《气体分子运动论》答案
大学物理气体的动理论习题答案
(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是
(A)(1)、(2)、(4);(B)(1)、(2)、(3);(C)(2)、(3)、(4);(D)(1)、(3)、(4)。
2. 两 容 积 不 等 的 容 器 内 分 别 盛 有 He 和 N2 , 若 它 们 的 压 强 和 温 度 相 同 , 则 两 气 体
9.速率分布函数 f(v)的物理意义为:
[B ]
(A)具有速率 v 的分子占总分子数的百分比。
(B)速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比。
(C)具有速率 v 的分子数。
(D)速率分布在 v 附近的单位速率间隔中的分子数。
1
10.设 v 代表气体分子运动的平均速率,vP 代表气体分子运动的最可几速率,( v2 )2 代表
℃升高到 177℃,体积减小一半。试求:
(1)气体压强的变化;
(2)气体分子的平均平动动能的变化;
(3)分子的方均根速率为原来的倍数。
解:
(1)由
p1V1 T1
p2V2 T2
,
代入T1
=300K,T2
=450K,V2
=
1 2
V1可得
p2 =3p1
即压强由p1变化到了3 p1。
(2)分子的平均平动动能
(D) 6 p1 。
5. 一瓶氦气和一瓶氮气,两者密度相同,分子平均平动动能相等,而且都处于平衡状态, 则两者[ C ]
(A)温度相同,压强相等; (B)温度,压强都不相同; (C)温度相同,但氦气的压强大于氮气压强; (D)温度相同,但氦气的压强小于氮气压强。
6.1mol 刚性双原子分子理想气体,当温度为 T 时,其内能为
气体动理论(附答案)
⽓体动理论(附答案)⽓体动理论⼀、填空题1.(本题3分)某⽓体在温度为T = 273 K时,压强为p=1.0×10-2atm,密度ρ = 1.24×10-2 kg/m3,则该⽓体分⼦的⽅均根速率为____________。
(1 atm = 1.013×105 Pa)答案:495m/s2.(本题5分)某容器内分⼦密度为1026m-3,每个分⼦的质量为3×10-27kg,设其中1/6分⼦数以速率v=200m/s垂直向容器的⼀壁运动,⽽其余5/6分⼦或者离开此壁、或者平⾏此壁⽅向运动,且分⼦与容器壁的碰撞为完全弹性的。
则(1)每个分⼦作⽤于器壁的冲量ΔP=_____________;(2)每秒碰在器壁单位⾯积上的分⼦数n0=___________;(3)作⽤在器壁上的压强p=_____________;答案:1.2×10-24kgm/s×1028m-2s-14×103Pa3.(本题4分)储有氢⽓的容器以某速度v作定向运动,假设该容器突然停⽌,⽓体的全部定向运动动能都变为⽓体分⼦热运动的动能,此时容器中⽓体的温度上升0.7K,则容器作定向运动的速度v=____________m/s,容器中⽓体分⼦的平均动能增加了_____________J。
(普适⽓体常量R=8.31J·mol-1·K-1,波尔兹曼常k=1.38×10-23J·K-1,氢⽓分⼦可视为刚性分⼦。
)答案::1212.4×10-234.(本题3分)体积和压强都相同的氦⽓和氢⽓(均视为刚性分⼦理想⽓体),在某⼀温度T下混合,所有氢分⼦所具有的热运动动能在系统总热运动动能中所占的百分⽐为________。
答案:62.5%5.(本题4分)根据能量按⾃由度均分原理,设⽓体分⼦为刚性分⼦,分⼦⾃由度为i,则当温度为T时,(1)⼀个分⼦的平均动能为_______。
大学物理第十一章气体动理论习题详细答案
第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
气体动理论习题解答
第六章 气体动理论一 选择题1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。
A. pV /mB. pV /(kT )C. pV /(RT )D. pV /(mT )解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =??N A 为气体的分子总数,由此得到理想气体的分子总数kTpVN =。
故本题答案为B 。
2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。
A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( )A. 3p 1B. 4p 1C. 5p 1D. 6p 1 解 根据nkT p =,321n n n n ++=,得到故本题答案为D 。
3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( )A. 2pVB. 25pV C. 3pV D.27pV解 理想气体的内能RT iU ν2=,物态方程RT pV ν=,刚性三原子分子自由度i =6,因此pV pV RT i U 3262===ν。
因此答案选C 。
4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同解:单位体积内的气体质量即为密度,气体密度RTMpV m ==ρ(式中m 是气体分子质量,M 是气体的摩尔质量),故两种气体的密度不等。
单位体积内的气体分子数即为分子数密度kTpn =,故两种气体的分子数密度相等。
氮气是双原子分子,氦气是单原子分子,故两种气体的单位体积内的原子数不同。
根据理想气体的内能公式RT iU 2ν=,两种气体的内能不等。
第十二章气体动理论答案
一、选择题1.下列对最概然速率p v 的表述中,不正确的是( )(A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大;(C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。
答案:A2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同;(D )两种气体的压强相同。
答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为:(A )pV/m (B )pV/(kT)(C )pV/(RT) (D )pV/(mT)答案:B4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ⎛⎫ ⎪⎝⎭和BU V ⎛⎫ ⎪⎝⎭的关系为 ( ) (A )A B U U V V ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;(B )A B U U V V ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(C )A BU U V V ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(D )无法判断。
答案:A5.一摩尔单原子分子理想气体的内能( )。
(A )32mol M RT M (B )2i RT (C )32RT (D )32KT 答案:C二、简答题1.能否说速度快的分子温度高,速度慢者温度低,为什么?答案:不能,因为温度是表征大量分子热运动激烈程度的宏观物理量,也就是说是大量分子热运动的集体表现,所以说温度是一个统计值,对单个分子说温度高低是没有意义的。
2.指出以下各式所表示的物理含义:()()()()()RT i RT i kT i kT kT 252423232211ν 答案: (1)表示理想气体分子每个自由度所具有的平均能量(2)表示分子的平均平动动能(3)表示自由度数为的分子的平均能量(4)表示分子自由度数为i 的1mol 理想气体的内能(5)表示分子自由度数为i 的ν mol 理想气体的内能3. 理想气体分子的自由度有哪几种?答案: 理想气体分子的自由度有平动自由度、转动自由度。
普通物理A(1) 课程指导 第10章《气体分子运动论》
(A) (1)、(2)、(3). (B) (1)、(2)、(4).
(C) (2)、(4).
(D) (1)、(4).
参考解答:答案:(D)
只有当系统的状态变化过程进行的无限缓慢,在进行过 程中没有能量损耗的准静态过程才是可逆过程,否则就是不 可逆过程。
10
如果你答错啦,看看下面思考题: 请认真思考啊!
由此解得
暖气系统总共所得热量
Q1
AT3 T3 T2
T3Q1 T3 T2
(1 T3 ) T1
Q
Q2
Q1
(T1 (T3
T2 )T3 T2 )T1
Q1
6.27107 J
12
6. 如图所示,用绝热材料包围的圆筒内盛有一定量的刚性双原子分 子的理想气体,并用可活动的、绝热的轻活塞将其封住.图中K为用 来加热气体的电热丝,MN是固定在圆筒上的环,用来限制活塞向上 运动.Ⅰ、Ⅱ、Ⅲ是圆筒体积等分刻度线,每等分刻度为m3.开始 时活塞在位置Ⅰ,系统与大气同温、同压、同为标准状态.现将小
11
5. 设一动力暖气装置由一台卡诺热机和一台卡诺致冷机组合而成.热机靠燃料
燃烧时释放的热量工作并向暖气系统中的水放热,同时,热机带动致冷机.致
冷机自天然蓄水池中吸热,也向暖气系统放热.假定热机锅炉的温度为t1 =210 ℃,天然蓄水池中水的温度为 t2 =15 ℃,暖气系统的温度为t3=60 ℃,热机从 燃料燃烧时获得热量Q1 = 2.1×107 J,计算暖气系统所得热量.
