金属热处理原理及工艺总结 整理版(精编文档).doc
(完整版)金属热处理知识点概括
(一)淬火--将钢加热到Ac3或Ac1以上,保温一段时间,使之奥氏体化后,以大于临界冷速的速度冷却的一种热处理工艺。
淬火目的:提高强度、硬度和耐磨性。
结构钢通过淬火和高温回火后,可以获得较好的强度和塑韧性的配合;弹簧钢通过淬火和中温回火后,可以获得很高的弹性极限;工具钢、轴承钢通过淬火和低温回火后,可以获得高硬度和高耐磨性;对某些特殊合金淬火还会显著提高某些物理性能(如高的铁磁性、热弹性即形状记忆特性等)。
表面淬火--表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。
分类——感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、离子束加热表面淬火、盐浴加热表面淬火、红外线聚焦加热表面淬火、高频脉冲电流感应加热表面淬火和太阳能加热表面淬火。
单液淬火——将奥氏体化后的钢件投入一种淬火介质中,使之连续冷却至室温(图9-1a线)。
淬火介质可以是水、油、空气(静止空气或风)或喷雾等。
双液淬火——双液淬火方法是将奥氏体化后的钢件先投人水中快冷至接近MS点,然后立即转移至油中较慢冷却(图9-1b线)。
分级淬火——将奥氏体化后的钢件先投入温度约为MS点的熔盐或熔碱中等温保持一定时间,待钢件内外温度一致后再移置于空气或油中冷却,这就是分级淬火等温淬火--奥氏体化后淬入温度稍高于Ms点的冷却介质中等温保持使钢发生下贝氏体相变的淬火硬化热处理工艺。
等温淬火与分级淬火的区别是:分级淬火的最后组织中没有贝氏体而等温淬火组织中有贝氏体。
根据等温温度不同,等温淬火得到的组织是下贝氏体、下贝氏体+马氏体以及残余奥氏体等混合组织。
(二)回火--将淬火后的钢/铁,在AC1以下加热、保温后冷却下来的金属热处理工艺。
回火的目的:为了稳定组织,减小或消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适当配合,以满足不同工件的性能要求。
金属热处理原理与工艺总结 整理版
金属热处理原理与工艺一、热处理的概念热处理指的是将金属材料加热至一定温度,然后进行冷却或其他处理方法,以改变其组织结构、物理性能和化学性能的过程。
二、热处理的分类根据热处理的方式,可以将其分为以下几类:•退火(Annealing):在800-900℃的温度下,将金属材料慢慢地冷却,使其组织结构变得均匀,降低硬度,提高延展性和韧性。
•正火(Normalizing):在金属材料的贝氏体区域进行冷却,提高硬度和强度,但是会降低韧性。
•淬火(Quenching):将金属材料加热到临界温度(不同的金属有不同的临界温度),然后进行强制冷却,使其产生马氏体,提高硬度和强度。
•回火(Tempering):在淬火后,将金属材料加热到低于淬火温度的温度,然后进行冷却,使其产生新的组织结构,提高韧性和强度。
三、热处理中的关键因素1. 温度热处理中的温度是非常重要的因素。
不同的金属材料需要在不同的温度下进行热处理。
温度的高低会对金属材料的组织结构、物理性能和化学性能产生直接影响。
2. 时间热处理中的时间也是非常重要的因素。
不同的金属材料需要在不同的时间内进行热处理。
时间的长短会对金属材料的组织结构、物理性能和化学性能产生直接影响。
3. 冷却速率热处理中的冷却速率也是非常重要的因素。
冷却速度过快或过慢都会对金属材料的组织结构、物理性能和化学性能造成影响。
不同的金属材料需要在不同的冷却速率下进行热处理。
四、热处理的流程热处理的流程可以分为以下三个步骤:1. 加热将金属材料加热到一定的温度,使其达到预期的组织结构、物理性能和化学性能。
2. 保温在金属材料达到预期的温度后,需要将其保持一段时间,以便其达到平衡态。
3. 冷却冷却是热处理过程中非常重要的一步,冷却速率直接影响到金属材料的组织结构、物理性能和化学性能。
五、热处理的应用热处理被广泛应用于金属材料的加工和制造过程中。
例如,汽车制造、机械制造、航空航天、电子等行业都需要进行热处理。
金属热处理总结
金属热处理总结第六章:1.理解概念:形变强化,细晶强化,滑移,滑移系,滑移面,滑移方向,临界分切应力,取向因子,软位向,硬位向,孪生,纤维组织,形变织构,临界变形度,回复,再结晶,冷加工,热加工,超塑性2.掌握塑性变形的特点及对组织和性能的影响3.4.5.掌握冷变形金属在加热时组织和性能的变化滑移的位错机制φλστcoscossk=软位相:最容易出现滑移硬位相:不能产生滑移6.3多晶体的塑性变形 1、特点:不同时性:只有处在有利位向(取向因子最大)的晶粒的滑移系才能首先开动不均匀性:每个晶粒的变形量各不相同,而且由于晶界的强度高于晶内,使得每一个晶粒内部的变形也是不均匀的。
协调性:多晶体的塑性变形是通过各晶粒的多系滑移来保证相互协调性。
根据理论推算,每个晶粒至少需要有五个独立滑移系。
2、晶粒大小对塑性变形的影响6.4塑性变形对金属组织与性能的影响组织的影响1.形成纤维组织:2.形成变形织构:晶体的择优选择3.亚结构细化:随着变形量的增加,位错交织缠结,在晶粒内形成胞状亚结构,叫形变胞4残余应力:残余内应力和点阵畸变. 宏观内应力:微观内应力:点阵畸变:金属在塑性变形中产生大量点阵缺陷(空位、间隙原子、位错等),使点阵中的一部分原子偏离其平衡位置,而造成的晶格畸变。
