计算荷载 (3)1.作用在钢管上的水流力 (3)2.作用在钢管顶上的水流力 (4)3.风荷载 (4)4.栈桥上部荷载 (5)六、栈桥结构验算 (6)1.计算步骤 (6)2.结构分析计算 (6)2.1荷载组合 (7)2.2强度计算结果 (7)2.3刚度计算结果 (15)2.4整体稳定性计算 (17)2.5横向抗倾覆稳定性计算 (19)七、结语 (19)栈桥计算书一、前言本计算书根据栈桥的结构构造建立有限元模型,并根据其使用功能要求确定相应的荷载组合,计入荷载分项系数影响后,进行结构分析计算。
主要计算项目和内容包括:1.荷载计算,包括使用荷载(指履带吊机、吊车、砼运输罐车)、风荷载、流水压力荷载的取值计算。
2.栈桥型钢梁的内力计算、抗弯抗剪承载力验算;3.栈桥下部构造(含横梁、平联、斜撑和钢管桩)的应力验算。
并考虑了按规范公式进行稳定验算。
二、工程概况大桥主墩Z1-Z5均位于湘江中,在河西岸采用钢栈桥连接至Z1主墩。
Z1主墩与Z3主墩之间的水上施工通道采用浮桥联接,Z6主墩位于河东江边位置,采用筑岛施工,河东岸Z6主墩与Z5主墩之间的水上施工通道采用钢栈桥联接,Z5主墩与Z4主墩之间采用浮桥联接。
河西岸钢栈桥总长136m,标准宽度6m,加宽段为11m,栈桥顶标高为32.00m。
栈桥均采用钢管桩基础,桩顶设工字钢横梁,其上铺设工字钢纵梁,栈桥设计承重50t。
采用钢管桩桩基,每排钢管之间的横向间距均为5m,布置φ720×10mm钢管桩。
钢管间设[20a槽钢横撑及斜撑。
桩顶横梁为3I40b工字钢。
111米钢栈桥计算书_secret
栈桥计算书1 概述1.1 设计说明本工程项目拟建栈桥结构形式为4排单层贝雷桁架,使用900型标准贝雷花架进行横向联结,栈桥纵向标准设计跨径为12m+9m;桥面系为专用桥面板;横向分配梁为I22,间距为0.75m;基础采用υ630×7mm和υ820×7mm钢管桩,为加强基础的整体稳定性,每排钢管桩间均采用[20号槽钢连接成整体;墩顶横梁采用2工36a。
栈桥布置结构形式如下图1。
图1、栈桥一般构造图(单位:cm)1.2 设计依据1)《公路桥涵设计通用规范》(JTG D60-2004)2)《公路桥涵地基与基础设计规范》(JTJ024-85)3)《公路桥涵钢结构及木结构设计规范》(JTJ025-86)4)《公路桥涵施工技术规范》(JTJ041—2000)5)《海港水文规范》(JTJ213-98)1.3 技术标准1)设计顶标高;2)设计控制荷载:栈桥运营期间:施工重车荷载主要表现在混凝土罐车满载,自重20T+载重30T,考虑1.3的动力系数,按照65T荷载对栈桥桥面板及分配梁I22a进行验算;考虑本栈桥桥位实际地理条件,其施工工艺采用50T履带吊,50T履带吊自重50T+吊重15T,考虑车辆自重及1.3的车辆冲击系数,栈桥设计中选择85吨履带吊车荷载进行贝雷梁及承重梁的验算;3)设计行车速度10km/h。
2 荷载布置2.1 上部结构恒重(4米宽计算)1)钢便桥面层:8mm厚钢板,单位面积重62.8kg,则4.08kN/m。
2)面板加劲肋工12.6,单位重14.21kg/m,则0.14kN/m,间距0.24m 。
3)面层横向分配梁:I,单位重33.05kg/m,则0.33kN/m ,1.32kN/根,间距1.5m;224)纵向主梁:横向4排321型贝雷梁,4.3kN/m;5)桩顶分配主梁:2I,单位重60 kg/m ,则1.2kN/m。
36a2.2 车辆荷载1)轮压:车轮接地尺寸为0.5m×0.2m;图2、罐车荷载布置图2:50T履带吊横向及纵向布置图(469mm×76mm)单侧履带压:单侧履带着地尺寸为0.76m×4.69m,单侧履带荷载按线性荷载计算为850 kN/m÷2÷4.69=90kN/m。