J
16
7. 燃烧汽油的四冲程内燃机中进行的循环叫奥托循环,如
教学基本内容、基本公式
热量Q 内能E
定容摩尔热容Cv
等容过程
分子动理论答案
P.3
4.设某种气体的分子速率分布函数为 f (v) ,则速率在 v1~v2区间内的分子平均速率为:
∫ (A) v2 vf (v)dv v1
∫ (B) v v2 vf (v)dv v1
v2 vf (v)dv
∫ (C)
v1
v2 f (v)dv
∫v1
(D)
∫ 解:v =
∞ vf (v)dv =
∞ vdN
5 2
RT
⎜⎜⎝⎛
mHe M He
⎟⎟⎠⎞
3 2
RT
=
5 3
2009-10-26
P.14
2009-10-26
P.15
2009-10-26
P.16
2009-10-26
P.17
2009-10-26
P.18
3
3. 体积为2.0×10-3m3的双原子理想气体分子,其内能为 6.75×102J. (1) 试求气体的压强; (2) 若分子总数为5.4×1022个,求气体的温度和分子的 平均平动动能.
= 1.2 ×105
Pa
V
2009-10-26
P.9
4.现有两条气体分子速率分布曲线(1)和(2),如图所
示.若两条曲线分别表示同一种气体处于不同温度下
的速率分布,则曲线 b 表示气 f (v)
体的温度较高; 若两条曲线分别
a
表示同一种温度下氢气和氧气的
速率分布,则曲线 a 表示的是
氧气的速率分布.
(3) pdV + Vdp = 0 表示 等温 过程.
解:pV = m RT pdV +Vdp = m RdT
M
M
3.容积为10升的容器中储有10克的氧气.若气体分子
大学物理A 练习题 第10章《气体分子运动论》
《第10章 气体分子运动论》一 选择题1. 关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2)、(4). (B) (1)、(2)、(3). (C) (2)、(3)、(4). (D) (1)、(3)、(4).[ ]2. 温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系: (A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等.[ ]3. 若f (v )表示分子速率的分布函数,则对下列四式叙述:(1) f (v )d v 表示在v →v +d v 区间内的分子数. (2) ⎰21d )(v v v v f 表示在v 1→v 2速率区间内的分子数.(3)⎰∞0d )(v v v f 表示在整个速率范围内分子速率的总和.(4) ⎰∞d )(v v v v f 表示在v 0→∞速率区间内分子的平均速率.上述对四式物理意义的叙述(A) 正确的是(1). (B) 正确的是(2).(C) 正确的是(3). (D) 正确的是(4). (E) 都不正确.[ ]4. 设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O pv 和()2Hp v 分别表示氧气和氢气的最概然速率,则(A) 图中a表示氧气分子的速率分布曲线;.4)/()(22H O =p p v v (B) 图中a表示氧气分子的速率分布曲线;.4/1)/()(22H O =p p v v (C) 图中b表示氧气分子的速率分布曲线;.4/1)/()(22H O =p p v v (D) 图中b表示氧气分子的速率分布曲线;.4)/()(22H O =p p v v [ ](v )5. 气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大一倍. (B) Z 和λ都减为原来的一半. (C) Z 增大一倍而λ减为原来的一半. (D) Z 减为原来的一半而λ增大一倍.[ ]二 填空题1. 有一瓶质量为M 的氢气(视作刚性双原子分子的理想气体),温度为T ,则氢分子的平均平动动能为____________,氢分子的平均动能为______________,该瓶氢气的内能为_________________.2. 一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密度为0.24 kg/m 3,则可确定此种气体是________气;并可求出此气体分子热运动的最概然速率为_____________m/s .(普适气体常量R = 8.31 J ·mol -1·K -1)3. 设气体分子服从麦克斯韦速率分布律,v 代表平均速率,v p 代表最概然速率,那么,速率在v p 到v 范围内的分子数占分子总数的百分率随气体的温度升高而__________(增加、降低或保持不变).4. 分子的平均动能公式ikT 21=ε (i 是分子的自由度)的适用条件是___________________ ______________________.室温下1 mol 双原子分子理想气体的压强为p ,体积为V ,则此气体分子的平均动能为_________________.5. 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则(1) 速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为_________; (2) 速率v > 100 m ·s -1的分子数的表达式为__________.三计算题1. 一超声波源发射超声波的功率为10 W.假设它工作10 s,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R=8.31 J·mol-1·K-1 )2. 质量m=6.2 ×10-17 g的微粒悬浮在27℃的液体中,观察到悬浮粒子的方均根速率为1.4 cm·s-1.假设粒子速率服从麦克斯韦速率分布,求阿伏伽德罗常数.(普适气体常量R=8.31 J·mol-1·K-1 )3. 许多星球的温度达到108 K.在这温度下原子已经不存在了,而氢核(质子)是存在的.若把氢核视为理想气体,求:(1) 氢核的方均根速率是多少?(2) 氢核的平均平动动能是多少电子伏特?(普适气体常量R=8.31 J·mol-1·K-1,1 eV=1.6×10-19J,玻尔兹曼常量k=1.38×10-23 J·K-1 )4. 由N 个分子组成的气体,其分子速率分布如图所示. (1) 试用N 与0v 表示a 的值.(2) 试求速率在1.50v ~2.00v 之间的分子数目. (3) 试求分子的平均速率.5. 一显像管内的空气压强约为1.0×10-5 mmHg ,设空气分子的有效直径d = 3.0×10-10 m ,试求27℃时显像管中单位体积的空气分子的数目、平均自由程和平均碰撞频率. (空气的摩尔质量28.9×10-3 kg/mol, 玻尔兹曼常量k = 1.38×10-23 J ·K -1 760 mmHg = 1.013×105 Pa )00四研讨题1. 比较在推导理想气体压强公式、内能公式、平均碰撞频率公式时所使用的理想气体分子模型有何不同?2. 速率分布分布函数假设气体分子速率分布在0~∞范围内,也就是说存在大于光速c的分子。
气体分子运动理论
学科:物理教学内容:气体分子运动理论【根底知识精讲】1.气体分子运动的特点(1)气体分子之间的距离很大,距离大约是分子直径的10倍,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间自由移动.气体能充满它们所能到达的空间,没有一定的体积和形状.(2)每个气体分子都在做永不停息的运动,大量气体分子频繁地发生碰撞使每个气体分子都在做杂乱无章的运动.(3)大量气体分子的杂乱无章的热运动,在宏观上表现出一定的规律性.①气体分子沿各个方向运动的数目是相等的.②对于任一温度下的任何气体来说,多数气体分子的速率都在某一数值范围之内,比这一数值范围速率大的分子数和比这一数值范围速率小的分子数依次递减.速率很大和速率很小的分子数都很少.在确定温度下的某种气体的速率分布情况是确定的.在温度升高时,多数气体分子所在的速率范围升高,而且在这一速度范围的分子数增多.2.气体压强的产生(1)气体压强的定义气体作用在器壁单位面积上的压力就是气体的压强,即P=F/S.(2)气体压强的形成原因气体作用在器壁上的压力是由碰撞产生的,一个气体分子和器壁的碰撞时间是极其短暂的.它施于器壁的作用力是不连续的,但大量分子频繁地碰撞器壁,从宏观上看,可以认为气体对器壁的作用力是持续的、均匀的.