高中物理第三章原子结构之谜第四节原子的能级结构同步备课教学案粤教版选修3-5
粤教版高二物理选修3-5第三章原子结构之谜..
教学课题 原子结构之谜教学目标 1.了解历史上对原子认识的研究过程,知道电子发现的过程.2.2.知道 粒子散射实验的原理,知道原子的核式结构.3.了解氢原子光谱的不连续性及各个线系.4.了解原子的能级、跃迁、能量量子化以及基态和激发态等概念.5.了解原子能量量子化是如何提出来的,理解原子发射与吸收光子的频率和能级差的关系.6.知道氢原子能级公式,以及能利用能级公式分析一些有关能级的问题.7.能用原子的能级结构解释氢原子的光谱的不连续性.教学重点与难点1.了解这节几种实验的实验思想。
2.理解原子的核式结构。
3.氢原子的能级结构及量子化的理解。
4.氢原子光谱的实验规律。
教学过程知识梳理知识点一、探索阴极射线1.1858 年,德国科学家普吕克尔发现了阴极射线.在一个抽成真空的玻璃管两端加上高压出现绿色荧光,这种奇妙的射线,称为阴极射线.对于阴极射线本质的研究引起了科学家们的普遍关注,对阴极射线的本质有各种猜想.2.1897年,汤姆生采用改进实验装置,根据阴极射线的带电性质,测定了阴极射线的荷质比m e =1.758 8×1011 C/kg ,电子的质量约为氢原子质量的18361. 3.1910年,密立根著名的“油滴实验”精确测出了电子电荷量e =1.6×10-19 C ,并根据汤姆生测得的阴极射线比荷确定了电子的质量m =9.1×10-31 kg.例题精讲例1、关于阴极射线的本质,下列说法正确的是( )A .阴极射线本质是氢原子B .阴极射线本质是电磁波C .阴极射线本质是电子D .阴极射线本质是 X 射线知识梳理知识点二、电子的发现 汤姆生对阴极射线本质的各种猜想产生了浓厚的兴趣,并设计实验进行研究,通过实验和计算,汤姆生计算出的荷质比大约比当时已知质量最小的氢离子的荷质比大 2 000 倍,经过大量实验研究最后结论是:阴极射线由带负电的粒子组成,且粒子质量比任何一种分子原子质量都小得多,即是电子.例题精讲例2、电子的发现说明了( )A.原子具有复杂的结构 B.原子核具有复杂的结构C.原子由原子核与电子组成 D.原子核由质子和中子组成知识梳理知识点三、α粒子散射实验和卢瑟福的原子核式结构1909-1911年卢瑟福和他的助手做原子核式结构α粒子轰击金箔的实验观察到:α粒子穿过金箔后,绝大多数沿原方向前进,少数发生较大角度偏转,极少数偏转角大于90°,有的甚至被弹回.卢瑟福通过对实验结果进行分析,否定了汤姆生的原子结构模型,提出了核式结构.即原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部的质量都集中在原子核,带负电的电子在核外空间绕核旋转.原子半径大约为10-10 m,核半径大约为10-15~10-14 m.例题精讲例3、在α粒子穿过金箔发生大角度偏转的过程中,下列说法正确的是()A.α粒子先受到原子核的斥力作用,后受到原子核的引力作用B.α粒子一直受到原子核的斥力作用C.α粒子先受到原子核的引力作用,后受到原子核的斥力作用D.α粒子一直受到库仑力,速度一直减小知识梳理知识点四、氢原子光谱1.原子光谱.(1)概念:原子的气体通电后可以发光并产生固定不变的光谱,这种光谱被称之为原子光谱.(2)规律:①每种原子都有自己特定的原子光谱.②不同的原子,其原子光谱不同,因而,原子光谱被称为原子的“指纹”.(3)应用:可以通过对光谱的分析鉴别不同的原子,确定物体的化学组成并发现新元素.2.氢原子的光谱.(1)巴耳末系:从氢气放电管可以获得氢原子的光谱,如图所示,在可见光区域内,氢原子光谱有四条谱线,它们分别用符号Hα、Hβ、Hγ和Hδ示.1885年,巴耳末发现这四条光谱的波长可以用一个很简单的数学公式表示,这个公式叫巴耳末公式.氢原子光谱在可见光区域和紫外区的14条谱线满足巴耳末公式1λ=R⎝⎛⎭⎫122-1n2,n=3,4,5,…R 称为里德伯常量,实验测得R =1.097×107 m -1,巴耳末公式说明氢原子光谱的波长只能取分立值,不能取连续值.人们把一系列符合巴耳末公式的光谱线统称为巴耳末系.(2)其他公式.氢原子光谱在红外区和紫外光区的其他谱线满足与巴耳末公式类似的其他公式.如莱曼系在紫外区,公式为1λ=R ⎝⎛⎭⎫112-1n 2,n =2,3,4,… (3)广义巴耳末公式.氢原子光谱的所有谱线满足广义巴耳末公式 1λ=R ⎝⎛⎭⎫1m 2-1n 2 式中的m 和n 均为正整数,且n >m .3.注意.(1)在氢原子光谱图中的可见光区内,随着波长的逐渐减小,相邻谱线间的距离越来越小,表现出明显的规律性.(2)巴耳末线系中的n 值越大,对应的波长λ越短.(3)巴耳末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴耳末线系,该线系包括可见光和紫外光. 例题精讲例4、下列说法不正确的是( )A .巴耳末线系光谱线的条数只有4条B .巴耳末线系光谱线有无数多条C .当电子从n 大于2的轨道跃迁到n 等于2的轨道时,所得到的谱线都属于巴耳末线系D .巴耳末线系在可见光范围内只有4条解析:由巴耳末公式知当电子从n 大于2的轨道跃迁到n 等于2的轨道时,所得到的谱线都属于巴耳末线系,所得到的线系可以有无数条.但在可见光区域只有4条光谱线.故正确的是B 、C 、D.答案:A知识梳理知识点五、原子的能级结构1.原子的能级结构猜想.(1)原子的能量.电子绕原子核运动时具有动能,它与原子核之间具有相互作用,因此电子——原子核这个系统也具有势能,两者之和为原子的能量.(2)原子的能级.由于氢原子光谱是分立的,因此我们猜想原子内部的能量也是不连续的,我们把原子内部不连续的能量称为原子的能级.2.氢原子的能级.(1)玻尔的能级假设:氢原子能级满足:E n=-Rhcn2,n=1,2,3,…式中R为里德伯常量,h为普朗克常量,c为光速,n为正整数,也叫能量量子数.(2)基态:在正常状态下,氢原子处于最低的能级E1(n=1),这个最低能级状态称为基态.氢原子在基态的能量为-13.6 eV.(3)激发态:当电子受到外界激发时,可从基态跃迁到较高的能级,较高能级对应的状态称为激发态.(4)氢原子的能级图.3.注意.(1)若使原子电离,外界必须对原子做功输入能量,使电子摆脱它与原子核之间的库仑力的束缚,所以原子电离后的能量比原子其他状态的能量都高.我们把原子电离后的能量记为0,即选取电子离核无穷远处即电子和原子核间无作用力时氢原子的能量为零,则其他状态下的能量值均为负值.(2)轨道与能量:对氢原子而言,核外的一个电子绕核运行时,若半径不同,则对应着的原子能量也不同,轨道半径越大,即n值越大,氢原子能量越高.例题精讲例5、氢原子的基态能量为E1,如图所示,四个能级图正确代表氢原子能级的是()解析:由玻尔能级假设可知,选项C对.答案:C知识梳理知识点六、原子的能级跃迁1.原子的能级跃迁的概念.跃迁是指电子从一个能级变化到另一个能级的过程,而电子从某一轨道跃迁到另一轨道对应着原子就从一个能量状态(定态)跃迁到另一个能量状态(定态).2.能级跃迁的频率条件.(1)处于高能级的原子会自发地向低能级跃迁,并且在这过程中辐射光子.hν=E m-E n.E m、E n分别为原子跃迁前后的能级.(2)反之,原子吸收了特定频率的光子或者通过其他途径获得能量时便可以从低能级向高能级跃迁,同样也遵循上面的规律.3.跃迁时电子动能、原子势能与原子能量的变化:(1)当轨道半径减小时,库仑引力做正功,原子的电势能E p减小,电子动能增大,由于辐射光子原子能量减小.