特大桥D4参考合同段钢栈桥设计计算书7篇
特大桥D4参考合同段钢栈桥设计计算书7篇第1篇示例:特大桥D4参考合同段钢栈桥设计计算书1. 项目背景特大桥D4参考合同段钢栈桥设计计算书是针对特大桥D4项目的设计计算书。
特大桥D4项目是一座跨越湖泊、河流或峡谷等水体、道路、铁路等交通干线的桥梁工程。
该工程设计采用钢结构栈桥,旨在提高桥梁的承载能力和使用寿命,确保桥梁安全可靠。
2. 设计要求根据特大桥D4项目的具体情况和技术要求,制定了以下设计要求:(1)承载能力:桥梁设计要满足一定的承载能力,能够承受行车荷载、风荷载、地震荷载等外部载荷。
(2)使用寿命:桥梁的设计寿命应达到预期要求,具有良好的耐久性和稳定性。
(3)安全性:桥梁结构设计应具有良好的安全性,能够在恶劣环境下保持稳定。
(4)施工便利:桥梁结构设计应考虑施工方便性,提高施工效率,降低成本。
3. 设计计算(1)荷载计算:根据特大桥D4项目的实际情况,计算行车荷载、风荷载、地震荷载等各种外部载荷,确定桥梁的承载能力,并对结构进行合理设计。
(2)结构设计:根据荷载计算结果,设计桥梁的结构形式、截面尺寸、连接方式等,确保桥梁的稳定性和安全性。
(3)材料选取:根据设计要求和结构特点,选取合适的材料,如高强度钢材、防腐材料等,提高桥梁的使用寿命。
(4)施工方案:根据结构设计和材料选取,制定施工方案,包括施工工艺、施工工期、施工成本等,确保桥梁的质量和安全。
4. 结论特大桥D4参考合同段钢栈桥设计计算书根据特大桥D4项目的技术要求和设计要求,对桥梁的荷载计算、结构设计、材料选取、施工方案等进行了详细的计算和设计,保证了桥梁的质量和安全。
该设计计算书还对桥梁的使用寿命、施工便利性等方面进行了充分考虑,为特大桥D4项目的实施提供了重要的参考依据。
第2篇示例:特大桥D4参考合同段钢栈桥设计计算书一、设计依据本钢栈桥设计计算书按照《特大桥D4参考合同段钢栈桥设计规范》编制。
其主要设计依据包括相关国家标准、规范以及特大桥D4工程的设计要求。
特大桥D4参考合同段钢栈桥设计计算书6篇
特大桥D4参考合同段钢栈桥设计计算书6篇篇1一、合同背景鉴于本特大桥D4参考合同段的钢栈桥设计需要精确细致的规划及严谨的计算过程,本合同旨在明确相关责任、设计要求以及设计计算的相关事项。
合同双方分别为甲方(建设单位)和乙方(设计单位),共同遵循以下条款进行钢栈桥的设计工作。
二、设计原则与目标乙方应按照安全、经济、实用的原则,根据甲方提供的地质勘察资料、工程需求以及其他相关条件,进行钢栈桥的设计计算。
设计应满足以下目标:确保结构安全稳定,确保施工进度顺利,最大限度地节约工程成本。
三、设计范围与内容本次设计包含但不限于以下内容:栈桥结构选型、结构设计计算、构件规格选择、施工详图绘制等。
设计过程中需充分考虑地质条件、水文环境、气候条件以及施工过程中的各种因素。
四、设计计算依据与标准1. 甲方提供的地质勘察资料及其他相关文件。
2. 国家现行相关规范、标准以及行业规范。
3. 乙方的专业经验及实际操作能力。
五、设计计算过程与要求1. 乙方应根据地质勘察资料,进行桥梁基础的受力分析,并进行相应的设计计算,确保桥梁基础的稳固性和安全性。
2. 对栈桥结构进行详细的设计计算,包括承载能力分析、稳定性分析、疲劳强度计算等。
3. 乙方应根据设计计算结果,合理选取构件规格,确保结构的安全性和经济性。
4. 乙方应绘制详细的施工图纸,明确标注构件规格、连接方式、施工要求等细节信息。