21-+=Kdo s σσ1.各向异性:形成了纤维组织和变形织构2.形变强化:变形过程中,位错密度升高,导致形变胞的形成和不断细化,对位错的滑移产生巨大的阻碍作用组织结构:形成纤维组织和变形织构;亚结构细化;点阵畸变机械性能:各向异性;形变强化/加工硬化;形成残余内应力6.5冷变形金属的回复与再结晶形变金属与合金退火过程示意图1.回复后的显微组织和性能:(去应力退火)1)金属的晶粒大小和形状不发生明显的变化2)亚结构变化3)金属的强度、硬度和塑性等机械性能变化不大4)内应力及电阻率等理化性能降低多边形化:实质上是位错从高能态的混乱状态向低能态的规则排列移动过程2.再结晶后的显微组织和性能1)金属的晶粒大小和形状发生明显的变化,形成等轴晶粒2)金属的强度、硬度有所降低,塑性、韧性有所提高3)内应力完全消除再结晶:冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶。
金属热处理原理及工艺总结-整理版
金属热处理原理及工艺总结-整理版引言金属热处理是一种通过改变金属内部结构来提高其性能的工艺。
它广泛应用于机械制造、航空航天、汽车工业等领域。
本文档旨在总结金属热处理的基本原理、常见工艺以及实际应用。
金属热处理的基本原理金属晶体结构金属晶体是由金属原子按一定规则排列形成的。
金属的物理性能,如硬度、韧性等,与其晶体结构密切相关。
相变理论金属在不同的温度下会发生相变,如奥氏体化、珠光体化等。
通过控制加热和冷却过程,可以改变金属的相组成,从而改善其性能。
扩散原理金属热处理过程中,原子的扩散是改善金属性能的关键。
通过高温加热,原子获得足够的能量进行扩散,实现组织结构的优化。
常见的金属热处理工艺退火退火是将金属加热到一定温度,保持一定时间后缓慢冷却的过程。
目的是降低硬度,消除内应力,提高塑性。
正火正火是将金属加热到一定温度后,保持一段时间,然后以较快速度冷却的过程。
它能改善金属的组织结构,提高硬度和强度。
淬火淬火是将金属加热到奥氏体化温度后迅速冷却,形成马氏体或其他硬化组织,显著提高金属的硬度和强度。
回火回火是淬火后的金属再次加热到一定温度,保持一段时间后冷却的过程。
它用于降低淬火后的脆性,提高韧性和塑性。
调质调质是将金属加热到奥氏体化温度后淬火,再进行高温回火的过程。
它综合了淬火和回火的优点,使金属具有较好的综合机械性能。
金属热处理工艺的实际应用钢铁材料的热处理钢铁材料是金属热处理的主要对象。
通过不同的热处理工艺,可以生产出不同性能的钢材,满足各种工程需求。
非铁金属材料的热处理非铁金属如铝合金、钛合金等,也可以通过热处理改善性能。
例如,铝合金通过固溶处理和时效处理提高强度。
表面热处理表面热处理如渗碳、氮化等,可以在金属表面形成一层硬度高、耐磨性好的化合物层,提高零件的使用寿命。
控制气氛热处理在控制气氛中进行热处理,可以防止金属氧化和脱碳,保持金属表面光洁,提高热处理质量。
结语金属热处理是材料科学中的一个重要分支。
金属热处理原理、工艺及设备
6 影响碳钢强度的因素:
① 铁素体晶粒尺寸和固溶体中Mn,Si,N的含量
② 在退火或热轧状态下,随含碳量的增加,钢的强度和硬度升高,而塑性和冲击韧性下降
③ 碳素钢中的残余元素和杂质元素如锰、硅、镍、磷、硫、氧、氮等,对碳素钢的性能也有影响。这些影响有时互相加强,有时互相抵销。
氢在钢中能造成很多严重缺陷,如产生白点、点状偏析、氢脆等,为保证钢的质量,必须尽可能降低钢中氢的含量(见应力腐蚀断裂和氢脆)。
对于高温下能获得单相组织的材料,带状组织有时可用正火来消除。而因严重的磷偏析产生的带状组织必须用高温扩散退火及随后的正火加以改善
10、马氏体的种类,结构和基本性能:
种类:
(1)板条马氏体:在低碳钢、中碳钢中出现。其显微组织是由成群的板条组成的。结构为bcc、bct或hcp。低碳马氏体,强度不是很高,但韧性很好。
1、晶粒对屈服强度的影响
2、回复与再结晶过程及其对性能的影响
3、铁中间隙原子的位置、扩散、固溶、强化
4、碳钢与合金钢的基本牌号:
5、脱氧方法与钢的终了及成分特点
6 影响碳钢强度的因素
7,碳钢晶粒度的控制方法
8,碳钢带状组织的形成与消除
10、马氏体的种类,结构和基本性能
11马氏体回火时组织与性能变化。
根据冶炼时脱氧程序的不同,钢可分为沸腾钢、镇静钢和半镇静钢。
沸腾钢为脱氧不完全的钢。钢在冶炼后期不加脱氧剂(如硅、铝等),浇注时钢液在钢锭模内产生沸腾现象(气体逸出),钢锭凝固后,蜂窝气泡分布在钢锭中,在轧制过程中这种气泡空腔会被粘合起来。这类钢的特点是钢中含硅量很低,标准规定为痕量或不大于0.07%,通常注成不带保温帽的上小下大的钢锭。优点是钢的收率高(约提高15%),生产成本低,表面质量和深冲性能好,钢中含硅量很低。缺点是钢的杂质多,成分偏析较大,所以性能不均匀。
金属热处理原理与工艺
金属热处理原理与工艺金属热处理是指对金属材料进行加热处理来改变其组织结构和性质的一种方法。
这种方法可以通过控制加热温度和保温时间等参数来实现不同的处理效果。
金属热处理可以改善金属的硬度、强度、韧性、延展性、耐磨性、耐腐蚀性等性能,从而满足不同的工业应用需求。
金属热处理的原理金属热处理的原理基于金属的组织结构和性质随温度的变化而变化。
当金属材料受到热加工时,温度升高会导致金属晶粒的尺寸增加,晶粒之间的间距变大,这使得金属的塑性和韧性增加。
而当金属材料受到冷加工时(如锻造、轧制),由于冷加工过程中金属材料处于冷却状态,因此晶粒不会发生明显的变形,而是保持原来的晶粒组织。
