核医学重要考点必备

合集下载

核医学复习重点总结

核医学复习重点总结

第一章总论核医学定义:是一门研究核素和核射线在医学中的应用及其理论的学科。

主要任务是用核技术进行诊断、治疗和疾病研究。

核医学三要素:研究对象放射性药物核医学设备一、核物理基础(一)基本概念:元素---凡质子数相同的一类原子称为一种元素核素---质子数、中子数、质量数及核能态均相同的原子称为一种核素。

放射性核素----能自发地发生核内结构或能级变化,同时从核内放出某种射线而转变为另一种核素,这种核素称为放射性核素。

(具有放射性和放出射线)稳定性核素----能够稳定地存在,不会自发地发生核内结构或能级的变化。

不具有放射性的核素称为稳定性核素。

(无放射性)同位素----具有相同的原子序数(质子数相同),但质量数(中子数)不同的核素互为同位素。

同质异能素----- 核内质子数、中子数相同,但处在不同核能态的一类核素互为同质异能素。

(质量数相同,能量不同,如99mTc和99Tc)(二)核衰变类型四种类型五种形式α衰变释放出α粒子的衰变过程,并伴有能量释放。

β衰变放射出β粒子或俘获轨道电子的衰变。

β衰变后,原子序数可增加或减少1,质量数不变。

•β-衰变•β+衰变•电子俘获(EC)γ衰变核素由激发态或高能态向基态或低能态跃迁时,放射出γ射线的衰变过程γ衰变后子核的质量数和原子序数均不变,只是核素的能态发生改变。

放射性核素的原子核不稳定,随时间发生衰变,衰变是按指数规律发生的。

随时间延长,放射性核素的原子核数呈指数规律递减。

N=N0e-λtN0:t=0时原子核数N:t时间后原子核数e:自然对数的底(e≈2.718)λ:衰变常数(λ=0.693/T1/2)物理半衰期(T1/2)生物半衰期(Tb)有效半衰期(Te)1/Te=1/T1/2+1/ Tb放射性活度描述放射性核素衰变强度的物理量。

用单位时间内核衰变数表示,国际制单位:贝可(Becquerel,Bq)定义为每秒1次衰变(s-1),旧制单位:居里(Ci)、毫居里(mCi)、微居里(μCi)换算关系:1Ci=3.7×1010Bq比活度单位质量物质内所含的放射性活度。

核医学期末考试重点笔记

核医学期末考试重点笔记

一、名词解释。

1.核医学:是一门研究核技术在医学的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。

2.核素:是指质子数和中子数相同,并处于同一能级状态的原子,称为一种核素。

3.全身骨显像:是指给患者注射显像剂一定时间后,利用核医学显像设备(如γ相机,SPECT)的探测器沿患者体表做匀速运动,从头至足(或从足至头)依次采集全身各部位的显像剂分布信息,组成一幅完整的前位和后位的全身骨骼系统影像4.超级骨显像:是显像剂异常浓聚的特殊表现,显像剂在全身骨骼分布呈均匀,对称性异常浓聚,或广泛多发异常浓聚,软组织分布很少,骨骼影像异常清晰,肾和膀胱影像常缺失。

常见于以成骨为主的恶性肿瘤广泛性骨转移,甲旁亢等患者。

5.代谢性骨病:是指一组以骨代谢异常为主要表现的疾病,如原发性甲状旁腺功能亢进,骨质疏松症,肾性骨营养不良综合症,畸形性骨炎等。

通常弥漫性累及全身骨骼,并伴有血清甲状腺旁激素的升高以及骨转换率的增高。

6.甲状腺静态显像:口服放射性碘后,通过观察甲状腺部位放射性分布,可判别甲状腺病变,即甲状腺静态显像。

7.放射性药品:是指用于临床诊断或者治疗的放射性核素制剂或其标记药品。

8.放射性核素纯度:放射性核素纯度是指放射性药品中所要求的放射性核素其活度占样品放射性总活度的百分比。

9.肾图:静脉注射由肾小球滤过和肾小管上皮细胞分泌而不再被重吸收的放射性示踪剂,在体外应用肾图仪连续记录双肾的时间-放射性活度曲线,以反应双肾血流灌注、肾实质功能及尿液排泄的的生理过程,称为肾图10.小肾图:双侧对比,一侧肾图正常,而另一侧肾图幅度明显减低,峰值差>30%,但曲线形态保持正常,多见于一侧肾动脉狭窄或先天性一侧肾脏发育不良。

11.有效半衰期:放射性核素因生物代谢与物理衰变共同作用而致在生物体内放射性活性降低到一半所需的时间。

12放射性活度:用来描述放射性物质衰变强弱的物理量,表示单位时间内发生衰变的原子核数。

核医学重点归纳

核医学重点归纳

核医学重点归纳核医学第一到第四章绪论 1定义:核医学是利用放射性核素诊断、治疗疾病和进行医学研究的学科。

2核医学的内容出来显像外还有器官功能测定体外分析法放射性核素治疗第一章1元素――具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I和127I; 2核素――质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。

同一元素可有多种核素,如131I、127I、3H、99mTc、99Tc分别为3种元素的5种核素;3同质异能素――质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc 。

4同位素――凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。

5原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称为放射性核素 6放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程称为放射性衰变。

7 ?衰变粒子得到大部分衰变能, ?粒子含2个质子,2个中子射线射程短能量单一对开展体内恶性组织的放射性治疗具有潜在的优势 8 ?衰变发生原因――母核中子或质子过多β射线本质是高速运动的电子流Β粒子穿透力弱,射程仅为厘米水平,可用于治疗如I 131治疗甲状腺疾病。

9电子俘获原子核俘获核外的轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程10 ?衰变发生由于原子核能量态高,从高能态向低能态跃迁,在这个过程中发射? 射线,原子核能态降低。

射线是高能量的电磁辐射―― ?光子 11放射性衰变基本规律对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变。

放射性核素衰变是随机的、自发的按一定的速率进行,各种放射性核素都有自己特有的衰变速度。

放射性核素原子随时间而呈指数规律减少,其表达式为: N=N0e-λt 指数衰减规律 N = N0e-?tN0: (t = 0)时放射性原子核的数目N: 经过t时间后未发生衰变的放射性原子核数目:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快12 半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间 13放射性活度(activity, A) 定义:单位时间内发生衰变的原子核数1Bq=1次× S-11Ci=3.7×1010 Bq 1Ci=1000mCi14比放射性活度定义:单位质量或体积中放射性核素的放射性活度。