(2)轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.4.使原子能级跃迁的两种粒子——光子与实物粒子(1)原子若是吸收光子的能量而被激发,则光子的能量必须等于两能级的能量差,否则不被吸收,不存在激发到n 能级时能量有余,而激发到n+1时能量不足,则可激发到n能级的问题.但当光子能量E>13.6 eV,氢原子能够吸收光子使电子电离,且电子具有动能.(2)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E=En-Ek),均可使原子发生能级跃迁5.原子跃迁时需注意的几个问题:(1)注意一群原子和一个原子:氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.(2)注意直接跃迁与间接跃迁:原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁.两种情况的辐射(或吸收)光子的频率数不同.(3)注意跃迁与电离的区别:跃迁是指核外电子从一个能量轨道变化到另一个能量轨道,而电离则是核外电子脱离原子核的束缚成为自由电子.例题精讲例六、氢原子从能级m跃迁到能级n时辐射红光的频率为V1,从能级n跃迁到能级k时吸收紫光的频率为V2,已知普朗克常量为h,若氢原子从能级k跃迁到能级m,则()A.吸收光子的能量为hν1+hν2B.辐射光子的能量为hν1+hν2C.吸收光子的能量为hν2-hν1D.辐射光子的能量为hν2-hν1解析:氢原子从能级m跃迁到能级n时辐射红光,E m-E n=hν1,从能级n跃迁到能级k时吸收紫光E k-E n=hν2,则从能级k跃迁到能级m有E k-E m=(E k-E n)-(E m-E n)=hν2-hν1,因红光的能量小于紫光的能量,故能量降低辐射光子;故选D.巩固训练1.如图所示是电子射线管示意图.接通电源后,电子射线由阴极沿 x 轴方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z 轴负方向)偏转,在下列措施中可采用的是()A.加一磁场,磁场方向沿 z 轴负方向B.加一磁场,磁场方向沿 y 轴正方向C.加一电场,电场方向沿 z 轴负方向D.加一电场,电场方向沿 y 轴正方向2.(双选)如图所示,为α粒子散射实验的示意图,A 点为某α粒子运动中离原子核最近的位置,则该α粒子在 A 点图,具有()A.最大的速度 B.最大的加速度C.最大的动能 D.最大的电势能3.( 双选) 卢瑟福原子核式结构理论的主要内容有()A.原子的中心有个核,叫做原子核B.原子的正电荷均匀分布在整个原子中C.原子的全部正电荷和几乎全部质量都集中在原子核里D.带负电的电子镶嵌在原子核里4.下列氢原子的线系中对波长最短波进行比较,其值最小的是()A.巴耳末系B.莱曼系C.帕邢系D.布喇开系5.下面关于玻尔理论的解释中,不正确的说法是()A.原子只能处于一系列不连续的状态中,每个状态都对应一定的能量B.原子中,虽然核外电子不断做加速运动,但只要能量状态不改变,就不会向外辐射能量C.原子从一种定态跃迁到另一种定态时,一定要辐射一定频率的光子D.原子的每一个能量状态都对应一个电子轨道,并且这些轨道是不连续的6.用频率为ν0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则________(填入正确选项前的字母).A.ν0<ν1B.ν3=ν2+ν1C.ν0=ν1+ν2+ν3 D.课后作业1.阴极射线管中的高电压的作用是()A.使管内气体电离 B.使管内产生阴极射线C.使管内障碍物的电势升高 D.使电子加速2.(双选)如图所示为卢瑟福和他的同事们做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C 三个位置时,关于观察到的现象,下述说法中正确()A.相同时间内放在 A 位置时观察到屏上的闪光次数最多B.相同时间内放在 B 位置时观察到屏上的闪光次数最少C.相同时间内放在 C 位置时观察到屏上的闪光次数最少D.放在 C 位置时观察不到屏上有闪光3.根据α粒子散射实验,卢瑟福提出了原子的核式结构模型.图 3-2-4 中虚线表示原子核所形成的电场的等势线,实线表示一个α粒子的运动轨迹.在α粒子从 a 运动到 b、再运动到 c 的过程中,下列说法中正确的是()A.动能先增加,后减少B.电势能先减少,后增加C.电场力先做负功,后做正功,总功等于零D.加速度先变小,后变大4.卢瑟福通过____________实验,发现了原子中间有一个很小的核,并由此提出了原子的核式结构模型.如果用带箭头的四条线 a、b、c、d 来表示α粒子在图 3-2-5 所示的平面示意图中运动的可能轨迹.请在图中补充完成 b 和 c 两条α粒子运动的大致轨迹.5.(双选)关于玻尔原子理论的基本假设,下列说法中正确的是()A.原子中的电子绕原子核做圆周运动,库仑力提供向心力B.电子绕核运动的轨道半径只能取某些特定的值,而不是任意的C.原子的能量包括电子的动能和势能,电子动能可取任意值,势能只能取某些分立值D .电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)的光子频率等于电子绕核运动的频率6.大量原子从n =4的激发态向低能态跃迁时,产生的光谱线数是( )A .2条B .4条C .6条D .8条7.氢原子核外的电子从基态跃迁到n =2的能级时,吸收的能量为E ,则电子从n =2能级跃迁到n =3能级时需要吸收的能量是( )A.527EB.13EC.518ED.536E 8.氢原子从能量为E 1的较高激发态跃迁到能量为E 2的较低激发态,设真空中的光速为c ,则( )A .吸收光子的波长为c ()E 1-E 2hB .辐射光子的波长为c ()E 1-E 2hC .吸收光子的波长为ch E 1-E 2D .辐射光子的波长为chE 1-E 29.按照玻尔理论,氢原子若能从能级A 跃迁到能级B 时,吸收频率为v 1的光子,若从能级A 跃迁到能级C 时,释放频率为v 2的光子。
高中物理 第三章 原子结构之谜章末整合课件 粤教版选修35
针对训练1 (单选)氢原子的核外电子(hé wài diàn zǐ)从距核 较近的轨道跃迁到距核较远的轨道的过程中 () A.原子要吸收光子,电子的动能增大,原子的电势能增大 B.原子要放出光子,电子的动能减小,原子的电势能减小 C.原子要吸收光子,电子的动能增大,原子的电势能减小 D.原子要吸收光子,电子的动能减小,原子的电势能增大 答案 D
第十八页,共19页。
针对训练2 一个氢原子处于基态(jī tài),用光子能量为15 eV的电磁波去照射该原子,问能否使氢原子电离?若能使 之电离,则电子被电离后所具有的动能是多大? 答案 能 1.4 eV 解析 氢原子从基态(jī tài)n=1处被完全电离至少吸收 13.6 eV的能量.所以15 eV的光子能使之电离,由能量守 恒可知,完全电离后还剩余动能Ek=15 eV-13.6 eV= 1.4 eV.
第十二页,共19页。
解析 根据玻尔理论,氢原子核外电子在离核较远的轨 道上运动能量较大,必须吸收一定能量的光子后,电子 才能从离核较近的轨道跃迁到离核较远的轨道,故 B 错; 氢原子核外电子绕核做圆周运动,由原子核对电子的库 仑力提供向心力,即:ker22=mvr2,又 Ek=12mv2 则 k2er2=12 mv2,即 Ek=k2er2.由此式可知:电子离核越远,r 越大时, 电子的动能越小,故 A、C 错;r 变大时,库仑力对核外 电子做负功,因此电势能增大,则 D 正确.