这种组织结构会使金属变得更加硬而脆,但相应的韧性和延展性会降低。
金属热处理的工艺金属热处理的工艺包括加热、保温和冷却等步骤。
根据不同的处理效果,这些步骤的温度和时间可以做出相应的调整。
以下是几种常见的金属热处理方法:1. 灭火处理:灭火处理是指将金属加热至高温后迅速冷却至室温的处理过程。
这种处理可以改变金属的组织结构,从而提高其硬度和强度。
灭火处理通常适用于需要较高硬度和强度的金属制品。
2. 固溶处理:固溶处理是指将金属加热至一定温度后进行保温,使固态的金属中的固溶体中的扰动原子可以逸出到基体里。
这种处理可以改变金属的组织结构,从而提高其韧性和延展性。
固溶处理通常适用于需要具有良好机械性能和耐腐蚀性的金属制品。
3. 时效处理:时效处理是指将金属加热至一定温度进行保温,然后迅速冷却后再进行再加热保温的过程。
这种处理可以使金属的晶粒长大并沉淀出一些固相化合物,从而提高金属的强度和硬度。
时效处理通常适用于需要高强度和高韧性的金属制品。
4. 钝化处理:钝化处理是指将金属制品加热至一定温度后,在空气或氧化性环境中,使其表面形成一层韧性较强的氧化皮。
这种处理可以使金属制品具有较好的耐腐蚀性。
金属热处理是一种重要的金属加工工艺,可以通过控制加热温度、保温时间和冷却速率等参数来实现不同的处理效果,以满足不同的工业应用需求。
金属材料热处理工艺(详细工序及操作手法)
金属材料热处理工艺(详细工序及操作手法)一、热处理的定义热处理是指金属在固态下经加热、保温和冷却,以改变金属的内部组织和结构,从而获得所需性能的一种工艺过程。
热处理的三大要素:①加热( Heating)目的是获得均匀细小的奥氏体组织。
②保温(Holding)目的是保证工件烧透,并防止脱碳和氧化等。
③冷却(Cooling)目的是使奥氏体转变为不同的组织。
热处理后的组织加热、保温后的奥氏体在随后的冷却过程中,根据冷却速度的不同将转变成不同的组织。
不同的组织具有不同的性能。
二、热处理工艺1.退火操作方法:将钢件加热到Ac3+30-50度或Ac1+30-50度或Ac1以下的温度(可以查阅有关资料)后,一般随炉温缓慢冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。
应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料;2.一般在毛坯状态进行退火。
2.正火操作方法:将钢件加热到Ac3或Acm 以上30-50度,保温后以稍大于退火的冷却速度冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。
应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。
对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。
对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。
3.淬火操作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。
目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。
应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回火以得到较好的综合力学性能。
金属热处理原理及工艺期末总结
金属热处理原理及工艺期末总结第一篇:金属热处理原理及工艺期末总结正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。
Al-4Cu合金在时效过程中,过饱和固溶体的各个沉淀阶段,其顺序可概括为:α过饱和→G.P.区θ''→过渡相θ'→过渡相θ→(CuAl2)稳定相固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度时效处理有自然时效和人工时效两种。
淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺调质处理:将钢件淬火,随之进行高温回火,这种复合工艺称调质处理。
表面热处理:改变钢件表面组织或化学成分,以其改面表面性能的热处理工艺。
表面淬火:是将钢件的表面通过快速加热到临界温度以上,但热量还未来得及传到心部之前迅速冷却,这样就可以把表面层被淬在马氏体组织,而心部没有发生相变,这就实现了表面淬硬而心部不变的目的。
适用于中碳钢。
化学热处理:是指将化学元素的原子,借助高温时原子扩散的能力,把它渗入到工件的表面层去,来改变工件表面层的化学成分和结构,从而达到使钢的表面层具有特定要求的组织和性能的一种热处理工艺渗碳:向钢的表面渗入碳原子,提高表面含碳量,提高材料表面硬度、抗疲劳性和耐磨性。
金属热处理期末总结
金属热处理期末总结一、引言金属热处理是制造业中非常重要的一部分,通过改变金属材料的组织及性能,来满足产品的使用要求。
在本学期学习金属热处理课程中,我对金属热处理的基本原理、工艺及设备有了更深入的了解。
通过实验操作与课堂学习相结合,我对金属热处理的理论知识有了更加系统的认识,并且对实际操作有了更强的操作能力。
在本篇期末总结中,我将分别从金属热处理的基本原理、工艺、设备及常见问题等方面进行总结。
二、金属热处理的基本原理金属热处理是指通过加热、保温和冷却等一系列工艺操作,使金属材料的组织及性能发生改变的过程。