5. 设计过程中,如遇重大技术问题,乙方应及时与甲方沟通,共同协商解决。
六、质量控制与验收标准1. 乙方应严格按照国家相关规范、标准以及行业规范进行设计计算,确保设计质量。
2. 乙方应建立健全质量控制体系,确保设计计算的准确性和完整性。
3. 甲方有权对乙方的设计计算过程进行监督和检查,确保设计质量符合合同约定。
4. 设计成果完成后,双方应按照约定的验收标准共同进行验收,确保设计成果符合要求。
七、保密条款双方应对本合同所涉及的技术资料、设计成果等保密信息予以保密,未经对方同意,不得泄露给第三方。
27米单跨钢栈桥受力计算书
27米单跨钢栈桥受力计算书
摘要:
一、引言
二、钢栈桥概述
1.结构形式
2.工程背景
三、受力分析
1.设计原则
2.荷载类型
3.计算方法
四、计算结果与分析
1.内力计算结果
2.变形计算结果
3.强度计算结果
五、结论与建议
正文:
一、引言
本文主要针对27米单跨钢栈桥进行受力计算,通过分析计算结果,评估结构的性能,并提出相关建议。
二、钢栈桥概述
1.结构形式:27米单跨钢栈桥采用简支梁结构,主要由上板、下板、两端
柱子和中间支撑组成。
2.工程背景:该钢栈桥位于我国某工地,主要用于工地材料运输及人员通行。
三、受力分析
1.设计原则:遵循我国现行的钢结构设计规范,以安全、经济、合理为原则,确保结构在使用过程中的稳定性和安全性。
2.荷载类型:主要包括永久荷载和活荷载,其中永久荷载包括结构自重、桥面铺装及栏杆等附属设施的重量;活荷载包括人群荷载、风荷载等。
3.计算方法:采用ANSYS等有限元分析软件,对结构进行整体建模,分析各种荷载作用下的内力、变形和强度。
四、计算结果与分析
1.内力计算结果:在各种荷载作用下,结构的弯矩、剪力、轴力等内力值均满足设计要求。
2.变形计算结果:结构的挠度、扭转等变形量在允许范围之内,符合设计要求。
3.强度计算结果:结构的抗弯、抗剪、抗扭等强度指标均满足规范要求。
五、结论与建议
通过计算分析,27米单跨钢栈桥结构性能良好,满足设计要求。
特大桥D4参考合同段钢栈桥设计计算书6篇
特大桥D4参考合同段钢栈桥设计计算书6篇篇1合同编号:【编号】甲方(委托方):【甲方名称】乙方(设计方):【乙方名称】鉴于甲方的特大桥D4合同段钢栈桥建设项目,需要乙方提供专业的设计计算服务,经双方友好协商,达成如下协议:一、项目概述本工程为特大桥D4合同段钢栈桥设计项目。
乙方需按照甲方的要求,提供专业的设计计算服务,确保钢栈桥的结构安全、经济合理、施工可行。
二、设计计算内容1. 桥位地质勘察与评估:对栈桥所在地的地质条件进行详细勘察与评估,为设计提供可靠的地质参数。
2. 桥梁结构设计:根据桥梁跨度、荷载、地形地貌等条件,进行桥梁结构的设计计算。
3. 桥梁承载能力计算:对桥梁在各种工况下的承载能力进行精确计算,确保桥梁安全。
4. 桥梁施工可行性分析:分析桥梁施工过程中的可行性,提出合理的施工建议。
5. 其他相关设计计算内容。
三、设计要求1. 乙方应按照国家现行相关规范、标准进行设计计算。
2. 设计计算过程中,乙方需充分考虑甲方的施工条件和工期要求。
3. 乙方应对设计计算结果负责,确保其准确性、可靠性。
4. 甲方有权对乙方的设计计算过程进行监督和审查。
四、合同金额及支付方式1. 本合同总金额为人民币【金额】元。
2. 甲方在合同签订后【支付时间】内支付乙方合同总金额的【比例】作为预付款。
3. 乙方完成设计计算并提交成果后,甲方在【支付时间】内支付剩余款项。
4. 支付方式:【支付方式】。