(3)气体压强的决定因素①分子的平均动能与密集程度从微观角度来看,气体分子的质量越大,速度越大,即分子的平均动能越大,每个气体分子撞一次器壁对器壁的作用力越大,而单位时间内气体分子撞击器壁的次数越多,对器壁的总压力也越大,而撞击次数又取决于单位体积内分子数(分子的密集程度)和平均动能(分子在容器中往返运动着,其平均动能越大,分子平均速率也越大,连续两次碰撞某器壁的时间间隔越短,即单位时间内撞击次数越多),所以从微观角度看,气体的压强决定于气体的平均动能和密集程度.②气体的温度与体积从宏观角度看,一定质量的气体的压强跟气体的体积和温度有关.对于一定质量的气体,体积的大小决定分子的密集程度,而温度的上下是分子平均动能的标志.(4)几个问题的说明①在一个不太高的容器中,我们可以认为各点气体的压强相等的.②气体的压强经常通过液体的压强来反映.③容器内气体压强的大小与气体的重力无关,这一点与液体的压强不同(液体的压强是由液体的重力造成的).这是由于一般容器内气体质量很小,且容器高度有限,所以不同高度处气体分子的密集程度几乎没有差异.所以气体的压强处处相等,即压强与重力无关.④对于地球大气层这样的研究对象,由于不同高度处气体分子的密集程度不同,温度也有明显差异,所以不同高度差处气体的压强是不同的.这种情况下气体的压强与重力有关.3.对气体实验定律的微观解释(1)玻意耳定律的微观解释①一定质量的气体,温度保持不变,从微观上看表示气体分子的总数和分子平均动能保持不变,因此气体压强只跟单位体积内的分子数有关.②气体发生等温变化时,体积增大到原来的几倍,单位体积内的分子数就减少到原来的几分之一,压强就会减小到原来的几分之一;体积减小到原来的几分之一,单位体积内的分子数就会增加到原来的几倍,压强就会增大到原来的几倍,即气体的压强和体积的乘积保持不变.(2)查理定律的微观解释①一定质量的理想气体,体积保持不变时,从微观上看表示单位体积内的分子数保持不变,因此气体的压强只跟气体分子的平均动能有关.②气体发生等容变化时,温度升高,气体分子的平均动能增大,气体压强会跟着增大;温度降低,气体分子的平均动能减小,气体压强会跟着减小.(3)盖·吕萨克定律的微观解释①一定质量的理想气体,压强不变时,从微观上看是单位体积内分子数的变化引起的压强变化与由分子的平均动能变化引起的压强变化相互抵消.②气体发生等压变化时,气体体积增大,单位体积内的分子数减小,会使气体的压强减小,气体的温度升高,气体分子的平均动能增大,才能使气体的压强增大来抵消由气体体积增大而造成的气体压强的减小;相反,气体体积减小,单位体积内的分子数增多,会使气体的压强增大,只有气体的温度降低,气体分子的平均动能减小,才能使气体的压强减小来抵消由气体体积减小而造成的气体压强的增大.4.理想气体内能及变化理想气体,是我们在研究气体性质时所建立的理想模型,它指的是不考虑气体分子间相互作用力,这是由于气体分子间距离较远,已超过10r0,故可忽略气体分子间作用力,这样理想气体的内能就取决于分子的总数目和分子的平均动能,而分子的数目又由气体的摩尔量决定,分子的平均动能的标志是气体的温度,所以理想气体的内能就可用摩尔量和温度这两个宏观物理量来衡量了,而对于一定质量的理想气体而言,它的内能只由温度来衡量.也就是说,对一定质量的理想气体,它的内能是否发生变化,只需看它的温度是否变化了就可以了,温度升高,内能增大;温度降低,内能减小.理想气体做功与否,只需观察它的体积,假设体积增大,那么气体对外界做功;体积减小,那么外界对气体做功.根据能的转化和守恒定律,一定质量的理想气体的内能的改变量等于气体吸收的热量与外界对气体做功之和,即△E=Q+W.【重点难点解析】重点气体压强的产生和气体实验定律的微观解释.难点用统计的方法分析气体分子运动的特点.例 1 一定质量的理想气体,当体积保持不变时,其压强随温度升高而增大,用分子动理论来解释,当气体的温度升高时,其分子的热运动加剧,因此:①;②从而导致压强增大.解析气体的压强是由大量的气体分子频繁碰撞器壁产生的,压强的大小决定于单位体积内的分子数和分子的平均动能,一定质量的理想气体,体积不变时,单位体积内分子数不变;温度升高时,分子运动加剧,与器壁碰撞速率增大,冲力增大,同时碰撞时机增多,故压强变大.答案 ①分子每次碰撞器壁时给器壁的冲力增大 ②分子在单位时间对单位面积器壁碰撞次数增多.说明 此题主要考查气体压强的微观解释.分析时要结合分子动理论,压强产生原因综合分析.正确理解决定压强的两个因素是关键.例2.一个密闭的绝热容器内,有一个绝热的活塞将它隔成AB 两局部空间,在A 、B 两局部空间内封有相同质量的空气,开始时活塞被销钉固定.A 局部气体的体积大于B 局部气体的体积,温度相同,如以下图所示.假设拔出销钉后,到达平衡时,A 、B 两局部气体的体积V A 与V B 的大小,有( )A.V A >V BB.V A =V BC.V A <V BD.条件缺乏,不能确定解析 对气体压强大小决定因素的理解和物理过程物理情境的分析是正确解决此题的关键.初态两气体质量相同,V A >V B ,因此气体分子数密度不同,ρA <ρB ,又由于温度相同,根据气体压强的决定因素可知P A <P B .当活塞销钉拿掉,由于ρA <ρB ,所以活塞向A 气方向移动,活塞对A 气做功,B 气对活塞做功,导致A 气体密度增加.温度升高,而B 气体密度减小,温度降低,直至P A ′=P B ′,此时T A ′>T B ′.又由于最终两边气体压强相等活塞才能静止,而两边气体质量相等,A 气温度高于B 气,两边压强要想相等,只有A 气体密度小于B 气体密度,故最终一定是V A ′>V B ′,A 选项正确.答案 A 正确说明 此题假设对气体压强大小决定因素不理解,又不清楚销钉拔掉后物理情境的变化,极易错选B 或C.【难题巧解点拨】例1 对于一定质量的理想气体,以下四个论述中正确的选项是( )A.当分子热运动变剧烈时,压强必变大B.当分子热运动变剧烈时,压强可以不变C.当分子间的平均距离变大时,压强必变小D.当分子间的平均距离变大时,压强必变大解析 对于理想气体:①分子热运动的剧烈程度由温度上下决定;②分子间的平均距离由气体体积决定;③对于一定量的理想气体,TPV =恒量. A 、B 选项中,“分子热运动变剧烈〞说明气体温度升高,但气体体积变化情况未知,所以压强变化情况不确定,A 错误B 正确.C 、D 选项中,“分子间的平均距离变大〞说明气体体积变大,但气体温度变化情况未知,故不能确定其压强变化情况,C 、D 均错误.答案 选B.点评 此题考查分子运动理论和理想气体状态的简单综合.注意从分子运动理论深刻理解理想气体的三个状态参量,从状态方程判定三个参量之间的变化关系.例2 如以下图所示,直立容器内容部有被隔板隔开的A、B两局部气体,A的密度小,B 的密度大,抽去隔板,加热气体,使两局部气体均匀混合,设在此过程气体吸热Q,气体内能增量为△E,那么( )A.△E=QB.△E<QC.△E>QD.无法比拟解析 A、B气体开始的合重心在中线下,由于气体分子永不信息地运动,抽去隔板后,A、B两局部气体均在整个容器中均匀分布,因此合重心在中线处,造成重力势能增大,由能量守恒定律得:吸收热量一局部增加气体的内能,一局部增加重力势能,所以B正确.答案选B.点评此题要综合应用气体分子运动论和能量守恒定律的知识求解.【典型热点考题】例让一定质量的理想气体发生等温膨胀,在该过程中( )A.气体分子平均动能不变B.气体压强减小C.气体分子的势能减小D.气体密度不变解析温度是物体分子平均动能的标志,温度不变,气体分子平均动能不变,所以A正确,由密度定义及题意得到D错误;理想气体没有分子势能,故C错;由玻意耳定律知气体等温膨胀时其压强减小.答案选AB.【同步达纲练习】1.质量一定的某种气体,在体积保持不变的情况下,将气体的温度由-13℃升高到17℃,那么保持不变的是( )A.压强B.分子的平均速率C.分子的平均动能D.气体密度2.气体的压强是由以下哪种原因造成的( )A.气体分子对器壁的吸引力B.气体分子对器壁的碰撞力C.气体分子对器壁的排斥力D.气体的重力3.一定质量的理想气体,在压强不变的条件下,体积增大,那么( )A.气体分子的平均动能增大B.气体分子的平均动能减小C.气体分子的平均动能不变D.条件缺乏,无法判定气体分子平均动能的变化情况4.在一定温度下,当气体的体积减小时,气体的压强增大,这是由于( )A.单位体积内的分子数变大,单位时间内对器壁碰撞的次数增多B.气体分子密度变大,分子对器壁的吸引力变大C.每个气体分子对器壁的平均撞击力变大D.气体分子的密度变大,单位体积内分子的重量变大5.两容积相等的容器中,分别装有氢气和氧气,且两容器中的气体质量相等,温度相同,那么此两容器中( )A.氧分子的平均速率与氢分子的平均速率相等B.氧分子平均速率比氢分子的平均速率小C.氧分子的个数比氢分子的个数多D.