金属热处理的基本原理可以归纳为三个方面:1.固溶处理:固溶处理是指将固溶体形态的材料在合适的温度范围内进行加热并保温,使合金元素得以溶解在基体中形成固溶体。
固溶处理可以提高金属材料的硬度、强度和耐腐蚀性能等。
2.时效处理:时效处理是指将固溶体形态的材料经过固溶处理后立即进行冷却到室温,并进行适当的加热保温,以增强材料的一些性能。
时效处理可以提高材料的强度、韧性和疲劳寿命等。
3.相变处理:相变处理是指将材料由一种晶体结构转变为另一种晶体结构的过程。
相变处理可以改变材料的硬度、强度、韧性等性能,同时也能改变材料的热处理工艺。
三、金属热处理的工艺金属热处理的工艺可以分为加热、保温和冷却三个阶段。
1.加热:加热是指将金属材料加热至所需的温度范围。
加热的目的是使金属材料达到固溶或相变的温度,以改变材料的组织结构。
加热的方式主要有火焰加热、电加热和电磁加热等。
2.保温:保温是指将金属材料在高温状态下保持一定的时间。
保温的过程是固溶、时效和相变等处理的基础。
保温的时间与温度应根据金属材料和所需的热处理效果进行合理选择。
3.冷却:冷却是指将金属材料从高温迅速冷却到室温或较低温度。
冷却的速度会直接影响到金属材料的组织结构及性能。
常见的冷却方法有水淬、油淬和风冷等。
四、金属热处理的设备金属热处理的设备有多种多样,根据加热方式可分为火焰加热设备、电加热设备和电磁加热设备。
金属热处理工艺
通过废热回收技术,将热处理过程中产生的废热转化为可 再利用的能源,提高能源利用效率。
减少废弃物产生
优化热处理工艺,减少废弃物的产生,如开发新型淬火介 质、改进盐浴槽等,减少废弃物的产生。
提高热处理效率与质量
1 2
智能化控制与在线监测
采用先进的智能化控制技术,实现热处理过程的 精确控制和实时监测,提高热处理质量和效率。
提高产品质量
优化热处理工艺
通过优化热处理工艺参数和流程,可以改善金属材料的组织和性能,提高产品的 质量和可靠性。
采用先进的设备
采用先进的热处理设备可以更好地控制热处理过程,提高产品的精度和稳定性。
新材料开发
发展新型热处理技术
研究和开发新型的热处理技术,例如真空热处理、离子注入等,可以改善金属材料的性能和加工质量 。
新型加热技术
研发新型加热技术,如激光加热、电磁感应加热 等,实现快速、均匀的加热,提高热处理效率。
3
优化冷却工艺
改进冷却工艺,如采用分级淬火、等温淬火等新 型冷却技术,提高热处理后工件的硬度和耐磨性 。
创新热处理设备与技术
新型热处理设备
01
研发新型热处理设备,如真空炉、离子渗氮炉等,实现高效、
环保的热处理。
数字孪生与虚拟仿真
02
利用数字孪生和虚拟仿真技术,对热处理过程进行模拟和优化
,减少试错成本和时间。
模块化与标准化
03
推动热处理设备的模块化和标准化,便于设备的组合和扩展,
提高生产效率。
感谢您的观看
THANKS
汽车工业
热处理工艺在汽车工业中用于制 造高强度、轻质和耐腐蚀的零部 件,如齿轮、轴类零件、刹车系 统等。
金属热处理原理.doc
金属热处理原理绪论一、研究的内容和任务金属热处理原理是以金属学原理为基础,着重研究金属及合金固态相变的基本原理和热处理组织与性能之间关系的一门课程。
金属学原理:着重讨论的是金属及合金的本质及影响因素、缺陷及其交互作用和它们对性能的影响、状态图、塑性变形、回复、再结晶等等。
热处理原理:着重讨论的是金属及合金在固态下的相变规律、影响因素、动力学、非平衡转变,以及在热处理中的应用,研究热处理组织和性能之间的关系等等。
金属材料从服役条件出发,选择什么样的材料、如何对材料进行处理,在使用和处理过程中会出现什么问题,如何解决出现的问题,最终可能得到什么样的性能,如何改进现有材料、挖掘其潜力,试制新材料等,无不与热处理原理有着密切的关系。
固态金属(包括纯金属及合金)在温度和压力改变时,组织和结构会发生变化,这种变化统称为金属固态相变。
金属中固态相变的类型很多,有的金属在不同的条件下会发生几种不同类型的转变。
掌握金属固态相变的规律及影响因素,就可以采取措施控制相变过程,以获得预期的组织,从而使其具有预期的性能。
对于金属材料常用的措施就是特定加热和冷却,也就是热处理。
二、热处理发展概况人们在开始使用金属材料起,就开始使用热处理,其发展过程大体上经历了三个阶段。
1、民间技艺阶段根据现有文物考证,我国西汉时代就出现了经淬火处理的钢制宝剑。
史书记载,在战国时期即出现了淬火处理,据秦始皇陵开发证明,当时已有烤铁技术,兵马俑中的武士佩剑制作精良,距今已有两千多年的历史,出土后表面光亮完好,令世人赞叹。
古书中有“炼钢赤刀,用之切玉如泥也”,可见当时热处理技术发展的水平。
但是中国几千年的封建社会造成了贫穷落后的局面,在明朝以后热处理技术就逐渐落后于西方。
虽然我们的祖先很有聪明才智,掌握了很多热处理技术,但是把热处理发展成一门科学还是近百年的事。
在这方面,西方和俄国的学者走在了前面,新中国成立以后,我国的科学家也作出了很大的贡献。
金属热处理原理与工艺
(4)回火:淬火的后序工序,降低淬火 产生的缺陷,否则工件易开裂。
目的:消除淬火时因冷却过快而产生内 应力,降低金属的脆性,降低硬度,提高塑 性和韧性。
二、金属加热方法及设备
加热金属常用的能源有电能和化学能(燃 料),通过适当的方式转换为热能,从而对工 件进行加热。
加热方法不同,能源的有效利用率也不同, 耗能情况不同,科学合理地选用不同的加热方 法是节能的有效途径。