大三上学期核医学核医学考试必考老师画的重点

大三上学期核医学核医学考试必考老师画的重点

核医学考试重点(老师画的重点)绪论1.核医学定义:核医学是利用核素及其标记化合物用于诊断和治疗疾病的临床医学学科,包括诊断核医学和治疗核医学2.核医学的提点:1灵敏度高2方法简便、准确3合乎生理条件4定性、定量、定位研究的相结合5专业技术性强3.1896年Becquerel发现铀【238U】的天然放射性,从而打开了核物理学的大门第一章1.核素:是指质子数、中子数均相同,并且原子核处于相同能级状态的原子2.α射线:是高速运动的α粒子流,实际上就是氦原子核β射线:本质是高速运动的电子流γ射线:本质是中性的光子流4.衰变常数(考简单计算:P12)5.放射性活度的国际单位是贝克6.电离与激发:电离与激发是射线探测器测量射线的物质基础,也是射线引起电离辐射生物效应的主要机制7.湮灭辐射: +衰变产生的正电子具有一定的动能,能在介质中运行一定距离,当其能量耗尽时可与物质中的自由电子结合,转化为两个方向相反、能量各为0.511Mev的 光子而自身消失,称之湮灭辐射,是符合探测正电子显像的基础。

第二章1.放射性探测器的基本原理:1电离2激发3感光第四章1.根据影像获取的状态分为静态显像和动态现象静态现象动态现象:是显像剂引入体内后,迅速以设定的显像速度动态采集脏器的多帧连续影响,通过各种参数定量分析脏器和组织的运动或功能情况,是核医学显像的一个突出特点2.通过显像剂多病变组织的亲和力分为阳性现象和阴性显像阳性现象:指显像剂主要被病变组织摄取,而正常组织一般不摄取或摄取很少,在静态影像上病灶组织的放射性比正常组织高而呈“热区”改变(如心肌梗死灶显像)阴性显像:指显像剂主要被有功能的正常组织摄取,而病变组织基本上不摄取,在静态显像上表现为正常组织器官的形态(如心肌灌注显像)3.根据显像时机体的状态分为静息显像和负荷显像静息显像负荷显像:是受检者在药物或生理性活动干预下所进行的显像称为负荷显像,可以判断脏器或组织的血流灌注储备功能,从而提高显像诊断的灵敏度4.根据显像剂发出射线的种类分为单光子显像和正电子显像单光子现象正电子现象:是用于探测正电子的显像仪器通过显像剂中放射性核素发射的正电子进行的显像技术,用于正电子显像的仪器并非探测正电子,而是探测正电子产生湮灭辐射没辐射时发出的一对能量相等(511keV)、方向相反的光子5.放射性核素显像特点一)可同时提供脏器组织的功能和结构变化,有助于疾病的早期诊断二)可用于定量分析三)具有较高的特异性四)安全、无创缺点:1、对组织结构的分辨率不及其他影像学方法2、任何脏器的显像都需使用显像剂第八章1.当量剂量H TB单位为J/kg,国际制单位是希沃特(Sv),旧制单位是雷姆2.辐射生物学效应分类一)确定性效应:是指辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。

核医学复习重点

核医学复习重点

核医学复习重点名词解释:1.超级骨显像:显像剂在中轴骨和附肢骨近端呈均匀、对称性异常浓聚,或广泛多发异常浓聚。

骨骼影像异常清晰,肾和膀胱影像常缺失。

常见于恶性肿瘤和广泛性骨转移、甲旁亢。

2.核医学:利用放射性核素诊断、治疗疾病和进行医学研究的学科。

3.阳性显像:病灶部位的显像剂分布高于正常组织的异常影像(稀疏或缺损)“热区”显像,如急性心梗病灶、骨骼病灶。

4.有效半衰期:指生物体内的放射性核素由于机体代谢从体内排出和物理衰变两个因素作用,减少至原有放射性活动度的一半所需的时间。

5.同位素:同一元素中,具有相同的质子数而中子数不同。

6.同质异能素:质子数和中子数都相同,处于不同核能状态的原子。

7.填空题:1.甲状腺结节类型分为温结节,热结节,凉结节,冷结节。

2.脑血流灌注显像(rCBF)的显像剂特点:99mTC-ECD相对分子质量小,不带电荷,脂溶性高,通过血脑屏障。

3.心肌灌注显像剂分为:静息显像,负荷显像。

4.肾静态显像显像剂:99mTC-DMSA;肾动态显像显像剂:肾小球滤过型--99mTC-DTPA(首选),肾小管分泌型--131I-OIH(经典)。

5.肝脏主要显像方法有:肝胶体显像、肝血池显像、血流灌注显像。

6.正电子发射型计算机断层显像(PET) 适用于肿瘤病人,神经系统疾病和精神病患者,心血管疾病患者。

7. 核医学中国际制单位:Bq(贝克)惯用单位:Ci(居里)8.脑血流灌注显像适用于癫痫,TIA等疾病的诊断。

9.癫痫发作期显像表现:稀疏。

发作间期:增强。

简答题:1.肺通气灌注显像在诊断肺栓塞时影像特点:肺栓塞早期即可出现肺灌注显像和通气显像结果不匹配,即出现局部灌注缺损而通气正常。

2.骨显像的原理:显像剂:99mTC-MDP;原理:把亲骨性放射性核素或放射性核素标记的化合物引入体内与骨的主要无机盐成分-羟基磷灰石晶体发生化学吸附、离子交换以及与骨组织中有机成分相结合沉积在骨骼内。

在体外用SRECT 探测核素所发射的射线,从而使骨骼显像。

核医学重点

核医学重点

1核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。

2核素(nucliide)是指质子数.中子数均相同,并且原子核处于相同能级状态的原子称为一种核素。

3同位素(isotope)凡具有相同质子数但中子数不同的核素互称同位素4同质异能素(isomer)质子数和中子数都相同,所处的核能状态不同的原子5放射性衰变类型;a衰变;B衰变;正电子衰变;电子俘获;r衰变.6a衰变:放射性核衰变时释放出a射线的衰变;B衰变:原子核释放出B射线而发生的衰变称为B``衰变(B``衰变放射出的射线分为B`` B`+射线);正电子衰变:原子核释放出正电子(B+射线)的衰变方式.7SPECT:单光子发射计算机断层成像术. PET:正电子发射计算机断层成像术8核探测仪器的基本原理;电子作用,荧光作用,感光作用9放射性探测仪器按探测原理可分为电离探测仪和闪烁探测仪两类10r照相机基本结构:准直器,晶体,光电倍增管,脉冲幅度分析器,信号分析和数据处理系统.11图像融合技术:是将来自相同或不同成像方式的图像进行一定的变化处理,使其之间的空间位置,空间坐标达到匹配的一种技术。