氧分子的个数和氢分子的个数相等6.对一定质量的理想气体,以下说法正确的选项是( )A.压强增大,体积增大,分子的平均动能一定增大B.压强减小,体积减小,分子的平均动能一定增大C.压强减小,体积增大,分子的平均动能一定增大D.压强增大,体积减小,分子的平均动能一定增大【素质优化练习】1.当两容器中气体的温度、压强、体积都相同时,下面说法正确的选项是( )A.两者是同种气体B.两者气体质量一定相同C.两者气体含有的热量相同D.两者具有相同的分子数2.高山上某处的气压为0.40atm,气温为-30℃,那么该处每立方厘米大气中的分子数为 .(阿伏加得罗常数为6.0×1023mol-1,在标准状态下1mol气体的体积为22.4L.〔〕3.如以下图所示的状态变化曲线是一定质量气体的变化图线,从a→b是一条双曲线,那么气体从b→c的过程中气体分子的密度 ,从c→a过程中气体分子的平均动能__________(填“增大〞、“减小〞或“不变〞)4.根据气体分子动理论,可以从微观上来解释玻意耳定律:一定质量的某种气体温度保持不变,也就是分子的和不变,即每个分子平均一次碰撞器壁的冲量;在这种情况下,体积减小,分子增大,单位时间内,碰撞到器壁单位面积上的分子个数 ,从而导致压强增大.【生活实际运用】1.一个细口瓶开口向上放置,细口瓶的容积为1升,周围环境的大气压强为1个标准大气压.当细口瓶内空气温度从原来的0℃升高到10℃时,瓶内气体分子个数减少了多少个?阿伏加得罗常数N A=6.0×1023mol-1,要求一位有效数字.【知识验证实验】用分子动理论解释气体实验定律根本的思维方法是:依据描述气体状态的宏观物理量(m、p、V、T)与表示气体分子运动状态的微观物理量(N、n、v)间的相关关系,从气体实验定律成立的条件所描述的宏观物理量(如m一定和T不变)推出相关不变的微观物理量(如N一定和v不变),再根据宏观自变量(如V)的变化推出微观自变量(如n)的变化,再依据推出的有关微观量(如v和n)变与不变的情况推出宏观因变量(如p)的变化情况.【知识探究学习】如以下图所示,一定质量的理想气体由状态a 经状态b 变化到状态c,其变化过程如下图,以下说法正确的选项是( )A.ab 过程吸热大于bc 过程放热B.ab 过程吸热小于bc 过程放热C.ab 过程吸热大于bc 过程吸热D.ab 过程吸热小于bc 过程吸热提示:①a →b 是等压过程∵V B >V A ∴T B >T A∴a →b 过程,气体对外做功且内能增加,气体吸收热量②b →c 是等容过程 ∵P C <P B ∴T C <T Bb →c 过程气体不对外界做功,外界也不对气体做功,但气体内能减小,所以b →c 气体放热 ③由TPV =恒量及图像知T A =T C ,故a →b →c 的全过程中内能没有变化,综上所述a →b →c 中,气体对外做功,由能量守恒定律得a →b →c 过程中气体吸热,结合前面分析,ab 过程吸热一定大于bc 过程放热.所以选项A 正确.参考答案:【同步达纲练习】1.D2.B3.A4.A5.B6.A【素质优化练习】1.D2.1.2×1019个3.减小;减小4.质量,热运动平均速率,不变,数密度,增多.【生活实际运用】提示 ρ2T 2=ρ1T 1 ∴ρ2=21T T ρ1 那么n 2=21T T n 1△n=(n 1-n 2)= 212T T T -×4.221×6.02×1023=4.2228302.6⨯×1023≈1×1020个。
第七章 气体动理论(答案)
一、选择题[ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同;② ∵kT n V kTNV E k 2323==,而n ,T 均相同,∴V E k 相同;③ RT M MpV mol=→RT pM V M mol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。
[ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.(B) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(D) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线;②23,3210(/)mol O M kg mol -=⨯, 23,210(/)mol H M kg mol -=⨯,得()()22Ov v p p H14=[ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为(A)⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C)⎰21d )(v v v v v f /⎰21d )(v v v v f . (D)⎰21d )(v v v v v f /0()d f v v ∞⎰ .【提示】① f (v )d v ——表示速率分布在v 附近d v 区间内的分子数占总分子数的百分比;② ⎰21)(v v dv v Nf ——表示速率分布在v 1~v 2区间内的分子数总和;③21()v v vNf v dv ⎰表示速率分布在v 1~v 2区间内的分子的速率总和,因此速率分布在v 1~v 2区间内的分子的平均速率为22112211()()()()v v v v v v v v vNf v dv vf v dvNf v dvf v dv=⎰⎰⎰⎰[ B ]4、(基础训练9)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B) Z 减小而λ增大. (C) Z 增大而λ减小. (D) Z 不变而λ增大.【提示】①2Z d n =,其中v =不变;N n V =,当V 增大时,n 减小; ∴Z 减小。
高三物理分子运动论试题答案及解析
高三物理分子运动论试题答案及解析1.(l)下列说法正确的是A.密闭房间内,温度升高,空气的相对湿度变大B.密闭房间内,温度越高,悬浮在空气中的PM2.5运动越剧烈C.可看作理想气体的质量相等的氢气和氧气,温度相同时氧气的内能小D.系统的饱和汽压不受温度的影响【答案】BC【解析】A中的相对湿度是指在一定温度时,空气中的实际水蒸气含量与饱和值之的比值,温度升高绝对湿度不变,即空气中含水量不变,但相对湿度变小了,A错误;PM2.5是指空气中直径小于2.5微米的悬浮颗粒物,其漂浮在空中做无规则运动,故温度越高,其它分子对其撞击的不平衡就会增加,使得PM2.5的无规则运动越剧烈,故B正确;由于不考虑分子间作用力,氢气和氧气只有分子动能,当温度相同,它们的平均动能相同,而氢气分子摩尔质量小,质量相等时,氢气分子数多,所以氢气内能多,C正确;系统的饱和汽压受温度的影响,故D不正确。
【考点】分子动理论,相对湿度,饱和蒸汽压,内能等概念。
2. 1个铀235吸收1个中子发生核反应时,大约放出196 MeV的能量,则235 g纯铀235完全发生核反应放出的能量为(NA为阿伏加德罗常数)A.235 NA ×196 MeV B.NA×196 MeVC.235×196 MeV D.×196 MeV【答案】B【解析】的摩尔质量为:,235g纯含有的原子个数为:,故放出的能量为:,B正确;【考点】考查了阿伏伽德罗常数的计算3.气体发生的热现象,下列说法中正确的是A.热只能从高温气体传给低温气体而不能从低温气体传给高温气体B.在压缩气体的过程中,由于外力做功,因而气体分子势能增大C.压缩气体要用力,是因为气体分子之间存在斥力的缘故D.气体的体积一定大于所有气体分子体积之和【答案】D【解析】热只能自发的从高温气体传给低温气体,但可以通过做功的方式从低温气体传给高温气体,A错误;在压缩气体的过程中,由于外力做功,内能增大,分子势能不一定增大,B错误;压缩气体时要用力,只是说明气体分子间存在空隙,用力将气体压缩后将空隙减小。
大学物理(气体动理论)习题答案
大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。
(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。
(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。
[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。
气体动理论答案