五、设计计算周期本合同自签订之日起,乙方应在【设计周期】内完成设计计算工作,并提交设计计算成果。
如遇特殊情况,双方可协商延长设计周期。
六、保密条款1. 双方应对本合同内容及相关技术资料保密,未经对方同意,不得泄露给第三方。
2. 乙方在完成设计计算任务后,应销毁或归还甲方的技术资料。
七、违约责任1. 若乙方未按合同约定完成设计计算任务,应承担违约责任,并赔偿甲方由此造成的损失。
2. 若甲方未按合同约定支付设计费用,应承担违约责任,并支付逾期付款利息。
27米单跨钢栈桥受力计算书
27米单跨钢栈桥受力计算书
(最新版)
目录
1.27 米单跨钢栈桥概述
2.钢栈桥的受力分析
3.钢栈桥受力计算方法
4.27 米单跨钢栈桥受力计算结果
5.结论
正文
一、27 米单跨钢栈桥概述
钢栈桥是一种临时性钢结构桥梁,广泛应用于施工现场、码头、临时道路等领域。
本文主要针对 27 米单跨钢栈桥的受力计算进行分析。
二、钢栈桥的受力分析
钢栈桥主要承受荷载、自重和风载等作用。
其中,荷载包括人行荷载、车行荷载等;自重是指钢栈桥本身的重量;风载则是指风力对钢栈桥产生的作用力。
三、钢栈桥受力计算方法
钢栈桥的受力计算主要包括以下步骤:
1.确定受力分析模型:根据钢栈桥的实际情况,建立合适的受力分析模型,如简支梁模型、固定梁模型等。
2.计算荷载:根据设计要求和使用条件,计算荷载的大小和分布。
3.计算内力:根据受力分析模型和荷载分布,计算钢栈桥的内力,如弯矩、剪力等。
4.计算变形:根据内力计算结果,计算钢栈桥的变形,如挠度、变形等。
5.检验强度:将计算得到的内力与许用应力进行比较,判断钢栈桥的强度是否满足设计要求。
四、27 米单跨钢栈桥受力计算结果
根据上述计算方法,我们可以得到 27 米单跨钢栈桥在各种受力条件下的内力、变形和强度情况。
通过对比计算结果和设计要求,可以判断钢栈桥是否满足使用要求。
五、结论
综上所述,通过对 27 米单跨钢栈桥的受力计算,可以评估其在使用过程中的安全性能。
只有当计算结果满足设计要求时,钢栈桥才能确保安全可靠。
钢栈桥计算书
钢栈桥计算书一、概述1、设计说明钢栈桥主栈桥位于**大桥右幅边线2米外,拟建栈桥分为两段,从西岸方向起点河岸侧往2号墩为第一段,钢栈桥起点(K0+519.44)标高304.5 m,终点(K0+564.544)标高304.5m,无纵坡;东岸方向,从3号墩至东岸岸边,主桥墩7号墩与6号墩之间,钢栈桥起点(K0+661.04)标高303.5 m,终点(K0+784.04)标高303.5m,钢栈桥全长213m,无纵坡。
考虑主桥桩基、立柱、系梁施工,全桥布,2-6号墩修建支栈桥和平台各5个。
桥墩采用钢管桩基础,桥台采用砼基础。
主栈桥简况:栈桥桥面宽度6m。
栈桥梁部使用贝雷梁搭设:每断面布置3组单层贝雷梁,每组2片,采用90支撑架连接,组间距分布为:1.35+1.35。
贝雷梁上设横分配梁,横向分配梁为Ι22a工字钢,间距1 m,分配梁长度为6米。
桩基采用二种布置形式:a,单排桥脚形式,采用3根630mm*10mm规格钢管桩;b,复式桥脚,采用双排6根630mm*10mm及以上钢管桩。
承重梁为单拼H600*200钢,桥台采用砼桥台基础。
桥面采用专用桥面板,车道两侧设1.2m高防撞护栏。
其相关布置图如下:上部结构布置形式桥墩下部布置形式支栈桥简况:根据主桥桥墩位置进行布置,靠近桩基边离桩基边线为2.5m。
栈桥桥面宽度6m,长度21或24m。
梁部使用贝雷梁搭设:每断面布置3组单层贝雷梁,每组2片,采用90支撑架连接,组间距分布为:1.35+1.35。
贝雷梁上设横分配梁,横向分配梁为Ι22a工字钢,间距1 m,分配梁长度为6米。