12放射性药物(radio pharmaceutical)指含有放射性核素供医学诊断和治疗用的一类特殊药物。

用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂。

13放射性药物具有的特点:具有放射性;具有特定的物理半衰期和有效期;计量单位和使用量;脱标及辐射自分解.14放射化学纯度:是指以特定化学形式存在的放射性活度占总放射性活度的百分比。

15化学纯度:是指以特定化学形式存在的某物质的质量占总质量的比例,与放射性无关。

16辐射生物效应(电离辐射作用于机体后,其传递的能量对机体的分子、细胞、组织和器官所造成的形态和(或)功能方面的后果):确定性效应和随机性效应17确定性效应;是指辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。

临床医学专业课程《核医学》知识要点和重点

临床医学专业课程《核医学》知识要点和重点

临床医学专业《核医学》内容要点
一、核医学总论
1.元素:凡质子数相同的一类原子称为一种元素。

2.同位素:凡原子核具有相同的质子数而中子数不同的元素互为同位素。

3.同质异能素:核内中子数和质子数都相同,但能量状态不同的核素彼此称
为同质异能素。

4.核素:原子核的质子数、中子数和原子核所处的能量状态均相同的原子属
于同一种核素。

-稳定性核素:指原子核不会自发地发生核变化的核素。

-放射性核素:是一类不稳定的核素,具有放射性衰变的特性。

5.核衰变的类型:α衰变、β-/β+衰变、核外电子俘获、γ衰变。

6.核衰变的规律:自发性、随机性、时间性。

物理半衰期、生物半衰期、有效半衰期
7.放射性活度:单位时间内原子核的衰变数量。

单位:秒-1、国际单位:贝
克勒尔
8.放射性药物:指含有放射性核素,能直接用于人体临床诊断、治疗和科学
研究的放射性核素及其标记化合物。

(利用放射素的物理特性而非本身的药物效应。


①诊断用放射性药物:
SPECT: 99m Tc(锝)及其标记化合物(如99m Tc-MIBI);
PET:18F标记化合物,如18F-FDG
《核医学》第 1 页共22 页。

核医学考试重点总结

核医学考试重点总结

1.核医学基本概念(名解填空)利用核素及其标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科2.核素、同位素、同质异能素概念(选择、填空)①核素:质子数和中子数均相同,且原子核处于相同能级状态的原子②同位素:具有相同质子数,但中子数不同的核素,互称同位素3.半衰期(名解选择填空,必考)放射性核素由于衰变其数量和活度减少一半所需时间,用T1/2表示4.放射性活度:单位时间内发生衰变的原子核数量,国际单位是贝克(Bq)5.湮灭辐射:β+衰变产生的正电子具有一定动能,能在介质中运行一定距离,当其能量耗尽时可与物质中的自由电子结合,转化为两个方向相反、能量各为0.511MeV的γ光子而自身消失6.SPECT:单光子发射断层显像7.动态显像:在显像剂引入体内后,迅速以设定的显像速度动态采集脏器的多帧连续影像或系列影像8.阳性显像:又称“热区显像”,指显像剂主要被病变组织摄取,而正常组织一般不摄取或摄取很少,在静态影像上病变组织的放射性比正常组织高而呈“热区”改变9.负荷显像:又称介入显像,指受检者在药物或生理性活动干预下所进行的显像10.核医学影像在医学中应用的特点和优势(问答,必考)优势:可同时提供脏器组织的功能和结构变化,有助于疾病早期诊断具有较高的特异性;安全无创可用于定量分析不足:对组织结构的分辨率不及其他影像学方法任何脏器的显像都需使用显像剂11.本底当量时间:表示接受核医学检查的患者所受的辐射剂量相当于在一定时间内内受的天然本底辐射的剂量12.确定性效应:研究对象为个体。

指辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应13.随机效应:研究对象为群体。

指辐射效应发生的概率与剂量相关的相应,不存在具体阈值,意味着低的辐射剂量也可能造成伤害(12、13,二选一必考)14.放射防护的基本原则:实践正当化、放射防护最优化、个人剂量的限制15.外照射防护的措施:时间防护、距离防护、设置屏蔽(填空)16.固体废物的处理:放置10个半衰期17.甲状腺摄131 I试验大多数甲亢患者的甲状腺摄131 I率极高,且部分患者可见摄131 I高峰提前的现象18.甲状腺静态显像临床意义(问答)诊断异位甲状腺判定甲状腺结节的功能及性质寻找甲状腺癌转移灶在甲亢中的应用判断颈部肿块与甲状腺关系辅助诊断甲状腺炎19.凉结节与热结节(名解填空)凉结节:称为低功能或无功能结节,结节显像剂分布降低,多见于甲状腺囊肿热结节:称为高功能结节,结节显像剂分布增高,多见于功能自主性甲状腺腺瘤20.心肌血流灌注显像①显像剂为99m TC—MIBI②正常断层显像分为短轴断层影像、水平长轴断层、垂直长轴断层③异常显像可逆性缺损:为负荷显像心肌分布缺损或稀疏,静息或延迟显像填充或“再分布”固定缺损:运动和静息显像都存在分布缺损而没有变化21.心肌代谢显像①葡萄糖代谢显像,显像剂为18F—FDG②血流—代谢显像异常图像灌注—代谢不匹配:心肌灌注显像稀疏、缺损区,葡萄糖代谢显像示18F—FDG摄取正常或相对增加,是局部心肌缺血但存活的标准灌注—代谢匹配:心肌灌注显像稀疏、缺损区,葡萄糖代谢显像示18F—FDG摄取呈一致性稀疏或缺损,是局部心肌无存活的标志22.心肌显像临床应用(问答)①冠心病预测:对冠状动脉疾病的概率约为40%~70%范围的群体,复合心肌显像的鉴别价值最好②诊断心肌缺血:准确评价心肌缺血部位、范围、程度和冠状动脉储备功能,还可检出无症状心肌缺血,提示冠状动脉病变部位,早期诊断冠心病③诊断心肌梗死:常在心肌梗死后6小时几乎均表现为灌注异常,定位诊断灵敏度高,99mTc标记的心肌灌注显像剂适用于对急性心肌梗死患者的濒危心肌情况进行准确判断④判断存活心肌:心肌代谢显像可有效判断心肌存活性,对决定冠心病患者是否该做冠脉血运重建术,对再灌注治疗疗效的评估有重要意义23.反向运动,又称矛盾运动,是诊断室壁瘤的特征影像24.PET/CT常用于肿瘤显像的显像剂:18F—FDG25.PET/CT肿瘤运用的适应症(问答)(1)肿瘤的临床分期及治疗后再分期(2)肿瘤治疗过程中疗效监测和治疗后疗效评价(3)肿瘤的良、恶性鉴别诊断(4)肿瘤患者随访过程中监测肿瘤复发及转移(5)肿瘤治疗后残余与纤维化或坏死的鉴别(6)恶性肿瘤的预后评估和生物学特征(7)肿瘤治疗新药与新技术的客观评价(8)已发现肿瘤转移而临床需要寻找原发灶26.骨显像①显像剂为99m TC—MDP②骨显像的异常显像及临床意义(意义只要说一个)(问答)放射性异常浓聚,见于恶性肿瘤、创伤、炎性病变放射性稀疏或缺损,见于骨囊肿、梗死、缺血性坏死超级骨显像,与弥漫的反应性骨形成有关,见于恶性肿瘤广泛性骨转移显像剂分布呈“混合型”,见于骨无菌性坏死、骨膜下血肿骨外异常放射性分布,见于局部组织坏死、急性心肌梗死病灶③超级骨显像:放射性显像剂在全身骨骼分布呈均匀、对称性的异常浓聚,骨骼影像非常清晰,而双肾常不显影,膀胱不显影或轻度显影,软组织内放射性分布极低(名解)27.亲骨性肿瘤:肺癌、乳腺癌、前列腺癌常以骨转移为首显症状,因此这三种肿瘤也常被称为“亲骨性肿瘤”(填空名解)28.代谢性骨病:一组以骨代谢异常为主要表现的疾病,如骨质疏松症、骨软化症29.肺性肥大性骨关节病时典型改变呈“双轨征”改变30.交叉性小脑失联络征:脑血流灌注显像的异常显像中最常见的类型,即在大脑原发病灶的对侧小脑同时出现血流灌注的减低。