一.选择题1.(基础训练2)[C]两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n,单位体积内的气体分子的总平动动能(E K/V),单位体积内气体的质量?的关系为:(A) n不同,(E K/V)不同,??不同.(B) n不同,(E K/V)不同,??相同.(C) n相同,(E K/V)相同,??不同.(D) n相同,(E K/V)相同,??相同.【解】:∵nkTp=,由题意,T,p相同∴n相同;∵kTnVkTNVEk2323==,而n,T均相同∴VEk相同由RTMmpV=得m pMV RTρ==,∵不同种类气体M不同∴ρ不同2.(基础训练6)[C]设v代表气体分子运动的平均速率,pv代表气体分子运动的最概然速率,2/12)(v代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速率关系为(A)pvvv==2/12)((B) 2/12)(vvv<=p(C) 2/12)(vvv<<p(D)2/12)(vvv>>p【解】:最概然速率:pv==算术平均速率:()v vf v dv∞==⎰2()v f v dv∞==⎰3. (基础训练7)[ B ]设图7-3同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a表示氧气分子的速率分布曲线;()2O p v /()2H p v =4.(B) 图中a表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(D) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4. 【解】:理想气体分子的最概然速率2p RTv M=,同一温度下摩尔质量越大的p v 越小,又由氧气的摩尔质量33210(/)M kg mol -=⨯,氢气的摩尔质量3210(/)M kg mol -=⨯,可得()2O p v /()2H p v =1/4。
大学热学(李椿+章立源+钱尚武)习题解答第二章气体分子运动论基本概念
第二章 气体分子运动论的基本概念2-1目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。
解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =3.21×109(m –3) 注:1mmHg=1.33×102N/m 22-2钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m , 试问在标准状态下,其中有多少个空气分子。
解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg 的真空。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。
若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。
解:设烘烤前容器内分子数为N 。
,烘烤后的分子数为N 。
根据上题导出的公式PV = NKT 则有:)(0110011101T P T P K V KT V P KT V P N N N -=-=-=∆ 因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此T P 与11T P 相比可以忽略 1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g的氩气。
设混合气体的温度为150℃,求混合气体的压强。
第十六章气体分子动理论
第十六章气体分子动理论16-1 已知某理想气体分子的方均根速率为400 m·s-1.当其压强为1 atm时,求气体的密度.(答案:1.90 kg/m3)16-2 容器内有M = 2.66 kg氧气,已知其气体分子的平动动能总和是E K=4.14×105 J,求:(1) 气体分子的平均平动动能;(2) 气体温度.(阿伏伽德罗常量N A=6.02×1023 /mol,玻尔兹曼常量k=1.38×10-23 J·K-1 )(答案:8.27×10-21J;400 K)16-3 容积V=1 m3的容器内混有N1=1.0×1025个氢气分子和N2=4.0×1025个氧气分子,混合气体的温度为400 K,求:(1) 气体分子的平动动能总和.(2) 混合气体的压强.(普适气体常量R=8.31 J·mol-1·K-1 )(答案:4.14×105J;2.76×105 Pa)16-4 1 kg某种理想气体,分子平动动能总和是1.86×106J,已知每个分子的质量是3.34×10-27 kg,试求气体的温度.(玻尔兹曼常量k=1.38×10-23 J·K-1)(答案:300 K)16-5 一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为w= 6.21×10-21 J.试求:(1) 氧气分子的平均平动动能和方均根速率.(2) 氧气的温度.(阿伏伽德罗常量N A=6.022×1023 mol-1,玻尔兹曼常量k=1.38×10-23 J·K-1)(答案:6.21×10-21 J,483 m/s;300 K)16-6 一容积为10 cm3的电子管,当温度为300 K时,用真空泵把管内空气抽成压强为5×10-6 mmHg的高真空,问此时管内有多少个空气分子?这些空气分子的平均平动动能的总和是多少?平均转动动能的总和是多少?平均动能的总和是多少?(760 mmHg=1.013×105 Pa,空气分子可认为是刚性双原子分子) (波尔兹曼常量k=1.38×10-23J/K)(答案:1.61×1012个;10-8 J;0.667×10-8 J;1.67×10-8 J)16-7 容积为20.0 L(升)的瓶子以速率v=200 m·s-1匀速运动,瓶子中充有质量为100g 的氦气.设瓶子突然停止,且气体的全部定向运动动能都变为气体分子热运动的动能,瓶子与外界没有热量交换,求热平衡后氦气的温度、压强、内能及氦气分子的平均动能各增加多少?(摩尔气体常量R=8.31 J·mol-1·K-1,玻尔兹曼常量k=1.38×10-23 J·K-1)(答案:6.42 K,6.67×10-4 Pa,2.00×103 J,1.33×10-22 J)16-8 一密封房间的体积为5×3×3 m3,室温为20 ℃,室内空气分子热运动的平均平动动能的总和是多少?如果气体的温度升高 1.0K,而体积不变,则气体的内能变化多少?气体分子的方均根速率增加多少?已知空气的密度ρ=1.29 kg/m3,摩尔质量M mol=29×10-3 kg /mol,且空气分子可认为是刚性双原子分子.(普适气体常量R=8.31 J·mol-1·K-1)(答案: 7.31×106 J ;4.16×104 J ;0.856 m/s )16-9 有 2×10-3 m 3刚性双原子分子理想气体,其内能为6.75×102 J .(1) 试求气体的压强;(2) 设分子总数为 5.4×1022个,求分子的平均平动动能及气体的温度. (玻尔兹曼常量k =1.38×10-23 J ·K -1)(答案:1.35×105 Pa ;7.5×10-21J ,362k )16-10 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )(答案:4.81 K )16-11 储有1 mol 氧气,容积为1 m 3的容器以v =10 m ·s -1 的速度运动.设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能,问气体的温度及压强各升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )(答案:0.062 K ,0.51 Pa )16-12 水蒸气分解为同温度T 的氢气和氧气H 2O →H 2+21O 2 时,1摩尔的水蒸气可分解成1摩尔氢气和21摩尔氧气.当不计振动自由度时,求此过程中内能的增量.(答案:(3 / 4)RT )16-13 容器内有11 kg 二氧化碳和2 kg 氢气(两种气体均视为刚性分子的理想气体),已知混合气体的内能是8.1×106 J .求:(1) 混合气体的温度;(2) 两种气体分子的平均动能.(二氧化碳的M mol =44×10-3 kg ·mol -1 ,玻尔兹曼常量k =1.38×10-23 J ·K -1摩尔气体常量R =8.31 J ·mol -1·K -1 )(答案:300 K ;1.24×10-20 J ,1.04×10-20 J )16-14 当氢气和氦气的压强、体积和温度都相等时,求它们的质量比()()e H H 2M M 和内能比()()e H H 2E E .