(2)正火:加热到高温,空气冷却。 特点:a.冷却速度快,获得的组织更细
b.正火后的强度、硬度较退火后稍 高,而塑性、韧性则稍低 c.不占用设备,生产率高 目的:调整材料的硬度、细化晶粒、为淬 火做准备。
(3)淬火:加热到高温,油冷、水冷 或高压空气冷却。
特点:强度、硬度会得到提高,增加 耐磨性,并在回火后获得高强度和一定韧 性相配合的性能。
注意事项: ➢ 这类炉子一般要求炉膛严格密封; ➢ 炉内保持正压,以防炉外空气进入引起爆炸,
并保证炉内气氛稳定; ➢ 炉气必须循环流动,以利于气氛和温度均匀,
保证工件质量一致; ➢ 炉内构件要能抗气氛侵蚀; ➢ 装有安全装置,以防有毒气氛泄漏和爆炸。
2、井式加热炉 箱式电阻炉通常放在地面上,工件通过 水平移动装入炉内。井式加热炉则是安放在 地面以下,工件垂直入炉。将液体或气体渗 剂通往炉罐内可用于渗碳、渗氮和碳氮共渗 等化学热处理;不通渗剂,可以进行淬火或 回火。
优点: 炉子装料多,生产率高,装卸料方便,炉温 均匀,长轴垂直放置或细长杆件垂直吊挂不容易变 形。 缺点: ➢ 工件阻碍气体流动; ➢ 工件与电热元件同在炉膛内,靠近电热元件 易过热(可通过设置装料筐得到改善)。
井式炉与箱式炉相比的优点: 1、用于回火时温度均匀(回火温度低,传热 主要靠对流和传导,井式炉都加有电扇)、装料多, 劳动强度低。 2、用于淬火或化学热处理时适合于大件、细 长杆件(只能水平放置,容易变形,井式炉则 可 以吊挂在炉内,垂直放置,减小变形)和大型长轴 件。
金属热处理原理及工艺总结_整理版
5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。
因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。
同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。
6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?答:①冷却速度越大,则过冷度也越大。
②随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。
③过冷度增大,ΔF大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。
8.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?答:①金属结晶的基本规律是形核和核长大。
②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也会增大形核率。
9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理?答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来控制晶粒大小。
②变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。
③机械振动、搅拌。
第二章金属的塑性变形与再结晶2.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。
金属热处理工艺基本知识部分精选全文
J HRC d
表示。其中J表示末端淬透
性,d表示至水冷端的距离,HRC为该处测得的硬度
值。
●钢的淬透性还可用钢在某种冷却介质中完全淬透
的最大直径,即临界直径D0表示。
● 淬透性的应用:
● 对于截面尺寸较大和形状较复杂的重要零件以及 要求机械性能均匀的零件,应选用高淬透性的钢制造。
● 对于承受弯曲和扭转的轴类、齿轮类零件,可选 用低淬透性的钢制造。
5) 钢的淬透性
● 淬透性
淬透性是指钢在淬火时获得淬硬层深度的能力。 一般规定由工件表面到半马氏体区的深度作为淬硬 层深度。
● 淬透性对钢力 学性能的影响:
钢的淬透性直接 影响其热处理后 的力学性能。
● 淬透性高的钢, 其力学性能沿截 图10 面均匀分布
● 淬透性低的钢,其截面心部的力学性能低
● 淬透性的测定及其表示方法
淬火是将钢加热到临界点以上,保温后以大于
Vk的速度冷却的热处理工艺。
目的:为了获得马氏体,提高钢的力学性能。
●淬火温度
选择淬火温度的原则是 获得均匀细小的奥氏体。 如图所示,一般淬火温度 在临界点以上。
图4 碳钢的淬火温度范围
组●织对为亚马共氏析体钢,,如淬图火所温示度。为Ac3+30~50℃,淬火
● 在设计和制造零件时,必须考虑钢的热处理尺寸 效应。
6) 钢的回火
● 回火的目的
● 降低脆性,减少或消除内应力 ● 获得工艺所要求的力学性能 ● 稳定工件尺寸 ● 对某些高淬透性的合金钢,可降低硬度,以利加工
● 淬火钢在回火时的转变
● 回火时的组织转变 淬火钢组织发生以下四阶段的变化:
① 马氏体分解:主要发生在 100~200℃, 马氏体中的碳 以ε碳化物(FexC)的形式析 出,析出的碳化物以极小片状 分布在马氏体基体上,这种组 织称为回火马氏体,用“M回” 表示。如图所示。
金属热处理
金属热处理是将金属材料(其中包括黑色金属材料和有色金属材料及其加工后的工件)在固态范围内,通过一定的加热,保温和冷却,使金属或合金的内部组织发生变化,从而获得预期的性能(如力学性能、加工性能、物理和化学性能)、组织和结构的工艺过程的总称。