核医学考试重点

核医学考试重点

第一章核物理基础知识元素:凡是质子数相同,核外电子数相同,化学性质相同的同一类原子称为一组元素。

同位素(isotope):凡是质子数相同,中子数不同的元素互为同位素如:1H、2H、3H。

同质异能素:凡是原子核中质子数和中子数相同,而处于不同能量状态的元素叫同质异能素。

核素:原子核的质子数、中子数、能量状态均相同原子属于同一种核素。

例如:1H、2H、3H、12C、14C198Au、99m Tc、99Tc1.稳定性核素(stablenuclide)稳定性核素是指:原子核不会自发地发生核变化的核素,它们的质子和中子处于平衡状态,目前稳定性核素仅有274种,2.放射性核素(radioactive?nuclide)放射性核素是一类不稳定的核素,原子核能自发地不受外界影响(如温度、压力、电磁场),也不受元素所处状态的影响,只和时间有关。

而转变为其它原子核的核素。

核衰变的类型1.α衰变(αdecay):2.?-衰变(?-decay):3.?+衰变:4.γ衰变:核衰变规律1.物理半衰期(physicalhalflife,T1/2):放射性核素衰变速率常以物理半衰期T1/2表示,指放射性核素数从No衰变到No的一半所需的时间。

物理半衰期是每一种放射性核素所特有的。

数学公式T1/2=0.693/λ2.生物半衰期(Tb):由于生物代谢从体内排出原来一半所需的时间,称为之。

3.有效半衰期(Te):由于物理衰变与生物的代谢共同作用而使体内放射性核素减少一半所需要的时间,称之。

Te、Tb、T1/2三者的关系为:Te=T1/2·Tb/(T1/2+Tb)。

4.放射性活度(radioactivity,A):是表示单位时间内发生衰变的原子核数。

放射性活度的单位是每秒衰变次数。

其国际制单位的专用名称为贝可勒尔(Becquerel),简称贝可,符号为Bq。

数十年来,活度沿用单位为居里(Ci)1Ci=3.7×1010/每秒。

核医学要点归纳指南

核医学要点归纳指南

绪论核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断、治疗疾病和进行科学研究的医学学科。

第一章 核物理1.核素(nuclide):是指质子数、中子数均相同,并且原子核处于相同能级状态的原子2.同位素(isotope):具有相同质子数但中子数不同的核素互称同位素,同位素具有相同的化学性质。

3.同质异能素(isomer ):质子数和中子数都相同,所处的核能状态不同的原子称为同质异能素,激发态的原子和基态的原子互为同质异能素。

4.核衰变的类型:① α衰变:放射性衰变时释放出α射线的衰变。

这种衰变方式主要发生于原子序数大于82的核素中。

衰变后母核的质子数减少2,质量数减少4,在元素周期表中子核的位置比母核左移两位。

α射线实质上是由氦核组成,用衰变反应式可表示为: ② β衰变:原子核释放出β射线而发生的衰变。

β- 衰变时放射出的β- 射线分为β- 和β+ 射线。

β- 射线的本质是高速运动的电子流。

发生β- 衰变后质子数增加1,原子序数增加1,原子的质量数不变,原子核释放出一个β- 粒子和反中微子(ν),衰变反应式如下:③ 正电子衰变:原子核释放出正电子(β+ 射线)的衰变方式。

正电子衰变发生在贫中子核素,原子核中的一个质子转变为中子。

衰变时发射一个正电子和一个中粒子(ν),质子数减少1,质量数不变,衰变反应式表示为:④ 电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程。

母核经电子俘获后,子核比母核中子数增加1,质子数减少1,质量数不变。

电子俘获衰变时原子核结构的变化与正电子衰变类似,发生在贫中子的原子核。

衰变反应式表示为:⑤ γ衰变:原子核从激发态回复到基态时,以发射γ光子形式释放过剩的能量,这一过程称为γ衰变。

这种激发态的原子核是在α衰变、β衰变或核反应之后形成的,衰变反应式为:各种衰变的比较5.放射性活度(radioactivity ,A ):表示为单位时间内原子核的衰变数量。