(将氢气视为刚性双原子分子气体) (答案:1/2,5/3)16-15 有N 个粒子,其速率分布函数为:f ( v ) = c ( 0≤v ≤v 0)f ( v ) = 0 ( v >v 0)试求其速率分布函数中的常数c 和粒子的平均速率(均通过v 0表示).(答案:c = 1 / v 0,v 0/2)16-16 由N 个分子组成的气体,其分子速率分布如图所示. (1) 试用N 与0v 表示a 的值.(2) 试求速率在1.50v ~2.00v 之间的分子数目. (3) 试求分子的平均速率.(答案:a = ( 2 /3 ) ( N /v 0);N 31;11 v 0 /9)16-17 导体中自由电子的运动可看成类似于气体中分子的运动.设导体中共有N 个自由电子,其中电子的最大速率为v m ,电子速率在v ~v + d v 之间的概率为 ⎩⎨⎧=0d d 2v v A N N 式中A 为常数.(1) 用N ,v m 定出常数A ;(2) 试求导体中N 个自由电子的平均速率.(答案:3v 3mA =;m v 43)16-18 质量m =6.2 ×10-17 g 的微粒悬浮在27℃的液体中,观察到悬浮粒子的方均根速率为1.4 cm ·s -1.假设粒子速率服从麦克斯韦速率分布,求阿伏伽德罗常数.(普适气体常量R =8.31 J ·mol -1·K -1 )(答案:6.15×1023 mol -1)16-19 一氧气瓶的容积为V ,充了气未使用时压强为p 1,温度为T 1;使用后瓶内氧气的质量减少为原来的一半,其压强降为p 2,试求此时瓶内氧气的温度T 2及使用前后分子热运动平均速率之比21/v v .(答案:T 2=2 T 1p 2 / p 1;21212v v P P =)16-20 某种理想气体在温度为 300 K 时,分子平均碰撞频率为=1Z 5.0×109 s -1.若保持压强不变,当温度升到 500 K 时,求分子的平均碰撞频率2Z .(答案:3.87×109 s -1)16-21 已知氧分子的有效直径d = 3.0×10-10 m ,求氧分子在标准状态下的分子数密度n ,平均速率v ,平均碰撞频率Z 和平均自由程λ.(玻尔兹曼常量k = 1.38×10-23 J ·K -1, 普适气体常量R = 8.31 J ·mol -1·K -1)(答案:2.69×1025 m -3;4.26×102 m/s ;4.58×109 s -1;9.3×10-8 m )16-22 一显像管内的空气压强约为1.0×10-5 mmHg ,设空气分子的有效直径d = 3.0×10-10 m ,试求27℃时显像管中单位体积的空气分子的数目、平均自由程和平均碰撞频率. 00 0≤v ≤v mv >v m(空气的摩尔质量28.9×10-3 kg/mol, 玻尔兹曼常量k = 1.38×10-23 J ·K -1 760 mmHg = 1.013×105 Pa )(答案:3.22×1017 m -3;7.8 m ;60 s -1)16-23 今测得温度为t 1=15℃,压强为p 1=0.76 m 汞柱高时,氩分子和氖分子的平均自由程分别为:Ar λ= 6.7×10-8 m 和Ne λ=13.2×10-8 m ,求:(1) 氖分子和氩分子有效直径之比d Ne / d Ar =?(2) 温度为t 2=20℃,压强为p 2=0.15 m 汞柱高时,氩分子的平均自由程/Ar λ=?(答案:d Ne / d Ar = 0.71;3.5×10-7 m )。
第7章气体动理论习题解答
第7章 气体动理论7.1基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
7.2基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强p 、体积V 和温度T 3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母i 表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即2i E R T ν=6 最概然速率速率分布函数取极大值时所对应的速率,用p υ表示,p υ==≈,其物理意义为在一定温度下,分布在速率p υ附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用υ表示,υ==≈8 方均根速率各个分子速率的平方平均值的算术平方根,用rm s υ表示,rm s υ==≈9 平均碰撞频率和平均自由程平均碰撞频率Z 是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程λ是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:Zυλ==或λ=7.3基本规律1 理想气体的物态方程pV RTν=或'm pV R TM=pV NkT=或p nkT =2 理想气体的压强公式23k p n ε=3 理想气体的温度公式21322k m kT ευ==4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT5 麦克斯韦气体分子速率分布律 (1)速率分布函数()dN f N d υυ=表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
《气体分子运动论》
10气体分子运动论 10.1 温度的统计意义1. 关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子运动剧烈程度的不同.(4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2)、(4). (B) (1)、(2)、(3). (C) (2)、(3)、(4). (D) (1)、(3)、(4). 答案:(B) 参考解答:根据分子平均平动动能公式:kT 23=ϖ可得温度的统计意义:大量分子的平均平动动能与绝对温度成正比,与气体种类无关。
这一结果揭示了温度的微观本质:气体的温度是大量气体分子平均平动动能的量度,是大量分子无规则热运动的集体表现,具有统计的意义,对于单个分子或少数几个分子,无温度可言。
对所有的选择,均给出参考解答,进入下一题:2. 对一定质量的气体来说,当温度不变时,气体的压强随体积减小而增大(玻意耳定律);当体积不变时,压强随温度升高而增大(查理定律).从宏观来看,这两种变化同样使压强增大,从微观分子运动看,它们的区别在哪里? 参考解答:由压强公式p =3/2w n 可知,p 与n 和w 成正比,对于一定量气体来说,当温度不变时,即平均平动动能2/3kT w =一定时,体积减小,会使单位体积的分子数n 增大,致使分子对器壁碰撞次数增加,故p 增大.当体积不变时,则n 不变,温度升高会使分子平均平动动能w 增大,这使得碰撞次数和每次碰撞的平均冲力都增加,故使p 增大.从上述分析可见,两种情形中虽然在宏观上都是使p 增大,但在微观上使p 增大的原因是不同的,前者是n 增大,而后者是w 增大. 进入下一题:3. 当盛有理想气体的密封容器相对某惯性系运动时,有人说:容器内分子的热运动速度相对于这参考系增大,因此气体的温度将升高。
这种说法是(A) 对的。
第十六章 气体分子动理论
16-11 储有1 mol氧气,容积为1 m3的容器以v=10 m·s-1 的速度运动.设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能,问气体的温度及压强各升高了多少?
(氧气分子视为刚性分子,普适气体常量R=8.31 J·mol?1·K?1 )
(空气的摩尔质量28.9×10?3 kg/mol, 玻尔兹曼常量k = 1.38×10?23 J·K?1
760 mmHg = 1.013×105)
(2) 气体温度.
(阿伏伽德罗常量NA=6.02×1023 /mol,玻尔兹曼常量k=1.38×10-23 J·K?1 )
(答案:8.27×10-21J;400 K)
16-3 容积V=1 m3的容器内混有N1=1.0×1025个氢气分子和N2=4.0×1025个氧气分子,混合气体的温度为 400 K,求:
(2) 氧气的温度.
(阿伏伽德罗常量NA=6.022×1023 mol-1,玻尔兹曼常量k=1.38×10?23 J·K?1)
(答案:6.21×10-21 J,483 m/s;300 K)
(答案: 7.31×106 J;4.16×104 J;0.856 m/s)
16-9 有 2×10?3 m3刚性双原子分子理想气体,其内能为6.75×102 J.