一、退火(一)、概念:把钢加热到适当温度(一般Ac1以上),保温一定的时间,然后缓慢冷却,以获得接近平衡状态的组织的热处理方法。
(二)、目的:1、降低硬度,以利于切削加工;2、提高钢的塑性和韧性,以便于冷变形加工;3、改善或消除钢在铸造、轧制、锻造和焊接等过程中所造成的各种组织缺陷;4、细化晶粒,改善钢中碳化物的形态及分布,为最终热处理做好组织准备;5、消除内应力,以减少变形和防止开裂。
二、淬火(一)、概念:将钢加热到临界温度(Ac3或Ac1)以上,保温一定时间使之奥氏体化后,以大于临界冷却速度的冷速进行冷却,以得到高硬度的马氏体或下贝氏体的热处理工艺方法。
(二)、目的:1、提高工件的硬度和耐磨性;2、提高工件的综合力学性能或使工件获得较高的弹性;3、获得特殊的物理化学性能(磁性、耐蚀性、耐热性等)。
三、回火(一)、概念:将工件加热到钢的A1以下某一温度,保温一段时间,然后进行冷却(一般冷至室温)的热处理工艺。
(二)、目的:1、使工件获得所要求的力学性能;2、减少或消除残余应力;3、稳定工件的组织和尺寸。
(三)、分类:1、低温回火(150~250℃),如渗碳和碳氮共渗件,低合金超高强度钢等;2、中温回火(300~450℃),如各种弹簧钢等;3、高温回火(500~650℃),如螺栓、轴等。
四、正火(一)、概念:将钢加热到Ac3或Acm以上适当温度,保温一定时间,使奥氏体均匀化,然后出炉空冷或以其它适当的冷却方式冷却的热处理工艺。
(二)、目的:1、碳含量小于0.5%的钢件常用正火代替退火,这样既节约能源,又提高生产效率;2、力学性能要求不高的零件,可用正火作为最终处理;3、对于过共析钢若有网状碳化物存在,必须进行正火处理,消除网状碳化物,再进行球化退火;4、消除切削加工后的硬化现象和去除内应力;5、细化晶粒,均匀组织。
金属热处理原理及工艺.doc
金属热处理原理及工艺绪论这门课对咱们专业是很重要的。
本课程的重要性从本专业研究《金属材料及热处理》的名称上可想而知,虽然现在改了专业名称,但热处理仍是一门主要专业课。
本课程既研究理论问题,又解决实际问题,学好本课对于以后的科研及生产都有益无穷。
这里,讲讲什么是金属热处理,其地位和作用,本课内容及要求等等。
一、什么是金属的热处理简单地说,金属热处理,就是把金属加热到预定温度,并在此温度保持一定时间,然后以适当的速度冷却下来,从而改变其内部组织结构,得到预期性能(工艺性能,机械性能,物理和化学性能)的一种工艺方法。
如果以温度为纵坐标,以时间为横坐标,则右图中三条曲线即为热处理工艺曲线,可分为三个阶段;加热——保温——冷却。
加热曲线的斜率表示加热速度,冷却也如此。
根据加热介质、方法、速度等的不同及冷却的不同,热处理又可分为若干类型。
例如,退火、正火、淬火、回火,是四种不同的热处理工艺,即传统工艺的四把火,以后都要讲到。
这些方法看起来简单,但其中有很深奥的道理。
处理工艺有很大发展,仅了解这四种传统工艺是远不够的。
根据加热方式不同,还可分为感应加热表面淬火,火焰加热表面淬火,离子轰击热处理,真空、激光热处理。
有些热处理是要改变表面化学成分的,如表面增加C的含量为渗C,还有渗N,渗硼等。
总之,金属热处理工艺方法非常多,且还在不断地发展。
二、热处理在机械制造中的地位和作用各行各业的发展,如工业、农业、现代国防和现代科学技术的发展与金属材料所占的比重越来越大。
现代工业,现代科学技术三大支柱:信息,能源,材料。
而金属仍然是基本材料,尤以钢铁为主。
金属材料制成的零件,在其加工过程中,要经过铸造、锻造、焊接、切削加工、热处理等一系列工序,热处理在其中担负着改进工件性能、充分发挥材料潜力,以提高使用寿命的重要任务。
就目前机械工业生产状况而言,机床中要经过热处理的工件占总重量的60~70%,汽车、拖拉机中占70~80%,而轴承和各种工、模具则百分之百全部需热处理。
金属热处理工艺
金属热处理简述金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。
金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。
其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。
为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。
钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。
另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。
在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。
早在公元前770~前222 年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。
白口铸铁的柔化处理就是制造农具的重要工艺。
公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。
中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。
随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。
