高中:高三数学第一轮复习讲义(教学设计)
高三数学一轮复习精品教案1:线面、面面平行的判定与性质教学设计
9.4直线、平面平行的判定与性质1.直线与平面平行的判定定理和性质定理文字语言图形语言 符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)⎭⎪⎬⎪⎫l ∥a a ⊂αl ⊄α l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)⎭⎪⎬⎪⎫l ∥αl ⊂βα∩β=b l ∥b 2.平面与平面平行的判定定理和性质定理文字语言 图形语言 符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)⎭⎪⎬⎪⎫a ∥βb ∥βa ∩b =P a ⊂αb ⊂αα∥β 性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b a ∥b1.直线与平面平行的判定中易忽视“线在面内”这一关键条件. 2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.『试一试』1.下列说法中正确的是________(填序号).①一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内.『解析』由线面平行的性质定理知①④正确;由直线与平面平行的定义知②正确;③错误,因为经过一点可作一直线与已知直线平行,而经过这条直线可作无数个平面.『答案』①②④2.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,且m ⊥α,则l ⊥α; ②若m ∥l ,且m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m . 其中正确命题的个数是________.『解析』易知①正确;②错误,l 与α的具体关系不能确定;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例说明.『答案』21.转化与化归思想——平行问题中的转化关系2.判断线面平行的两种常用方法面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.『练一练』1.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题 ①⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β ②⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β③⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α ④⎭⎪⎬⎪⎫a ∥γα∥γ⇒α∥a其中正确的命题是________(填序号).『解析』②正确.①错在α与β可能相交.③④错在a 可能在α内. 『答案』②2.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件______时,有MN ∥平面B 1BDD 1.『解析』由平面HNF ∥平面B 1BDD 1知,当M 点满足在线段FH 上有MN ∥平面B 1BDD 1.『答案』M ∈线段FH考点一线面平行、面面平行的基本问题1.有互不相同的直线m ,n ,l 和平面α,β,给出下列四个命题: ①若m ⊂α,l ∩α=A ,A ∉m ,则l 与m 不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若m ,n 是相交直线,m ⊂α,m ∥β,n ⊂α,n ∥β,则α∥β; ④若l ∥α,m ∥β,α∥β,则l ∥m . 其中真命题有________个.『解析』由异面直线的判定定理,易知①是真命题;由线面平行的性质知,存在直线l ′⊂α,m ′⊂α,使得l ∥l ′,m ∥m ′,∵m ,l 是异面直线,∴l ′与m ′是相交直线,又n ⊥l ,n ⊥m ,∴n ⊥l ′,n ⊥m ′,故n ⊥α,②是真命题;由线面平行的性质和判定知③是真命题;满足条件l ∥α,m ∥β,α∥β的直线m ,l 或相交或平行或异面,故④是假命题.『答案』32.(2014·济宁模拟)过三棱柱ABC A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1 平行的直线共有________条.『解析』过三棱柱ABC A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1均与平面ABB 1A 1平行,故符合题意的直线共6条.『答案』6『备课札记』『类题通法』解决有关线面平行、面面平行的基本问题要注意(1)判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽视.(2)结合题意构造或绘制图形,结合图形作出判断. (3)举反例否定结论或用反证法推断命题是否正确.考点二直线与平面平行的判定与性质『典例』 (2013·新课标卷Ⅱ)如图,直三棱柱ABC A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C A 1DE 的体积. 『解』 (1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD . (2)因为ABC A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D . 所以VC A 1DE =13×12×6×3×2=1.『备课札记』在本例条件下,线段BC 1上是否存在一点M 使得DM ∥平面A 1ACC 1? 解:存在.当M 为BC 1的中点时成立. 证明如下:连结DM ,在△ABC 1中, D ,M 分别为AB ,BC 1的中点 ∵DM 綊12AC 1,又DM ⊄平面A 1ACC 1AC 1⊂平面A 1ACC 1,∴DM ∥平面A 1ACC 1.『类题通法』证明线面平行的关键点及探求线线平行的方法(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线; (2)利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行;(3)注意说明已知的直线不在平面内,即三个条件缺一不可. 『针对训练』如图,已知四棱锥P ABCD 的底面为直角梯形,AB ∥CD ,∠DAB =90°,P A ⊥底面ABCD ,且P A =AD =DC =12AB =1,M 是PB 的中点.(1)求证:AM =CM ;(2)若N 是PC 的中点,求证:DN ∥平面AMC .证明:(1)∵在直角梯形ABCD 中,AD =DC =12AB =1,∴AC =2,BC =2,∴BC ⊥AC ,又P A ⊥平面ABCD ,BC ⊂平面ABCD , ∴BC ⊥P A ,又P A ∩AC =A , ∴BC ⊥平面P AC ,∴BC ⊥PC .在Rt △P AB 中,M 为PB 的中点,则AM =12PB ,在Rt △PBC 中,M 为PB 的中点, 则CM =12PB ,∴AM =CM .(2)如图,连结DB 交AC 于点F , ∵DC 綊12AB ,∴DF =12FB .取PM 的中点G ,连结DG ,FM , 则DG ∥FM ,又DG ⊄平面AMC ,FM ⊂平面AMC , ∴DG ∥平面AMC .连结GN ,则GN ∥MC ,GN ⊄平面AMC , MC ⊂平面AMC . ∴GN ∥平面AMC , 又GN ∩DG =G ,∴平面DNG ∥平面AMC , 又DN ⊂平面DNG ,∴DN ∥平面AMC .考点三平面与平面平行的判定与性质『典例』 (2013·陕西高考)如图,四棱柱ABCD A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心, A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面 A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD A 1B 1D 1的体积. 『解』 (1)证明:由题设知,BB 1綊DD 1, ∴四边形BB 1D 1D 是平行四边形, ∴BD ∥B 1D 1. 又BD 平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C . 又A 1B 平面CD 1B 1, ∴A 1B ∥平面CD 1B 1. 又∵BD ∩A 1B =B , ∴平面A 1BD ∥平面CD 1B 1. (2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD A 1B 1D 1的高. 又∵AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1.又∵S △ABD =12×2×2=1,∴VABD A 1B 1D 1=S △ABD ×A 1O =1.『备课札记』『类题通法』判断面面平行的常用方法(1)利用面面平行的判定定理;(2)面面平行的传递性(α∥β,β∥γ⇒α∥γ);(3)利用线面垂直的性质(l⊥α,l⊥β⇒α∥β).『针对训练』如图,在直四棱柱ABCD A1B1C1D1中,底面是正方形,E,F,G分别是棱B1B,D1D,DA的中点.求证:(1)平面AD1E∥平面BGF;(2)D1E⊥AC.证明:(1)∵E,F分别是B1B和D1D的中点,∴D1F綊BE.∴四边形BED1F是平行四边形,∴D1E∥BF;又∵D1E⊄平面BGF,BF⊂平面BGF,∴D1E∥平面BGF.∵FG是△DAD1的中位线,∴FG∥AD1;又AD1⊄平面BGF,FG⊂平面BGF,∴AD1∥平面BGF.又∵AD1∩D1E=D1,∴平面AD1E∥平面BGF.(2)连结BD,B1D1,∵底面是正方形,∴AC⊥BD.∵D1D⊥AC,D1D∩BD=D,∴AC⊥平面BDD1B1.∵D1E⊂平面BDD1B1,∴D1E⊥AC.『课堂练通考点』1.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是________.『解析』对于①,若a ∥b ,b ⊂α,则应有a ∥α或a ⊂α,所以①不正确;对于②,若a ∥b ,a ∥α,则应有b ∥α或b ⊂α,因此②不正确;对于③,若a ∥α,b ∥α,则应有a ∥b 或a 与b 相交或a 与b 异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.『答案』02.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是________.『解析』对于图形①,平面MNP 与AB 所在的对角面平行,即可得到AB ∥平面MNP ;对于图形④,AB ∥PN ,即可得到AB ∥平面MNP ;图形②③无论用定义还是判定定理都无法证明线面平行.『答案』①④3.(2014·南京学情调研)已知α,β为两个不同的平面,m ,n 为两条不同的直线, 下列命题:(1)若m ∥n ,n ∥α,则m ∥α; (2)若m ⊥α,m ⊥β,则α∥β;(3)若α∩β=n ,m ∥α,m ∥β,则m ∥n ; (4)若α⊥β,m ⊥α,n ⊥β,则m ⊥n . 其中是真命题的是________(填序号).『解析』对于(1),由m ∥n ,n ∥α得m ∥α或m ⊂α,故(1)错误;根据空间中直线与平面的平行、垂直关系进行一一判断.『答案』(2)(3)(4)4.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.『解析』连结AM 并延长,交CD 于E ,连结BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD .『答案』平面ABC、平面ABD5.如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明:(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC.∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形.∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.。
高三数学第一轮复习第讲教案等比数列
芯衣州星海市涌泉学校沙城中学补习班数学第一轮复习教案第二十讲3.4等比数列一、知识网络1.等比数列定义:从第二项起,每一项与它前一项的比等于同一个常数的数列称作等比数列.10n na q a +=≠为常数,且第每项不为零.2.通项公式11-=n n q a a ,推广:mn m n q a a -=,3.前n 项和111(1)(1)(01)11n n n na q S a q a a qq q q =⎧⎪=--⎨=≠⎪--⎩、,q≠1时,m n S S =mnq q --11.注:应用前n 项和公式时,一定要区分q=1与q≠1的两种不同情况,必要的时候要分类讨论. 4.等比中项:假设a 、b 、c 成等比数列,那么b 是a 、c 的等比中项,且ac b ±=5.等比数列{an}的性质:(1)假设qp n m a a a a N q p n m q p n m ⋅=⋅∈+=+*则,,,,(2)下标成等差数列的项构成等比数列(3)连续假设干项的和也构成等比数列. 6.证明数列为等比数列的方法:(1)定义法:假设{}为等比数列数列n n n a N n q a a ⇔∈=*+)(1(2)等比中项法:假设{}2120,()n n n n a a a n N a *++=⋅≠∈⇔数列为等比数列(3)通项法:假设{}为等比数列数列的常数均是不为n n n a N ,n q c cq a ⇔∈=*)0,( (4)前n 项和法:假设(,0,1)nn S Aq A A q q q =-≠≠⇔为常数,且数列{}n a 为等比数列。
二、经典例题【例1】(2021)正项数列{an},其前n 项和Sn 满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an解:∵10Sn=an2+5an+6,①代n=1得10a1=a12+5a1+6,a1=2或者者a1=3又10Sn -1=an -12+5an -1+6(n≥2),②由①-②得10an=(an2-an -12)+6(an -an -1),即(an+an -1)(an -an -1-5)=0 ∵an+an-1>0,∴an-an -1=5(n≥2)当a1=3时,a3=13,a15=73 a1,a3,a15不成等比数列∴a1≠3;当a1=2时,a3=12,a15=72,有a32=a1a15,∴a1=2,∴an=5n-3【例2】等比数列{an}的各项均为正数,其前n 项中,数值最大的一项是哪一项哪一项54,假设该数列的前n 项之和为Sn ,且Sn=80,S2n=6560,求:〔1〕前100项之和S100.〔2〕通项公式an. 解:设公比为q ,由得Sn=q q a n --1)1(1=80,①S2n=q q a n --1)1(21=6560,②由②÷①解得,qn=81,q>1,〔∵an>0〕,可知最大项为an=a1qn -1③qn=81代入①③得a1=2,q=3,〔1〕前100项之和S100=13)13(2100--=3100-1.〔2〕通项公式为an=2·3n-1. 提炼方法:1.转化为根本量;2.解方程次数较高时除一下可降次.3.断定最大项的方法.【例3】〔2021全国Ⅲ〕在等差数列{an}中,公差d≠0,且a2是a1和a4的等比中项,a1,a3,,a ,a ,a ,a n321k k k k 成等比数列,求数列k1,k2,k3,…,kn 的通项kn解:由题意得:4122a a a =即)3()(1121d a a d a +=+又0,d ≠d a =∴1an=na1 又,,,,,,2131n k k k a a a a a 成等比数列,∴该数列的公比3313===d da a q ,其中第n+2项:113+⋅=n k a a n 又1n k n a k a =13+=∴n n k 所以数列}{n k 的通项为13+=n n k【例4】12a =,点1(,)n n a a +在函数2()2f x x x =+的图象上(1,2,3,n =)〔1〕证明数列{lg(1)}n a +是等比数列;〔2〕设12(1)(1)(1)n n T a a a =+++,求n T 及数列{}n a 的通项;解:〔Ⅰ〕由212n n n a a a +=+,211(1)n n a a +∴+=+12a =11n a ∴+>,两边取对数得1lg(1)2lg(1)n n a a ++=+,即1lg(1)2lg(1)n n a a ++=+{lg(1)}n a ∴+是公比为2的等比数列. 〔Ⅱ〕由〔Ⅰ〕知11lg(1)2lg(1)n n a a -+=⋅+ 1122lg 3lg 3n n --=⋅=1213n n a -∴+=〔*〕12(1)(1)n T a a ∴=++n …(1+a )012222333=⋅⋅⋅⋅n-12…321223+++=n-1…+2=n 2-13由〔*〕式得1231n n a -=- 【研讨.欣赏】设数列{an },a1=65,假设以a1,a2,…,an 为系数的二次方程:an -1x2-anx +1=0〔n∈N*且n≥2〕都有根α、β满足3α-αβ+3β=1.〔1〕求证:{an -21}为等比数列;〔2〕求an ;〔3〕求{an }的前n 项和Sn.证明〔1〕∵α+β=1-n n a a ,αβ=11-n a 代入3α-αβ+3β=1得an =31an -1+31,∴21211---n n a a =2121313111--+--n n a a =31为定值.∴数列{an -21}是等比数列.解〔2〕∵a1-21=65-21=31,∴an-21=31×〔31〕n -1=〔31〕n.∴an=〔31〕n +21. 解〔3〕Sn =〔31+231+…+n31)+2n =311)311(31--n +2n =21+n -n 321⨯. 三、双基题目1.(2021)假设互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且a+3b+c=10,那么a=〔〕A.4B.2 C.-2D.-42.银行一年定期的年利率为r ,三年定期的年利率为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于()A.1)1(3-+rB.31[〔1+r 〕3-1]C.〔1+r 〕3-1D.r3.〔2021〕在等比数列{}n a 中,12a =,前n 项和为n S ,假设数列{}1n a +也是等比数列,那么Sn 等于()〔A 〕122n +-〔B 〕3n 〔C 〕2n 〔D 〕31n-4.〔2021〕设4710310()22222()n f n n N +=+++++∈,那么()f n 等于()〔A 〕2(81)7n- 〔B 〕12(81)7n +-〔C 〕32(81)7n +- 〔D 〕42(81)7n +-5.在2与6之间插入n 个数,使它们组成等比数列,那么这个数列的公比为6.等比数列{an}中,a1+a2+a3=7,a1a2a3=8,那么通项公式为简答:1-4.DBCD;2.由题意得〔1+r 〕3<1+3q ,故q >31[〔1+r 〕3-1];4.通项an=23n-2,f(n)是前n+4项的和;5.13+n 6.转化为根本量a1,q ,an=2n -1或者者an=23-n.。
