九年级培优圆与相似辅导专题训练含答案
初三数学圆与相似的专项培优练习题(含答案)附答案解析
初三数学圆与相似的专项培优练习题(含答案)附答案解析一、相似1.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.【答案】(1)解:结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴ = = ,∴CF=2DG(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,∴EH=2DH=2 ,∴HM= =2,∴DM=CN=NK= =1,在Rt△DCK中,DK= = =2 ,∴△PCD的周长的最小值为10+2 .【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。
初三培优圆与相似辅导专题训练含答案解析
初三培优圆与相似辅导专题训练含答案解析一、相似1.如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D的直线于F,且∠BDF=∠CDB,BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)连结MN,猜想MN与AB的位置有关系,并给出证明.【答案】(1)证明:∵直径AB经过弦CD的中点E,, = ,即是的切线(2)解:猜想:MN∥AB.证明:连结CB.∵直径AB经过弦CD的中点E,∴ = , = ,∴∵∴∴∵∴∵∵∴∴∴MN∥AB.【解析】【分析】(1)要证DF是⊙O的切线,由切线的判定知,只须证∠ODF=即可。
由垂径定理可得AB⊥CD,则∠BOD+∠ODE=,而∠ODF=∠CDF+∠ODE,由已知易得∠BOD=∠CDF,则结论可得证;(2)猜想:MN∥AB.理由:连结CB,由已知易证△CBN∽△AOM,可得比例式,于是由已知条件可转化为,∠ODB是公共角,所以可得△MDN∽△ODB,则∠DMN=∠DOB,根据平行线的判定可得MN∥AB。
2.如图(1),在矩形DEFG中,DE=3,EG=6,在Rt△ABC中,∠ABC=90°,BC=3,AC=6,△ABC的一边BC和矩形的一边DG在同一直线上,点C和点D重合,Rt△ABC将从D以每秒1个单位的速度向DG方向匀速平移,当点C与点G重合时停止运动,设运动时间为t秒,解答下列问题:(1)如图(2),当AC过点E时,求t的值;(2)如图(3),当AB与DE重合时,AC与EF、EG分别交于点M、N,求CN的长;(3)在整个运动过程中,设Rt△ABC与△EFG重叠部分面积为y,请求出y与t的函数关系式,并写出相应t的取值范围.【答案】(1)解:如图(2),当AC过点E时,在Rt△ABC中,BC=3,AC=6,∴BC所对锐角∠A=30°,∴∠ACB=60°,依题意可知∠ABC=∠EDC=90°,∵∠ACB=∠ECD,∴△ABC∽△EDC,∴,即,∴CD= ,∴t=CD= ;(2)解:如图(3),∵∠EDG=90°,DE=3,EG=6,∴DG= =3 ,在Rt△EDG中,sin∠EGD= ,∴∠EGD=30°,∵∠NCB=∠CNG+∠EGD,∴∠CNG=∠NCB﹣∠EGD=60°﹣30°=30°,∴∠CNG=∠EGD,∴NC=CG=DG﹣BC=3 ﹣3;(3)解:由(1)可知,当x>时,△ABC与△EFG有重叠部分.分两种情况:①当<t≤3时,如图(4),△ABC与△EFG有重叠部分为△EMN,设AC与EF、EG分别交于点M、N,过点N作直线NP⊥EF于P,交DG于Q,则∠EPN=∠CQN=90°,∵NC=CG,∴NC=DG﹣DC=3 ﹣t,在Rt△NQC中,NQ=sin∠NCQ×NC=sin60°×(3 ﹣t)= ,∴PN=PQ﹣NQ=3﹣ = ,∵∠PMN=∠NCQ=60°,∴sin∠PMN= ,MN= =t﹣,在矩形DEFG中,EF∥DG,∴∠MEN=∠CGN,∵∠MNE=∠CNG,∠CNG=∠CGN,∴∠EMN=∠MNE,∴EM=MN,∴EM=MN=t﹣,∴y=S△EMN= EM•PN= × ;②当3<t≤3 时,如图(5),△ABC与△EFG重叠部分为四边形PQNM,设AB与EF、EG分别交于点P、Q,AC与EF、EG分别交于点M、N,则∠EPQ=90°,∵CG=3 ﹣t,∴S△EMN= ,∵EP=DB=t﹣3,∠PEQ=30°,∴在Rt△EPQ中,PQ=tan∠PEQ×EP=tan30°×(t﹣3)= ,∴S△EPQ= EP•PQ= (t﹣3)× = ,∴y=S△EMN﹣S△EPQ=()﹣()= +(﹣,综上所述,y与t的函数关系式:y= .