三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000 把刀,相传是派人到成都取水淬火的。
这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。
中国出土的西汉(公元前 206~公元 24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。
但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。
1863 年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。
因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。
同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。
6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?答:①冷却速度越大,则过冷度也越大。
②随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。
③过冷度增大,ΔF大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。
8.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?答:①金属结晶的基本规律是形核和核长大。
②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也会增大形核率。
9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理?答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来控制晶粒大小。
②变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。
③机械振动、搅拌。
第二章金属的塑性变形与再结晶2.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。
因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提高,而塑性和韧性下降产生所谓“加工硬化”现象。
②金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动。
另一方面人们可以利用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提高钢丝的强度的。
加工硬化也是某些压力加工工艺能够实现的重要因素。
如冷拉钢丝拉过模孔的部分,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形。
3.划分冷加工和热加工的主要条件是什么?答:主要是再结晶温度。
在再结晶温度以下进行的压力加工为冷加工,产生加工硬化现象;反之为热加工,产生的加工硬化现象被再结晶所消除。
4.与冷加工比较,热加工给金属件带来的益处有哪些?答:(1)通过热加工,可使铸态金属中的气孔焊合,从而使其致密度得以提高。
(2)通过热加工,可使铸态金属中的枝晶和柱状晶破碎,从而使晶粒细化,机械性能提高。
(3)通过热加工,可使铸态金属中的枝晶偏析和非金属夹杂分布发生改变,使它们沿着变形的方向细碎拉长,形成热压力加工“纤维组织”(流线),使纵向的强度、塑性和韧性显著大于横向。
如果合理利用热加工流线,尽量使流线与零件工作时承受的最大拉应力方向一致,而与外加切应力或冲击力相垂直,可提高零件使用寿命。
5.为什么细晶粒钢强度高,塑性,韧性也好?答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形。
因此,金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大。
因此,金属的晶粒愈细强度愈高。
同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发生,产生较均匀的变形,而不致造成局部的应力集中,引起裂纹的过早产生和发展。
因此,塑性,韧性也越好。
6.金属经冷塑性变形后,组织和性能发生什么变化?答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横向等;②晶粒破碎,位错密度增加,产生加工硬化,即随着变形量的增加,强度和硬度显著提高,而塑性和韧性下降;③织构现象的产生,即随着变形的发生,不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一致,产生织构现象;④冷压力加工过程中由于材料各部分的变形不均匀或晶粒内各部分和各晶粒间的变形不均匀,金属内部会形成残余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定。
7.分析加工硬化对金属材料的强化作用?答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运动的阻力增大,引起变形抗力的增加。