高中一轮复习教案数学
高中一轮复习教案数学第一课:函数及其性质
1.1 函数的定义和性质
概念:函数的定义和表示方法
性质:单调性、奇偶性、周期性等
1.2 函数的基本变换
平移、翻转、缩放等基本函数的变换方法
例题:给出函数图像,要求根据变换规律求新函数的图像1.3 复合函数
概念:复合函数的定义和计算方法
例题:计算复合函数的值,并分析其性质
1.4 反函数
概念:反函数的存在条件及求解方法
例题:给定函数,求其反函数,并验证是否合理
第二课:三角函数及其应用
2.1 三角函数的概念与性质
正弦、余弦、正切等三角函数的定义和性质
例题:解三角函数方程,证明恒等式等
2.2 三角函数的图像与变换
三角函数的图像特征及平移、翻转、缩放等变换规律
例题:给定函数图像,要求根据变换规律求新函数的图像2.3 三角函数的应用
三角函数在几何、物理等领域的应用
例题:实际问题中的三角函数应用
第三课:导数与微分
3.1 导数的概念与性质
导数的定义、导数与函数图像的关系等基本性质
例题:求函数的导数,研究导数的性质
3.2 导数的计算
常见函数的导数计算方法
例题:计算给定函数的导数,并分析其变化规律
3.3 微分的应用
微分的定义及在近似计算、最值问题等方面的应用
例题:利用微分求函数的极值点,解几何问题等
以上是高中数学一轮复习的教案范本,希望对你的备考有所帮助。
祝你取得优异的成绩!。
精--高三数学第一轮复习讲义.doc
高三数学第一轮复习讲义高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式;2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 . 例 4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式;2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 .例4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式;2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 . 例 4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式;2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比.例3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 .例4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 .例4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 . 例 4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 .例4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 . 例 4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 .例4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名高三数学第一轮复习讲义直线的方程一.复习目标: 1.深化理解倾斜角、斜率的观点,娴熟掌握斜率公式; 2 .掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能娴熟写出直线方程.二.知识重点: 1.过两点、的直线斜率公式:.2.直线方程的几种形式:点斜式:;斜截式:;两点式:;截距式:;一般式:.三.课前预习: 1 .设,则直线的倾斜角为()2.已知,则过不一样三点,,的直线的条数为()多于 3.已知的极点 ,,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是.4.若直线的方向向量是, 则直线的倾斜角是;若点,,直线过点且与线段订交,则直线的斜率k的取值范围为.四.例题剖析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程 . 例 2.⑴已知,试求被直线所分红的比λ;⑵已知,,若直线与直线订交于点,不与重合,求证:点分的比 . 例 3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程 . 例 4.的一个极点,两条高所在直线方程为和,求三边所在直线方程.五.课后作业:班级学号姓名。
高三数学第一轮复习讲义
高三数学第一轮复习讲义(1) 2008.6不等式的解法一.复习目标:在掌握一元一次不等式、一元二次不等式、简单的高次不等式、分式不等式的解法的基础上,掌握某些简单的不等式的解法.二.知识要点:1.同解变形是解不等式应遵循的主要原则,高中阶段所解的不等式最后都要转化为一元一次或一元二次不等式,因此,等价转化是解不等式的主要思路;2.不等式组的解是本组各不等式解集的交集,取交集时,一定要将各不等式的解集在同一数轴上标出来,不同不等式解集的示意线最好在高度上有所区别.三.课前预习:1.不等式212x x <++的解集是( )()A (3,2)(0,)--+∞()B (,3)(2,0)-∞--()C (3,0)-()D (,3)(0,)-∞-+∞2.关于x 的不等式(2)50a b x a b -+->的解集是10(,)7-∞,则关于x 的不等式ax b >的解集是( )()A 3(,)5+∞()B 3(,)5-∞()C 3(,)5-+∞()D 3(,)5-∞-3.设函数1221, 0(), 0xx f x x x -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是( )()A (1,1)- ()B (1,)-+∞ ()C (,2)(0,-∞-+∞()D (,1)(1,-∞-+∞4.不等式2821()33x x-->的解集是 .5.已知不等式20ax bx c -+>的解集是1(,2)2-,对于,,a b c 有以下结论:①0a >;②0b >;③0c >;④0a b c ++>;⑤0a b c -+>.其中正确的有 .6.已知不等式①2430x x -+<;②2680x x -+<;③2290x x m -+<,要使同时满足①②的x 也满足③,则m 的取值范围是 .四.例题分析:例1.设全集I R =,集合22{|(21)0}A x x a x a a =-+++<,2{|540}B x x x =-+≥,且A B ≠⊂,求a 的取值范围.例2.已知关于x 的不等式250a x x a-≤-的解集为M , (1)当4a =时,求集合M ;(2)若3,5M M ∈∉,求实数a 的取值范围.例3.解不等式21log [2(2)1]0xx x x a aa +-++>,其中1a >,例4.已知函数()f x 在R 上是增函数,,a b R ∈,(1)求证:若0a b +≥,则()()()()f a f b f a f b +≥-+-; (2)判断(1)中命题的逆命题是否成立?并证明你的结论; (3)解不等式11(lg )(2)(lg)(2)11x x f f f f xx-++≥+-+-.五.课后作业: 班级 学号 姓名1.不等式2(3)(10)0(1)x x x x--≥-的解集是 ( )()A (,0)(1,3][10,)-∞+∞ ()B (,0)(0,1)[3,10]-∞()C (0,1)(3,10)()D [0,1)(3,10)2.已知不等式2230x x --<的解集为A ,不等式260x x +-<的解集为B ,不等式20x a x b ++<的解集为A B ,则a b +等于( )()A 3-()B 1()C 1-()D 33.设函数(),()f x g x 都上定义在R 上的奇函数,不等式()0f x >的解集为(,)m n ,不等式()0g x >的解集为(,)22m n ,其中02m n <<,则不等式()()0f x g x ⋅>的解集是 ( )()A (,)22m n()B (,)(,)2222m n n m -- ()C (,)n m --()D (,)(,)22n n m m --4.若不等式22113()3x a xx -+>对一切实数x 恒成立,则实数a 的取值范围是 . 5.已知20a x b x c ++>的解集为{|0}x x αβ<<<,则不等式20cx bx a -+>的解集是 . 6.已知关于x 的不等式()()0x a x b x c--≥-的解为12x -≤<或3x ≥,则不等式0()()x c x a x b -≤--的解集为 . 7.解不等式1318329x x+-+⋅>.8.解不等式:(1)2(2)(1)(1)(2)0x x x x ++--≤;(2)22032x x x-<+-.9.已知0a >且1a ≠,关于x 的不等式1xa >的解集是(,0)-∞,求关于x 的不等式1lo g ()0a x x->的解集.10.若不等式221(1)x m x ->-对满足||2m ≤的所有m 都成立,求x 的取值范围.11.设集合2{|2(1)10}M x ax a x =-+->,已知M φ≠,M R +⊆,求a 的取值范围.。
高中数学高三第一轮复习精品教案(1.1~4.10)Word版(打包共28份)
第一章集合与简易逻辑●网络体系总览●考点目标定位1.理解集合、子集、补集、交集、并集的概念;了解属于、包含、相等关系的意义.2.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.3.理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义.4.学会运用数形结合、分类讨论的思想方法分析和解决有关集合的问题,形成良好的思维品质.●复习方略指南本章内容在高考中以考查空集与全集的概念,元素与集合、集合与集合之间的关系,集合的交、并、补运算为重点,以上内容又以集合的运算为重点考查内容.逻辑联结词与充要条件这部分,以充要条件为重点考查内容.本章内容概念性强,考题大都为容易的选择题,因此复习中应注意:1.复习集合,可以从两个方面入手,一方面是集合的概念之间的区别与联系,另一方面是对集合知识的应用.2.主要是把握集合与元素、集合与集合之间的关系,弄清有关的术语和符号,特别是对集合中的元素的属性要分清楚.3.要注意逻辑联结词“或”“且”“非”与集合中的“并”“交”“补”是相关的,二者相互对照可加深对双方的认识和理解.4.复习逻辑知识时,要抓住所学的几个知识点,通过解决一些简单的问题达到理解、掌握逻辑知识的目的.5.集合多与函数、方程、不等式有关,要注意知识的融会贯通.1.1 集合的概念与运算●知识梳理1.集合的有关概念2.元素与集合、集合与集合之间的关系(1)元素与集合:“∈”或“∉”.(2)集合与集合之间的关系:包含关系、相等关系.3.集合的运算(1)交集:由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集,记为A∩B,即A∩B={x|x∈A且x∈B}.(2)并集:由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A与集合B的并集,记为A∪B,即A∪B={x|x∈A或x∈B}.(3)补集:一般地,设S是一个集合,A是S的一个子集(即A⊆S),由S中所有不属于A的元素组成的集合,叫做子集A在全集S中的补集(或余集),记为ðS A,即ðS A={x|x∈S且x∉A}.●点击双基1.(2004年全国Ⅱ,1)已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N 等于A.{x|x<-2}B.{x|x>3}C.{x|-1<x<2}D.{x|2<x<3}解析:M={x|x2<4}={x|-2<x<2},N={x|x2-2x-3<0}={x|-1<x<3},结合数轴,∴M∩N={x|-1<x<2}.答案:C2.(2005年北京西城区抽样测试题)已知集合A={x∈R|x<5-2},B={1,2,3,4},则(ðR A)∩B等于A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}解析:ðR A={x∈R|x≥5-2},而5-2∈(3,4),∴(ðR A)∩B={4}.答案:D3.(2004年天津,1)设集合P={1,2,3,4,5,6},Q={x∈R|2≤x≤6},那么下列结论正确的是A.P∩Q=PB.P∩Q QC.P∪Q=QD.P∩Q P解析:P∩Q={2,3,4,5,6},∴P∩Q P.答案:D4.设U是全集,非空集合P、Q满足P Q U,若求含P、Q的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是_______________.解析:构造满足条件的集合,实例论证.U={1,2,3},P={1},Q={1,2},则(ðU Q)={3},(ðU P)={2,3},易见(ðU Q)∩P=∅. 答案:(ðU Q)∩P5.已知集合A ={0,1},B ={x |x ∈A ,x ∈N*},C ={x |x ⊆A },则A 、B 、C 之间的关系是___________________.解析:用列举法表示出B ={1},C ={∅,{1},{0},A },易见其关系.这里A 、B 、C 是不同层次的集合,C 以A 的子集为元素,同一层次的集合可有包含关系,不同层次的集合之间只能是从属关系.答案:B A ,A ∈C ,B ∈C ●典例剖析【例1】 (2004年北京,8)函数f (x )=⎩⎨⎧∈-∈,,M x xP x x其中P 、M 为实数集R 的两个非空子集,又规定f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.给出下列四个判断,其中正确判断有①若P ∩M =∅,则f (P )∩f (M )=∅ ②若P ∩M ≠∅,则f (P )∩f (M )≠∅ ③若P ∪M =R ,则f (P )∪f (M )=R ④若P ∪M ≠R ,则f (P )∪f (M )≠RA.1个B.2个C.3个D.4个 剖析:由题意知函数f (P )、f (M )的图象如下图所示.设P =[x 2,+∞),M =(-∞,x 1],∵|x 2|<|x 1|,f (P )=[f (x 2),+∞),f (M )=[f (x 1),+∞),则P ∩M =∅.而f (P )∩f (M )=[f (x 1),+∞)≠∅,故①错误.同理可知②正确.设P =[x 1,+∞),M =(-∞,x 2],∵|x 2|<|x 1|,则P ∪M =R .f (P )=[f (x 1),+∞),f (M )=[f (x 2),+∞), f (P )∪f (M )=[f (x 1),+∞)≠R ,故③错误.同理可知④正确. 答案:B【例2】 已知A ={x |x 3+3x 2+2x >0},B ={x |x 2+ax +b ≤0}且A ∩B ={x |0<x ≤2},A ∪B ={x |x >-2},求a 、b 的值.解:A ={x |-2<x <-1或x >0}, 设B =[x 1,x 2],由A ∩B =(0,2]知x 2=2,且-1≤x 1≤0, ① 由A ∪B =(-2,+∞)知-2≤x 1≤-1. ②由①②知x 1=-1,x 2=2,∴a =-(x 1+x 2)=-1,b =x 1x 2=-2.评述:本题应熟悉集合的交与并的涵义,熟练掌握在数轴上表示区间(集合)的交与并的方法.深化拓展(2004年上海,19)记函数f (x )=132++-x x 的定义域为A ,g (x )= lg [(x -a -1)(2a -x )](a <1)的定义域为B .(1)求A ;(2)若B ⊆A ,求实数a 的取值范围.提示:(1)由2-13++x x ≥0,得11+-x x ≥0,∴x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞).(2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0. ∵a <1,∴a +1>2a .∴B =(2a ,a +1). ∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2. 