第十九页,共19页。
uá nz ǐ) 模
玻尔理论假设
定态假设 轨道量子化假设
跃迁假设:
型 玻尔理论
连续光谱:炽热的固体、液体和高
发射光谱 压气体的发射光谱
明线光谱:也叫原子光谱,由稀
原子光谱
高中物理第三章原子结构之谜3.3氢原子光谱教学案粤教版选修3-5(new)
第三节氢原子光谱[目标定位] 1。
了解氢原子光谱的特点。
2.知道巴耳末公式及里德伯常量.3.了解原子光谱及光谱分析的应用.一、巴耳末系1.氢光谱的获得在充有稀薄氢气的放电管两极间加上2~3 kV的高压,使氢气放电,氢原子在电场的激发下发光,通过分光镜观察氢原子的光谱.2.光谱的特点(1)氢原子光谱在可见光区内有四条谱线,这些谱线是几条分立的亮线.(2)氢原子受激发只能发出几种特定频率的光.3.氢原子光谱的实验规律氢原子在可见光区的四条谱线的波长可用一个简单的公式——巴耳末公式表示:错误!=R (错误!-错误!),n=3,4,5,6…,式中的常数R称为里德伯常量.二、氢原子光谱的其他线系自从发现巴耳末系后,人们又在紫外区、红外区及近红外区发现了氢原子的其他线系,分别是莱曼系、帕邢系、布喇开系、普丰德系,这些线系统一的公式为:错误!=R错误!,式中m、n 均为正整数,且n>m,此式称为广义巴耳末公式,也可以表示为错误!=T(m)-T(n),式中T(m)=错误!,T(n)=错误!称为光谱项.三、原子光谱1.原子光谱:某种原子的气体通电后可以发光并产生固定不变的光谱,这种光谱称为原子光谱.2.每种原子都有自己特定的原子光谱,不同的原子,其原子光谱均不相同.3.通过对光谱的分析可鉴别不同的原子,确定物体的化学组成并发现新元素.预习完成后,请把你疑惑的问题记录在下面的表格中问题1问题2问题3一、氢原子光谱的实验规律1.氢原子的光谱从氢气放电管可以获得氢原子光谱,如图1所示.图12.氢原子光谱的特点在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.3.巴耳末公式(1)巴耳末对氢原子光谱的谱线进行研究得到了下面的公式:错误!=R(错误!-错误!),n=3,4,5…该公式称为巴耳末公式.(2)公式中只能取n≥3的整数,不能连续取值,波长是分立的值.4.其他谱线除了巴耳末系,氢原子光谱在红外和紫外光区的其他谱线,也都满足与巴耳末公式类似的关系式.【例1】在氢原子光谱的紫外区的谱线系中有多条谱线,试利用莱曼系的公式错误!=R 错误!,n=2,3,4,…,计算紫外线的最长波和最短波的波长(R=1。
粤教版高中物理选修3-5课件第三章第三四节原子的能级结构
(3)玻尔理论对氢原子光谱的解释. ①解释巴耳末公式: 按照玻尔理论,从高能级跃迁到低能级时辐射的光子 的能量为 hν=Em-En;巴耳末公式中的正整数 n 和 2 正 好代表能级跃迁之前和之后的定态轨道的量子数 n 和 2. ②解释氢原子光谱的不连续性: 原子从较高能级向低能级跃迁时放出光子的能量等 于前后两能级差,由于原子的能级是分立的,所以放出 的光子的能量也是分立的,因此原子的发射光谱只有一 些分立的亮线.
答案:CD
拓展一 氢原子光谱 如图所示为氢原子光谱. (1)仔细观察,氢原子光谱具有什么特点? (2)氢原子光谱的谱线波长具有什么规律?
提示:(1)氢原子光谱从左向右谱线间的距离越来越大. (2)氢原子光谱的谱线波长符合巴耳末公式.
1.原子光谱. (1)概念: 原子的气体通电后可以发光并产生固定不变的光 谱,这种光谱被称为原子光谱. (2)特点: ①每种原子都有自己特定的原子光谱. ②不同的原子,其原子光谱不同,原子光谱被称为 原子的“指纹”.
(4)玻尔理论的局限性. ①玻尔理论的成功之处:玻尔理论第一次将量子观 念引入原子领域.提出了定态和跃迁的概念,成功地解 释了氢原子光谱的实验规律. ②玻尔理论的局限性:过多地保留了经典理论,对 更复杂的原子发光无法解释.
2.氢原子能级. (1)氢原子的能级图如图所示,从玻尔的基本假设出 发,运用经典电磁学和经典力学的理论,可以计算氢原 子中电子的可能轨道及相应的能量. rn=n2r1,En=En21,式中 n=1,2,3,…其中 r1= 0.53×10-10 m,E1=-13.6 eV. n 取不同的量子数时,可求得各能级的能量值.
第三章 原子结构之谜
第三节 氢原子光谱 第四节 原子的能级结构
学习目标
1.了解氢原子光谱的不连 续性及各个线系. 2.了解能级结构猜想. 3.知道氢原子能级公式. 4.能够利用能级公式分析 一些有关能级的问题.
推荐2017_2018学年高中物理第三章原子结构之谜第四节原子的能级结构同步备课教学案粤教版选修3_5
原子的能级结构[学习目标] 1.了解能级、跃迁、能量量子化以及基态、激发态等概念.2.了解能级跃迁伴随着能量变化,知道能级跃迁过程中吸收或放出光子.3.能通过能级跃迁解释巴耳末系.一、能级结构猜想[导学探究] 为什么氢原子发出的光谱是不连续的?答案因为氢原子内部的能量是不连续的,因此氢原子由高能级向低能级跃迁时,只能放出一定频率的光,且光子的能量等于跃迁的能级差,即hν=E m-E n.[知识梳理]1.由氢原子光谱是分立的,我们猜想原子内部的能量也是不连续的.2.原子内部不连续的能量称为原子的能级,原子从一个能级变化到另一个能级的过程叫做跃迁.3.能级跃迁中的能量关系:hν=E m-E n.由此可知原子在跃迁前、后的能级分别为E m和E n. [即学即用] 判断下列说法的正误.(1)氢气放电过程,产生的光谱是连续的.( ×)(2)氢原子内部的能量是不连续的.( √)(3)氢原子从高能级向低能级跃迁时,只能放出特定频率的光.( √)(4)氢原子从低能级向高能级跃迁时,吸收光子的频率是任意的.( ×)二、氢原子的能级[导学探究] (1)氢原子从高能级向低能级跃迁时,放出的光子的能量如何计算?(2)如图1所示是氢原子的能级图,一群处于n=4的激发态的氢原子向低能级跃迁时能辐射出多少种频率不同的光子?图1答案 (1)氢原子辐射光子的能量取决于两个能级的能量差h ν=E m -E n (m <n ).(2)氢原子能级跃迁图如图所示.从图中可以看出能辐射出6种频率不同的光子,它们分别是n =4→n =3,n =4→n =2,n =4→n =1,n =3→n =2,n =3→n =1,n =2→n =1.[知识梳理]1.氢原子能级表达式E n =-Rhc n 2,n =1,2,3……式中R 为里德伯常量,h 为普朗克常量,c 为光速,n 是正整数. 2.能级状态(1)基态:在正常状态下氢原子处于最低的能级E 1(n =1),这个最低能级对应的状态称为基态,氢原子在基态的能量为-13.6 eV.(2)激发态:当电子受到外界激发时,可从基态跃迁到较高的能级E 2、E 3……上,这些能级对应的状态称为激发态.且E n =E 1n 2.3.氢原子能级图如图2所示图24.氢光谱线系的形成 能级间的跃迁产生不连续的谱线,从不同能级跃迁到某一特定能级就形成一个线系,如巴耳末系是氢原子从n =3、4、5……能级跃迁到n =2的能级时辐射出的光谱.。