(1) 试求气体的压强;
(2) 设分子总数为 5.4×1022个,求分子的平均平动动能及气体的温度.
f ( v ) = c ( 0≤v ≤v 0)
f ( v ) = 0 ( v>v 0)
试求其速率分布函数中的常数c和粒子的平均速率(均通过v 0表示).
(玻尔兹曼常量k = 1.38×10?23 J·K?1, 普适气体常量R = 8.31 J·mol?1·K?1)
气体动理论一章习题解答
解:根据理想气体状态方程
P = nkT ∝ T
分子平均平动能 ε k =
1 2 3 kT ,且 ε k = 2 m v ,所以,气体温度与气体分子的 2
方均根速率的平方成正比,即
T ∝ v2
因此,气体的压强
2 ⎞ P∝⎛ ⎜ v ⎟ ⎝ ⎠ 2
所以,气体的压强之比 PA:PB:PC 为 12:22:42 = 1:4:16,答案(C)正确。
P = nkT
氦气和氮气密度相同, 氦气的分子量小,它的分子数密度大,所以氦气的 压强大于氮气的压强。 所以,只有答案(C)是正确的。
习题 6─3
图示两条曲线分别表示在相同的温度下氧气和氢气分子速率分布曲 ]
线, ( v P ) O2 和 ( v P ) H 2 分别表示氧气和氢气分子的最可几速率,则: [ (A) 图中 a 表示氧气分子的速率分布曲线, ( v P ) O2 (v P ) H = 4 。
习题 6—6
若室内升起炉子后温度从 15℃升高到 27℃,而室内气压不变,则此 ] (B) 4%。 (C) 9%。 (D) 21%。
时室内的分子数减少了: [ (A)0.5%。
解:依题设条件并应用公式
P = nkT 可得
P1 = n1 kT1 = P2 = n2 kT2
所以
n2 T1 273 + 15 288 = = = n1 T2 273 + 27 300
2
解:由麦氏速率分布率,在相同温度下,气体的分子量越大其速率大的分子 比率越少,曲线峰值左移,从给定的分布曲线可以判断图中 a 表示氧气分子的速 率分布曲线。另一方面,由于气体分子最可几速 率为
f(v) a b
vP =
所以
《气体分子运动论》答案
第10章 气体分子运动论一、选择题1(B),2(C),3(C),4(B),5(D),6(E),7(B),8(B),9(A),10(C) 二、填空题 (1).23kT ,25kT ,25MRT /M mol .; (2). ×10-24 kg m / s ,31×1028 m -2s-1 ,4×103 Pa . (3). 分布在v p ~∞速率区间的分子数在总分子数中占的百分率, 分子平动动能的平均值. (4).v v v d )(0⎰∞Nf ,v v v/v v v v d )(d )(0⎰⎰∞∞f f ,v v v d )(0⎰∞f .(5). 氢,×103.; (6). 保持不变. 参考解答:令,2,mkTx p p==v v v麦克斯韦速率分布函数可以写作:x e x N N x d 4d 22-=π又,8πm kT =v .2π=p v v 所以有 .d 4π2122x e x N N x ⎰-=∆-πv v p这个积分显然与温度无关! (7). 理想气体处于热平衡状态 ,A N iPV /21或R ikPV /21.; (8).BA B B A A N N f N f N ++)()(v v . (9). 2; (10). 1 .三、计算题1. 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少(氧气分子视为刚性分子,普适气体常量R = J ·mol 1·K 1 )解: A = Pt =T iR v ∆21, ∴T = 2Pt /(v iR )= K .2. 储有1 mol 氧气,容积为1 m 3的容器以v =10 m ·s -1 的速度运动.设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能,问气体的温度及压强各升高了多少(氧气分子视为刚性分子,普适气体常量R = J ·mol 1·K 1 )解: ×221v M =(M / M mol )T R ∆25, ∴ T = M mol v 2 / (5R )= K又 ∆p =R ∆T / V (一摩尔氧气) ∴ ∆p = Pa .3. 质量m = ×1017g 的微粒悬浮在27℃的液体中,观察到悬浮粒子的方均根速率为1.4cm ·s1.假设粒子速率服从麦克斯韦速率分布,求阿伏伽德罗常数.(普适气体常量R =J ·mol 1·K 1 )解:据 ()m N RT M RT A /3/3mol 2/12==v,得 N A =3RT / (m 2v )=×1023 mol -1.4. 设气体分子速率服从麦克斯韦速率分布律,求气体分子速率与最概然速率之差不超过1%的分子占全部分子的百分比.(附:麦克斯韦速率分布律 v v v ∆-=∆222/3)2ex p()2(π4kT m kTm N N .exp{a }即e a )解: v v v ∆-=∆222/3)2ex p()2(π4kT m kT m N N pp p v v v v v v ∆-=})(ex p{)(π422.代入 v =p v . 与v p 相差不超过1%的分子是速率在100p p v v -到100p p v v +区间的分子,故v = p v , ∴ N / N = %.5. 由N 个分子组成的气体,其分子速率分布如图所示. (1) 试用N 与0v 表示a 的值.(2) 试求速率在0v ~0v 之间的分子数目. (3) 试求分子的平均速率.解:(1) 由分布图可知: 0→v 0: N f (v ) = ( a / v 0) v , f (v ) = av /(N v 0). v 0→2 v 0: N f (v ) = a , f (v ) = a /N . 2v 0 f (v ) = 0由归一化条件1d )(0=⎰∞v v f , 有 1d /d )/(020=+⎰⎰v v v v v vv N a N a ,得: ( 3 /2 ) ( av 0 /N ) = 1 , ∴ a = ( 2 /3 ) ( N /v 0). (2) ⎰⎰==∆0000223223d d )(v v v v v v v N a NNf N 021v a =, 将a 代入得 N N N 31)3/(22100=⨯=∆v v . (3) 0→v 0: f (v ) = a v /(N v 0) = (v / N v 0)×2 N / (3 v 0) )3/(220v v =.v 0→2 v 0: f (v ) = a /N = ( 1 / N )×( 2 N / 3 v 0) = 2 / (3 v 0).⎰∞=0d )(v v v v f v v v v v v v v v v d )3/(2d )3/(2020020⎰⎰⨯+⨯= 0092v v +==11 v 0 /96. 一显像管内的空气压强约为×105 mmHg ,设空气分子的有效直径d = ×1010 m ,试求27℃时显像管中单位体积的空气分子的数目、平均自由程和平均碰撞频率. (空气的摩尔质量×103 kg/mol, 玻尔兹曼常量k = ×1023 J ·K1760 mmHg = ×105 Pa )解:(1) ==kTpn ×1017 m 3a Nf (v )vv 0v 0O(2) ==pd kT 2π2λ7.8 m(3) =π==λλ18mol M RT Z v60 s 1.四 研讨题1. 比较在推导理想气体压强公式、内能公式、平均碰撞频率公式时所使用的理想气体分子模型有何不同参考解答:推导压强公式时,用的是理想气体分子模型,将理想气体分子看作弹性自由质点;在推导内能公式时,计算每个分子所具有的平均能量,考虑了分子的自由度,除了单原子分子仍看作质点外,其他分子都看成了质点的组合;推导平均碰撞频率公式时,将气体分子看成有一定大小、有效直径为d 的弹性小球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 气体分子运动论一、选择题1(B),2(C),3(C),4(B),5(D),6(E),7(B),8(B),9(A),10(C) 二、填空题(1).23kT ,25kT ,25MRT /M mol .; (2). 1.2×10-24 kg m / s ,31×1028 m -2s-1 ,4×103 Pa . (3). 