而a <1,∴21≤a <1或a ≤-2. 故当B ⊆A 时,实数a 的取值范围是(-∞,-2]∪[21,1). 【例3】 (2004年湖北,10)设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是A.P QB.Q PC.P =QD.P ∩Q =Q 剖析:Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立}, 对m 分类:①m =0时,-4<0恒成立;②m <0时,需Δ=(4m )2-4³m ³(-4)<0,解得m <0. 综合①②知m ≤0,∴Q ={m ∈R |m ≤0}. 答案:A评述:本题容易忽略对m =0的讨论,应引起大家足够的重视.【例4】 已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围.剖析:如果目光总是停留在集合这一狭窄的知识范围内,此题的思维方法是很难找到的.事实上,集合符号在本题中只起了一种“化妆品”的作用,它的实际背景是“抛物线x 2+mx -y +2=0与线段x -y +1=0(0≤x ≤2)有公共点,求实数m 的取值范围”.这种数学符号与数学语言的互译,是考生必须具备的一种数学素质.解:由⎩⎨⎧≤≤=+-=+-+),20(01,022x y x y mx x 得x 2+(m -1)x +1=0. ①∵A ∩B ≠∅,∴方程①在区间[0,2]上至少有一个实数解. 首先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1.当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1知,方程①只有负根,不符合要求; 当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①有两个互为倒数的正根.故必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.综上所述,所求m 的取值范围是(-∞,-1].评述:上述解法应用了数形结合的思想.如果注意到抛物线x 2+mx -y +2=0与线段x -y +1=0(0≤x ≤2)的公共点在线段上,本题也可以利用公共点内分线段的比λ的取值范围建立关于m 的不等式来解.深化拓展设m ∈R ,A ={(x ,y )|y =-3x +m },B ={(x ,y )|x =cos θ,y =sin θ,0<θ<2π},且A ∩B ={(cos θ1,sin θ1),(cos θ2,sin θ2)}(θ1≠θ2),求m 的取值范围.提示:根据题意,直线y =-3x +m 与圆x 2+y 2=1(x ≠1)交于两点, ∴22)3(1||-+m <1且0≠-3³1+m .∴-2<m <2且m ≠3. 答案:-2<m <2且m ≠3.●闯关训练夯实基础1.集合A ={(x ,y )|x +y =0},B ={(x ,y )|x -y =2},则A ∩B 是 A.(1,-1)B.⎩⎨⎧-==11y xC.{(1,-1)}D.{1,-1}解析:⎩⎨⎧=-=+20y x y x ⇒⎩⎨⎧-==.1,1y x 答案:C2.(2004年上海,3)设集合A ={5,log 2(a +3)},集合B ={a ,b }.若A ∩B ={2},则A ∪B =______________.解析:∵A ∩B ={2},∴log 2(a +3)=2.∴a =1.∴b =2. ∴A ={5,2},B ={1,2}.∴A ∪B ={1,2,5}. 答案:{1,2,5}3.设A ={x |1<x <2},B ={x |x >a },若A B ,则a 的取值范围是___________________. 解析:A B 说明A 是B 的真子集,利用数轴(如下图)可知a ≤1.a 1 2答案:a ≤14.已知集合A ={x ∈R |ax 2+2x +1=0,a ∈R }只有一个元素,则a 的值为__________________. 解析:若a =0,则x =-21.若a ≠0,Δ=4-4a =0,得a =1. 答案:a =0或a =15.(2004年全国Ⅰ,理6)设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 A.(I A )∪B =IB.(I A )∪(I B )=IC.A ∩(I B )=∅D.(I A )∩(I B )=I B解析一:∵A 、B 、I 满足A ⊆B ⊆I ,先画出文氏图,根据文氏图可判断出A 、C 、D 都是正确的.B AI解析二:设非空集合A 、B 、I 分别为A ={1},B ={1,2},I ={1,2,3}且满足A ⊆B ⊆I .根据设出的三个特殊的集合A 、B 、I 可判断出A 、C 、D 都是正确的.答案:B6.(2005年春季北京,15)记函数f (x )=log 2(2x -3)的定义域为集合M ,函数g (x )=)1)(3(--x x 的定义域为集合N .求:(1)集合M 、N ;(2)集合M ∩N 、M ∪N .解:(1)M ={x |2x -3>0}={x |x >23};N ={x |(x -3)(x -1)≥0}={x |x ≥3或x ≤1}. (2)M ∩N ={x |x ≥3};M ∪N ={x |x ≤1或x >23}.培养能力7.已知A ={x ∈R |x 2+2x +p =0}且A ∩{x ∈R |x >0}=∅,求实数p 的取值范围. 解:∵A ∩{x ∈R |x >0}=∅,∴(1)若A =∅,则Δ=4-4p <0,得p >1; (2)若A ≠∅,则A ={x |x ≤0},即方程x 2+2x +p =0的根都小于或等于0. 设两根为x 1、x 2,则⎪⎩⎪⎨⎧≥=≤-=+≥-=.0,02,0442121p x x x x p Δ ∴0≤p ≤1.综上所述,p ≥0. 8.已知P ={(x ,y )|(x +2)2+(y -3)2≤4},Q ={(x ,y )|(x +1)2+(y -m )2<41},且P ∩Q =Q ,求m 的取值范围.解:点集P 表示平面上以O 1(-2,3)为圆心,2为半径的圆所围成的区域(包括圆周);点集Q 表示平面上以O 2(-1,m )为圆心,21为半径的圆的内部.要使P ∩Q =Q ,应使⊙O 2内含或内切于⊙O 1.故有|O 1O 2|2≤(R 1-R 2)2,即(-1+2)2+(m -3)2≤(2-21)2.解得3-25≤m ≤3+25.评述:本题选题目的是:熟悉用集合语言表述几何问题,利用数形结合方法解题.探究创新9.若B ={x |x 2-3x +2<0},是否存在实数a ,使A ={x |x 2-(a +a 2)x +a 3<0}且A ∩B =A ?请说明你的理由.解:∵B ={x |1<x <2},若存在实数a ,使A ∩B =A ,则A ={x |(x -a )(x -a 2)<0}.(1)若a =a 2,即a =0或a =1时,此时A ={x |(x -a )2<0}=∅,满足A ∩B =A ,∴a =0或a =1.(2)若a 2>a ,即a >1或a <0时,A ={x |0<x <a 2},要使A ∩B =A ,则⎩⎨⎧≤≥212a a ⇒1≤a ≤2,∴1<a ≤2.(3)若a 2<a ,即0<a <1时,A ={x |a <x <a 2},要使A ∩B =A ,则⎩⎨⎧≥≤122a a ⇒1≤a ≤2,∴a ∈∅.综上所述,当1≤a ≤2或a =0时满足A ∩B =A ,即存在实数a ,使A ={x |x 2-(a +a 2)x + a 3<0}且A ∩B =A 成立. ●思悟小结1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.●教师下载中心 教学点睛1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.3.强化数形结合、分类讨论的数学思想. 拓展题例【例1】 设M 、N 是两个非空集合,定义M 与N 的差集为M -N ={x |x ∈M 且x ∉N },则M -(M -N )等于A.NB.M ∩NC.M ∪ND.M 解析:M -N ={x |x ∈M 且x ∉N }是指图(1)中的阴影部分.(1) (2)同样M -(M -N )是指图(2)中的阴影部分.答案:B【例2】 设集合P ={1,a ,b },Q ={1,a 2,b 2},已知P =Q ,求1+a 2+b 2的值. 解:∵P =Q ,∴⎪⎩⎪⎨⎧==22,b b a a ① 或⎪⎩⎪⎨⎧==.,22a b b a ② 解①得a =0或a =1,b =0或b =1.(舍去)由②得a =b 2=a 4,∴a =1或a 3=1.a =1不合题意, ∴a 3=1(a ≠1).∴a =ω,b =ω2,其中ω=-21+23i. 故1+a 2+b 2=1+ω2+ω4=1+ω+ω2=0.1.2 逻辑联结词与四种命题●知识梳理 1.逻辑联结词(1)命题:可以判断真假的语句叫做命题. (2)逻辑联结词:“或”“且”“非”这些词叫做逻辑联结词.(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫做复合命题.(4)真值表:表示命题真假的表叫真值表. 2.四种命题 (1)四种命题原命题:如果p ,那么q (或若p 则q );逆命题:若q 则p ; 否命题:若⌝p 则⌝q ;逆否命题:若⌝q 则⌝p . (2)四种命题之间的相互关系这里,原命题与逆否命题,逆命题与否命题是等价命题.●点击双基1.由“p :8+7=16,q :π>3”构成的复合命题,下列判断正确的是 A.p 或q 为真,p 且q 为假,非p 为真 B.p 或q 为假,p 且q 为假,非p 为真 C.p 或q 为真,p 且q 为假,非p 为假 D.p 或q 为假,p 且q 为真,非p 为真解析:因为p 假,q 真,由复合命题的真值表可以判断,p 或q 为真,p 且q 为假,非p 为真.答案:A2.(2004年福建,3)命题p :若a 、b ∈R ,则|a |+|b |>1是|a +b |>1的充分而不必要条件;命题q :函数y =2|1|--x 的定义域是(-∞,-1]∪[3,+∞),则 A.“p 或q ”为假 B.“p 且q ”为真 C. p 真q 假 D. p 假q 真 解析:∵|a +b |≤|a |+|b |,若|a |+|b |>1,不能推出|a +b |>1,而|a +b |>1,一定有|a |+|b |>1,故命题p 为假. 又由函数y =2|1|--x 的定义域为|x -1|-2≥0,即|x -1|≥2,即x -1≥2或x -1≤-2. 故有x ∈(-∞,-1]∪[3,+∞).∴q 为真命题. 答案:D3.(2005年春季上海,15)设函数f (x )的定义域为R ,有下列三个命题:①若存在常数M ,使得对任意x ∈R ,有f (x )≤M ,则M 是函数f (x )的最大值;②若存在x0∈R,使得对任意x∈R,且x≠x0,有f(x)<f(x0),则f(x0)是函数f (x)的最大值;③若存在x0∈R,使得对任意x∈R,有f(x)≤f(x0),则f(x0)是函数f(x)的最大值.这些命题中,真命题的个数是A.0B.1C.2D.3解析:①错.原因:可能“=”不能取到.②③都正确.答案:C4.命题“若m>0,则关于x的方程x2+x-m=0有实数根”与它的逆命题、否命题、逆否命题中,真命题的个数为___________________.解析:先写出其命题的逆命题、否命题、逆否命题,逐一判断.答案:25.(2005年北京西城区抽样测试题)已知命题p:函数y=log a(ax+2a)(a>0且a≠1)的图象必过定点(-1,1);命题q:如果函数y=f(x-3)的图象关于原点对称,那么函数y=f(x)的图象关于点(3,0)对称.则A.“p且q”为真B.“p或q”为假C. p真q假D. p假q真解析:解决本题的关键是判定p、q的真假.由于p真,q假(可举反例y=x+3),因此正确答案为C.答案:C●典例剖析【例1】给出命题“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,对其原命题、逆命题、否命题、逆否命题而言,真命题有A.0个B.2个C.3个D.4个剖析:原命题和逆否命题为真.答案:B深化拓展若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假.思路:认清命题的条件p和结论q,然后按定义写出逆命题、否命题、逆否命题,最后判断真假.解:逆命题“若ax2+bx+c=0(a、b、c∈R)有两个不相等的实数根,则ac<0”是假命题,如当a=1,b=-3,c=2时,方程x2-3x+2=0有两个不等实根x1=1,x2=2,但ac=2>0.否命题“若ac≥0,则方程ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根”是假命题.这是因为它和逆命题互为逆否命题,而逆命题是假命题.逆否命题“若ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根,则ac≥0”是真命题.因为原命题是真命题,它与原命题等价.评述:解答命题问题,识别命题的条件p与结论q的构成是关键.【例2】指出下列复合命题的形式及其构成.(1)若α是一个三角形的最小内角,则α不大于60°;(2)一个内角为90°,另一个内角为45°的三角形是等腰直角三角形;(3)有一个内角为60°的三角形是正三角形或直角三角形.解:(1)是非p形式的复合命题,其中p:若α是一个三角形的最小内角,则α>60°.(2)是p且q形式的复合命题,其中p:一个内角为90°,另一个内角为45°的三角形是等腰三角形,q:一个内角为90°,另一个内角为45°的三角形是直角三角形.(3)是p或q形式的复合命题,其中p:有一个内角为60°的三角形是正三角形,q:有一个内角为60°的三角形是直角三角形.【例3】写出命题“当abc=0时,a=0或b=0或c=0”的逆命题、否命题、逆否命题,并判断它们的真假.剖析:把原命题改造成“若p则q”形式,再分别写出其相应的逆命题、否命题、逆否命题.在判断真假时要注意利用等价命题的原理和规律.解:原命题:若abc=0,则a=0或b=0或c=0,是真命题.逆命题:若a=0或b=0或c=0,则abc=0,是真命题.否命题:若abc≠0,则a≠0且b≠0且c≠0,是真命题.逆否命题:若a≠0且b≠0且c≠0,则abc≠0,是真命题.●闯关训练夯实基础1.如果原命题的结论是“p且q”形式,那么否命题的结论形式为A.⌝p且⌝qB.⌝p或⌝qC.⌝p或⌝qD.⌝q或⌝p解析:p且q的否定为⌝p或⌝q.答案:B2.下列四个命题中真命题是①“若xy=1,则x、y互为倒数”的逆命题②“面积相等的三角形全等”的否命题③“若m≤1,则方程x2-2x+m=0有实根”的逆否命题④“若A∩B=B,则A⊆B”的逆否命题A.①②B.②③C.①②③D.③④解析:写出满足条件的命题再进行判断.答案:C3.分别用“p或q”“p且q”“非p”填空.(1)命题“15能被3和5整除”是___________________形式;(2)命题“16的平方根是4或-4”是______________形式;(3)命题“李强是高一学生,也是共青团员”是___________________形式.答案:(1)p且q(2)p或q(3)p且q4.命题“若ab=0,则a、b中至少有一个为零”的逆否命题是_______________.答案:若a≠0且b≠0,则ab≠05.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p1“第一次射击击中飞机”,命题p2“第二次射击击中飞机”,试用p1、p2及联结词“或”“且”“非”表示下列命题:(1)两次都击中飞机;(2)两次都没击中飞机;(3)恰有一次击中飞机;(4)至少有一次击中飞机.解:(1)两次都击中飞机是p1且p2;(2)两次都没击中飞机是⌝p1且⌝p2;(3)恰有一次击中飞机是p1且⌝p2,或p2且⌝p1;(4)至少有一次击中飞机是p1或p2.培养能力6.(2004年湖北,15)设A、B为两个集合.下列四个命题:①A B⇔对任意x∈A,有x∉B;②A B⇔A∩B=∅;③A B⇔A B;④A B⇔存在x∈A,使得x∉B.其中真命题的序号是______________.(把符合要求的命题序号都填上)解析:A B⇔存在x∈A,有x∉B,故①错误;②错误;④正确.亦或如下图所示.③反例如下图所示.A B⇒A B.反之,同理.答案:④7.命题:已知a、b为实数,若x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.分析:原命题中,a、b为实数是前提,条件是x2+ax+b≤0有非空解集(即不等式有解),结论是a2-4b≥0,由四种命题的关系可得出其他三种命题.解:逆命题:已知a、b为实数,若a2-4b≥0,则x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.8.写出下列命题非的形式:(1)p:函数f(x)=ax2+bx+c的图象与x轴有唯一交点;(2)q:若x=3或x=4,则方程x2-7x+12=0.解:(1)函数f(x)=ax2+bx+c的图象与x轴没有交点或至少有两个交点.(2)若x=3或x=4,则x2-7x+12≠0.探究创新9.小李参加全国数学联赛,有三位同学对他作如下的猜测.甲:小李非第一名,也非第二名;乙:小李非第一名,而是第三名;丙:小李非第三名而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,问:小李得了第几名?解:(1)假设小李得了第三名,则甲全猜对,乙全猜错,显然与题目已知条件相矛盾,故假设不可能.(2)假设小李得了第二名,则甲猜对一半,乙猜对一半,也与已知条件矛盾,故假设不可能.(3)假设小李得了第一名,则甲猜对一半,乙全猜错,丙全猜对,无矛盾.综合(1)(2)(3)知小李得了第一名.●思悟小结1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.