广东省惠州市高中物理 第三章 原子结构之谜章末复习导学案粤教版3-5 精
第三章原子结构之谜章末复习班级姓名学号评价●【复习目标】1.知道电子的发现过程2.理解α粒子散射实验及核式结构模型3.理解玻尔的原子结构模型4.掌握原子的能级跃迁与电离●【知识梳理】●【能力提升】一、对α粒子散射实验及核式结构模型的理解【例1】(双选)关于α粒子散射实验现象的分析,下列说法正确( )A.绝大多数α粒子沿原方向运动,说明正电荷在原子内均匀分布,是α粒子受力平衡的结果B.绝大多数α粒子沿原方向运动,说明这些α粒子未受到明显的力的作用,说明原子是“中空”的C.极少数α粒子发生大角度偏转,说明原子内质量和电量比α粒子大得多的粒子在原子内分布空间很小D.极少数α粒子发生大角度偏转,说明原子内的电子对α粒子的吸引力很大【例2】设想氢原子的核外电子绕核做匀速圆周运动,氢原子中电子离核最近的轨道半径r1=0.53×10-10 m,用经典物理学的知识,试计算在此轨道上电子绕核运动的加速度.二、对玻尔原子结构模型的理解1.氢原子的能级对氢原子而言,核外的一个电子绕核运行时,若半径不同,则对应的原子能量也不同.若使原子电离,外界必须对原子做功,使电子摆脱它与原子核之间的库仑力的束缚,所以原子电离后的能量比原子其他状态的能量都高.我们把原子电离后的能量记为零,即选取电子离核无穷远时氢原子的能量为零,则其他状态下的能量值就是负的.原子各能级的关系为E n =E 1n 2 (n =1,2,3…)对于氢原子而言,基态能级:E 1=-13.6 eV ,其他各激发态的能级为: E 2=-3.4 eV ,E 3=-1.51 eV…2.氢原子的能级图氢原子的能级图如图所示.【例3】已知氢原子基态的电子轨道半径为r 1=0.528×10-10 m ,量子数为n 的能级值为E n =-13.6n eV. 求:(1)电子在基态轨道上运动的动能;(2)有一群氢原子处于量子数n =3的激发态,画一张能级图,在图上用箭头标明这些氢原子能发出的光谱线.(3)计算这几种光谱线中最短的波长.(静电力常量k =9×109 N·m 2/C 2,电子电荷量e =1.6×10-19 C ,普朗克常量h =6.63×10-34 J·s,真空中光速c =3.0×108 m/s)三、原子的能级跃迁与电离【例4】将氢原子电离,就是从外部给电子能量,使其从基态或激发态脱离原子核的束缚而成为自由电子.(1)若要使n=2激发态的氢原子电离,至少要用多大频率的电磁波照射该氢原子?(2)若用波长为200 nm的紫外线照射氢原子,则电子飞到离核无穷远处时的速度多大?(电子电荷量e=1.6×10-19 C,普朗克常量h=6.63×10-34J·s,电子质量m e=9.1×10-31 kg)【强化巩固】1.有一群氢原子处于量子数n=4的激发态中,能发出几种频率的光子?其中最高频率、最低频率各为多少?若有一个氢原子处于量子数n=4的激发态时,最多能发出几种频率的光子?2.一个氢原子处于基态,用光子能量为15 eV的电磁波去照射该原子,问能否使氢原子电离?若能使之电离,则电子被电离后所具有的动能是多大?3.(单选)在α粒子散射实验中,当α粒子最接近金原子核时,下列说法正确的( ) A.动能最小 B.电势能最小C.α粒子和金原子核组成的系统的能量最小 D.加速度最小4.(单选)一个氢原子中的电子从一半径为r a的轨道自发地直接跃迁到另一半径为r b的轨道,已知r a>r b,则在此过程中 ( )A.原子要辐射一系列频率的光子 B.原子要吸收一系列频率的光子C.原子要吸收某一频率的光子 D.原子要辐射某一频率的光子5.(单选)已知氢原子的基态能量为-13.6 eV,当一群处于量子数为n=3的激发态的氢原子发生跃迁时,可能辐射的光子能量是( )A.1.5 eV B.12.09 eVC.1.89 eV、12.09 eV D.1.89 eV、10.2 eV、12.09 eV6.(双选)关于氢原子能级的跃迁,下列叙述中正确的是 ( )A.用能量为20.75 eV的X射线照射,可使处于基态的氢原子电离出自由电子B.用能量为10.2 eV的光子照射,可使处于基态的氢原子跃迁到激发态C.用能量为11.0 eV的光子照射,可使处于基态的氢原子跃迁到激发态D.用能量为12.5 eV的光子照射,可使处于基态的氢原子跃迁到激发态7.(单选)如图所示是氢原子的能级图,现让一束单色光照射一群处于基态的氢原子,受激发的氢原子能自发地辐射出三种不同频率的光,则照射氢原子的单色光的光子能量为 ( ) A.13.6 eVB.12.09 eVC.10.2 eVD.3.4 eV8.(单选)氢原子能级的示意图如图3所示,大量氢原子从n=4的能级向n=2能级跃迁时辐射出可见光a,从n=3的能级向n=2的能级跃迁时辐射出可见光b,则( )A.可见光光子能量范围在1.62 eV到2.11 eV之间B.氢原子从n=4的能级向n=3的能级跃迁时会辐射出紫外线C.a光的频率大于b光的频率D.氢原子在n=2的能级可吸收任意频率的光而发生电离9.处于n=3能级的氢原子能够自发地向低能级跃迁,(1)跃迁过程中电子动能和原子能量如何变化?(2)可能辐射的光子波长是多少?(普朗克常量h=6.63×10-34J·s)。
高中物理第3章原子结构之谜章末分层突破课件粤教版选修3-5
1.氢原子在某激发态的电离能大小等于该能级的能量值. 2.电子电离后若有多余的能量将以电子动能的形式存在.
1.(2016·北京高考)处于 n=3 能级的大量氢原子,向低能级跃迁时,辐射
光的频率有( )
A.1 种
B.2 种
C.3 种
D.4 种
பைடு நூலகம்
我还有这些不足: (1) ________________________________________________________ (2) ________________________________________________________ 我的课下提升方案: (1) ________________________________________________________ (2) ________________________________________________________
巩
拓
固
展
层
层
章末分层突破
章
提 升 层
末 综 合 测
评
两个重要的物理思想方法
1.模型法 人们对原子结构的认识经历了几个不同的阶段,其中有汤姆生模型、卢瑟 福模型、玻尔模型、电子云模型.
玻尔理论
1.玻尔原子模型 (1)量子化观点:电子的可能轨道半径、原子的能量、原子跃迁辐射或吸收 光子的频率都只能是分立的、不连续的值. (2)对应关系:电子处于某一可能轨道对应原子的一种能量状态. (3)定态观点:电子在某一可能轨道上运动时,原子是不向外辐射电磁波的, 轨道与能量是稳定的. (4)跃迁观点:能级跃迁时辐射或吸收光子的能量,hν=Em-En(m>n).