桩基采用单排桥脚形式,采用3根630mm*10mm及以上规格钢管桩。
桥面采用专用桥面板,车道外侧设1.2m高防撞护栏。
承重梁为单拼H600*200钢,其相关布置图同主栈桥。
钻孔平台简况:根据主桥桥墩位置进行布置,靠近支栈桥边布置。
宽度6m,长度18m。
梁部使用贝雷梁搭设:每断面布置2组单层贝雷梁,每组2片,采用120支撑架连接,组间距分布为:3.96m。
钢栈桥计算书
钢栈桥计算书济南长清黄河⼤桥(⼆标段)钢栈桥计算书⼀、计算依据1、《装配式公路钢桥多⽤途使⽤⼿册》;2、《公路桥涵设计通⽤规范》JTG D60-2004;3、《钢结构设计规范》GB 50017-2003;4、《公路桥涵钢结构及⽊结构设计规范》JTJ025-86;5、《路桥施⼯计算⼿册》;6、《公路桥涵地基与基础设计规范》JTG D63-2007;7、《⼟⽊⼯程施⼯机械实⽤⼿册》;8、其他设计资料⼆、设计参数1、栈桥桥⾯标⾼:+36.3m;2、Q235材料:抗拉、抗压和抗弯强度按照《钢规》表3.4.1-1取值;3、河床覆盖层:粉⼟、粉质黏⼟、粉砂;4、栈桥桥⾯宽度为:6m,加宽段为9m;5、设计荷载按照70t(履带吊车60t+吊车荷载10t;或者70t⽔泥罐车)设计。
三、栈桥结构说明栈桥上部结构主梁为三组双排单层贝类梁,贝雷梁采⽤花架交叉连接。
次分配梁采⽤I20a间距45cm排列,桥⾯板采⽤8mm厚花纹钢板满铺,栏杆采⽤,45钢管焊接。
钢管桩采⽤,630和,820两种作为桩基墩柱,每排墩布置两根,间距4.4m,加宽段每排布置3根,间距4.4m。
钢管间设置[16槽钢剪⼑斜撑。
桩顶分配梁为2I36a双拼⼯字钢。
钢栈桥标准横断⾯图如下:四、荷载布置1、上部结构恒重(6.0m宽计算)(1)δ8mm花纹钢板:66.8kg/㎡;(2)I20a横梁:27.9kg/m;(3)贝雷梁:279kg/⽚;(4)2I36a下横梁:119.8 kg/m。
2、活荷载:(1)70t⽔泥罐车:700kN;(2)履带吊70t(3)施⼯荷载及⼈群荷载:4kN/m;考虑吊装荷载总重量70t,取履带长4.7m,每条履带宽0.8m,3.5m为两履带间距。
则每侧履带荷载为700/(4.7×0.76×2)=98kN/㎡,均匀分布于两条履带上。
轮压分布如下图:⽔泥罐车车轮分布图(轮胎接地宽度0.3m ,长度0.2m ,取后轮间距为1.4m ,前轮间距为4m )。
钢栈桥计算书
钢栈桥计算书蒿⼦港澧⽔河钢栈桥设计计算书⼀. ⼯程概况岳常⾼速TJ-22合同段为独⽴特⼤桥标段,合同⼯程为蒿⼦港澧⽔特⼤桥。
蒿⼦港澧⽔特⼤桥是岳阳⾄常德⾼速公路跨越澧⽔的⼀座特⼤桥,⼤桥总长2712.08m。
具体桥型布置⾃岳阳⾄常德岸为14×25m预应⼒先简⽀后连续⼩箱梁+43+66+40m预应⼒悬浇连续箱梁+37×40m预应⼒先简⽀后连续⼩箱梁+66+3×106+66m预应⼒悬浇连续箱梁+11×25m预应⼒先简⽀后连续⼩箱梁。
为⽅便施⼯,经项⽬经理部研究决定,在66+106×3+66m预应⼒悬浇连续箱梁段修建⼀座施⼯栈桥。
⼆. 结构设计钢栈桥采⽤型钢组合的结构形式,标准跨径9m。
钢栈桥采⽤630×8mm钢管桩作为基础,钢栈桥横桥向中⼼间距281cm,在钢管桩上⾯设置双肢I36a型钢作为承重梁,并设置⽜腿与钢管桩连接。
承重梁上⾯设置I45a型钢作为第⼀层分配梁,上⾯铺设[20a型钢作为第⼆层分配梁,中⼼距为25cm,形成栈桥。
栈桥两侧设置φ48mm钢管作为防护栏。