原命题与它的逆否命题同为真假,原命题的逆命题与否命题同为真假,所以对一些命题的真假判断(或推证),我们可通过对与它同真假的(具有逆否关系的)命题来判断(或推证).●教师下载中心教学点睛1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.要明确原命题、否命题、逆命题、逆否命题之间的关系.拓展题例【例1】写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0;(3)若一个数是质数,则这个数是奇数.解:(1)命题的否定:x、y都是奇数,则x+y不是偶数,为假命题.原命题的否命题:若x、y不都是奇数,则x+y不是偶数,是假命题.(2)命题的否定:xy=0则x≠0且y≠0,为假命题.原命题的否命题:若xy≠0,则x≠0且y≠0,是真命题.(3)命题的否定:一个数是质数,则这个数不是奇数,是假命题.原命题的否命题:若一个数不是质数,则这个数不是奇数,为假命题.【例2】有A、B、C三个盒子,其中一个内放有一个苹果,在三个盒子上各有一张纸条.A盒子上的纸条写的是“苹果在此盒内”,B盒子上的纸条写的是“苹果不在此盒内”,C盒子上的纸条写的是“苹果不在A盒内”.如果三张纸条中只有一张写的是真的,请问苹果究竟在哪个盒子里?解:若苹果在A盒内,则A、B两个盒子上的纸条写的为真,不合题意.若苹果在B盒内,则A、B两个盒子上的纸条写的为假,C盒子上的纸条写的为真,符合题意,即苹果在B盒内.同样,若苹果在C盒内,则B、C两盒子上的纸条写的为真,不合题意.综上,苹果在B盒内.1.3 充要条件与反证法●知识梳理1.充分条件:如果p ⇒q ,则p 叫q 的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q 是p 的必要条件.2.必要条件:如果q ⇒p ,则p 叫q 的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q 是p 的充分条件.3.充要条件:如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 叫做q 的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的.4.反证法:当直接证明有困难时,常用反证法.●点击双基1.ac 2>bc 2是a >b 成立的A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件解析:a >b ac 2>bc 2,如c =0.答案:A2.(2004年湖北,理4)已知a 、b 、c 为非零的平面向量.甲:a ²b =a ²c ,乙:b =c ,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件解析:命题甲:a ²b =a ²c ⇒a ²(b -c )=0⇒a =0或b =c .命题乙:b =c ,因而乙⇒甲,但甲乙.故甲是乙的必要条件但不是充分条件.答案:B3.(2004年浙江,8)在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:在△ABC 中,A >30°⇒0<sin A <1sin A >21,sin A >21⇒30°<A <150°⇒ A >30°.∴“A >30°”是“sin A >21”的必要不充分条件. 答案:B4.若条件p :a >4,q :5<a <6,则p 是q 的______________.解析:a >45<a <6,如a =7虽然满足a >4,但显然a 不满足5<a <6.答案:必要不充分条件5.(2005年春季上海,16)若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若a >0且b 2-4ac <0,则对任意x ∈R ,有ax 2+bx +c >0,反之,则不一定成立.如a =0,b =0且c >0时,也有对任意x ∈R ,有ax 2+bx +c >0.因此应选A.答案:A●典例剖析【例1】 使不等式2x 2-5x -3≥0成立的一个充分而不必要条件是A.x <0B.x ≥0C.x ∈{-1,3,5}D.x ≤-21或x ≥3 剖析:∵2x 2-5x -3≥0成立的充要条件是x ≤-21或x ≥3,∴对于A 当x =-31时2x 2-5x -3≥0.同理其他也可用特殊值验证.答案:C【例2】 求证:关于x 的方程ax 2+bx +c =0有一根为1的充分必要条件是a +b +c =0. 证明:(1)必要性,即“若x =1是方程ax 2+bx +c =0的根,则a +b +c =0”.∵x =1是方程的根,将x =1代入方程,得a ²12+b ²1+c =0,即a +b +c =0.(2)充分性,即“若a +b +c =0,则x =1是方程ax 2+bx +c =0的根”.把x =1代入方程的左边,得a ²12+b ²1+c =a +b +c .∵a +b +c =0,∴x =1是方程的根.综合(1)(2)知命题成立.深化拓展求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件.证明:必要性:(1)方程有一正根和一负根,等价于⇒⎪⎩⎪⎨⎧<=>-=0104421a x x a Δa <0. (2)方程有两负根,等价于⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧><-≥-=0102044a aa Δ0<a ≤1.综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1.充分性:由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.故a <0或0<a ≤1是方程ax 2+2x +1=0至少有一负根的充分条件.答案:a <0或0<a ≤1.【例3】 下列说法对不对?如果不对,分析错误的原因.(1)x 2=x +2是x 2+x =x 2的充分条件;(2)x 2=x +2是x 2+x =x 2的必要条件.解:(1)x 2=x +2是x 2+x =x 2的充分条件是指x 2=x +2⇒x 2+x =x 2.但这里“⇒”不成立,因为x =-1时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是应用了错误的推理:x 2=x +2⇒x =2+x ⇒x 2=x 2+x .这里推理的第一步是错误的(请同学补充说明具体错在哪里).(2)x 2=x +2是x 2+x =x 2的必要条件是指x 2+x =x 2⇒x 2=x +2.但这里“⇒”不成立,因为x =0时,“⇒”左边为真,但右边为假.得出错误结论的原因可能是用了错误的推理:x 2+x =x 2⇒2+x =x ⇒x +2=x 2.这里推理的第一步是错误的(请同学补充说明具体错在哪里).评述:此题的解答比较注重逻辑推理.事实上,也可以从真值集合方面来分析:x 2=x +2的真值集合是{-1,2},x 2+x =x 2的真值集合是{0,2},{-1,2}{0,2},而{0,2}{-1,2},所以(1)(2)两个结论都不对.●闯关训练夯实基础1.(2004年重庆,7)已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意有p ⇒r ,r ⇒s ,s ⇒q ,∴p ⇒r ⇒s ⇒q .但由于r p ,∴q p .答案:A2.(2003年北京高考题)“cos2α=-23”是“α=k π+12π5,k ∈Z ”的 A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分又不必要条件 解析:cos2α=-23⇔2α=2k π±6π5⇔α=k π±12π5. 答案:A3.(2005年海淀区第一学期期末练习)在△ABC 中,“A >B ”是“cos A <cos B ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:在△ABC 中,A >B ⇔cos A <cos B (余弦函数单调性).答案:C4.命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.答案:充分不必要5.(2004年北京,5)函数f (x )=x 2-2ax -3在区间[1,2]上存在反函数的充分必要条件是A.a ∈(-∞,1]B.a ∈[2,+∞)C.α∈[1,2]D.a ∈(-∞,1]∪[2,+∞)解析:∵f (x )=x 2-2ax -3的对称轴为x =a ,∴y =f (x )在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a ]或[1,2]⊆[a ,+∞),即a ≥2或a ≤1.答案:D6.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求数列{a n }成等比数列的充要条件.分析:先根据前n 项和公式,导出使{a n }为等比数列的必要条件,再证明其充分条件. 解:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=(p -1)²p n -1.由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N *)是等比数列,则12a a =p ,即(p -1)²p =p (p +q ),∴q =-1,即{a n }是等比数列的必要条件是p ≠0且p ≠1且q =-1.再证充分性:当p ≠0且p ≠1且q =-1时,S n =p n -1,a n =(p -1)²p n -1,1n n a a =p (n ≥2), ∴{a n }是等比数列.培养能力7.(2004年湖南,9)设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},那么点P (2,3)∈A ∩(ðU B )的充要条件是A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >5解析:∵ðU B ={(x ,y )|n <x +y },将P (2,3)分别代入集合A 、B 取交集即可.∴选A.答案:A8.已知关于x 的一元二次方程mx 2-4x +4=0, ①x 2-4mx +4m 2-4m -5=0. ②求使方程①②都有实根的充要条件.解:方程①有实数根的充要条件是Δ1=(-4)2-16m ≥0,即m ≤1;方程②有实数根的充要条件是Δ2=(4m )2-4(4m 2-4m -5)≥0,即m ≥-45. ∴方程①②都有实数根的充要条件是-45≤m ≤1. 9.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根.证明:反证法:假设三个方程中都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0.相加有a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0,(a -b )2+(b -c )2+(c -a )2≤0. ①由题意a 、b 、c 互不相等,∴①式不能成立.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.探究创新10.若x 、y 、z 均为实数,且a =x 2-2y +2π,b =y 2-2z +3π,c =z 2-2x +6π,则a 、b 、c 中是否至少有一个大于零?请说明理由.解:假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +2π+y 2-2z +3π+z 2-2x +6π=(x -1)2+(y -1)2+(z -1)2+π-3, ∵π-3>0,且无论x 、y 、z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,∴a +b +c >0.这与a +b +c ≤0矛盾.因此,a 、b 、c 中至少有一个大于0.●思悟小结1.要注意一些常用的“结论否定形式”,如“至少有一个”“至多有一个”“都是”的否定形式是“一个也没有”“至少有两个”“不都是”.2.证明充要性要从充分性、必要性两个方面来证明.●教师下载中心教学点睛1.掌握常用反证法证题的题型,如含有“至少有一个”“至多有一个”等字眼多用反证法.2.强调反证法的第一步,要与否命题分清.3.要证明充要性应从充分性、必要性两个方面来证.拓展题例【例题】 指出下列命题中,p 是q 的什么条件.(1)p :0<x <3,q :|x -1|<2;(2)p :(x -2)(x -3)=0,q :x =2;(3)p :c =0,q :抛物线y =ax 2+bx +c 过原点.解:(1)p :0<x <3,q :-1<x <3. p 是q 的充分但不必要条件.(2)p q ,q ⇒p .p 是q 的必要但不充分条件.(3)p 是q 的充要条件.评述:依集合的观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 是B 的充要条件.第二章函数●网络体系总览●考点目标定位1.理解函数的概念,了解映射的概念.2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.●复习方略指南基本函数:一次函数、二次函数、反比例函数、指数函数与对数函数,它们的图象与性质是函数的基石.求反函数,判断、证明与应用函数的三大特性(单调性、奇偶性、周期性)是高考命题的切入点,有单一考查(如全国2004年第2题),也有综合考查(如江苏2004年第22题).函数的图象、图象的变换是高考热点(如全国2004年Ⅳ,北京2005年春季理2),应用函数知识解其他问题,特别是解应用题能很好地考查学生分析问题、解决问题的能力,这类问题在高考中具有较强的生存力.配方法、待定系数法、数形结合法、分类讨论等,这些方法构成了函数这一章应用的广泛性、解法的多样性和思维的创造性,这均符合高考试题改革的发展趋势.特别在“函数”这一章中,数形结合的思想比比皆是,深刻理解和灵活运用这一思想方法,不仅会给解题带来方便,而且这正是充分把握住了中学数学的精髓和灵魂的体现.复习本章要注意:1.深刻理解一些基本函数,如二次函数、指数函数、对数函数的图象与性质,对数与形的基本关系能相互转化.2.掌握函数图象的基本变换,如平移、翻转、对称等.3.二次函数是初中、高中的结合点,应引起重视,复习时要适当加深加宽.二次函数与二次方程、二次不等式有着密切的联系,要沟通这些知识之间的内在联系,灵活运用它们去解决有关问题.4.含参数函数的讨论是函数问题中的难点及重点,复习时应适当加强这方面的训练,做到条理清楚、分类明确、不重不漏.5.利用函数知识解应用题是高考重点,应引起重视.。
高三数学第一轮复习教案(第三章数列5课时)1
第三章 数列 第1课时 数列的有关概念一.课题:数列的有关概念二.教学目标:理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项,理解n a 与n S 的关系,培养观察能力和化归能力.三.教学重点:数列通项公式的意义及求法,n a 与n S 的关系及应用. 四.教学过程: (一)主要知识:1.数列的有关概念; 2.数列的表示方法:(1)列举法;(2)图象法;(3)解析法;(4)递推法. 3.n a 与n S 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩.(二)主要方法:1.给出数列的前几项,求通项时,要对项的特征进行认真的分析、化归; 2.数列前n 项的和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式1n n n a S S -=-时,一定要注意条件2n ≥ ,求通项时一定要验证1a 是否适合. (三)例题分析:例1. 求下面各数列的一个通项:14916(1),,,,24578101113--⨯⨯⨯⨯;(2)数列的前n 项的和 221n S n n =++;(3)数列{}n a 的前n 项和r ra S n n (1+=为不等于0,1的常数) .解:(1)2(1)(31)(31)nn n a n n =--+.(2)当1n =时 114a S ==, 当2n ≥时 1n n n a S S -=-=41n -,显然1a 不适合41n a n =-∴4(1)41(2)n n a n n =⎧=⎨-≥⎩.(3)由n n ra S +=1可得当2≥n 时111--+=n n ra S ,)(11---=-∴n n n n a a r S S ,∴1n n n a ra ra -=-,∴1(1),n n a r ra --= ∵1,r ≠ ∴11-=-r ra a n n ,∵0r ≠,∴{}n a 是公比为1-r r的等比数列.又当1=n 时,111ra S +=,∴r a -=111,∴11()11n n r a r r -=--. 说明:本例关键是利用n S 与n a 的关系进行转化.例2.根据下面各个数列{}n a 的首项和递推关系,求其通项公式:(1)==+11,1n a a )(2*N n n a n ∈+;(2)==+11,1n a a 1+n n)(*N n a n ∈; (3)==+11,1n a a 121+n a )(*N n ∈.解:(1)n a a n n 21+=+ ,∴12n n a a n +-=,∴121321()()()n n n a a a a a a a a -=+-+-++-121222(1)n =+⨯+⨯++⨯-21(1)1n n n n =+⨯-=-+ (2)11+=+n n a a n n ,∴ 321121n n n aa a a a a a a -=⋅⋅=1211123n n n -⋅⋅=. 又解:由题意,n n na a n =++1)1(对一切自然数n 成立,∴11(1)11n n na n a a -=-==⋅=,∴1n a n=.