高中物理 第3章 第4节 原子的能级结构教案 粤教版选修3-5
第四节 原子的能级结构 [学习目标] 1.了解能级、基态和激发态的概念.2.理解原子发射和吸收光子的能量与能级差的关系.(重点)3.能用玻尔原子理论简单解释氢原子光谱.(难点)4.知道氢原子的能级图.(重点)一、能级结构猜想1.猜想:氢气在放电过程中,氢原子的能量也在减少.如果能量是连续减少的,那么形成的光谱必定是连续谱,但是氢原子光谱是分立的,因此我们猜想原子内部的能量也是不连续的.2.能级:原子内部不连续的能量称为原子的能级.3.跃迁:原子从一个能级变化到另一个能级的过程叫作跃迁.4.光子频率与能级差关系式:hν=E m -E n .二、氢原子的能级 玻尔理论1.玻尔氢原子能级公式E n =-Rhc n 2,(n =1,2,3…).n 被称为能量量子数. 2.基态(1)定义:在正常状态下,氢原子处于最低的能级E 1(n =1),这个最低能级对应的状态称为基态.(2)基态能量:E 1=-13.6_eV.3.激发态:当电子受到外界激发时,可从基态跃迁到较高的能级E 2,E 3…上,这些能级对应的状态称为激发态.4.玻尔理论的两条基本假设(1)定态假设.原子系统中存在具有确定能量的定态,原子处于定态时,电子绕核运动不辐射也不吸收能量.(2)跃迁假设.原子系统从一个定态跃迁到另一个定态,伴随着光子的发射和吸收.1.正误判断(正确的打“√”,错误的打“×”)(1)处在高能级的原子自发地向低能级跃迁,这个过程中要吸收光子.(×)(2)原子吸收了特定频率的光子或通过其他途径获得能量时,可从低能级向高能级跃迁.(√)(3)氢原子的能量是不连续的,只能取一些定值也就是说氢原子的能量是量子化的.(4)氢原子能级表达式是瑞士的巴耳末最先得出的.(×)(5)能级间的跃迁产生不连续的谱线,从不同能级跃迁到某一特定能级就形成一个线系.(√) 2.(多选)关于玻尔理论,以下论断正确的是( )A.原子的不同定态对应于电子沿不同的圆形轨道绕核运动B.当原子处于激发态时,原子向外辐射能量C.只有当原子处于基态时,原子才不向外辐射能量D.不论原子处于何种定态,原子都不向外辐射能量AD [由轨道量子化假设知A正确,根据能级假设和频率条件知,不论原子处于何种定态,原子都不向外辐射能量,原子只有从一个定态跃迁到另一个定态时,才辐射或吸收能量.所以B、C错误,D正确.]3.按照玻尔理论,一个氢原子的电子从一个半径为r a的圆轨道自发地直接跃迁到一个半径为r b的圆轨道上,r a>r b,此过程中( )A.原子要辐射一系列频率的光子B.原子要吸收一系列频率的光子C.原子要辐射某一频率的光子D.原子要吸收某一频率的光子C [电子从某一轨道直接跃迁到另一轨道,只能辐射或吸收某一特定频率的光子;再根据r a>r b,从较远轨道向较近轨道跃迁,即从高能级向低能级跃迁,要辐射光子.故C选项正确.]对玻尔理论的理解(1)定态假设:原子只能处于一系列不连续的能量状态之中,在这些状态中原子是稳定的,电子虽然绕核做圆周运动,但并不向外辐射能量.这些状态叫定态.(2)跃迁假设:原子从一种定态(设能量为E m)跃迁到另一种定态(设能量为E n)时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即hν=E m-E n.2.卢瑟福原子模型与玻尔原子模型的相同点与不同点(1)相同点①原子有带正电的核,原子质量几乎全部集中在核上.②带负电的电子在核外运转.(2)不同点卢瑟福模型:库仑力提供向心力,r的取值是连续的.玻尔模型:轨道r是分立的、量子化的,原子能量也是量子化的.3.能级对氢原子而言,核外的一个电子绕核运行时,若半径不同,则对应着的原子能量也不同,若使原子电离,外界必须对原子做功,使电子摆脱它与原子核之间库仑力的束缚,所以原子电离后的能量比原子其他状态的能量都高.我们把原子电离后的能量记为0,即选取电子离核无穷远处时氢原子的能量为零,则其他状态下的能量值均为负值.原子各能级的关系为:E n=E1n2(n=1,2,3…).对氢原子而言,基态能量:E1=-13.6 eV,其他各激发态的能级为:E2=-3.4 eVE3=-1.51 eV……这里E1、E2…E n是指原子的总能量,即电子动能与电势能的和.【例1】(多选)由玻尔理论可知,下列说法中正确的是( )A.电子绕核运动有加速度,就要向外辐射电磁波B.处于定态的原子,其电子做变速运动,但它并不向外辐射能量C.原子内电子的可能轨道是连续的D.原子的轨道半径越大,原子的能量越大BD [按照经典物理学的观点,电子绕核运动有加速度,一定会向外辐射电磁波,很短时间内电子的能量就会消失,与客观事实相矛盾,由玻尔假设可知选项A、C错误,B正确;原子轨道半径越大,原子能量越大,选项D正确.]1.处于基态的原子是稳定的,而处于激发态的原子是不稳定的.2.原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.1.(多选)按照玻尔原子理论,下列表述正确的是( )A.核外电子运动轨道半径可取任意值B.氢原子中的电子离原子核越远,氢原子的能量越大C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=E m-E n(m>n) D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量BC [根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A 错误;氢原子中的电子离原子核越远,能级越高,能量越大,B 正确;由跃迁规律可知C 正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D 错误.]原子能级图及能级跃迁规律氢原子的能级图如图所示.2.跃迁规律 (1)由高能级向低能级跃迁原子在基态时是稳定的,在激发态时是不稳定的.处于激发态的原子会自发地向低能级跃迁,并以光子的形式放出能量,原子在始、末两个能级E m 和E n (m >n )间跃迁时,放出光子的频率ν=E m -E n h. 氢原子核外电子从高能级向低能级跃迁时可能直接跃迁到基态,也可能先跃迁到其他低能级的激发态,然后再到基态,因此处于n 能级的电子向低能级跃迁时就有很多可能性,其可能的值为C 2n =n (n -1)2种可能情况.3.使原子能级跃迁的两种粒子——光子与实物粒子(1)原子若是吸收光子的能量而被激发,其光子的能量必须等于两能级的能量差,否则不被吸收,不存在激发到n 能级时能量有余,而激发到n +1时能量不足,则可激发到n 能级的问题.(2)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发,由于实物粒子的动能可部分被原子吸收,所以只要入射粒子的能量大于两能级的能量差值(E =E n -E k ),就可使原子发生能级跃迁.4.原子的电离:若入射光子的能量大于原子的电离能,如处于基态的氢原子电离能为13.6 eV ,则原子也会被激发跃迁,这时核外电子脱离原子核的束缚成为自由电子,光子能量大于电离能的部分成为自由电子的动能.5.能级跃迁时的能量变化当轨道半径减小时,库仑引力做正功,原子的电势能减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大. 【例2】 有一群氢原子处于n =4的能级上,已知氢原子的基态能量E 1=-13.6 eV ,普朗克常量h =6.63×10-34 J·s,求:(1)这群氢原子的光谱共有几条谱线;(2)这群氢原子发出的光子的最大频率是多少;(3)这群氢原子发出的光子的最长波长是多少.思路点拨:(1)一群氢原子从第n 能级向基态跃迁时最多可放出C 2n 种频率的光子.(2)跃迁时,发出的光子的频率(或波长)由两个能级差决定,能级差越大,发出光子的频率越高,波长越短.[解析] (1)这群氢原子的能级如图所示,由图可以判断,这群氢原子可能发生的跃迁共有6种,所以这群氢原子的光谱共有6条谱线.也可由C 24=6直接求得.(2)频率最高的光子能量最大,对应的跃迁能级差也最大,即从n =4能级跃迁到n =1能级发出的光子能量最大,发出光子的能量:hν=-E 1⎝ ⎛⎭⎪⎫112-142 代入数据,解得ν≈3.1×1015 Hz.(3)波长最长的光子能量最小.对应的跃迁的能级差也最小,即从n =4能级跃迁到n =3能级则有h c λ=E 4-E 3解得λ=hc E 4-E 3= 6.63×10-34×3×108(-0.85+1.51)×1.6×10-19m = 1.884×10-6 m.