核医学复习重点

核医学复习重点

一、前三章:1、基本概念:①核医学:是用放射性核素诊断、治疗疾病和进行医学研究的医学学科。

②核素nuclide :指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。

③同位素isotope:具有相同质子数而中子数不同的核素互称同位素。

同位素具有相同的化学性质和生物学特性,不同的核物理特性。

④同质异能素isomer:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

⑤放射性活度radioactivity简称活度:单位时间内原子核衰变的数量。

⑥放射性药物(radiopharmaceutical)指含有放射性核素供医学诊断和治疗用的一类特殊药物。

⑦SPECT:即单光子发射型计算机断层仪,是利用注入人体内的单光子放射性药物发出的γ射线在计算机辅助下重建影像,构成断层影像。

⑧PET:即正电子发射型计算机断层仪,利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能、代谢成像的仪器。

⑨小PET:即经济型PET,也叫SPECT_PET_CT,是对SPECT进行稍加工后,使其可行使PET 的功能。

⑩放射性核素(radionuclide):是指原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素。

⑾放射性核素纯度:也称放射性纯度,指所指定的放射性核素的放射性活度占总放射性活度的百分比,放射性纯度只与其放射性杂质的量有关;⑿放射化学纯度:指以特定化学形式存在的放射性活度占总放射性活度的百分比。

2、人工放射性核素的来源:加速器生产、反应堆生产、从裂变产物中提取、放射性核素发生器淋洗。

3、核衰变的类型和用途:①α衰变:放射性核衰变时释放出α射线的衰变,射程短,穿透力弱,对局部的电离作用强,因此在放射性核素治疗方面有潜在优势;②β衰变:指原子核释放出β射线的衰变,穿透力弱,可用于治疗;③正电子衰变:原子核释放出正电子(β+射线)的衰变,可用于PET显像;④电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程,电子俘获导致核结构的改变可能伴随放出多种射线,因此可用于核医学显像、体外分析和放射性核素治疗;⑤γ衰变:原子核从激发态回复到基态时,以发射γ光子的形式释放过剩的能量,这一过程称为…,穿透力强,电离作用小,适合放射性核素显像。

核医学重点知识点考点汇总

核医学重点知识点考点汇总

核医学重点知识点考点汇总名词解释1.核医学:用放射性核素诊断、治疗疾病和进行医学研究的医学科目。

2.同位素:具有相同质子数但具有不同中子数,在化学元素排在同一位置。

3.核素:是原子核的属性,原子核的质子数、中子数和原子核所处的能量状态完全相同的原子集合成为核素。

稳定性核素:原子核中,当核内中子数和质子数保持一定比例时,核力与斥力平衡不致发生核内成分或能态变化,这类核素称为稳定性核素。

放射性核素:原子核内质子或中子过多,都会使原子核失去稳定性,称为不稳定核素,又称放射性核素。

核衰变:不稳定核素通过自发性内部结构或能态调整使其稳定的过程。

与此同时,它将释放一种或一种以上的射线,这种性质称为放射性。

4.α衰变:是核衰变时放出α离子的衰变,主要发生在Z>82的核素。

β衰变:是核衰变时释放出β射线或俘获轨道电子的衰变,包括β+衰变,β-衰变和电子俘获三种形式。

γ衰变:是指核素由高能态向低能态、或激发态向基态跃迁过程中放射出γ射线或称单光子的衰变。

5.衰变定律:衰变过程中初始母核数的减少遵循指数函数的规律,其表达式为N=No*e^-λt。

6.半衰期(物理半衰期):某一放射性核素在衰变过程中,原有的放射性活度减少至一半所需要的时间称为T1/2。

放射性活度:单位时间内发生核衰变的次数,国际单位为贝可,定义为每秒发生一次核衰变。

生物半衰期:指进入生物体内的放射性活度经由各种途径从体内排出原来一半所需要的时间。

Tb有效半衰期:指生物体内的放射性活度由从体内排出和物理衰变双重作用,在体内减少为原来一半所需要的时间。

Teff7.SPECT:单光子发射型计算机断层显像仪。

PET:正电子发射型计算机断层显像仪。

8.放射免疫分析法:是建立在放射性分析的高度灵敏性和免疫反应的高度特异性的基础上,通过测定放射性标记抗原-抗体复合体的量来计算出待测抗原(样品)的量。

9.热结节:结节部位放射性分布高于正常甲状腺组织,有时仅结节显影而正常组织不显影,多见于功能性甲状腺腺瘤和结节性甲状腺肿。

核医学完整版-复习考试必备,全面有重点资料

核医学完整版-复习考试必备,全面有重点资料

第一章核物理1、核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。

2、元素(element)——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I;3、核素(nuclide)——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。

同一元素可有多种核素,如131I、127I、3H、99mTc、99Tc分别为3种元素的5种核素;4、同质异能素(isomer)——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc 。

5、同位素(isotope)——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。

6、稳定核素(stable nuclide)——原子核稳定,不会自发衰变的核素;7、放射性核素(radionuclide)原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素8、放射性衰变(radiation decay)——放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程9、放射性衰变方式:1)α衰变;2)β- 衰变:实质:高速运动的电子流;3)正电子衰变(β+衰变);4)电子俘获;5)γ衰变。

10、半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间11、放射性活度(activity, A)单位时间内发生衰变的原子核数12、韧致辐射(bremsstrahlung)湮灭辐射(annihilation radiation) 康普顿效应(compton effect)光电效应(photoelectric effect)γ光子与介质原子碰撞,把能量全部交给轨道电子,使之脱离原子而发射出来,而整个光子被吸收消失。

r射线与物质相互作用产生哪些效应?光电效应康普顿效应电子对生成13、物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。