(3)}2{)2(21212111-∴-=-∴+=++n n n n n a a a a a 是首项为121-=-a公比为21的等比数列,111121(),2()22n n n n a a --∴-=-⋅∴=-.说明:(1)本例复习求通项公式的几种方法:迭加法、迭乘法、构造法;(2)若数列{}n a 满足n a =1n pa q -+,则数列1n q a p ⎧⎫-⎨⎬-⎩⎭是公比为p 的等比数列.例3.设{}n a 是正数组成的数列,其前n 项和为n S ,并且对所有自然数n ,n a 与2的等差中项等于n S 与2的等比中项,(1)写出数列{}n a 的前三项;(2)求数列{}n a 的通项公式(写出推证过程);(3)令111()2n n n n n aa b a a ++=+()n N ∈,求123n b b b b n ++++-.解:(1)由题意:222n n a S += 0n a >,令1n =,11222a a +=,解得12a = 令2n =,21222()2a a a +=+, 解得26a = 令3n =,312322()2a a a a +=++, 解得310a = ∴该数列的前三项为2,6,10.(2)∵222n n a S +=,∴21(2)8n n S a =+,由此2111(2)8n n S a ++=+, ∴221111[(2)(2)]8n n n n n a S S a a +++=-=+-+,整理得:11()(4)0n n n n a a a a +++--=由题意:1()0n n a a ++≠,∴140n n a a +--=,即14n n a a +-=,∴数列{}n a 为等差数列,其中12,a =公差4d =,∴1(1)n a a n d =+-=42n -(3)14242122()(11)2424222121n n n b n n n n +-=+=++--+-+1112121n n =+--+ ∴121111113352121n b b b n n n +++=+-+-++--+n -1121n -+. 例4.(《高考A 计划》考点19“智能训练第17题”)设函数2()log log 2x f x x =-(01)x <<,数列{}n a 满足(2)2(1,2,3)n af n n ==(1)求数列{}n a 的通项公式; (2)判定数列{}n a 的单调性. 解答参看《高考A 计划》教师用书112P .(四)巩固练习:1.已知1111,1(2)n n a a n a -==+≥,则5a =85.2.在数列{}n a 中11n a n n =++,且9n S =,则n =99.五.课后作业:《高考A 计划》考点1,智能训练12.13.14.15.16.第2课时 等差数列与等比数列的基本运算一.课题:等差数列与等比数列的基本运算二.教学目标:掌握等差数列和等比数列的定义,通项公式和前n 项和的公式,并能利用这些知识解决有关问题,培养学生的化归能力.三.教学重点:对等差数列和等比数列的判断,通项公式和前n 项和的公式的应用. 四.教学过程: (一)主要知识:1.等差数列的概念及其通项公式,等差数列前n 项和公式; 2.等比数列的概念及其通项公式,等比数列前n 项和公式; 3.等差中项和等比中项的概念. (二)主要方法:1.涉及等差(比)数列的基本概念的问题,常用基本量1,()a d q 来处理;2.使用等比数列前n 项和公式时,必须弄清公比q 是否可能等于1还是必不等于1,如果不能确定则需要讨论;3.若奇数个成等差数列且和为定值时,可设中间三项为,,a d a a d -+;若偶数个成等差数列且和为定值时,可设中间两项为,a d a d -+,其余各项再根据等差数列的定义进行对称设元.若干个数个成等比数列且积为定值时,设元方法与等差数列类似.4.在求解数列问题时要注意运用函数思想,方程思想和整体消元思想,设而不求. (三)例题分析:例1.(1)设数列{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 2 .(2)已知等差数列{}n a 的公差0d ≠,且139,,a a a 成等比数列,则1392410a a a a a a ++++=1316.例2.有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数的和是16,第二个数与第三个书的和是12,求这四个数.解:设这四个数为:2(),,,a d a d a a d a +-+,则2()16212a d a d aa d ⎧+-+=⎪⎨⎪+=⎩解得:48a d =⎧⎨=⎩或96a d =⎧⎨=-⎩,所以所求的四个数为:4,4,12,36-;或15,9,3,1.例3.由正数组成的等比数列{}n a ,若前2n 项之和等于它前2n 项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列{}n a 的通项公式. 解:当1q =时,得11211na na =不成立,∴1q ≠,∴221122331111(1)11(1)1111n n a q a q q q q a q a q a q a q ⎧--=⎪--⎨⎪+=⋅⎩ 由①得110q =,代入②得110a =,∴21()10n n a -=.说明:用等比数列前n 项和公式时,一定要注意讨论公比是否为1. 例4.已知等差数列110,116,122,,(1)在区间[450,600]上,该数列有多少项?并求它们的和;(2)在区间[450,600]上,该数列有多少项能被5整除?并求它们的和. 解:1106(1)6104n a n n =+-=+,(1)由4506104600n ≤+≤,得5882n ≤≤,又*n N ∈,∴ 该数列在[450,600]上有25项, 其和58821()25131002n S a a =+⨯=. (2)∵1106(1)n a n =+-,∴要使n a 能被5整除,只要1n -能被5整除,即15n k -=, ∴51n k =+,∴585182k ≤+≤,∴1216k ≤≤,∴在区间[450,600]上该数列中能被5整除的项共有5项即第61,66,71,76,81项,其和61815()26502a a S +==.五.课后作业:《高考A 计划》考点20,智能训练5,6, 12,13,14,15.第3课时 等差数列、等比数列的性质及应用一.课题:等差数列、等比数列的性质及应用二.教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力.三.教学重点:等差(比)数列的性质的应用. 四.教学过程: (一)主要知识:有关等差、等比数列的结论① ②1.等差数列{}n a 的任意连续m 项的和构成的数列232,,,m m m m m S S S S S --仍为等差数列.2.等差数列{}n a 中,若m n p q +=+,则q p n m a a a a +=+ 3.等比数列{}n a 中,若m n p q +=+,则m n p q a a a a ⋅=⋅4.等比数列{a n }的任意连续m 项的和构成的数列232,,,m m m m m S S S S S --仍为等比数列.5.两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. 6.两个等比数列{}n a 与{}n b 的积、商、倒数的数列{}n n a b ⋅、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1仍为等比数列.(二)主要方法:1.解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于1a 和()d q 的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.2.深刻领会两类数列的性质,弄清通项和前n 项和公式的内在联系是解题的关键.(三)例题分析: 例1.(1)若一个等差数列前3项的和为34,最后三项的和为146,且所有项的和为390,则这个数列有13 项;(2)已知数列{}n a 是等比数列,且>0n a ,*n N ∈,354657281a a a a a a ++=,则46a a += 9 .(3)等差数列前m 项和是30,前2m 项和是100,则它的前3m 项和是 210 .例2.若数列{}n a 成等差数列,且,()m n S n S m m n ==≠,求n m S +. 解:(法一)基本量法(略);(法二)设2n S An Bn =+,则22(1)(2)An Bn m Am Bm n⎧+=⎪⎨+=⎪⎩ (1)(2)-得:22()()n m A n m B m n -+-=-,m n ≠, ∴()1m n A B ++=-,∴2()()()n m S n m A n m B n m +=+++=-+.例3.等差数列{}n a 中共有奇数项,且此数列中的奇数项之和为77,偶数项之和为66,11a =,求其项数和中间项. 解:设数列的项数为21n +项,则121(1)()772n n a a S +++==奇,22()662n n a a S +==偶 ∴17766S n S n +==奇偶, ∴6n =,∴数列的项数为13,中间项为第7项,且711a =. 说明:(1)在项数为21n +项的等差数列{}n a 中,2+1=(+1),=,=(2+1)n S n a S na S n a 奇中偶中中;(2)在项数为2n 项的等差数列{}n a 中2+11=,=,=()n n n n n S na S na S n a a +++1奇偶.例4.数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k=+++*()k N ∈,(1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '. 解:(1)由题意:410n n a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,∴12(1)lg lg lg 32k k k a a a k -+++=-,∴1(1)7[3]22n n n nb n n --=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <, ∴当7n ≤时,212731132()244n n nS b b b n n n -+'=+++==-+ 当7n >时,12n n S b b b b b b '=+++----2712112(44n S b b b n n =-+++=-+∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩.例5*.若n S 和n T 分别表示数列{}n a 和{b }n 的前n 项和,对任意自然数n ,有232n n a +=-,41213n n T S n -=,(1)求数列{b }n 的通项公式;(2)设集合*{|2,}n A x x a n N ==∈, *{|4,}n B y y b n N ==∈.若等差数列{}n c 任一项1,n c A B c ∈是A B 中的最大数,且10265125c -<<-,求{}n c 的通项公式.解:(1)当*2,n n N ≥∈时:114121341213(1)n n n n T S nT S n ---=⎧⎨-=-⎩,两式相减得:41213n n b a -=,∴1334n n b a =+534n =--,又1174b =-也适合上式, ∴数列{b }n 的通项公式为n b 534n =--.(2)对任意*n N ∈,223,41252(61)3n n a n b n n =--=--=-+-,∴B A ⊂,∴A B B =∵1c 是A B 中的最大数,∴1c 17=-,设等差数列{}n c 的公差为d ,则10179c d =-+,∴265179125d -<-+<-,即527129d -<<-,又4n b 是一个以12-为公差的等差数列, ∴*12()d k k N =-∈,∴24d =-,∴724n c n =-.(四)巩固练习:1.若数列{}n a (N n ∈*)是等差数列,则有数列12nn a a a b n+++=(N n ∈*)也为等差数列,类比上述性质,相应地:若数列n {c }是等比数列,且n c >0(N n ∈*),则有n d =12n n C C C ⋅(N n ∈*)也是等比数列.2.设n S 和n T 分别为两个等差数列的前n 项和,若对任意*n N ∈,都有71427n n S n T n +=+ ,则第一个数列的第11项与第二个数列的第11项的比是43. 说明:2121n n n n a S b T --=.五.课后作业:《高考A 计划》考点21,智能训练4,8,12,14,15,16.第4课时 数列求和一.课题:数列求和二.教学目标:1.熟练掌握等差数列与等比数列的求和公式;2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进行求和运算; 3.熟记一些常用的数列的和的公式. 三.教学重点:特殊数列求和的方法. 四.教学过程: (一)主要知识:1.等差数列与等比数列的求和公式的应用;2.倒序相加、错位相减,分组求和、拆项求和等求和方法; (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求下列数列的前n 项和n S :(1)5,55,555,5555,…,5(101)9n-,…; (2)1111,,,,,132435(2)n n ⨯⨯⨯+;(3)11n a n n =++; (4)23,2,3,,,n a a a na ;(5)13,24,35,,(2),n n ⨯⨯⨯+; (6)2222sin 1sin 2sin 3sin 89++++. 解:(1)555555555n n S =++++个5(999999999)9n =++++个235[(101)(101)(101)(101)]9n =-+-+-++- 235505[10101010](101)9819n n n n =++++-=--. (2)∵1111()(2)22n n n n =-++,∴11111111[(1)()()()]2324352n S n n =-+-+-++-+1111(1)2212n n =+--++. (3)∵1111(1)(1)n n na n n n n n n n n +-===+-+++++-∴11121321n S n n=+++++++ (21)(32)(1)n n =-+-+++-11n =+-.(4)2323n n S a a a na =++++,当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,2323n S a a a =+++…nna + ,23423n aS a a a =+++…1n na ++,两式相减得 23(1)n a S a a a -=+++ (1)1(1)1n nn n a a a nana a++-+-=--,∴212(1)(1)n n n na n a aS a ++-++=-.(5)∵2(2)2n n n n +=+,∴ 原式222(123=+++…2)2(123n ++⨯+++…)n +(1)(27)6n n n ++=.(6)设2222sin 1sin 2sin 3sin 89S =++++,又∵2222sin 89sin 88sin 87sin 1S =++++, ∴ 289S =,892S =.例2.已知数列{}n a 的通项65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,求其前n 项和n S .解:奇数项组成以11a =为首项,公差为12的等差数列, 偶数项组成以24a =为首项,公比为4的等比数列;当n 为奇数时,奇数项有12n +项,偶数项有12n -项,∴1121(165)4(14)(1)(32)4(21)221423n n n n n n n S --++--+--=+=+-, 当n 为偶数时,奇数项和偶数项分别有2n项,∴2(165)4(14)(32)4(21)221423n n n n n n n S +----=+=+-, 所以,1(1)(32)4(21)()23(32)4(21)()23n n nn n n S n n n -⎧+--+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数.例3.(《高考A 计划》智能训练14题)数列{}n a 的前n 项和2()n n S p p R =+∈,数列{}n b 满足2log n n b a =,若{}n a 是等比数列,(1)求p 的值及通项n a ;(2)求和222123()()()n T b b b =-+…12*(1)()()n n b n N -+-∈. (解答见教师用书127页)(四)巩固练习:设数列11,(12),,(122),n -++++的前n 项和为n S ,则n S 等于( )()A 2n()B 2n n -()C 12n n +-()D 122n n +--五.课后作业:《高考A 计划》考点22,智能训练2,4,5,12,15,16.第5课时 数列的实际应用一.课题:数列的实际应用二.教学目标:1.理解“复利”的概念,能解决分期付款的有关计算方法;2.能够把实际问题转化成数列问题. 三.教学重点:建立数列模型解决数列实际应用问题. 四.教学过程: (一)主要知识:1.解应用问题的核心是建立数学模型;2.一般步骤:审题、抓住数量关系、建立数学模型; 3.注意问题是求什么(,,n n n a S ).(二)主要方法:1.解答数列应用题要注意步骤的规范性:设数列,判断数列,解题完毕要作答; 2.在归纳或求通项公式时,一定要将项数n 计算准确; 3.在数列类型不易分辨时,要注意归纳递推关系;4.在近似计算时,要注意应用对数方法和二项式定理,且要看清题中对近似程度的要求. (三)例题分析:例1.