【解析】【分析】(1)证△ABC∽△EDC,由相似三角形的性质可求出CD的值,即可求t;(2)利用勾股定理求出DG的值,则由三角函数可∠EGD=30°,进而可证得∠CNG=∠EGD,则NC=CG=DG﹣BC,可求出答案;(3)根据重叠部分可确定x的取值范围,再由三角形的面积公式可求出函数解析式.3.如图1,在△ABC中,点DE分别在AB、AC上,DE∥BC,BD=CE,(1)求证:∠B=∠C,AD=AE;(2)若∠BAC=90°,把△ADE绕点A逆时针旋转到图2的位置,点M,P,N分别为DE,DC,BC的中点,连接MN,PM,PN.①判断△PMN的形状,并说明理由;________②把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN的最大面积为________ 。
初三培优圆与相似辅导专题训练及详细答案
初三培优圆与相似辅导专题训练及详细答案一、相似1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,(本题也可以连接PD,证△APF∽△ADP)(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∴∠PCQ=45°+45°=90°∴tan∠CPQ= ,由①得AP=CQ,又AP:PC=1:3,∴tan∠CPQ= ,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ= .【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答案.2.如图①,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2,l1于点D,E(点A,E位于点B的两侧,满足BP=BE,连接AP,CE.(1)求证:△ABP≌△CBE.(2)连接AD、BD,BD与AP相交于点F,如图②.①当时,求证:AP⊥BD;②当 (n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.【答案】(1)证明:BC⊥直线l1,∴∠ABP=∠CBE.在△ABP和△CBE中,(2)①证明:如图,延长AP交CE于点H.∵△ABP≌△CBE,∴∠PAB=∠ECB,∴∠PAB+∠AEH=∠ECB+∠AEH=90°,∴∠AHE=90°,∴AP⊥CE.∵,即P为BC的中点,直线l1∥直线l2,∴△CPD∽△BPE,∴,∴DP=EP.∴四边形BDCE是平行四边形,∴CE∥BD.∵AP⊥CE,∴AP⊥BD.②解:∵,∴BC=nBP,∴CP=(n-1)BP.∵CD∥BE,∴△CPD∽△BPE,∴.令S△BPE=S,则S2=(n-1)S,S△PAB=S△BCE=nS,S△PAE=(n+1)S.∵,∴S1=(n+1)(n-1)S,∴.【解析】【分析】(1)由已知条件用边角边即可证得△ABP≌△CBE;(2)①、延长AP交CE于点H,由(1)知△ABP≌△CBE,所以可得∠PAB=∠ECB,而∠∠ECB+∠BEC=,所以可得∠PAB+∠BEC=,即∠AHE=,所以AP⊥CE;已知=2,则点P为BC的中点,所以易证得BE=CD,由有一组对边平行且相等的四边形是平行四边形可得四边形BDCE是平行四边形,由平行四边形的性质可得CE∥BD,再根据平行线的性质即可求得AP⊥BD;②方法与①类似,由已知条件易证得△CPD∽△BPE,则可得对应线段的比相等,然后可将△PAD的面积和△PCE的面积用三角形BPE的面积表示出来,则这两个三角形的比值即可求解。
九年级数学圆与相似的专项培优易错试卷练习题(含答案)含答案
九年级数学圆与相似的专项培优易错试卷练习题(含答案)含答案一、相似1.已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【答案】(1)解:∵AB是⊙O的直径,∴∠ADB=90°,即BD⊥AC∵AB=BC,∴△ABD≌CBD∴∠ABD=∠CBD在⊙O中,AD与DE分别是∠ABD与∠CBD所对的弦∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴,∵AB=BC=10,CE=2,D是AC的中点,∴CD= ;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD= ,AB=10,∵EM⊥AB,AB是⊙O的直径,∴,∴∠BEP=∠EDB,∴△BPE∽△BED,∴,∴BP= ,∴DP=BD-BP= ,∴S△DPE:S△BPE=DP:BP=13:32,∵S△BCD= × ×3 =15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE= .【解析】【分析】(1)根据已知条件AB是⊙O的直径得出∠ADB=90°,再根据等腰三角形的三线合一的性质即可得出结论。
