三角形全等的证明教案
三角形全等判定的教案
画法:1画线段bc=4
2分别以a、b为圆心,以2和3为半径作弧,交于点c。则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ sss ”用数学语言表述:
在△abc和△ def中
∴ △≌△ def(sss)
(二)新课讲解:
问题1:如图:在△abc和△def中,ab=de,bc=ef,ac=df, ∠a=
∠d, ∠b=∠e, ∠c=∠f,则△abc和△def全等吗?
问题2: △abc和△def全等是不是一定要满足
ab=de,bc=ef,ac=df, ∠a=∠d, ∠b=∠e, ∠c=∠f这六个条
件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角
满足三个条件有几种情形呢?
3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
角相等
例:画△abc,使ab=2,ac=3,bc=4
画法:1画线段bc=42分别以a、b为圆心,以2和3为半径作弧,交于点c。
则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否
1、如图,d、f是线段bc上的两点,
ab=ec,af=ed,要使△abf≌△ecd,还需要条件
2、已知:b、e、c、f在同一直线上, ab=de,ac=df a
并且be=cf,
求证: △ abc≌ △ def
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
2证明三角形全等的书写步骤。3证明三角形be全等应注意的问题。
我们知道如果两个三角形的对应边、对应角都相等,那么这两个三角形全等。判定两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
八年级数学上人教版《三角形全等的判定》教案
《三角形全等的判定》教案【教学目标】1.让学生掌握三角形全等的判定方法,包括SSS、SAS、ASA、AAS等判定方法。
2.让学生能够应用三角形全等的判定方法解决实际问题。
3.培养学生的逻辑推理能力和证明能力。
【教学内容】1.三角形全等的定义和性质。
2.三角形全等的判定方法:SSS、SAS、ASA、AAS等。
3.应用三角形全等的判定方法解决实际问题。
【教学重点与难点】1.重点:三角形全等的判定方法及其应用。
2.难点:如何应用三角形全等的判定方法进行证明和解决实际问题。
【教具准备】1.黑板、粉笔。
2.教科书、学习辅导资料。
3.多媒体教学设备。
【教学过程】一、导入新课:通过复习上节课内容,引出三角形全等的概念,介绍三角形全等的性质。
二、新课学习:介绍三角形全等的判定方法,包括SSS、SAS、ASA、AAS等判定方法。
通过举例和讲解,让学生理解并掌握这些判定方法。
同时,引导学生思考这些判定方法的应用场景和实际意义。
三、巩固练习:通过一系列的练习题,让学生加深对三角形全等判定方法的理解和应用。
可以包括证明题和应用题等类型,让学生在练习中掌握如何应用三角形全等的判定方法进行证明和解决实际问题。
四、归纳小结:通过总结本节课学到的知识,让学生明确三角形全等的重要性和应用价值,同时引导学生思考如何运用三角形全等解决实际问题。
强调证明过程中的逻辑性和严谨性,培养学生的逻辑推理能力和证明能力。
五、布置作业:根据学生的学习情况,布置适量的作业,包括概念题、证明题和应用题等类型,让学生巩固本节课学到的知识。
同时,鼓励学生自主寻找和解决实际问题,培养他们的数学应用能力。
六、教学反思:通过本节课的教学,反思自己在教学内容的组织和安排、教学方法的选择和实践以及教学效果的反馈和反思等方面是否存在问题和不足之处,以便在今后的教学中加以改进和提高。
同时,也要关注学生的学习情况和反馈意见,及时调整教学策略和方法,以提高教学质量和效果。
三角形全等判定教案-三角形全等教案
三角形全等判定教案:三角形全等教案教学目标1。
通过实际操作理解“学习三角形全等的四种判定方法”的必要性。
2。
比较熟练地掌握应用边角边公理时寻找非已知条件的方法和证明的分析法,初步培养学生的逻辑推理能力。
3。
初步掌握“利用三角形全等来证明线段相等或角相等或直线的平行、垂直关系等”的方法。
4。
掌握证明三角形全等问题的规范书写格式。
教学重点和难点应用三角形的边角边公理证明问题的分析方法和书写格式。
教学过程设计一、实例演示,发现公理1.教师出示几对三角形模板,让学生观察有几对全等三角形,并根据所学过的全等三角形的知识动手操作,加以验证,同时写出全等三角形的数学表达式。
2.在此过程当中应启发学生注意以下几点:(1)可用移动三角形使其重合的方法验证图3-49中的三对三角形分别全等,并根据图中已知的三对对应元素分别相等的条件,可以证明结论成立。
如图3-49(c)中,由AB=AC=3cm,可将△ABC绕A 点转到B与C重合;由于∠BAD=∠CAE=120°,保证AD能与AE重合;由AD=AE=5cm,可得到D与E重合。
因此△BAD可与△CAE重合,说明△BAD≌△CAE。
(2)每次判断全等,若都根据定义检查是否重合是不便操作的,需要寻找更实用的判断方法——用全等三角形的性质来判定。
(3)由以上过程可以说明,判定两个三角形全等,不必判断三条边、三个角共六对对应元素均相等,而是可以简化到特定的三个条件,引导学生归纳出:有两边和它们的夹角对应相等的两个三角形全等。
3。
画图加以巩固。
教师照课本上所叙述的过程带领学生分析画图步骤并画出图形,理解“已知两边及夹角画三角形”的方法,并加深对结论的印象。
二、提出公理1。