某地区森林原有木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设n a 为n 年后该地区森林木材的存量, (1)求n a 的表达式;(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于79a ,如果1972ab =,那么该地区今后会发生水土流失吗?若会,需要经过几年?(参考数据:lg 20.3=) 解:(1)设第一年的森林的木材存量为1a ,第n 年后的森林的木材存量为n a ,则115(1)44a a b a b =+-=-,221555()(1)444a a b a b =-=-+,32325555()[()1]4444a a b a b =-=-++,………12*55555()[()()1]()4[()1]()44444n n n n n n a a a b n N --=-+++=--∈.(2)当1972b a =时,有79n a a <得55197()4[()1]44729n n a a a --⨯<即5()54n >, 所以,lg51lg 27.2lg52lg 213lg 2n ->=≈--.答:经过8年后该地区就开始水土流失.例2.轻纺城的一家私营企业主,一月初向银行贷款一万元作开店资金,每月月底获得的利润是该月月初投入资金的20%,每月月底需要交纳房租和所得税为该月所得金额(包括利润)的10%,每月的生活费开支300元,余款作为资金全部投入再经营,如此继续,问该年年底,该私营企业主有现款多少元?如果银行贷款的年利率为5%,问私营企业主还清银行贷款后纯收入还有多少元?解:第一个月月底余1(120%)10000(120%)1000010%30010500a =+⨯-+⨯⨯-=元, 设第n 个月月底余n a ,第1n +个月月底余1n a +,则1(120%)(120%)10%300 1.08300(1)n n n n a a a a n +=+-+⨯-=-≥, 从而有13750 1.08(3750)n n a a +-=-,设13750,6750n n b a b =-=,∴{}n b 是等比数列11 1.08n n b b -=⨯, ∴16750 1.083750n n a -=⨯+,11126750 1.0837*******.6a =⨯+≈,还贷后纯收入为1210000(15%)8988.60a -+=元.例3.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利.现在有某企业进行技术改造,有两种方案:甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元. 两种方案的期限都是10年,到期一次行归还本息.若银行贷款利息均以年息10%的复利计算,试比较两个方案哪个获得存利润更多?(计算精确到千元,参考数据:10101.1 2.594,1.313.796==) 解:甲方案10年获利润是每年利润数组成的数列的前10项的和:10291.311(130%)(130%)(130%)42.621.31-+++++++==-(万元)到期时银行的本息和为1010(110%)10 2.59425.94⨯+=⨯=(万元) ∴甲方案扣除本息后的净获利为:42.6225.9416.7-≈(万元)乙方案:逐年获利成等差数列,前10年共获利:10(1 5.5)1(10.5)(120.5)(190.5)32.502+++++⨯+++⨯==(万元) 贷款的本利和为:1091.111.1[1(110%)(110%)] 1.117.531.11-+++++=⨯=-(万元) ∴乙方案扣除本息后的净获利为:32.5017.5315.0-=(万元) 所以,甲方案的获利较多.例4.某工厂在1999年的“减员增效”中对部分人员实行分流,规定分流人员第一年可以到原单位领取工资的100%,从第二年起,以后每年只能在原单位按上一年的23领取工资,该厂根据分流人员的技术特长,计划创办新的经济实体,该经济实体预计第一年属投资阶11 段,第二年每人可获得b 元收入,从第三年起每人每年的收入可在上一年的基础上递增50%,如果某人分流前工资的收入每年a 元,分流后进入新经济实体,第n 年的收入为na 元,(1)求{}n a 的通项公式;(2)当827a b =时,这个人哪一年的收入最少?最少为多少? (3)当38a b ≥时,是否一定可以保证这个人分流一年后的收入永远超过分流前的年收入? 解:(1)由题意得,当1n =时,1a a =,当2n ≥时,1223()()32n n n a a b --=+, ∴12(1)23()()(2)32n n n a n a a b n --=⎧⎪=⎨+≥⎪⎩. (2)由已知827a b =, 当2n ≥时,1121222832838()()2[()()]327232729n n n n n a a a a a a ----=+≥⨯=要使得上式等号成立, 当且仅当12283()()3272n n a a --=,即22422()()33n -=,解得3n =,因此这个人第三年收入最少为89a 元. (3)当2n ≥时,1212123233()()()32382n n n n n n a a a a b aa a ------=+≥+≥⨯=,上述等号成立,须38ab =且2233121log 1log 223n =+>+=因此等号不能取到, 当38a b ≥时,这个人分流一年后的收入永远超过分流前的年收入.(四)巩固练习:某工厂生产总值月平均增长率为p ,则年平均增长率为 ( )()A p ()B 12p ()C 12(1)p +()D 12(1)1p +-五.课后作业:《高考A 计划》考点23,智能训练2,11,13,14,15,16.。
高三数学一轮复习精品教案1:第2讲 参数方程教学设计
第二节参_数_方_程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数) 圆 x 2+y 2=r 2 ⎩⎪⎨⎪⎧ x =r cos θy =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数)1.不明确直线的参数方程中的几何意义导致错误,对于直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数)注意:t 是参数,α则是直线的倾斜角.2.参数方程与普通方程互化时,易忽视互化前后的等价性. 『练一练』1.若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为________.『解析』∵y -2x -1=-3t 2t =-32,∴tan α=-32.『答案』-322.参数方程为⎩⎪⎨⎪⎧x =3t 2+2y =t 2-1(0≤t ≤5)的曲线为________.(填“线段”“射线”“圆弧”或“双曲线的一支”)『解析』化为普通方程为x =3(y +1)+2, 即x -3y -5=0, 由于x =3t 2+2∈『2,77』, 故曲线为线段. 『答案』线段1.化参数方程为普通方程的方法消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法.2.利用直线参数方程中参数的几何意义求解问题的方法经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|. 『练一练』1.已知P 1,P 2是直线⎩⎨⎧x =1+12t ,y =-2+32t (t 为参数)上的两点,它们所对应的参数分别为t 1,t 2,则线段P 1P 2的中点到点P (1,-2)的距离是________.『解析』由t 的几何意义可知,线段P 1P 2的中点对应的参数为t 1+t 22,P 对应的参数为t=0,∴线段P 1P 2的中点到点P 的距离为|t 1+t 2|2.『答案』|t 1+t 2|22.已知直线⎩⎨⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=4相交于B ,C 两点,则|BC |的值为________.『解析』∵⎩⎨⎧x =2-12t =2-22t ′,y =-1+12t =-1+22t ′,⎝⎛⎭⎫t ′=22t 代入x 2+y 2=4,得⎝⎛⎭⎫2-22t ′2+⎝⎛⎭⎫-1+22t ′2=4,t ′2-32t ′+1=0,∴|BC |=|t ′1-t ′2|=(t ′1+t ′22-4t ′1t ′2)=(32)2-4×1=14.『答案』14考点一参数方程与普通方程的互化1.曲线⎩⎨⎧x =23cos θy =32sin θ(θ为参数)中两焦点间的距离是________.『解析』曲线化为普通方程为y 218+x 212=1,∴c =6,故焦距为2 6.『答案』262.(2014·西安质检)若直线3x +4y +m =0与圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ(θ为参数)相切,则实数m 的值是________.『解析』圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ消去参数θ,化为普通方程是(x -1)2+(y +2)2=1.因为直线与圆相切,所以圆心(1,-2)到直线的距离等于半径,即|3+4×(-2)+m |5=1,解得m =0或m =10.『答案』0或103.(2014·武汉调研)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线⎩⎨⎧x =-t ,y =3t(t 为参数,t ∈R )与曲线C 1:ρ=4sin θ异于点O 的交点为A ,与曲线C 2:ρ=2sin θ异于点O 的交点为B ,则|AB |=________.『解析』由题意可得,直线y =-3x ,曲线C 1:x 2+(y -2)2=4,曲线C 2:x 2+(y -1)2=1,画图可得,|AB |=4cos 30°×12= 3.『答案』3『备课札记』 『类题通法』参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式,参数方程化为普通方程关键在于消参,消参时要注意参变量的范围.考点二参数方程的应用『典例』 (2014·郑州模拟)已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.『解』 (1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1,联立方程⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点坐标分别为(1,0),⎝⎛⎭⎫12,-32.(2)依题意,C 1的普通方程为x sin α-y cos α-sin α=0,则A 点的坐标为(sin 2α,-sin αcos α),故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sin αcos α(α为参数),∴点P 轨迹的普通方程为(x -14)2+y 2=116.故点P 的轨迹是圆心为(14,0),半径为14的圆.『备课札记』在本例(1)条件下,若直线C 1:⎩⎪⎨⎪⎧x =1+t cos αy =t sin α,(t 为参数),与直线C 2⎩⎪⎨⎪⎧x =s ,y =1-as (s 为参数)垂直,求a . 解:由(1)知C 1的普通方程为y =3(x -1),C 2的普通方程为y =1-ax ,由两线垂直得-a ×3=-1,故a =33. 『类题通法』1.解决直线与圆的参数方程的应用问题时一般是先化为普通方程再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数)当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. 『针对训练』(2013·新课标卷Ⅱ)已知动点P ,Q 在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α为(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1)依题意有P (2cos α,2sin α),Q (2cos2α,2sin2α), 因此M (cos α+cos2α,sin α+sin2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.考点三极坐标、参数方程的综合应用『典例』 (2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.『解』 (1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.『备课札记』 『类题通法』涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.『针对训练』(2014·石家庄质检)已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与半圆C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解:(1)由已知,点M 的极角为π3,且|OM |=π3,故点M 的极坐标为(π3,π3).(2)由(1)可得点M 的直角坐标为(π6,3π6),A (1,0),故直线AM 的参数方程为⎩⎨⎧x =1+(π6-1)t ,y =3π6t(t 为参数).『课堂练通考点』1.(2013·重庆高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.『解析』ρcos θ=4化为直角坐标方程为x =4①,⎩⎪⎨⎪⎧x =t 2,y =t 3,化为普通方程为y 2=x 3 ②,①②联立得A (4,8),B (4,-8),故|AB |=16. 『答案』162.(2013·江西高考)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.『解析』消去曲线C 中的参数t 得y =x 2,将x =ρcos θ,y =ρsin θ代入y =x 2中,得ρ2cos 2θ=ρsin θ,即ρcos 2θ-sin θ=0.『答案』ρcos 2θ-sin θ=03.(2014·合肥模拟)在平面直角坐标系中,直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,且长度单位相同,建立极坐标系,曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ-π4.若直线l 与曲线C 交于A ,B 两点,则|AB |=________.『解析』首先消去参数t ,可得直线方程为3x -y +22=0,极坐标方程化为直角坐标方程为⎝⎛⎭⎫x -222+⎝⎛⎭⎫y -222=1,根据直线与圆的相交弦长公式可得|AB |=21-⎝⎛⎭⎫642=102. 『答案』1024.(2014·苏州模拟)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:ρsin 2θ=cos θ.(1)求曲线C 的直角坐标方程;(2)若直线l 的参数方程为⎩⎨⎧x =2-22t ,y =22t(t 为参数),直线l 与曲线C 相交于A ,B 两点,求|AB |的值.解:(1)将y =ρsin θ,x =ρcos θ代入ρ2sin 2θ=ρcos θ中,得y 2=x , ∴曲线C 的直角坐标方程为:y 2=x .(2)把⎩⎨⎧x =2-22t ,y =22t ,代入y 2=x 整理得,t 2+2t -4=0,Δ>0总成立.设A ,B 两点对应的参数分别为t 1,t 2, ∵t 1+t 2=-2,t 1t 2=-4,∴|AB |=|t 1-t 2|=(-2)2-4×(-4)=3 2.。
高三数学第一轮复习讲义
高三数学第一轮复习讲义一、函数与方程1. 函数的定义与性质函数是数学中非常重要的概念之一。
在高中数学中,我们常常遇到各种各样的函数问题,理解函数的定义与性质对于解决这些问题至关重要。
1.1 函数的定义函数是一个集合与集合之间的映射关系,它可以将一个自变量的值映射到一个唯一的因变量的值上。
通常表示为:f(x),其中f表示函数名,x表示自变量,f(x)表示函数的值。
1.2 函数的性质•定义域:函数的自变量所能取到的值的集合。
•值域:函数的因变量所能取到的值的集合。
•单调性:函数在整个定义域内的增减关系。
•奇偶性:函数的对称性质。
2. 一元二次方程一元二次方程是高中数学中常见的一种方程类型,它的一般形式为ax2+bx+c=0。
解一元二次方程的方法有因式分解、配方法、求根公式等。
2.1 因式分解法当一元二次方程可以因式分解为两个一次因式的乘积时,我们可以通过解两个一次方程来求解原方程。
例如:x2−5x+6=0可以分解为(x−2)(x−3)=0,解方程得x=2或x=3。
2.2 配方法当一元二次方程的一次项系数为 2 或 -2 时,可以采用配方法来求解方程。
例如:2x2−7x−3=0。
我们可以通过将2x2−7x−3=0看作(ax+b)x+ c=0的形式,其中a、b、c分别表示方程的系数。
然后,我们将x的系数−7分解为两个数,使得这两个数相乘等于ac,即2∗(−3)=−6,并且这两个数的和等于b,即−7。
在这个例子中,可以写成−3和2。
然后将方程改写为(2x−3)(x+ 1)=0,解得 $x=\\frac{3}{2}$ 或x=−1。
2.3 求根公式当一元二次方程无法通过因式分解或配方法来求解时,我们可以使用求根公式来求解方程。
一元二次方程的求根公式为:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$。
通过代入方程的系数a、b、c到公式中,就可以得到方程的解。
3. 三角函数三角函数是解决与角相关问题的数学工具,广泛应用于物理、工程、计算机图形学等领域。
高三数学第一轮复习教案
集合的性质: ①任何一个集合是它本身的子集,记为
A A;
②空集是任何集合的子集,记为
A;
③空集是任何非空集合的真子集;
如果 A B ,同时 B A ,那么 A = B. 如果 A B, B C,那么 A C .