三. 计算过程中采⽤的部分参数1. Q2353钢材的允许应⼒[σ]=180Mpa2. Q2353钢材的允许剪应[τ]=110 Mpa3. 16MN钢材的允许应⼒[σ]=237 Mpa4. 16MN钢材的允许剪应⼒[τ]=104 Mpa5. 16MN钢材的弹性模量E=2.1×105Mpa四. 设计技术参数及相关荷载⼤⼩选定1. 根据实际施⼯情况,栈桥通过最重车辆为10m3砼罐车和50T履带吊,则计算荷载为50T履带吊及砼罐车。
取最⼤荷载50T履带吊,⾃重约为50T,其计算⼯况为最重荷载在栈桥上⾏驶时对栈桥的影响,考虑可能出现的履带吊停留在栈桥上吊装作业时的情况,吊重按20T考虑,则考虑1.15的冲击系数最后取80.5T进⾏验算。
2. 结构⾃重按实际重计⼊。
3. 流⽔压⼒施⼯区域流⽔较缓,流速取2.0m/s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某工程51米钢栈桥计算书XXXXXXX公司2010年6月16日下承式栈桥验算书一、验算说明:栈桥上部结构为51米,桥面为4米,桥面由12.6工字钢和8mm花纹钢板组合组成,采用下承式结构,桥面板纵向分配梁I12.6a工字钢,间距为0.24m。
横向分配梁I32a工字钢,最大间距为1.59m,桥墩、台采用钢筋砼。
二、设计依据1、《公路桥涵设计通用规范》(JTG D60-2004)2、《公路工程技术标准》JTG B01-20033、《钢结构设计规范》( GB 50017-2003)三、主要参考资料1、《钢结构设计手册》第三版2、《路桥施工计算手册》3、《建筑结构静力计算手册》2004版四、主要技术标准设计荷载:80吨散装水泥罐车,考虑安全系数1.4,栈桥设计中选112吨荷载对整个桥梁结构进行验算;图一 80吨随州散装水泥罐车荷载布置图(图中省略车头部分)五、结构恒重(1)钢便桥面层:8mm厚钢板,单位面积重62.8kg/m2,则3.14kN/m。
(2)I12.6单位重14.21kg/m,则0.14kN/m,间距0.25m 。
(3)I32a单位重52.7 kg/m,则0.53kN/m,3.162KN/根,最大间距1.59m。
(4)纵向主梁:321型贝雷梁, 4.44 KN/m。
(含附件)六、上部结构内力计算6.1桥面板验算(1)荷载计算因桥面纵向工字钢的横向间距空隙仅为17.6cm,汽车轮宽度50cm,汽车轮宽远远大于工字钢间距,故此处对花纹板不做单独验收。
仅对桥面纵向分配梁I12.6进行计算。
单边车轮作用在跨中时,I12.6a弯矩最大,轮压力为简化计算可作为集中力。
荷载分析:1)均布荷载:0.157kN/m(面板)2)施工及人群荷载:不考虑与汽车同时作用3)汽车轮压:车轮接地尺寸为0.5m×0.2m, 最大轴重为224kN,每轴2组车轮,则单组车轮荷载为112kN,每组车轮压在3根I12.6上,则单根I12.6承受的荷载为37.3KN。
则单边车轮布置在跨中时弯距最大计算模型如下(以整个后轴建模按连续梁计算)6.1.1 受力模型6.1.2 弯矩图(Mmax=9kN.m ,Qmax=29.44kN)选用I12.6a,则 Wx=77cm3;σ=M/W=9kN.m /77 cm3=116.9Mpa<[δ] =188.5 Mpa;满足强度要求。
τ=QS/Ib=29.44/10.8/0.5=54.5Mpa<[τ]=85×1.3=110Mpa(根据公路桥涵钢结构及木结构设计规范第1.2.10条有:对于临时结构有1.3 [σ]=145×1.3=188.5Mpa),[τ]=85×1.3=110Mpa(2)刚度验算该结构的容许挠度为不大于结构总长的1/400。