板书边角边公理,指出它可简记为“边角边”或“SAS”,说明记号“SAS’的含义.2.强调以下两点:(1)使用条件:三角形的两边及夹角分别对应相等.(2)使用时记号“SAS”和条件都按边、夹角、边的顺序排列,并将对应顶点的字母顺序写在对应位置上.3.板书定理证明应使用标准图形、文字及数学表达式,正确书写证明过程.如图3-50,在△ABC与△A’B’C’中,(指明范围)三、应用举例、变式练习1.充分发挥一道例题的作用,将条件、结论加以变化,进行变式练习,例1已知:如图 3-51, AB=CB,∠ABD=∠CBD.求证:△ABD≌△CBD.分析:将已知条件与边角边公理对比可以发现,只需再有一组对应边相等即可,这可由公共边相等 BD=BD得到.说明:(1)证明全等缺条件时,从图形本身挖掘隐含条件,如公共边相等、公共角相等、对顶角相等,等等.(2)学习从结论出发分析证明思路的方法(分析法).分析:△ABD≌△CBD因此只能在两个等角分别所在的三角形中寻找与AB,CB夹两已知角的公共边BD.(3)可将此题做条种变式练习:练习1(改变结论)如图 3-51,已知 AB=CB,∠ABD=∠CBD。
《三角形全等的判定》(边边边)参考教案
三角形全等的判定(一)教学目标1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 教学重点三角形全等的条件.教学难点寻求三角形全等的条件.教学过程Ⅰ.创设情境,引入新课出示投影片,回忆前面研究过的全等三角形.已知△ABC ≌△A′B′C′,找出其中相等的边与角.C 'B 'A 'C B A图中相等的边是:AB=A′B 、BC=B′C′、AC=A′C .相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.Ⅱ.导入新课1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm .②三角形两内角分别为30°和50°.③三角形两条边分别为4cm 、6cm .学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流. 结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.①3cm 3cm 3cm 30︒30︒30︒②50︒50︒30︒30︒③6cm4cm 4cm6cm可以发现按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?1.作图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题.[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .[分析]要证△ABD ≌△ACD ,可以看这两个三角形的三条边是否对应相等. 证明:因为D 是BC 的中点所以BD=DC在△ABD 和△ACD 中(AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩公共边)所以△ABD ≌△ACD (SSS ).生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.Ⅲ.随堂练习如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?F DC BE A2.课本练习.Ⅳ.课时小结本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS .并利用它可以证明简单的三角形全等问题.Ⅴ.作业1. 习题11.2 复习巩固1、2.Ⅵ.活动与探索如图,一个六边形钢架ABCDEF 由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?C本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用. 结果:(1)可从这六个顶点中的任意一个作对角线,•把这个六边形划分成四个三角形.如图(1)为其中的一种.(2)也可以把这个六边形划分成四个三角形.如图(2).板书设计(1)(2)。
数学全等三角形教案8篇
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形教学设计优秀4篇
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形教案6篇
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
全等三角形教案(精选3篇)
全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。
(3)、此公理与前面学过的公理区别与联系。
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
全等三角形教案(5篇)
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
全等三角形教案【7篇】
全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。
数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点正确寻找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,形状和大小都相同。
你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
边边边证明三角形全等教案
边边边证明三角形全等教案一、教学目标1.了解边边边全等定理的定义和基本性质。
2.掌握边边边全等定理的证明方法。