[ 注 ] :① Z= { 整数 } (√) Z ={ 全体整数 } (3)
②已知集合 S 中 A的补集是一个有限集,则集合 则 CsA= {0} )
命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式: p 或 q( 记作“ p∨ q” ) ; p 且 q( 记作“ p∧ q” ) ;非 p( 记
作“┑ q” ) 。
3、“或”、 “且”、 “非”的真值判断 ( 1)“非 p”形式复合命题的真假与 F 的真假相 反; ( 2)“ p 且 q”形式复合命题当 P 与 q 同为真时 为真,其他情况时为假; ( 3)“ p 或 q”形式复合命题当 p 与 q 同为假时 为假,其他情况时为真.
高考数学总复习教案及知识点
第一章 - 集合
考试内容: 集合、 子集、 补集、 交集、 并集. 逻辑联结词. 四种命题. 充分条件和必要条件. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包 含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充 分条件、必要条件及充要条件的意义.
( 1)根的“零分布”:根据判别式和韦达定理分析列式解之
.
( 2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之
.
第三讲,简易逻辑及命题
2024年高三数学第一轮复习的教学计划(精选5篇)
2024年高三数学第一轮复习的教学计划(精选5篇)高三数学第一轮复习的教学计划1一、背景分析近几年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。
考试题不但坚持了考查全面、比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。
更加注重考查学生进入高校学习所需的基本数学素养,这些变化应引起我们在教学中的关注和重视。
二、指导思想在全面推行素质教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。
通过复习,让学生在数学学习过程中,更好地学会从事社会生产和进一步学习所必需的数学基础知识,从而培养学生思维能力,激发学生学习数学的兴趣,使学生树立学好数学的信心。
老师要在教学过程中不断了解新的教学信息,更新教育观念,探求新的教学模式,加强教改力度,准确把握课程标准和考试说明的各项基本要求,立足基本知识、基本技能、基本思想和基本方法教学,针对学生实际,指导学法,着力培养学生的创新能力和运用数学的意识和能力。
三、目标要求第一轮复习要结合高考考点,紧扣教材,以加强双基教学为主线,以提高学生能力为目标,加强学生对知识的理解、联系、应用,同时结合高考题型强化训练,提高学生的解题能力。
为此,我们确立了一轮复习的总体目标:通过梳理考点,培养学生分析问题、解决问题的能力;使学生养成思考严谨、分析条理、解答正确、书写规范的良好习惯,为二轮复习乃至高考奠定坚实的基础。
具体要求如下:1、第一轮复习必须面向全体学生,降低复习起点,在夯实双基的前提下,注重培养学生的能力,包括:空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
提高学生对实际问题的阅读理解、思考判断能力;以及数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
复习教学要充分考虑到本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优等生”放弃大部分“中等生”的不良做法,不做或少做无效劳动,加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。
高三数学一轮复习教案5篇
高三数学一轮复习教案5篇作为一名无私奉献的老师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。
那么教案应该怎么写才合适呢?以下是小编整理的高三数学一轮复习教案,仅供参考,大家一起来看看吧。
高三数学一轮复习教案1一、夯实基础。
今年高考数学试题的一个显著特点是注重基础。
扎实的数学基础是成功解题的关键,从学生反馈来看,平时学习成绩不错但得分不高的主要原因不在于难题没做好,而在于基本概念不清,基本运算不准,基本方法不熟,解题过程不规范,结果“难题做不了,基础题又没做好”,因此在第一轮复习中,我们将格外突出基本概念、基础运算、基本方法,具体做法如下:1、注重课本的基础作用和考试说明的导向作用;2、加强主干知识的生成,重视知识的交汇点;3、培养逻辑思维能力、直觉思维、规范解题习惯;4、加强反思,完善复习方法。
二、解决好课内课外关系。
课内:1)例题讲解前,留给学生思考时间;讲解中,让学生陈述不同解题思路,对于解题过程中的闪光之处或不足之处进行褒扬或纠正;讲解后,对解法进行总结。
对题目尽量做到一题多解,一题多用。
一题多解的题目让学生领会不同方法的优劣,一题多用的题目让学生领会知识间的联系。
2)学生作业和考试中出现的错误,不但指出错误之处,更要引导学生寻根问底,使学生找出错误的真正原因。
3)每节课留10分钟让学生疏理本节知识,理解本节内容。
课外:除了正常每天布置适量作业外,另外布置一两道中档偏上的题目,判作业时面批面改,指出知识的疏漏。
三、注重师生互动1、多让学生思考回答问题,对于有些章节知识,按难易程度选择六至八道,尽量独自完成,无法独立解决的可以提示思路。
2、让学生自我小结,每一章复习完后,让学生自己建立知识网络结构,包括典型题目、思想方法、解题技巧,易错易做之题;3、每次考试结束后,让学生自己总结:①试题考查了哪些知识点;②怎样审题,怎样打开解题思路;③试题主要运用了哪些方法,技巧,关键步在哪里;④答题中有哪些典型错误,哪些是知识、逻辑心理因素造成,哪些是属于思路上的。
高三数学第一轮复习教案讲义函数模型及其应用复习资料
高三新数学第一轮复习教案—函数模型及其应用一.课标要求:1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义;2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
二.命题走向函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升的趋势。
高考中重视对环境保护及数学课外的的综合性应用题等的考察。
出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。
预测的高考,将再现其独特的考察作用,而函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。
(1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题;(2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。
三.要点精讲1.解决实际问题的解题过程(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.这些步骤用框图表示:2.解决函数应用问题应着重培养下面一些能力:(1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。
高三数学第一轮总复习讲义数列
高中数学总复习讲义(培优版)供理科生使用数列四讲第一讲 数列的概念及简单表示教学目标了解数列的概念和几种简单的表示方法(列表、图象、通项公式). 教学重难点1.本部分主要考查数列的基本概念及表示方法、通项公式的求法以及数列的性质.2.题型多以选择、填空题为主,有时也作为解答题的一问,难度不大. 教材知识再现一.基础知识1.数列的概念:按一定 排列的一列数叫做数列。
数列中的每一个数都叫做数列的 。
从函数的角度看:数列可以看作是一个定义域为 或它的有限子集,当自变量从小到大依次取值时对应的一列 。
2.数列的表示方法:(1)列表法;(2)图示法:数列的图像是离散的点,而不是曲线; (3)通项公式法:用含)(n f a a n n n =,即的式子表示(4)递推公式法: 3.数列的分类:(1)按项数的多少可分为 和 ;(2)按数列中相邻两项的大小关系可分为 、 、 和 。
4.(1)数列{}n a 的前n 项和:n n a a a a S ++++= 321(2)的关系与n n S a : ⎩⎨⎧≥-==-.2111n S S n S a n nn ,,,基本方法 用函数的思想方法处理数列问题(数列的本质是函数) (1)如何理解数列是函数? (2)如何求数列的通项公式?(3)如何判断数列的单调性及求数列中的最大(小)项? (4)如何求数列的前n 项和公式?经典习题奠基1.数列⋅⋅⋅,95,74,53,32,1的一个通项公式是2.已知数列{a n }的通项公式为a n =n +1,则这个数列是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列 3.在数列{a n }中,a n +1=a n +2+an ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 4,已知数列{}n a 的通项公式⎩⎨⎧-⋅=-52321n a n n122+==k n kn )(N k ∈,则=⋅34a a 5. 已知数列{}n a 的通项公式为n q pn a n +=,且23,2342==a a ,则=8a 关键要点点拨1.求通项公式的技巧根据数列的前几项写出数列的通项公式时,常用到“观察、归纳、猜想、验证”的数学思想方法,即先找出各项相同的部分(不变量),再找出不同的部分(可变量)与序号之间的关系,并用n 表示出来.不是所有的数列都有通项公式,一个数列的通项公式在形式上可以不唯一 2.数列中最大项与最小项的求法考点一 由数列的前几项求数列的通项公式[例1] 下列可作为数列{}⋅⋅⋅,2,1,2,1,2,1:n a 的通项公式的是( )A.1=n aB.21)1(+-=n n aC. 2sin 2πn - D. 23)1(1+-=-n n a1.已知数列⋅⋅⋅,13,10,7,2则72是该数列的( ) A.第7项 B.第8项 C.第9项 D.第10项2.写出下列各数列的一个通项公式 (1)3,5,7,9,…(2)⋅⋅⋅,3231,1615,87,43,21 (3)⋅⋅⋅---,63,51,43,31,23,11.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,可使用添项、还原、分割等办法,转化为一些常见数列的通项公式来求.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n +1来调整.3.观察、分析问题的特点是最重要的,观察要有目的,观察出项与n 之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)建立合理的联想、转换而使问题得到解决.考点二 由n a 和n S 的关系求通项[例2]数列{}n a 的前n 项和为n S ,若)1(3,111≥==+n S a a n n ,则=6a 3. 数列{}n a 的前n 项和为n S ,且1+=n n S n ,则=51a 4. 数列{}n a 的前n 项和为n S ,求{}n a 的通项公式 (1)Sn =2n 2-3n ; (2)Sn =4n +b .n a 和n S 的关系通常用)2(1≥-=-n S S a n n n ,注意验证1=n考点三 由数列的递推关系求通项公式[例3] 数列{}n a 满足2,3311=-=+n a a a n n ,求nan 的最小值为( ) A.9.5 B.10.6 C.10.5 D.9.6变式:若本例条件变为:数列{a n }满足下列条件:a 1=1,且对于任意的正整数n (n ≥2,n ∈N*),有2a n =2n a n -1,则a 100的值为________.5. 已知数列{}n a 中,)2()1(1,111≥--==-n n n a a a n n ,则=16a6.分别求满足下列条件的数列的通项公式(1))12(,011-+==+n a a a n n (2))2(1,111≥-==-n a n na a n n 由a 1和递推关系求通项公式,可观察其特点,一般常利用“化归法”、“累加法”、“累乘法”等.1.对于形如“a n +1=a n +f (n )”型的递推关系式求通项公式,只要f (n )可求和,便可利用累加的方法. 2.对于形如)"("1n g a a nn =+型的递推关系式来求通项公式,只要)(n g 可求积,便可以利用累积或迭代的方法。
高三数学一轮复习教学
高三数学一轮复习教学一、教学任务及对象1、教学任务本教学设计针对的是高三数学一轮复习教学。
在这一阶段,学生已经完成了高中数学的全部新课学习,因此,教学任务是在有限的时间内,帮助学生系统梳理和巩固数学知识,强化解题技能,提高学生的数学思维能力。
具体包括:对数学基本概念、公式、定理的复习;对数学各专题的核心知识点的整合与应用;以及对高考数学试题的解题策略与分析方法的传授。
2、教学对象教学对象为高三学生,他们已经具备了一定的数学基础和逻辑思维能力。
但由于个体差异,学生在知识掌握程度、学习兴趣、学习方法等方面存在差异。
因此,在教学过程中,需要关注每一个学生的学习需求,采用分层教学、个性化辅导等手段,使全体学生都能在复习阶段取得显著进步。
此外,针对高三学生的心理特点,教学过程中还需关注学生的情绪波动,营造积极、和谐的学习氛围,帮助学生以最佳状态迎接高考。
二、教学目标1、知识与技能(1)系统掌握高中数学的基础知识,包括函数、几何、代数、三角、概率与统计等模块的核心概念、公式、定理及性质。
(2)提高学生的数学运算能力,熟练运用数学方法解决实际问题,特别是解决综合性和灵活性较强的高考题目。
(3)培养学生对数学问题的分析、综合、抽象、概括能力,提升学生的逻辑思维和空间想象能力。
(4)掌握常见的数学解题策略,如代入排除法、特殊值法、整体代入法等,并能灵活应用于解题过程中。
2、过程与方法(1)通过启发式、探究式教学方法,引导学生主动参与课堂讨论,培养学生的问题发现和解决能力。
(2)运用小组合作学习,促进学生之间的交流与合作,提高学生的团队协作能力。
(3)注重数学思想方法的渗透,使学生能够掌握数学问题的本质,形成解决问题的策略。
(4)通过课堂讲解、例题分析、课后作业、模拟测试等多种教学形式,帮助学生巩固知识,提高解题技巧。
3、情感,态度与价值观(1)激发学生对数学学科的兴趣,培养学生热爱数学、探究数学的情感。
(2)引导学生树立正确的数学观念,认识到数学在科学技术、日常生活和国家发展中的重要作用。
高三数学第一轮复习讲义-最新教学文档