[答案] (1)6条 (2)3.1×105 Hz (3)1.884×10-6 m原子跃迁时需注意的几个问题1.区分一群原子和一个原子:氢原子核外只有一个电子,在某段时间内,由某一轨道跃迁到另一个轨道时,只能出现所有可能情况中的一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.2.区分直接跃迁与间接跃迁:原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁.两种情况辐射或吸收光子的频率不同.3.区分跃迁与电离:hν=E m-E n只适用于光子和原子作用使原子在各定态之间跃迁的情况,对于光子和原子作用使原子电离的情况,则不受此条件的限制.如基态氢原子的电离能为13.6 eV,只要大于或等于13.6 eV的光子都能被基态的氢原子吸收而发生电离,只不过入射光子的能量越大,原子电离后产生的自由电子的动能越大.训练角度1:氢原子能级跃迁问题2.(多选)氢原子的能级图如图所示,关于大量氢原子的能级跃迁,下列说法正确的是(可见光的波长范围为4.0×10-7~7.6×10-7m,普朗克常量h=6.6×10-34J·s,真空中的光速c=3.0×108m/s)( )A.氢原子从高能级跃迁到基态时,会辐射γ射线B.氢原子处在n=4能级,会辐射可见光C.氢原子从高能级向n=3能级跃迁时,辐射的光具有显著的热效应D.氢原子从高能级向n=2能级跃迁时,核外电子的轨道半径变小BCD [γ射线的产生机理是原子核受激发,是原子核变化才产生的,A错误;根据E=h cλ,可见光光子的能量为1.63~3.09 eV,从n=4能级跃迁到n=2能级,ΔE=(-0.85+3.40)eV =2.55 eV,在该能量范围内,B正确;氢原子从高能级向n=3能级跃迁时,辐射光子的最大能量值为E m=1.51 eV=2.416×10-19J,此光子的波长为最小波长,λ2=hcE m=6.6×10-34×3.0×1082.416×10-19m=8.2×10-7 m,属于红外线的范畴,具有显著的热效应,C正确;氢原子从高能级向n=2能级跃迁时,辐射出光子,核外电子的轨道半径变小,D正确.] 训练角度2:电子跃迁时原子能量的变化3.(多选)氢原子核外电子由某一轨道向另一轨道跃迁时,可能发生的情况是( ) A.原子吸收光子,电子的动能增大,原子的电势能增大,原子的能量增大B.原子放出光子,电子的动能减小,原子的电势能减小,原子的能量减小C.原子吸收光子,电子的动能减小,原子的电势能增大,原子的能量增大D.原子放出光子,电子的动能增大,原子的电势能减小,原子的能量减小CD [氢原子核外电子由某一轨道跃迁到另一轨道,可能有两种情况:一是由较高能级向较低能级跃迁,即原子的电子由距核较远处跃迁到较近处,要放出光子,原子的能量(电子和原子核共有的电势能与电子动能之和,即能级)要减小,原子的电势能要减小(库仑力做正功),电子的动能增大;二是由较低能级向较高能级跃迁,情况与上述相反.根据玻尔理论,在氢原子中,电子绕核做圆周运动的向心力由原子核对电子的吸引力(库仑力)提供,根据ke2r2=mv2r 得v=ke2rm,可见,原子由高能级跃迁到低能级时,电子轨道半径减小,动能增加;反之动能减小.由以上分析可知C、D选项正确.课堂小结知识脉络1.丹麦物理学家玻尔提出玻尔原子理论的基本假设.(1)定态假设:原子只能处于一系列不连续的能量状态之中,这些状态中能量是稳定的.(2)跃迁假设:原子从一个定态跃迁到另一个定态,辐射或吸收一定频率的光子.hν=E m-E n.(3)轨道假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应.2.氢原子的轨道半径r n=n2r1,n=1,2,3,…氢原子的能量:E n=1n2E1,n=1,2,3,…1.(多选)玻尔在他提出的原子模型中所作的假设有( )A.原子处在具有一定能量的定态中,虽然电子做加速运动,但不向外辐射能量B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率ABC [A、B、C三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能量跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核的运动无关.]2.(2019·全国卷Ⅰ)氢原子能级示意图如图所示.光子能量在1.63 eV~3.10 eV的光为可见光.要使处于基态(n=1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为( )A.12.09 eV B.10.20 eVC.1.89 eV D.1.51 eVA [因为可见光光子的能量范围是1.63 eV~3.10 eV,所以氢原子至少要被激发到n=3能级,要给氢原子提供的能量最少为E=(-1.51+13.60)eV=12.09 eV,即选项A正确.] 3.如图是玻尔为解释氢原子光谱画出的氢原子能级示意图.一群氢原子处于n=4的激发态,当它们自发地跃迁到较低能级时,以下说法符合玻尔理论的有( )A.电子轨道半径减小,动能也要减小B.氢原子跃迁时,可发出连续不断的光谱线C.由n=4跃迁到n=1时发出光子的频率最小D.金属钾的逸出功为2.21 eV,能使金属钾发生光电效应的光谱线有4条D [能级间跃迁辐射或吸收的光子能量必须等于两能级间的能级差,当原子从第4能级向低能级跃迁时,原子的能量减小,轨道半径减小,电子的动能增大,电势能减小,A选项错误;氢原子跃迁时,可发出不连续的光谱线,B选项错误;由n=4跃迁到n=1时辐射的光子能量最大,发出光子的频率最大,C选项错误;第四能级的氢原子可以放出6条光谱线,大于2.21 eV的光谱线有4条,D选项正确.]4.氢原子的能级图如图所示.取普朗克常量h=6.6×10-34J·s,计算结果保留2位有效数字.求:(1)处于n=6能级的氢原子,其能量为多少电子伏特?(2)大量处于n=4能级的氢原子,发出光的最大波长为多少米?[解析] (1)分析氢原子的能级图,根据能级关系可知,E n =E 1n 2,代入数据解得,E 6=-0.38 eV. (2)根据玻尔理论,大量处于n =4能级的氢原子,发出光的最大波长为n =4向n =3跃迁发出的光.h c λm=E 4-E 3,代入数据解得λm =1.9×10-6 m. [答案] (1)-0.38 eV (2)1.9×10-6 m。
高三物理 3.4《原子的能级结构》教案 粤教版选修3-5
原子的能级结构★新课标要求(一)知识与技能1.了解玻尔原子理论的主要内容。
2.了解能级、能量量子化以及基态、激发态的概念。
(二)过程与方法通过玻尔理论的学习,进一步了解氢光谱的产生。
(三)情感、态度与价值观培养我们对科学的探究精神,养成独立自主、勇于创新的精神。
★教学重点玻尔原子理论的基本假设★教学难点玻尔理论对氢光谱的解释。
★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课复习提问:1.α粒子散射实验的现象是什么?2.原子核式结构学说的内容是什么?3.卢瑟福原子核式结构学说与经典电磁理论的矛盾教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。