分布在v p ~∞速率区间的分子数在总分子数中占的百分率, 分子平动动能的平均值. (4).v v v d )(0⎰∞Nf ,v v v/v v v v d )(d )(0⎰⎰∞∞f f ,v v v d )(0⎰∞f .(5). 氢,1.58×103.; (6). 保持不变. 参考解答:令,2,mkT x p p ==v v v 麦克斯韦速率分布函数可以写作:x e x N N x d 4d 22-=π 又,8πm kT =v .2π=p v v 所以有 .d 4π2122x e x N N x ⎰-=∆-πv v p这个积分显然与温度无关! (7). 理想气体处于热平衡状态 ,A N iPV /21或R ikPV /21.; (8).BA B B A A N N f N f N ++)()(v v . (9). 2; (10). 1 .三、计算题1. 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt =T iR v ∆21, ∴ ∆T = 2Pt /(v iR )=4.81 K .2. 储有1 mol 氧气,容积为1 m 3的容器以v =10 m ·s -1 的速度运动.设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能,问气体的温度及压强各升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: 0.8×221v M =(M / M mol )T R ∆25, ∴ T =0.8 M mol v 2 / (5R )=0.062 K又 ∆p =R ∆T / V (一摩尔氧气) ∴ ∆p =0.51 Pa .3. 质量m =6.2 ×10-17 g 的微粒悬浮在27℃的液体中,观察到悬浮粒子的方均根速率为1.4 cm ·s -1.假设粒子速率服从麦克斯韦速率分布,求阿伏伽德罗常数.(普适气体常量R =8.31 J ·mol -1·K -1 )解:据 ()m N RT M RT A /3/3mol 2/12==v,得 N A =3RT / (m 2v )=6.15×1023 mol -1.4. 设气体分子速率服从麦克斯韦速率分布律,求气体分子速率与最概然速率之差不超过1%的分子占全部分子的百分比.(附:麦克斯韦速率分布律 v v v ∆-=∆222/3)2exp()2(π4kT m kTm N N .exp{a }即e a )解: v v v ∆-=∆222/3)2exp()2(π4kT m kT m N N pp p v vv v v v ∆-=})(exp{)(π422. 代入 v =p v . 与v p 相差不超过1%的分子是速率在100p p v v -到100p p v v +区间的分子,故∆v = 0.02p v ,∴ ∆N / N = 1.66%.5. 由N 个分子组成的气体,其分子速率分布如图所示.(1) 试用N 与0v 表示a 的值. (2) 试求速率在1.50v ~2.00v 之间的分子数目.(3) 试求分子的平均速率.解:(1) 由分布图可知: 0→v 0: N f (v ) = ( a / v 0) v , f (v ) = a v /(N v 0). v 0→2 v 0: N f (v ) = a , f (v ) = a /N . 2v 0 f (v ) = 0由归一化条件1d )(0=⎰∞v v f , 有 1d /d )/(020=+⎰⎰v v v v v vv N a N a ,得: ( 3 /2 ) ( a v 0 /N ) = 1 , ∴ a = ( 2 /3 ) ( N /v 0).00(2) ⎰⎰==∆0000223223d d )(v v v v v v v N a NNf N 021v a =, 将a 代入得 N N N 31)3/(22100=⨯=∆v v . (3) 0→v 0: f (v ) = a v /(N v 0) = (v / N v 0)×2 N / (3 v 0) )3/(220v v =.v 0→2 v 0: f (v ) = a /N = ( 1 / N )×( 2 N / 3 v 0) = 2 / (3 v 0).⎰∞=0d )(v v v v f v v v v v v v v v v d )3/(2d )3/(2020020⎰⎰⨯+⨯= 0092v v +==11 v 0 /96. 一显像管内的空气压强约为1.0×10-5 mmHg ,设空气分子的有效直径d = 3.0×10-10 m ,试求27℃时显像管中单位体积的空气分子的数目、平均自由程和平均碰撞频率. (空气的摩尔质量28.9×10-3 kg/mol, 玻尔兹曼常量k = 1.38×10-23 J ·K -1760 mmHg = 1.013×105 Pa )解:(1) ==kT pn 3.22×1017 m -3 (2) ==pd kT2π2λ7.8 m (3) =π==λλ18mol M RT Z v60 s -1.四 研讨题1. 比较在推导理想气体压强公式、内能公式、平均碰撞频率公式时所使用的理想气体分子模型有何不同?参考解答:推导压强公式时,用的是理想气体分子模型,将理想气体分子看作弹性自由质点;在推导内能公式时,计算每个分子所具有的平均能量,考虑了分子的自由度,除了单原子分子仍看作质点外,其他分子都看成了质点的组合;推导平均碰撞频率公式时,将气体分子看成有一定大小、有效直径为d 的弹性小球。
2. 速率分布分布函数假设气体分子速率分布在0~∞范围内, 也就是说存在大于光速c 的分子。
然而,由爱因斯坦的狭义相对论知,任何物体的速度均不会超过光速,这岂不是矛盾? 气体中有速率为无穷大的分子吗?参考解答:(1) 分布函数归一化条件:⎰∞=01d )(v v f(2) 平均速率: ⎰∞=0d )(v v v v f在以上积分计算中,均假定气体分子速率分布在0→∞范围内,也就是说有速率为无穷大的分子存在,而这与爱因斯坦的狭义相对论任何物体的速率均不可超过光速矛盾.历年来,学生学到这部分内容,总对上面积分中积分限的正确性提出质疑. 那么,气体中是否存在速率为无穷大的分子呢?从麦克斯韦速率分布函数f (v )的物理意义及其数学表示式上可方便快捷地得到正确的结论. 分析如下.从物理意义上讲, f (v )代表速率v 附近单位速率区间内的分子数所占的比率,要分析是否有速率为无穷大的分子存在,只需计算速率v 取∞时的f (v )即可,有024)(2/23lim lim =⎪⎭⎫ ⎝⎛=-∞→∞→2v v v v v 2kT m e kT m f ππ 上式说明,速率在无穷大附近的分子数占总分子数的比率为0,即不存在速率无穷大的分子。
既然不存在速率为无穷大的分子,那么正确的积分应选为0到最大速率v max 区间. 为什么选0→∞范围、能否得知一个热力学系统分子运动的最大速率呢?由微观粒子的波粒二象性及不确定关系可知:分子最大速率的准确值实际上是不可知的。
而从数学上讲,对某个区间的积分运算可以分段进行,或者说加上一个被积函数为0的任意区间的积分,并不影响原积分结果。
3. 试用气体的分子热运动说明为什么大气中氢的含量极少?参考解答:气体的算术平均速率公式: μμRT.πRT 6018≈=v , 在空气中有O 2,N 2,Ar ,H 2,CO 2等分子,其中以H 2的摩尔质量最小.从上式可知,在同一温度下H 2的v 的较大,而在大气中分子速度大于第二宇宙速度11.2公里/秒时,分子就有可能摆脱地球的引力作用离开大气层.H 2摩尔质量μ 最小,其速度达到11.2公里/秒的分子数就比O 2、Ar 、CO 2达到这一速度的分子数多。
H 2逃逸地球引力作用的几率最大,离开大气层的氢气最多.所以H 2在大气中的含量最少.4. 测定气体分子速率分布实验为什么要求在高度真空的容器内进行?假若真空度较差,问容器内允许的气体压强受到什么限制?参考解答:如果不是高度真空,容器内有杂质粒子,分子与杂质粒子碰撞会改变速率分布,使得测到的分布不准。
假若真空度较差,只要分子的平均自由程λ大于容器的线度L ,即λ>L ,那么可以认为分子在前进过程中基本不受杂质粒子的影响。
由于平均自由程与压强的关系为:P d kT 22πλ=, 所以要求 L P d kT >22π, 即 Ld kTP 22π<.这就是对于容器内压强的限制条件。