高三数学第一轮复习讲义一.复习目标:1.了解相互独立事件的意义,会求相互独立事件同时发生的概率;2.会计算事件在次独立重复试验中恰好发生次的概率.二.知识要点:1.相互独立事件的概念: .2.是相互独立事件,则 .3.次试验中某事件发生的概率是,则次独立重复试验中恰好发生次的概率是 .三.课前预习:1.下列各对事件 (1)运动员甲射击一次,射中环与射中环,(2)甲、乙二运动员各射击一次,甲射中环与乙射中环, (3)甲、乙二运动员各射击一次,甲、乙都射中目标与,甲、乙都没有射中目标, (4)甲、乙二运动员各射击一次,至少有一人射中目标与,甲射中目标但乙没有射中目标,是互斥事件的有 (1),(3) .相互独立事件的有 (2) .2.某射手射击一次,击中目标的概率是,他连续射击次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第次击中目标的概率是②他恰好击中目标次的概率是③他至少击中目标次的概率是,其中正确结论的序号①③ .3.件产品中有件次品,从中连续取两次,(1)取后不放回,(2)取后放回,则两次都取合格品的概率分别是、.4.三个互相认识的人乘同一列火车,火车有节车厢,则至少两人上了同一车厢的概率是 ( )5.口袋里装有大小相同的黑、白两色的手套,黑色手套只,白色手套只,现从中随机地取出两只手套,如果两只是同色手套则甲获胜,两只手套颜色不同则乙获胜,则甲、乙获胜的机会是 ( )甲多乙多一样多不确定四.例题分析:例1.某地区有个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响.(1)求个工厂均选择星期日停电的概率;(2)求至少有两个工厂选择同一天停电的概率. 解:设个工厂均选择星期日停电的事件为.则.(2)设个工厂选择停电的时间各不相同的事件为.则,至少有两个工厂选择同一天停电的事件为,. 小结:个工厂均选择星期日停电可看作个相互独立事件.例2.某厂生产的产品按每盒件进行包装,每盒产品均需检验合格后方可出厂.质检办法规定:从每盒件产品中任抽件进行检验,若次品数不超过件,就认为该盒产品合格;否则,就认为该盒产品不合格.已知某盒产品中有件次品.(1)求该盒产品被检验合格的概率;(2)若对该盒产品分别进行两次检验,求两次检验得出的结果不一致的概率.解: (1)从该盒件产品中任抽件,有等可能的结果数为种,其中次品数不超过件有种,被检验认为是合格的概率为.(2)两次检验是相互独立的,可视为独立重复试验,因两次检验得出该盒产品合格的概率均为,故两次检验得出的结果不一致即两次检验中恰有一次是合格的概率为答:该盒产品被检验认为是合格的概率为两次检验得出的结果不一致的概率为.例3.假定在张票中有张奖票(),个人依次从中各抽一张,且后抽人不知道先抽人抽出的结果,(1)分别求第一,第二个抽票者抽到奖票的概率,(2)求第一,第二个抽票者都抽到奖票的概率.解:记事件:第一个抽票者抽到奖票,记事件:第一个抽票者抽到奖票,则(1),,(2)小结:因为,故A与B是不独立的.例4. 将一枚骰子任意的抛掷次,问点出现(即点的面向上)多少次的概率最大?解:设为次抛掷中点出现次的概率,则,∵由,得,即当时,,单调递增,当时,,单调递减,从而最大.五.课后作业:班级学号姓名1.将一颗质地均匀的骰子(它是一种各面上分别标有点数的正方体玩具)先后抛掷次,至少出现一次点向上的概率是 ( )2.已知盒中装有只螺口与只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第次才取得卡口灯炮的概率为: ( )3.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是,这位司机遇到红灯前,已经通过了两个交通岗的概率是 ;4.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.求该题被乙独立解出的概率。
高三数学一轮复习精品教案1:第1讲 坐标系教学设计
第一节坐_标_系1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,λ>0,y ′=μ·y ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是坐标系平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:点M 直角坐标(x ,y )极坐标(ρ,θ) 互化公式⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=y x x ≠04.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝⎛⎭⎫-π2≤θ≤π2 圆心为⎝⎛⎭⎫r ,π2,半径为r 的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线 (1)θ=α(ρ∈R )或θ=π+α(ρ∈R ) (2)θ=α(ρ≥0)和θ=π+α(ρ≥0) 过点(a,0),与极轴垂直的直线 ρcos_θ=a ⎝⎛⎭⎫-π2<θ<π2 过点⎝⎛⎭⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)1.在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置).2.在极坐标系下,点的极坐标不惟一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π),(-ρ,π+θ+2k π)(k ∈Z )表示同一点的坐标. 『试一试』1.点P 的极坐标为⎝⎛⎭⎫2,-π3,则点P 的直角坐标为________. 『解析』∵ρ=2,θ=-π3.∴x =ρcos θ=2cos ⎝⎛⎭⎫-π3=1, y =ρsin θ=2sin ⎝⎛⎭⎫-π3=- 3. 『答案』(1,-3)2.极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为________. 『解析』由ρ=sin θ+2 cos θ,得ρ2=ρsin θ+2ρcos θ, ∴x 2+y 2-2x -y =0. 『答案』x 2+y 2-2x -y =01.确定极坐标方程的四要素极点、极轴、长度单位、角度单位及其正方向,四者缺一不可. 2.直角坐标(x ,y )化为极坐标(ρ,θ)的步骤(1)运用ρ=x 2+y 2,tan θ=yx(x ≠0)(2)在『0,2π)内由tan θ=yx (x ≠0)求θ时,由直角坐标的符号特征判断点所在的象限.『练一练』1.在极坐标系中,圆心在(2,π)且过极点的圆的方程为________. 『解析』如图,O 为极点,OB 为直径,A (ρ,θ),则∠ABO =θ-90°,OB =22=ρsinθ-90°,化简得ρ=-22cos θ. 『答案』ρ=-22cos θ2.已知直线的极坐标方程为ρsin (θ+π4)=22,则极点到该直线的距离是________.『解析』极点的直角坐标为O (0,0), ρsin(θ+π4)=ρ22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,化为直角坐标方程为x +y -1=0. ∴点O (0,0)到直线x +y -1=0的距离为d =12=22, 即极点到直线ρsin ⎝⎛⎭⎫θ+π4=22的距离为22. 『答案』22考点一平面直角坐标系中的伸缩变换1.(2014·佛山模拟)设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y =sin x 的方程变为________.『解析』∵⎩⎪⎨⎪⎧ x ′=12x ,y ′=3y ,∴⎩⎪⎨⎪⎧x =2x ′,y =13y ′.代入y =sin x 得y ′=3sin 2x ′. 『答案』y ′=3sin 2x ′2.函数y =sin(2x +π4)经伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=12y 后的解析式为________. 『解析』由⎩⎪⎨⎪⎧ x ′=2x ,y ′=12y ,得⎩⎪⎨⎪⎧x =12x ′,y =2y ′.①将①代入y =sin(2x +π4),得2y ′=sin(2·12x ′+π4),即y ′=12sin(x ′+π4).『答案』y ′=12sin(x ′+π4)3.双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标为________.『解析』设曲线C ′上任意一点P ′(x ′,y ′),由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′,代入x 2-y 264=1得x ′29-4y ′264=1, 化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见仍是双曲线,则焦点F 1(-5,0),F 2(5,0)为所求. 『答案』(-5,0)或(5,0)『备课札记』 『类题通法』平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换⎩⎪⎨⎪⎧x ′=λ·x ,λ>0y ′=μ·y ,μ>0下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.考点二极坐标与直角坐标的互化『典例』 (2014·石家庄模拟)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为3ρ2=12ρcos θ-10(ρ>0). (1)求曲线C 1的直角坐标方程;(2)曲线C 2的方程为x 216+y 24=1,设P ,Q 分别为曲线C 1与曲线C 2上的任意一点,求|PQ |的最小值.『解』 (1)曲线C 1的方程可化为3(x 2+y 2)=12x -10, 即(x -2)2+y 2=23.(2)依题意可设Q (4cos θ,2sin θ),由(1)知圆C 1的圆心坐标为C 1(2,0). 故|QC 1|=(4cos θ-2)2+4sin 2θ =12cos 2θ-16cos θ+8 =23⎝⎛⎭⎫cos θ-232+23, |QC 1|min =263, 所以|PQ |min =63. 『备课札记』 『类题通法』直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行. 『针对训练』(2014·合肥模拟)在极坐标系中,直线ρcos θ-ρsin θ+1=0与圆ρ=2sin θ的位置关系是________.『解析』直线ρcos θ-ρsin θ+1=0可化成x -y +1=0,圆ρ=2sin θ可化为x 2+y 2=2y ,即x 2+(y -1)2=1.圆心(0,1)到直线x -y +1=0的距离d =|0-1+1|2=0<1.故直线与圆相交. 『答案』相交考点三极坐标方程及应用『典例』 (2014·郑州模拟)已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为ρsin(θ+π4)=2 2.(1)求曲线C 在极坐标系中的方程;(2)求直线l被曲线C截得的弦长.『解』(1)由已知得,曲线C的普通方程为(x-2)2+y2=4,即x2+y2-4x=0,化为极坐标方程是ρ=4cos θ.(2)由题意知,直线l的直角坐标方程为x+y-4=0,由⎩⎪⎨⎪⎧x2+y2-4x=0,x+y=4,得直线l与曲线C的交点坐标为(2,2),(4,0),所以所求弦长为2 2.『备课札记』在本例(1)的条件下,求曲线C与曲线C1:ρcos θ=3(ρ≥0,0≤θ<π2)交点的极坐标.『解』由曲线C,C1极坐标方程联立{ρcos θ=3,ρ=4cos θ,∴cos2θ=34,cos θ=±32,又ρ≥0,θ∈『0,π2).∴cos θ=32,θ=π6,ρ=23,故交点极坐标为⎝⎛⎭⎫23,π6.『类题通法』求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P(ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.『针对训练』(2014·荆州模拟)在极坐标系中,过圆ρ=6cos θ的圆心,且垂直于极轴的直线的极坐标方程为________.『解析』ρ=6cos θ在直角坐标系中表示圆心为(3,0),半径为3的圆.过圆心且垂直于x轴的直线方程为x=3,其在极坐标系下的方程为ρcos θ=3.『答案』ρcos θ=3『课堂练通考点』1.(2014·南昌调研)在极坐标系中,圆ρ=2cos θ与直线θ=π4(ρ>0)所表示的图形的交点的极坐标是________.『解析』圆ρ=2cos θ可转化为x 2-2x +y 2=0,直线θ=π4可转化为y =x (x >0),两个方程联立得交点坐标是(1,1),可得其极坐标是(2,π4).『答案』(2,π4)2.(2013·惠州模拟)在极坐标系中,已知两点A ,B 的极坐标分别为(3,π3)、(4,π6),则△AOB (其中O 为极点)的面积为________.『解析』由题意知A ,B 的极坐标分别为(3,π3)、(4,π6),则△AOB 的面积S △AOB =12OA ·OB ·sin∠AOB =12×3×4×sin π6=3.『答案』33.(2013·天津高考)已知圆的极坐标方程为ρ=4cos θ, 圆心为C, 点P 的极坐标为⎝⎛⎭⎫4,π3,则|CP |=________.『解析』由ρ=4cos θ可得圆的直角坐标方程为x 2+y 2=4x ,圆心C (2,0).点P 的直角坐标为(2,23),所以|CP |=2 3. 『答案』234.在极坐标系中,圆:ρ=2上的点到直线:ρ(cos θ+3sin θ)=6的距离的最小值为________. 『解析』由题意可得,圆的直角坐标方程为x 2+y 2=4,圆的半径为r =2,直线的直角坐标方程为x +3y -6=0,圆心到直线的距离d =|0+3×0-6|2=3,所以圆上的点到直线的距离的最小值为d -r =3-2=1. 『答案』15.(2014·银川调研)已知直线l :{ x =-t ,y =1+t (t 为参数)与圆C :ρ=42cos(θ-π4).(1)试判断直线l 和圆C 的位置关系; (2)求圆上的点到直线l 的距离的最大值.『解』(1)直线l 的参数方程消去参数t ,得x +y -1=0. 由圆C 的极坐标方程,得ρ2=42ρcos(θ-π4),化简得ρ2=4ρcos θ+4ρsin θ,所以圆C 的直角坐标方程为x 2+y 2=4x +4y , 即(x -2)2+(y -2)2=8,故该圆的圆心为C (2,2),半径r =2 2.从而圆心C 到直线l 的距离为d =|2+2-1|12+12=322,显然322<22,所以直线l 和圆C 相交.(2)由(1)知圆心C 到直线l 的距离为d =322,所以圆上的点到直线l 的距离的最大值为322+22=722.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学新课程标准教材
数学教案( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
数学教案 / 高中数学 / 高三数学教案
编订:XX文讯教育机构
高三数学第一轮复习讲义(教学设计)
教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于高中高三数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
高三数学第一轮复习讲义直线的方程一.复习目标:1.深化理解倾斜角、斜率的概念,熟练掌握斜率公式; 2.掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能熟练写出直线方程.
二.知识要点:1.过两点、的直线斜率公式:.
2.直线方程的几种形式:点斜式:;斜截式:;
两点式:;截距式:;一般式:.
三.课前预习:
1.设,则直线的倾斜角为() 2.已知,则过不同三点,,的直线的条数为()多于 3.已知的顶点 , ,重心,则边所在直线方程为;经过点且与轴、轴围成的三角形面积是的直线方程是;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是 .4.若直线的方向向量是 ,则直线的倾斜角是;若点,,直线过点且与线段相交,则直线的斜率k的取值范围为 .
四.例题分析:例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程.
例2.⑴已知,试求被直线所分成的比λ;⑵已知,,若直线与直线相交于点,不与重合,求证:点分的比 .例3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程. 例4.的一个顶点,两条高所在直线方程为和,求三边所在直线方程.
五.课后作业:班级学号姓名
1.若,则过点与的直线的倾斜角的取值范围是() 2.以原点为中心,对角线在坐标轴上,边长为的正方形的四条边的方程为() 3.已知三点,,在同一直线上,则的值为.4.过点的直线与轴、轴分别交于、两点,点分有向线段所成的比为,则直线的斜率为,直线的倾斜角为 .5.设,,则直线的倾斜角为.6.不论为何实数,直线恒过定点.7.设过点作直线l交x轴的正半轴、y轴的正半轴于a、b两点,(1)当取得最小值时,求直线l的方程.(2)当取得最小值时,求直线l的方程. 8.对直线上任意一点,点也在直线上,求直线的方程.9.求过点p(0,1)的直线l,使它包含在两已知直线l1:2x+y-8=0和l2:x-3y+10=0间的线段被点p所平分. 10.设同在一个平面上的动点、的坐标分别是、,并且坐标间存在关系,,当动点在不平行于坐
标轴的直线上移动时,动点在与直线垂直且通过的直线上移动,求直线的方程.
XX文讯教育机构
WenXun Educational Institution。