根据《建筑结构静力计算手册》=qcl3(8-4γ2+γ3)/384EI挠度:fmaxγ=c/l=0.2m/1.59m=0.126=37.3KN×1.233(8-4×0.1262+0.1263)/(384×2.1×105MPa×488cm4)fmax=1.3×10-3m﹤1.23m/400=3.08×10-3m6.2 I32a横向分配梁内力计算(1)荷载计算单边车轮作用在跨中时,横向分配梁的弯矩最大,轮压力为简化计算可作为集中力。
荷载分析:1)均布荷载:分配梁均布荷载:(1.59*17*0.142+1.59*4*0.628)kN/m/2/4=0.98kN/m2)施工及人群荷载:不考虑与汽车同时作用3)汽车轮压:80T散装水泥罐车当后车轮中心布置在跨中时,计算模型如下:便桥断面图6.2.3受力模型6.2.4弯矩、剪力图(Mmax=67.6kN.m ,Qmax=168kN)则 A= 67cm2 , W=692cm3,I/S=27.5cm(I=11080 cm4,S=400.5 cm3),选用I32ab=0.95cmσ=M/W=67.6/0.692=97.7MPa<188.2 MPaτ=QS/Ib=168/27.5/0.95=64Mpa<[τ]=85×1.3=110Mpa(2)刚度计算=0.003m﹤4m/400=0.01m挠度:wmax结构刚度与强度均满足要求。
6.3贝雷梁内力计算6.3.1汽车荷载作用以最大跨径18米连续梁进行荷载分析:=4.92kN/m+3.162*1.333+4.44=13.58kN/m;1)自重均布荷载: q12)施工及人群荷载: 不考虑与车辆同时作用;3)利用SAP2000建立受力模型如下:a. 80T散装水泥罐车后轴中心布置在跨中:6.3.1.1 受力模型6.3.1.2弯矩、剪力图(Mmax=1898.5kN.m, Qmax=626.7kN)6.3.3节点反力图(Nmax=1093.5kN)b. 80T罐车后轮轴布置在跨端6.3.1.4 受力模型6.3.1.5 弯矩、剪力图(Mmax=1868.8kN.m, Qmax=620kN)6.3.1.6节点反力图(Nmax=1249.8kN)由以上荷载分析:Mmax =1898.5kN.m,Qmax=626.7kN纵向主梁选用2组双排单层贝雷架,则贝雷梁容许弯矩[M]=788.2×4+450*4=4952.8kN.m,容许剪力[Q]=245×4=980kN,截面特性:[I]=5×105×2=10×105cm4。
Mmax= Mmax2=1898.5kN.m<[M]= 4952.8kN.mQmax= Qmax1=626.7kN<[Q] =981kN刚度计算根据《建筑结构静力计算手册》挠度:f=qcl3(8-4γ2+γ3)/384EImaxγ=c/l=8. m/18m=0.43fmax =1120KN×18003(8-4×0.432+0.433)/(384×2.1×105MPa×10×105cm4)=6×10-3cm﹤18m/400=45×10-3cm满足强度要求。
7.1 承重梁内力分析承重梁1承重梁一作为栈桥结构的主要承重结构,是栈桥结构稳定安全的生命线,拟采用的型材为2I40a。
根据第6.3节对贝雷梁的计算分析,得到最大节点反力为1250kN,主纵梁为4排单层贝雷,则单排贝雷对承重梁一的作用力为1250kN/4=312.5kN。
下面对最不利情况下,承重梁的内力情况进行建模分析。
计算模型计算结果(Mmax=56.6N.m ,Qmax=313.5kN,wmax=0.0011,Nmax=607.61KN) 根据上述建立有限元模型进行分析可知,取最大荷载Mmax=56.6kN·m,Qmax=313.5kN进行桩顶承重梁的截面设计。