核医学重点

核医学重点
十日法则:育龄妇女在月经开始十天内接受放射学检查较为安全。
五.辐射防护的目的:防止有害的确定性效应
限制随机效应的发生率,使之降到可以接受的水平
辐射防护的原则:实践的正当化;放射防护最优化;个人剂量限值
外照射防护措施:时间防护,距离防护,屏蔽防护。
基本衰变类型:衰变,衰变,衰变,电子俘获,正电子衰变。
本底当量时间:接受核医学检查的病人所受的辐射剂量相当于在一定时间(几月或几年)内受的天然本底辐射的剂量。
确定性效应 :是指辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。
随机效应 :研究的对象是群体,是辐射效应发生的几率(或发病率而非严重程度)与剂量相关的效应,不存在具体的阈值。
七.甲状腺
(1)甲状腺结节核素显像的表现和临床意义
结节类型 常见疾病 恶变几率
“热结节”(结节显像剂分布增高) 功能自主性甲状腺腺瘤、先天一叶缺如的功能代偿 1%
“温结节”(结节显像剂分别无异常) 功能正常的甲状腺瘤、结节性甲状腺肿、甲状腺炎 4~5%
放射性废物处理原则:①放置衰变②浓缩储存③稀释排放
六.脑灌注显像:
脑显像剂的特点:小分子、脂溶性、不带电荷;自由通过血脑屏障( BBB)
常用 99Tcm—EC
显像前病人准备:封闭甲状腺:注射显像剂之前30~40min,空腹口服过氯酸钾400mg。
视听封闭:闭目带黑色眼罩,耳塞塞住外耳道口,5min后注射显像剂。
十一。超级骨显像:显像剂在骨骼均匀分布,骨骼影像非常清晰,软组织分布很少,肾影缺失。提示:1、恶性肿瘤患者的广泛骨转移2、甲状旁腺功能亢进症
骨显像较X线早3~6个月发现病灶,是探测骨转移最灵敏、最简便的十分重要的首选方法。

核医学重点总结

核医学重点总结

第一张绪论核医学概念:利用放射性示踪技术探索生命现象、研究疾病机制和诊断疾病的学科;是利用放射性核素及其制品进行内照射治疗和近距离治疗的学科。

第二章核医学物理基础、设备和辐射防护衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。

韧致辐射带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低,多余的能量以x射线的形式辐射出来电子俘获:质子从核外取得电子变为中子。

由于外层电子与内层能量差,形成的新核素的不稳定常产生:特征性X射线-能量转化;俄歇电子:能量使电子脱离轨道。

衰变规律:放射性核素原子数随时间以指数规律减少。

指数衰减规律e-λtN = N(t = 0)时放射性原子核的数目N0:N: 经过t时间后未发生衰变的放射性原子核数目λ:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快带电粒子与物质的相互作用(电离作用、激发作用)γ射线与物质的相互作用(光电效应、康普顿效应、电子对生成)光电效应:康普顿效应:电子对生成:辐射防护目的:防止有害的确定性效应,限制随机效应的发生率,使之达到可以接受的水平。

总之是使一切具有正当理由的照射保持在可以合理做到的最低水平。

非随机效应有阈值正相关;随机效应无阈值严重程度与剂量无关。

基本原则:实践正当化;防护最优化;个人剂量限制。

外照射防护措施:1.时间2.距离3.屏蔽电离辐射生物学效应对机体变化:按效应出现的对象,分为躯体效应(somatic effect)及遗传效应(genetic effect)。

按效应出现的时间,分为近期效应(short-term effect)及远期效应( long-term effect)。

按效应发生的规律,分为随机效应(stochastic effect)及非随机效应( non-stochastic effect)。

核医学完整版-复习考试必备,全面有重点资料

核医学完整版-复习考试必备,全面有重点资料

第一章核物理1、核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。

2、元素(element)——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I;3、核素(nuclide)——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。

同一元素可有多种核素,如131I、127I、3H、99mTc、99Tc分别为3种元素的5种核素;4、同质异能素(isomer)——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc 。

5、同位素(isotope)——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。

6、稳定核素(stable nuclide)——原子核稳定,不会自发衰变的核素;7、放射性核素(radionuclide)原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素8、放射性衰变(radiation decay)——放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程9、放射性衰变方式:1)α衰变;2)β- 衰变:实质:高速运动的电子流;3)正电子衰变(β+衰变);4)电子俘获;5)γ衰变。

10、半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间11、放射性活度(activity, A)单位时间内发生衰变的原子核数12、韧致辐射(bremsstrahlung)湮灭辐射(annihilation radiation) 康普顿效应(compton effect)光电效应(photoelectric effect)γ光子与介质原子碰撞,把能量全部交给轨道电子,使之脱离原子而发射出来,而整个光子被吸收消失。

r射线与物质相互作用产生哪些效应?光电效应康普顿效应电子对生成13、物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。

核医学中级必考点

核医学中级必考点

第一部分〔基础知识〕1、明确规定放射性同位素在生产销售和使用中的防护,监督与管理的——《放射性同位素与射线装置防护条例》82、核素毒性权重系数:A类权重系数为100——75Se、89Sr、131I、125I;B类权重系数为1;C类权重系数为0.01——3H、81m Kr、127Xe、133Xe。

铯锶碘一零零、氢氪氙零零一83、84、操作修正系数为100的——放射性药物储存85、操作修正系数为10的——清洗操作、闪烁法测量或显像、诊断患者床位区86、操作修正系数为1的——配药、分装、给药,简单药物制备,治疗患者床位87、操作修正系数为0.1的——复杂放射性制备88、储存一零零、诊断为一零、治疗权重一、复杂制备零点一注意几个区别不要搞混了:1、放射性核素毒性权重系数:A类100—铯锶碘一零零;B类——1;C类0.01——氢氪氙零零一2、Α、β俄歇电子发射体口诀——AB-IPRSIS-II89、操作修正系数分100/10/1/0.1四类——口诀储存一零零、诊断为一零、治疗权重一、复杂制备零点一3、核医学工作场所根据权重活度划分为三级。

一级>50000MBq;三级<50MBq2、多巴胺受体显像剂不包括11C-FMZ。

FMZ为GABA受体。

3、多巴胺受体显像剂包括:IBZP、SCH23390、IBZM、Raclopride4、放射性核素脑脊液显像剂——DTPA5、空气中产生一个电子-离子对需要的能量为34eV6、贝克勒尔发现了放射现象;CAssen发明了直线扫描机;“现代临床核医学之父”——Blumgart7、放射自显影主要用于探测放射性核素或者标记物在生物体组织中分布状态;放射性核素动态平衡研究目的是生物体内某种物质运动的量变规律8、核素脏器功能与血流量测定包括测定:心肌血流量、脑血流量、肝血流指数、有效肾血流量、肾小球滤过率等9、分子影像学临床应用前景:RII主要用于恶性肿瘤的定性、定位诊断;受体显像主要用于神经、精神疾病的诊断和神经内分泌肿瘤的诊断;FDG主要用于肿瘤的早期诊断和鉴别诊断;凋亡显像主要用于治疗效果监测,心脏移植排斥反应监测,急性心肌梗死和心肌炎的评价;乏氧显像主要用于肿瘤的诊断和治疗评估,其用于肿瘤鉴别诊断意义较小10、PET显像必须使用能量为511KeV的一对γ光子11、原子核俘获本原子的一个核外轨道电子,与核内一个质子相结合,形成一个中子的衰变称为电子俘获12、外层轨道电子向内层移动时放出的能量传递给一个轨道电子,该电子带着动能离开原子,该电子称为俄歇电子13、单位质量或者制剂内的放射性活度称为比活度,单位为Bq/g14、放射性活度的变化服从指数规律,可表示为A=A0e〔-λt〕15、半衰期与衰变常数的关系T1/2=Ln2/λ16、母核与子核半衰期倍数:10-100暂态平衡;100-1000长期平衡17、带电粒子〔α、β射线〕与物质原子相互作用:韧致辐射——穿过原子;电离——电子脱离;激发——电子跃迁;弹性散射——方向改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凋亡显像:细胞凋亡显像可直观地检测机体组织器官内细胞凋亡的部位、范围和程度,动态观察细胞凋亡诱导前后细胞凋亡发生的情况,借以评价肿瘤放疗和化疗效果。