(二)进行新课1.玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径:12r n r n = n=1,2,3……能 量:121E nE n = n=1,2,3……式中r 1、E 1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,r n 、E n 分别代表第n 条可能轨道的半径和电子在第n 条轨道上运动时的能量,n 是正整数,叫量子数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节原子的能级结构[学习目标] 1.了解能级、跃迁、能量量子化以及基态、激发态等概念.2.了解能级跃迁伴随着能量变化,知道能级跃迁过程中吸收或放出光子.3.能通过能级跃迁解释巴耳末系.一、能级结构猜想[导学探究] 为什么氢原子发出的光谱是不连续的?答案因为氢原子内部的能量是不连续的,因此氢原子由高能级向低能级跃迁时,只能放出一定频率的光,且光子的能量等于跃迁的能级差,即hν=E m-E n.[知识梳理]1.由氢原子光谱是分立的,我们猜想原子内部的能量也是不连续的.2.原子内部不连续的能量称为原子的能级,原子从一个能级变化到另一个能级的过程叫做跃迁.3.能级跃迁中的能量关系:hν=E m-E n.由此可知原子在跃迁前、后的能级分别为E m和E n. [即学即用] 判断下列说法的正误.(1)氢气放电过程,产生的光谱是连续的.( ×)(2)氢原子内部的能量是不连续的.( √)(3)氢原子从高能级向低能级跃迁时,只能放出特定频率的光.( √)(4)氢原子从低能级向高能级跃迁时,吸收光子的频率是任意的.( ×)二、氢原子的能级[导学探究] (1)氢原子从高能级向低能级跃迁时,放出的光子的能量如何计算?(2)如图1所示是氢原子的能级图,一群处于n=4的激发态的氢原子向低能级跃迁时能辐射出多少种频率不同的光子?图1答案 (1)氢原子辐射光子的能量取决于两个能级的能量差hν=E m -E n (m <n ).(2)氢原子能级跃迁图如图所示.从图中可以看出能辐射出6种频率不同的光子,它们分别是n =4→n =3,n =4→n =2,n =4→n =1,n =3→n =2,n =3→n =1,n =2→n =1.[知识梳理]1.氢原子能级表达式E n =-Rhc n2,n =1,2,3……式中R 为里德伯常量,h 为普朗克常量,c 为光速,n 是正整数. 2.能级状态(1)基态:在正常状态下氢原子处于最低的能级E 1(n =1),这个最低能级对应的状态称为基态,氢原子在基态的能量为-13.6 eV.(2)激发态:当电子受到外界激发时,可从基态跃迁到较高的能级E 2、E 3……上,这些能级对应的状态称为激发态.且E n =E 1n2.3.氢原子能级图如图2所示图24.氢光谱线系的形成能级间的跃迁产生不连续的谱线,从不同能级跃迁到某一特定能级就形成一个线系,如巴耳末系是氢原子从n =3、4、5……能级跃迁到n =2的能级时辐射出的光谱.[即学即用] 判断下列说法的正误.(1)玻尔理论能很好地解释氢原子的巴耳末系.( √)(2)处于基态的原子是不稳定的,会自发地向其他能级跃迁,放出光子.( ×)(3)不同的原子具有相同的能级,原子跃迁时辐射的光子频率是相同的.( ×)(4)玻尔认为原子的能量是量子化的,不能连续取值.( √)一、对能级结构(玻尔理论)的理解1.轨道量子化(1)轨道半径只能够是一些不连续的、某些分立的数值.(2)氢原子的电子最小轨道半径为r1=0.053 nm,其余轨道半径满足r n=n2r1,式中n称为量子数,对应不同的轨道,只能取正整数.2.能量量子化(1)不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的.(2)基态:原子最低的能量状态称为基态,对应的电子在离核最近的轨道上运动,氢原子基态能量E1=-13.6 eV.(3)激发态:除基态之处的其他能量状态称为激发态,对应的电子在离核较远的轨道上运动.氢原子各能级的关系为:E n=1n2E1(E1=-13.6 eV,n=1,2,3,…)3.跃迁原子从一个能级跃迁到另一个能级时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即高能级E m 发射光子hν=E m-E n吸收光子hν=E m-E n低能级E n例1(多选)玻尔在他提出的原子模型中所作的假设有( )A.原子处在具有一定能量的定态中,虽然电子做变速运动,但不向外辐射能量B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率答案ABC解析A、B、C三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能级跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核的运动无关.例2 氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中( )A .原子要吸收光子,电子的动能增大,原子的电势能增大B .原子要放出光子,电子的动能减小,原子的电势能减小C .原子要吸收光子,电子的动能增大,原子的电势能减小D .原子要吸收光子,电子的动能减小,原子的电势能增大 答案 D解析 根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B 错;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即:k e 2r 2=m v 2r ,又E k =12mv 2,所以E k =ke 22r.由此式可知:电子离核越远,即r 越大时,电子的动能越小,故A 、C 错;r 变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D 正确.针对训练1 (多选)按照玻尔原子理论,下列表述正确的是( )A .核外电子运动轨道半径可取任意值B .氢原子中的电子离原子核越远,氢原子的能量越大C .电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=E m -E n (m >n )D .氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量答案 BC解析 根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A 错误;氢原子中的电子离原子核越远,能级越高,能量越大,B 正确;由跃迁规律可知C 正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D 错误.原子的能量及变化规律1.原子的能量:E n =E k n +E p n .2.电子绕核运动时:k e 2r 2=m v 2r, 故E k n =12mv n 2=ke 22r n电子轨道半径越大,电子绕核运动的动能越小.3.当电子的轨道半径增大时,库仑引力做负功,原子的电势能增大,反之,电势能减小.4.电子的轨道半径增大时,说明原子吸收了光子,从能量较低的轨道跃迁到了能量较高的轨道上.即电子轨道半径越大,原子的能量越大.二、氢原子的跃迁规律分析1.对能级图的理解由E n =E 1n 2知,量子数越大,能级差越小,能级横线间的距离越小.n =1是原子的基态,n →∞是原子电离时对应的状态.2.跃迁过程中吸收或辐射光子的频率和波长满足hν=|E m -E n |,h c λ=|E m -E n |.3.大量处于n 激发态的氢原子向基态跃迁时,最多可辐射n (n -1)2种不同频率的光,一个处于激发态的氢原子向基态跃迁时,最多可辐射(n -1)种频率的光子.例3 (多选)氢原子能级图如图3所示,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm.以下判断正确的是( )图3A .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmB .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级C .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线D .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级答案 CD解析 能级间跃迁辐射的光子能量等于两能级间的能级差,能级差越大,辐射的光子频率越大,波长越小,A 错误;由E m -E n =hν可知,B 错误,D 正确;根据C 23=3可知,C 正确. 针对训练2 如图4所示为氢原子的能级图.用光子能量为13.06 eV 的光照射一群处于基态的氢原子,则可能观测到氢原子发射的不同波长的光有( )图4A .15种B .10种C .4种D .1种答案 B 解析 基态的氢原子的能级值为-13.6 eV ,吸收13.06 eV 的能量后变成-0.54 eV ,原子跃迁到n =5能级,由于氢原子是大量的,故辐射的光子种类是n (n -1)2=5×(5-1)2种=10种.原子跃迁时需要注意的两个问题1.注意一群原子和一个原子:氢原子核外只有一个电子,在某段时间内,由某一轨道跃迁到另一个轨道时,只能出现所有可能情况中的一种,但是如果有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.2.注意跃迁与电离:hν=E m -E n 只适用于光子和原子作用使原子在各定态之间跃迁的情况,对于光子和原子作用使原子电离的情况,则不受此条件的限制.