选用2I40a,查《钢结构计算手册》得各相关力学参数如下:W=2×1090cm3=2180cm3,A=2×86.1=172.2cm2,I/S=34.1(I=21720cm4,S=631.2cm3),b=1.05×2=2.1cm,下面对其强度进行验算:σ=M/W=56.6kN·m /2180cm3=26MPa<1.3[σ]τ=QS/Ib=313.5kN×10/34.1cm/2.1cm=44MPa<1.3[τ]挠度Wmax=0.001﹤1.5m/400=0.0038满足要求,满足要求。
8钢管桩承载力根据上述计算分析知,钢管桩基础单桩承载力最大的情况出现在车在单排桩基础顶施工作业时,单桩最大承受荷载约=607.6kN。
考虑本项目的地质条件及设计提供的相关地质资料,施工采用先在地基上浇筑承台,在承台面预埋钢板,与钢管桩焊接成整体。
钢管桩φ400mm×8mm,A=98.52cm2。
河床面高程为()m,则可假定钢管桩悬臂固结点在最低冲刷线()m 处,桩顶标高取()m,现假定钢管悬臂长度为3m。
下面重点计算φ400mm×8mm钢管桩。
8.1 单根钢管桩流水压力计算单根桩流水压力计算:Fw=kAγv2/(2g)式中:Fw――流水压力标准值(kN);k ――形状系数(钢管取0.8);A ――阻水面积(m2),计算至一般冲刷线处;γ――水的重力密度(kN/m3);v ――设计流速(3m/s);g ――重力加速度(9.81m/s2)。
Fw=kAγv2/(2g) =0.8×(2.4×10)×32÷2÷9.81=8.8kN水流力作用在水深的1/3处,即为水深2m处(以最高水位在钢管桩顶,进行假设计算)水流力对钢管产生的弯矩:Mx1=8.8×2=17.6KN.m8.2 汽车水平制动力根据《公路桥涵设计通用规范》(JTG D60-2004)查得,汽车制动力为汽车荷载重力的10%,计算由2个墩承担,此处每根桩取水平制动力为800/2/3=13.3KN。
水平制动力对钢管产生的弯矩:Mx2=13.3×(3.82)=50KN.m8.3 钢管强度及稳定性验算由以上分析可知:σ1=M/I×x=17.6KN.m/37863cm4×0.2m=9.3MPa<188.2 MPaσ2=M/I×y=50KN.m/37863cm4×0.2m=26.4MPa<188.2 MPa回转半径rx=13.862cm长细比λ=l0/rx=300/13.86=21.6查《钢结构设计规范》附表17得稳定系数ψ=0.961σ=N/ΨA+σ1+σ2=607.6/(0.961×98.52)+9.3+26.4=100Mpa<188.2 MPa故钢管强度及稳定性满足设计要求。
9混凝土基础验算拟定混凝土承台尺寸为:长×宽×高=6. m×1.5m×1.5m。
1、施工车辆纵向水平制动力:F1=800t×10%/2=50KN(考虑2个墩分担) 水平制动力对基础产生的弯矩:Mx1=13.3×(0.82+3.0+1.3)=68KN.m2、水流力对基础产生的弯矩:My=8.8×(1.3+2)=29KN.m3、施工作用最大竖向力P=1250KN4、基础底部承载力计算:基底面积A=6. m×2m=12m2Wx=6.×1.52÷6=2.25 m3Wy=1.5×62÷6=9 m3竖向力总和P总=1250+26×13.5+77.33×3×3/100=1609KN5、当基底双向偏心受压,承受竖向力N和绕x轴荷y轴弯矩共同作用时,Pmax=N/A+Mx/Wx+My/Wy=1609÷12+68÷2.25+29÷9=167.6Kpa (现场为硬质岩层)故承载力满足要求。