不可逆性缺损:表现为201Tl 负荷或静息早期显像心肌局部放射性分布缺损,4小时或24小时延迟显像或再注射201Tl 后缺损部位仍无放射性分布。

99Tcm-MIBI 心肌显像则表现为负荷显像时心肌局部放射性分布缺损,而在静息心肌显像时放射性分布无明显改变。

多见于梗塞、心肌瘢痕和少部分冬眠心肌。

固定性缺损:201Tl 延迟或再注射后,以及静息99Tcm-MIBI 显像,负荷时放射性分布呈现缺损部位的心肌其放射性增加大于等于15%,但未能恢复到正常水平。

可见于:技术性操作误差;缺损后部分心肌存活;缺血再灌注或其他原因引起的局部心肌功能损伤。

反向性再分布:可见于201Tl 延迟或再注射后,或静息99Tcm-MIBI 早期-延迟显像,以及99Tcm-MIBI 负荷-静息显像。

表现为延迟或再注射后,或静息心肌显像时,心肌缺损的放射性减少大于等于15%。

多见于:急性心梗再通后功能损伤的心肌;冠心病冠状动脉完全或几乎完全阻塞伴侧支循环开成的心肌;PTCA 或冠脉搭桥术后,功能恢复中的心肌;④也可见于负荷试验后,包括顿抑和凋亡心肌。

乏氧显像:肿瘤细胞的乏氧程度越高,对放射治疗及某些抗癌药物的敏感性越差。

乏氧显像由于能在活体水平上整体、无创伤性评价肿瘤的乏氧程度,为临床选择合理的肿瘤治疗方案提供客观依据,因此有着良好的临床应用前景。

受体显像:分子核医学的概念首先是从受体显像开始的,受体显像是利用放射性标记的配体或配体类似物与靶组织高亲和力的特异受体结合的原理,显示受体空间分布、密度和亲和力的大小,是集配体--受体高特异性和示踪技术高灵敏度于一身、无创伤的体内功能性显像方法。

放射性药品:是指用于临床诊断或者治疗的放射性核素制剂或其标记药品。

放射性药品与放射性药物有其不同的含义,在我国,获得国家药品监管部门批准的放射性药物称为放射性药品。

放射性药物:是指含有放射性核素,能直接用于人体进行临床诊断、治疗和科学研究的放射性核素及其标记化合物。

放射性核素radionuclide :又称为不稳定性核素,它能够自发地发生核内结构或能级的变化,同时可放出某种射线而转变为另一种核素。

同位素isotope :凡属同一种元素的不同核素,它们在元素周期表中处于相同的位置而中子数不同,称为元素的同位素。

物理半衰期Tp :放射性活度因衰变而减少到原来一半所需要的时间称为物理半衰期。

生物半衰期Tb :指生物体内的放射性核素由于机体代谢从体内排出一半所需要时间。

有效半衰期Te :生物体内的放射性核素由于机体代谢从体内排出和物理衰变两个因素作用,减少至原有放射性活度的一半所需时间。

三者关系:1/Te=1/Tb+1/Tp 前哨淋巴结:是指肿瘤淋巴引流区域的第一站淋巴结,是区域淋巴结中最易被肿瘤侵犯的淋巴结。

冬眠心肌:是指冠状动脉血流灌注减少引起室壁运动障碍,但心肌并未完全坏死,恢复血流灌注后,心功能可恢复。

放射性活度:是用来描述放射性物质衰变强弱的物理量,表示单位时间内发生衰变的原子核数。

国际单位:贝可(Bq )。

1Ci=3.7*1010Bq,1Bq=2.703*10-11Ci 。

γ照相机 (γ camera)是核医学最基本的显像设备。

它由准直器,闪烁晶体,PMT ,预放大器,放大器,X 、Y 位置电路、总和电路和脉冲高度分析器,以及显示或记录器件。

发射计算机断层(SPECT ):简称ECT ,是γ照相机与计算机技术相结合而进一步发展的核影像装置,它既继承了γ照相机的功能,又应用了计算机断层的原理,较γ相机增加了断层显像的能力,是核素显像技术继扫描机和γ相机之后又一重大进步。

正电子发射型计算机断层(PET ):正电子发射型计算机断层的临床应用是核医学发展的一个新的里程碑。

PET 是目前所有影像技术中最有前途的显象技术之一。

核医学显像的基本原理是利用放射性核素示踪活体内正常和病变组织的血流、功能、代谢等生理及病理生理过程。

阴性显像:是以病变组织对特定显像剂摄取减低为异常指标的显像方法。

功能正常的脏器组织能选择性摄取特定的显像剂而显影,而病变组织因为失去正常功能故不能摄取显像剂或摄取明显减少,而表现为放射缺损或减低的影像,故又称“冷区”显像。

阳性显像:是以病变组织对特定显像剂摄取增高为异常指标的显像方法。

由于病变区域的放射性分布明显高于正常脏器组织故又称“热区”显像。

单光子显像:是指采用发射单光子核素标记的显像剂,用探测单光子的显像仪器进行的显像。

是目前临床上最常用的核医学显像方法。

正电子显像(PET 显像):是指采用发射正电子核素标记的显像剂,用PET 、符合线路SPECT 或带有超高能准直器的SPECT 进行的显像。

主要用于心、脑、肿瘤等的代谢研究以及神经递质受体的显像。

血池显像:99Tcm-RBC 随血流从动脉进入相应脏器的血管床,可获得相应脏器的动脉灌注影像,称血池显像。

X--CT :X 线CT 是将高度准直的X 线束围绕靶器官作断层扫描,记录下的大量信息经电子计算机处理,计算出靶器官内不同部位和深度的各个点的X 线吸收系数值,用不同的灰阶表示,形成靶器官的横断层解剖结构图像,其分辨率和灵敏度比普通X 线片又有很大的提高,通过增强扫描还可进一步提高某些病变组织的对比度。