3.能够应用边边边全等定理解决实际问题。
二、教学重点1.掌握边边边全等定理的证明方法。
2.能够应用边边边全等定理解决实际问题。
三、教学难点1.如何运用所学知识进行实际问题的解决。
2.如何进行有效的证明过程。
四、教学过程1.引入通过举例子引入,让学生了解什么是三角形全等。
例如:两个三角形的三条对应线段相等,则这两个三角形就是全等的。
然后再引入本节课要讲的内容——“边边边证明三角形全等”。
2.讲解(1)定义:如果两个三角形的三条对应边分别相等,则这两个三角形就是全等的。
这就是“边边边”全等定理。
(2)性质:如果两个三角形相互重合,那么它们必然是全等的,反之亦然。
也就是说,“重合”和“全等”是完全一致的。
(3)证明方法:根据“边边边”全等定理,我们只需要证明两个三角形的三条对应边分别相等即可。
具体证明方法如下:①先将两个三角形放在同一平面内;②找出两个三角形各自的对应边;③比较两个三角形的各对应边是否相等。
(4)注意事项:在比较两个三角形各对应边是否相等时,需要注意顺序和方向。
如果两个三角形的对应边长度和方向都一致,则它们是全等的。
3.练习(1)练习1:已知△ABC≅△DEF,且AB=DE,BC=EF,求AC与DF 的关系。
解答:由“边边边”全等定理可知,AB=DE,BC=EF,则AC=DF。
(2)练习2:已知△ABC≅△DEF,且AB=DE,∠A=∠D,求AC与DF的关系。
解答:由“角边角”全等定理可知,∠A=∠D,则∠B=∠E;又因为AB=DE,则△ABC与△DEF有一条公共边AB=DE。
因此,在△ABC中连接AC,在△DEF中连接DF,则有:①∆ABC ≅ ∆DEF(已知);②∠A=∠D,AB=DE,AC=DF(已知);③由①、②可得:△ABC ≅ △DEF,则AC=DF。
4.拓展通过实际问题的解决,让学生了解如何运用所学知识。
全等三角形的判定教案
全等三角形的判定教案以下是一份关于全等三角形判定的教学教案:一、教学目标1. 让学生理解并掌握全等三角形的判定方法。
2. 通过实际操作和推理,培养学生的逻辑思维能力和空间想象力。
3. 激发学生对几何学习的兴趣,提高解决问题的能力。
二、教学重难点重点:全等三角形的几种判定方法。
难点:灵活运用判定方法证明三角形全等。
三、教学准备三角板、教学课件四、教学过程师:同学们,咱们今天来学习全等三角形的判定。
那大家想想,什么样的三角形是全等三角形呀?生:能够完全重合的三角形。
师:对啦,那怎么判断两个三角形全等呢?这就是咱们今天要重点研究的啦。
(展示课件上两个三角形)师:大家看看这两个三角形,觉得它们全等吗?生:光看不太确定。
师:那咱们就来找找方法。
首先啊,有一种方法叫边边边,就是如果三条边都相等,那这两个三角形就全等。
大家理解不?生:嗯,有点明白。
师:那老师来画两个三角形,三条边都相等,你们看看它们是不是全等。
(在黑板上画图)师:现在能看出来全等了吧?生:能。
师:这就是边边边判定方法。
那还有其他方法哦,比如边角边。
谁来说说边角边是什么意思呀?生:就是两条边和它们的夹角相等。
师:真不错!那咱们再来看个例子。
(展示课件例子)师:同学们自己来判断一下这个是不是符合边角边。
(学生讨论)师:谁来说说?生:符合,两条边和夹角都相等。
师:非常好!那还有角边角、角角边这些方法,大家自己去探索一下哦。
接下来咱们做几道练习题巩固一下。
五、教学反思在教学过程中,通过师生互动和实例分析,学生较好地掌握了全等三角形的判定方法。
但部分学生在理解和运用上还存在一些困难,需要在后续教学中加强练习和辅导。
要多鼓励学生自己思考和探索,提高他们的学习积极性和主动性。
全等三角形教案六篇
全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
12.2三角形全等的判定教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生将使用模型或工具来演示全等三角形的基本原理。
(3)直角三角形全等的判定:HL(Hypotenuse-Leg);
(4)通过实际操作,让学生体会全等三角形在实际生活中的应用,培养几何直观和空间想象能力。
二、核心素养目标
《12.2三角形全等的判定教案》
1.培养学生的逻辑推理能力:通过学习全等三角形的判定方法,让学生掌握严谨的逻辑推理过程,提高解决问题的能力。
五、教学反思
在本次教学活动中,我重点关注了学生对三角形全等判定方法的理解和应用。从整个教学过程来看,我发现以下几个方面值得反思:
1.学生对全等三角形定义的理解:在授课过程中,我发现部分学生对全等三角形的定义理解不够深刻。为了避免这种情况,我应该在讲解定义时,通过更多的实例和直观演示,让学生充分理解全等三角形的内涵。
4.学生小组讨论的引导:在小组讨论过程中,我发现部分学生参与度不高,依赖性强。为了提高学生的参与度和独立思考能力,我需要在讨论环节设计更具启发性和开放性的问题,激发学生的思考兴趣。
5.教学难点的把握:在本次教学中,我尝试通过举例和比较来突破难点。但从学生的掌握情况来看,效果并不理想。在今后的教学中,我需要更加关注学生的认知规律,采用更加生动、形象的教学方法,帮助学生克服难点。
6.教学评价的改进:在课后,我将对学生的课堂表现和作业完成情况进行评价。在评价过程中,我要关注学生的全面发展,既要关注知识的掌握,也要关注学生的思考过程和创新能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形全等的证明
【知识梳理】
(一)三角形概述:
1.定义(包括内、外角)
2.性质:三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n 边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