这样,金属的塑性变形就变得困难,要继续变形就必须增大外力,因此提高了金属的强度。
8.已知金属钨、铁、铅、锡的熔点分别为3380℃、1538℃、327℃、232℃,试计算这些金属的最低再结晶温度,并分析钨和铁在1100℃下的加工、铅和锡在室温(20℃)下的加工各为何种加工?答:T再=0.4T熔;钨T再=[0.4*(3380+273)]-273=1188.2℃; 铁T再=[0.4*(1538+273)]-273=451.4℃; 铅T再=[0.4*(327+273)]-273=-33℃; 锡T再=[0.4*(232+273)]-273=-71℃.由于钨T再为1188.2℃>1100℃,因此属于热加工;铁T再为451.4℃<1100℃,因此属于冷加工;铅T再为-33℃<20℃,属于热加工;锡T再为-71<20℃,属于热加工。
9.在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件表面上)使齿面得以强化。
试分析强化原因。
答:高速金属丸喷射到零件表面上,使工件表面层产生塑性变形,形成一定厚度的加工硬化层,使齿面的强度、硬度升高。
第三章合金的结构与二元状态图2.指出下列名词的主要区别:1)置换固溶体与间隙固溶体;答:置换固溶体:溶质原子代替溶剂晶格结点上的一部分原子而组成的固溶体称置换固溶体。
间隙固溶体:溶质原子填充在溶剂晶格的间隙中形成的固溶体,即间隙固溶体。
2)相组成物与组织组成物;相组成物:合金的基本组成相。
组织组成物:合金显微组织中的独立组成部分。
4.试述固溶强化、加工强化和弥散强化的强化原理,并说明三者的区别.答:固溶强化:溶质原子溶入后,要引起溶剂金属的晶格产生畸变,进而位错运动时受到阻力增大。
弥散强化:金属化合物本身有很高的硬度,因此合金中以固溶体为基体再有适量的金属间化合物均匀细小弥散分布时,会提高合金的强度、硬度及耐磨性。
这种用金属间化合物来强化合金的方式为弥散强化。
加工强化:通过产生塑性变形来增大位错密度,从而增大位错运动阻力,引起塑性变形抗力的增加,提高合金的强度和硬度。
区别:固溶强化和弥散强化都是利用合金的组成相来强化合金,固溶强化是通过产生晶格畸变,使位错运动阻力增大来强化合金;弥散强化是利用金属化合物本身的高强度和硬度来强化合金;而加工强化是通过力的作用产生塑性变形,增大位错密度以增大位错运动阻力来强化合金;三者相比,通过固溶强化得到的强度、硬度最低,但塑性、韧性最好,加工强化得到的强度、硬度最高,但塑韧性最差,弥散强化介于两者之间。
5.固溶体和金属间化合物在结构和性能上有什么主要差别?答:在结构上:固溶体的晶体结构与溶剂的结构相同,而金属间化合物的晶体结构不同于组成它的任一组元,它是以分子式来表示其组成。
在性能上:形成固溶体和金属间化合物都能强化合金,但固溶体的强度、硬度比金属间化合物低,塑性、韧性比金属间化合物好,也就是固溶体有更好的综合机械性能。
6. 何谓共晶反应、包晶反应和共析反应?试比较这三种反应的异同点.答:共晶反应:指一定成分的液体合金,在一定温度下,同时结晶出成分和晶格均不相同的两种晶体的反应。
包晶反应:指一定成分的固相与一定成分的液相作用,形成另外一种固相的反应过程。
共析反应:由特定成分的单相固态合金,在恒定的温度下,分解成两个新的,具有一定晶体结构的固相的反应。
共同点:反应都是在恒温下发生,反应物和产物都是具有特定成分的相,都处于三相平衡状态。
不同点:共晶反应是一种液相在恒温下生成两种固相的反应;共析反应是一种固相在恒温下生成两种固相的反应;而包晶反应是一种液相与一种固相在恒温下生成另一种固相的反应。
7.二元合金相图表达了合金的哪些关系?答:二元合金相图表达了合金的状态与温度和成分之间的关系。
8.在二元合金相图中应用杠杆定律可以计算什么?答:应用杠杆定律可以计算合金相互平衡两相的成分和相对含量。
10.某合金相图如图所示。
1)试标注①—④空白区域中存在相的名称;2)指出此相图包括哪几种转变类型;3)说明合金Ⅰ的平衡结晶过程及室温下的显微组织。
答:(1)①:L+γ②: γ+β③: β+(α+β) ④: β+αⅡ(2)匀晶转变;共析转变(3)合金①在1点以上全部为液相,冷至1点时开始从液相中析出γ固溶体至2点结束,2~3点之间合金全部由γ固溶体所组成,3点以下,开始从γ固溶体中析出α固溶体,冷至4点时合金全部由α固溶体所组成,4~5之间全部由α固溶体所组成,冷到5点以下,由于α固溶体的浓度超过了它的溶解度限度,从α中析出第二相β固溶体,最终得到室稳下的显微组织: α+βⅡ11.有形状、尺寸相同的两个Cu-Ni 合金铸件,一个含90% Ni ,另一个含50% Ni,铸后自然冷却,问哪个铸件的偏析较严重?答:含50% Ni的Cu-Ni 合金铸件偏析较严重。
在实际冷却过程中,由于冷速较快,使得先结晶部分含高熔点组元多,后结晶部分含低熔点组元多,因为含50% Ni 的Cu-Ni 合金铸件固相线与液相线范围比含90% Ni铸件宽,因此它所造成的化学成分不均匀现象要比含90% Ni的Cu-Ni 合金铸件严重。
第四章铁碳合金1.何谓金属的同素异构转变?试画出纯铁的结晶冷却曲线和晶体结构变化图。
答:由于条件(温度或压力)变化引起金属晶体结构的转变,称同素异构转变。
2.为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化?答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。