特征值:灵敏性即真阳性率;表示所有受检患者中阳性结果的比例。

特异性即真阴性率;表示所有受检健康人中阴性结果的比例。

准确性也称真实性,表示所有受检者正确结果的比例。

阳性预测值即阳性结果事后概率;表示所有阳性结果受检者患病的概率。

阴性预测值即阴性结果事后概率;表示所有阴性结果受检者未患病的概率。

阳性试验似然比是患者实验结果真阳性比例与健康人实验结果假阳性比例的比值,即:敏感性/(1-特异性)。

表明结果阳性时,患病与不患病几率的比值。

比值越大,患病的概率越大,实验越好。

阴性试验似然比是患者实验结果假阴性比例与健康人实验结果真阴性比例的比值,即:(1-敏感)/特异。

表明结果阴性时,患病与不患病几率的比值。

比值越小,不患病的概率越大,实验好。

正确指数又称约登指数,是综合评价真实性的指标,表示实验方法确定真正病人与非病人的总体能力。

指数越接近1,诊断效能越好。

PET 特点:以解剖图像方式、从分子水平显示机体及病灶组织细胞的代谢、功能、血流细胞增殖和受体分布状况。

PET-CT :将CT 和PET 有机地融合在一起的显像仪器。

原理是在一个仪器的前部安装CT 成像装置。

后部安装PET 成像装置。

这种精密融合的图像解决了PET 显像解剖位置定位不清和CT 检查缺乏代谢信息的矛盾。

两种检查方法间相互取长补短,密切结合,其意义远远大于单独的CT 和PET 检查。

SPECT :单光子发射断层显像,突出特点:反映人体功能和代谢方面的变化。

18F-FDG :葡萄糖类似物,可反映细胞的葡萄糖代谢过程。

原理:静脉注射18F-FDG 后,在葡萄糖转运蛋白的帮助下通过细胞膜进入细胞,细胞内的18F-FDG 在己糖激酶作用下磷酸化,生成6-PO4—18F —FDG ,由于6-PO4—18F —FDG 与葡萄糖的结构不同,不能进一步代谢,而且6-PO4—18F —FDG 不能通过细胞膜而滞留在细胞内达几个小时。

在葡萄糖代谢状态下,6-PO4—18F —FDG 滞留量大体上与组织细胞葡萄糖消耗量一致,因此18F-FDG 能反应体内葡萄糖利用状况。

适应症:1、评价肿瘤侵犯范围,恶性程度,临床分期为治疗决策提供依据2、良恶性肿瘤的鉴别3、对了解肿瘤的全身累及范围具有独特价值4、示肿瘤病灶的活性决定方案5、放化疗的监测与评价6、肿瘤放疗后或手术后复发与瘢痕组织的鉴别7、愈后判断8、探查肿瘤原发病灶。

131I 的临床意义(全身显像,甲状腺癌)临床意义:(1)异位甲状腺及先天性甲减的诊断(2)甲状腺结节和颈部肿块(3)甲亢的鉴别诊断(4)甲状腺癌及其转移灶的判断:131I 全身显像:主要用于寻找分化较好的甲状腺癌的转移灶。

当131I 全身显像在甲状腺外有异常放射性浓聚应考虑为分坏较好的甲状腺癌的转移灶,但转移灶摄131I 功能多低于正常甲状腺组织,在正常甲状腺组织存在时,131I 大部分被摄取,转移灶常不显影。

核素显象的原理及特点?原理:把放射性核素或核素标记的显像剂引入体内,通过核医学显像仪器在体外探测放射性核素发射的射线,经光电转换及计算机处理后获得图像。

特点:1功能性显像:核素显像与CT 、MR 及超声成像的区别在于根据脏器的功能状态而显示其形态或结构异常,固有功能显像之称。

2定量显像:对核素显像图的分析,一方面通过目测器官或病灶组织的放射性分布来进行诊断,也可以通过计算机处理获得病灶局部的一些数据,获得定量或半定量诊断参数。

3代谢显像:正电子显像由于使用11C 、15N 及18F 等放射性药物,不仅反映局部血流、细胞功能和放射性浓集的改变,而且反映组织细胞内分子水平的化学剂代谢改变,从分子水平的角度解释图像和诊断病变.癫痫的发作期、间歇期PET 、SPECT 反映脑功能和代谢改变与癫痫关系方面常用的方法为脑血流或18F-FDG 代谢显像。

癫痫在发作期,脑组织的生理和生化出现明显的变化,脑血流和氧代谢率增加,对氧和葡萄糖的需求亦增加。

癫痫发作间期r CBF 降低,局部葡萄糖利用率降低。

发作期间呈低血流和低代谢是因为神经元的缺失和皮质萎缩,发作期病灶呈高代谢,血流灌注明显增加,其原因是发作期对能量需求增加。

当发作期的高灌注、高代谢与发作间期低灌注、低代谢为同一部位时,定位更加准确。

同时,两者结合分析可以排除非癫痫性低灌注与低代谢。

核医学显像:是将放射性核素及其标记化合物引入体内,实现脏器、组织,病变的功能性显像方法,也称放射性核素显像。

基本原理:利用放射性核素示宗剂体内正常和病变组织的血流、功能、代谢等生理及病理生理过程。

不同示踪原理:1细胞选择性摄取,2化学吸附和离子交换3特异性结合4微血管栓塞5生物区通过和容积分布6排泄速度或时间差别特点:1能提供脏器或病变的代谢、血流、功能2组织特异性3可进行全身显像及双核素同时显像4能提供功能的定量参数5无创性、安全、简便嗜鉻细胞瘤显像剂:131I-MIBG 显像是一种对嗜鉻细胞组织高度特异的功能显像,而且可进行全身显像,对异位的嗜鉻细胞瘤或嗜鉻细胞瘤术后残留病灶,复发病灶进行探测,因此在影像学检查中,是特异性定位诊断嗜鉻细胞瘤的首选方法。

但是以下情况可以出现假阴性:1,无功能嗜鉻细胞瘤。

2瘤体过小,中央坏死液化。

应用123I-MIBG 显像复查,特别是断层显像,可提高检测阳性率减少误诊。

相关文档
最新文档