⑶角与边:在同一三角形中
3.三角形的主要线段
(1)定义:高线、中线、角平分线、中垂线
(2)××线的交点—-- 三角形的×心及性质
4.特殊三角形(等腰三角形、等边三角形)的判定与性质
等腰三角形:
定理:等腰三角形的两个底角相等,(简称:“等边对等角”)
定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”) 等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等,(简称“等角对等边”)。
等边三角形的性质及判定:
有一个角是60°的等腰三角形是等边三角形
5.全等三角形
全等三角形的的性质:全等三角形的对应边相等,对应角相等;
全等的判定:SAS 、ASA 、AAS 、SSS :
注意问题:
(1)在判定两个三角形全等时,至少有一边对应相等;
(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA ;b :有两边和其中一角对应相等,即SSA 。
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
寻找对应元素的方法:
(1)根据对应顶点找
如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。
通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
(2)根据已知的对应元素寻找
全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(3)通过观察,想象图形的运动变化状况,确定对应关系。
通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。
翻折
如图(1),∆BOC ≌∆EOD ,∆BOC 可以看成是由∆EOD 沿直线AO 翻折180︒得到的;
等边 等角 大边 大角
小边 小角
图1 图2 图3
②旋转
如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;
③平移
如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
6.三角形的面积
⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线
⑴截长、补短;⑵倍长中线;⑶添加辅助平行线
8.证明方法
⑴综合法(执因索果)、分析法(执果索因)
⑵证面积关系:将面积表示出来
⑶证线段相等、角相等常通过证三角形全等(其余有关线段和角相等的定理)
⑷证线段倍分关系:加倍法、折半法
⑸证线段和差关系:截长法、补短法
小练习:1、如果等腰三角形的周长为12,一边长为5,那么另两边长分别为________。
2、如果等腰三角形有两边长为2和5,那么周长为__________。
3、如果等腰三角形有一个角等于50°,那么另两个_______。
4、如果等腰三角形有一个角等于120°,那么另两个角_____。
(二)全等三角形的判定及应用:
(1)证明线段(或角)相等
例1:如图,已知AD=AE,AB=AC.求证:BF=FC
(2)证明线段平行
例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AF=CE.求证:AB∥CD
(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等例3:如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE. 求证:CD=2CE
(4)证明线段相互垂直
例4:已知:如图,A、D、B三点在同一条直线上,ΔADC、ΔBDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。
(三1
(2)通过添辅助线先在求证中长线段上截取与线段中的某一段相等的线段,再证明截剩的部分与线段中的另一段相等。
(截长)
例1: 如图,△ABC 中,∠C =2∠B ,∠1=∠2。
求证:AB =AC +CD .
例2、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.
例3、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?
2、倍长中线法:
倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
(1)证明线段不等
例1 如图1,在△ABC 中,AD 为BC 边上的
中线.求证:AB +AC >2AD .
(2)、证明线段相等 例2 如图2,在△ABC 中,AB >AC ,E 为BC 边的中点,AD 为∠BAC 的平分线,过E 作AD 的平行线,
D O
E C B A
N
E
B M A D
交AB于F,交CA的延长线于G.求证:BF=CG.
例3.如图3所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF。
求证:AC=BF。
(3)、证明线段倍分
CD.
例4 如图4,CB,CD分别是钝角△AEC
(4)、证明两直线垂直
例5 如图5,分别以△ABC的边AB,AC为一边在三角形外作正方形ABEF和ACGH,M为FH的中点.求证:MA⊥BC.Array
3、面积法
根据面积公式,求解论证线段数量关系的特殊方法。
例1、求证:从等腰三角形底边上不同于两顶点的任一点向两腰作垂线,两条垂线段之和,等于一腰上的高。
例2、求证:从等边三角形内任一点向三边作垂线,三条垂线段的和等于等边三角形的高。