如基态氢原子的电离能为13.6 eV ,只要大于或等于13.6 eV 的光子都能被基态的氢原子吸收而发生电离,只不过入射光子的能量越大,原子电离后产生的自由电子的动能越大.1.根据玻尔理论,关于氢原子的能量,下列说法中正确的是( )A .是一系列不连续的任意值B .是一系列不连续的特定值C .可以取任意值D .可以在某一范围内取任意值答案 B2.氢原子辐射出一个光子后,根据玻尔理论,下列判断正确的是( )A .电子绕核旋转的轨道半径增大B .电子的动能减少C .氢原子的电势能增大D .氢原子的能级减小答案 D解析 氢原子辐射出光子后,由高能级跃迁到低能级,轨道半径减小,电子动能增大,此过程中库仑力做正功,电势能减小.3.(多选)如图5所示为氢原子的能级图,A 、B 、C 分别表示电子在三种不同能级跃迁时放出的光子,则下列判断中正确的是( )图5A.能量和频率最大、波长最短的是B光子B.能量和频率最小、波长最长的是C光子C.频率关系为νB>νA>νC,所以B的粒子性最强D.波长关系为λB>λA>λC答案ABC解析从图中可以看出电子在三种不同能级跃迁时,能级差由大到小依次是B、A、C,所以B 光子的能量和频率最大,波长最短,能量和频率最小、波长最长的是C光子,所以频率关系是νB>νA>νC,波长关系是λB<λA<λC,所以B光子的粒子性最强,故选项A、B、C正确,D错误.4.氢原子处于基态时,原子能量E1=-13.6 eV,普朗克常量取h=6.6×10-34J·s.(1)处于n=2激发态的氢原子,至少要吸收多大能量的光子才能电离?(2)今有一群处于n=4激发态的氢原子,最多可以辐射几种不同频率的光子?其中最小的频率是多少?(结果保留2位有效数字)答案(1)3.4 eV (2)6种 1.6×1014 Hz解析(1)E2=122E1=-3.4 eV则处于n=2激发态的氢原子,至少要吸收3.4 eV能量的光子才能电离.(2)根据C24=6知,一群处于n=4激发态的氢原子最多能辐射出的光子种类为6种.n=4→n=3时,光子频率最小为νmin,则E4-E3=hνmin,代入数据,解得νmin≈1.6×1014 Hz.一、选择题(1~5题为单选题,6~8题为多选题)1.根据玻尔理论,氢原子有一系列能级,以下说法正确的是( )A.当氢原子处于第2能级且不发生跃迁时,会向外辐射光子B.电子绕核旋转的轨道半径可取任意值C.处于基态的氢原子可以吸收10 eV的光子D.大量氢原子处于第4能级,向低能级跃迁时最多会出现6条谱线答案 D解析 氢原子处于第2能级且向基态发生跃迁时,才会向外辐射光子.故A 错误.根据玻尔原子理论可知,电子绕核旋转的轨道半径是特定值.故B 错误.10 eV 的能量不等于基态与其他能级间的能级差,所以该光子能量不能被吸收.故C 错误.根据C 24=6知,大量处于n =4能级的氢原子向低能级跃迁时最多能辐射出6种不同频率的光子.故D 正确.2.一个氢原子从n =3能级跃迁到n =2能级,该氢原子( )A .放出光子,能量增加B .放出光子,能量减少C .吸收光子,能量增加D .吸收光子,能量减少答案 B解析 氢原子从高能级向低能级跃迁时,放出光子,能量减少,故选项B 正确.3.氢原子的能级图如图1所示,已知可见光的光子能量范围约为1.62~3.11 eV.下列说法错误的是( )图1A .处于n =3能级的氢原子可以吸收任意频率的紫外线,并发生电离B .大量氢原子从高能级向n =3能级跃迁时,发出的光具有显著的热效应C .大量处于n =4能级的氢原子向低能级跃迁时,可能发出2种不同频率的可见光D .大量处于n =4能级的氢原子向低能级跃迁时,可能发出3种不同频率的可见光 答案 D解析 紫外线的频率比可见光的高,因此紫外线光子的能量应大于3.11 eV ,而处于n =3能级的氢原子其电离能仅为1.51 eV <3.11 eV ,所以处于n =3能级的氢原子可以吸收任意频率的紫外线,并发生电离.4.根据玻尔理论,某原子从能量为E 的轨道跃迁到能量为E ′的轨道,辐射出波长为λ的光.以h 表示普朗克常量,c 表示真空中的光速,E ′等于( )A .E -h λcB .E +h λcC .E -h c λD .E +h c λ答案 C解析释放的光子能量为hν=h cλ,所以E′=E-hν=E-hcλ.5.处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率有( )A.1种 B.2种 C.3种 D.4种答案 C6.关于玻尔的原子模型,下列说法中正确的是( )A.它彻底否定了卢瑟福的核式结构学说B.它发展了卢瑟福的核式结构学说C.它完全抛弃了经典的电磁理论D.它引入了普朗克的量子理论答案BD解析玻尔的原子模型在核式结构模型的前提下提出轨道量子化、能量量子化及能级跃迁,故A错误,B正确,它的成功就在于引入了量子化理论,缺点是被过多引入的经典力学所困,故C错误,D正确.7.关于玻尔原子理论的基本假设,下列说法中正确的是( )A.原子中的电子绕原子核做圆周运动,库仑力提供向心力B.氢原子光谱的不连续性,表明了氢原子的能级是不连续的C.原子的能量包括电子的动能和势能,电子动能可取任意值,势能只能取某些分立值D.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)光子频率等于电子绕核运动的频率答案AB解析根据玻尔理论的基本假设知,原子中的电子绕原子核做圆周运动,库仑力提供向心力,故A正确.玻尔原子模型结合氢原子光谱,可知氢原子的能量是不连续的.故B正确.原子的能量包括电子的动能和势能,由于轨道是量子化的,则电子动能也是特定的值,故C错误.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)的光子能量等于两能级间的能级差,D 错误.8.如图2所示,用光子能量为E的单色光照射容器中处于基态的氢原子,发现该容器内的氢能够释放出三种不同频率的光子,它们的频率由低到高依次为ν1、ν2、ν3,由此可知,开始用来照射容器的单色光的光子能量可以表示为( )图2A .hν1B .hν3C .hν1+hν2D .hν1+hν2+hν3答案 BC 解析 氢原子吸收光子能向外辐射三种不同频率的光子,可知氢原子被单色光照射后跃迁到第3能级,吸收的光子能量等于两能级间的能级差,即单色光的能量E =hν3,又hν3=hν1+hν2,故B 、C 正确,A 、D 错误.二、非选择题9.如图3所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时,图3(1)最多有可能放出几种能量的光子?(2)在哪两个能级间跃迁时,所发出的光子波长最长?最长波长是多少?答案 (1)6种 (2)第4能级向第3能级 1.88×10-6 m解析 (1)由N =C 2n ,可得N =C 24=6种.(2)氢原子由第4能级向第3能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根据hν=E 4-E 3=-0.85-(-1.51) eV =0.66 eV ,λ=hc E 4-E 3=6.63×10-34×3×1080.66×1.6×10-19 m≈1.88×10-6 m.10.氦原子被电离一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E 1=-54.4 eV ,氦离子能级的示意图如图4所示,用一群处于第4能级的氦离子发出的光照射处于基态的氢原子.求:图4(1)氦离子发出的光子中,有几种能使氢原子发生光电效应?(2)发生光电效应时,光电子的最大初动能最大是多少?答案 (1)3种 (2)37.4 eV解析 (1)一群处于n =4能级的氦离子跃迁时,一共发出N =n (n -1)2=6种光子.由频率条件hν=E m-E n知6种光子的能量分别是由n=4到n=3,hν1=E4-E3=2.6 eV,由n=4到n=2,hν2=E4-E2=10.2 eV,由n=4到n=1,hν3=E4-E1=51.0 eV,由n=3到n=2,hν4=E3-E2=7.6 eV,由n=3到n=1,hν5=E3-E1=48.4 eV,由n=2到n=1,hν6=E2-E1=40.8 eV,由发生光电效应的条件知,hν3、hν5、hν6三种光子可使处于基态的氢原子发生光电效应.(2)由光电效应方程E k=hν-W0知,能量为51.0 eV的光子使氢原子逸出的光电子最大初动能最大,将W0=13.6 eV代入,E k=hν-W0得E k=37.4 eV.11。