(2)根据圆内接四边形的性质证得∠CED=∠CAB,再根据相似三角形的判定证出△CED∽△CAB,得出对应边成比例,建立关于CD的方程,即可求出CD的长。
(3)延长EF交⊙O于M,在Rt△ABD中,利用勾股定理求出BD的长,再证明△BPE∽△BED,根据相似三角形的性质得对应边成比例求出BP的长,然后根据等高的三角形的面积之比等于对边之比,再由三角形面积公式即可求解。
2.如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.(1)若△ABD≌△BFO,求BQ的长;(2)求证:FQ=BQ【答案】(1)解:∵≌,∴,∵均为半圆切线,连接 ,则,∴四边形为菱形,∴DQ∥,∵均为半圆切线,∴∥,∴四边形为平行四边形∴,(2)证明:易得∽,∴ = ,∴ .∵是半圆的切线,∴ .过点作于点,则 .在中,,∴,解得:,∴∴【解析】【分析】(1)连接OP,由ΔABD≌ΔBFO可得AD=OB,由切线长定理可得AD=DP,于是易得OP=OA=DA=DP,根据菱形的判定可得四边形DAOP为菱形,则可得DQ∥AB,易得四边形DABQ为平行四边形,根据平行四边形的性质可求解;(2)过Q点作QK⊥AM于点K,由已知易证得ΔABD∽ΔBFO,可得比例式,可得BF与AD的关系,由切线长定理可得AD=DP,QB=QP ,解直角三角形DQK可求得BQ与AD 的关系,则根据FQ=BF−BQ可得FQ与AD的关系,从而结论得证。
中考数学 圆与相似 培优练习(含答案)附详细答案
中考数学圆与相似培优练习(含答案)附详细答案一、相似1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
初三培优 易错 难题圆与相似辅导专题训练附答案
初三培优易错难题圆与相似辅导专题训练附答案一、相似1.如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。
(1)求证:DC2=CE·AC;(2)若AE=2EC,求之值;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.【答案】(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,∴,∴DC2=CE·AC;(2)解:设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,DC= k,连接OC,OD,∵CD=BC,∴OC平分∠DOB,∴BC=DC= k,∵AB是⊙O的直径,∴在Rt△ACB中,,∴OB=OC=OD= k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴(3)解:∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,过C作CG⊥AB于G,设EC=k,∵∠CAB=30°,∴,又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,∵S△ACH=,∴,∴k2=4,k=2,即EC=2.【解析】【分析】(1)要证DC2=CE·AC,只需证△ACD∽△DCE即可求解;(2)连接OC,OD,根据已知条件AE=2EC可用含k的代数式表示线段AE、CE、AC,由(1)可将CD用含K的代数式表示,在Rt△ACB中,由勾股定理可将AB用含K的代数式表示,结合已知条件和圆的性质可求解;(3)过C作CG⊥AB于G,设EC=k,由30度角所对的直角边等于斜边的一半可将CG用含K的代数式表示,根据三角形ACH的面积=AH CG=9即可求解。
2.在平面直角坐标系中,二次函数的图象与轴交于A(-3,0),B (1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;【答案】(1)解:由抛物线过点A(-3,0),B(1,0),则解得∴二次函数的关系解析式(2)解:连接PO,作PM⊥x轴于M,PN⊥y轴于N.设点P坐标为(m,n),则.PM = ,,AO=3.当时,=2.∴OC=2.===.∵=-1<0,∴当时,函数有最大值.此时=.∴存在点,使△ACP的面积最大.(3)解:存在点Q,坐标为:,.分△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC三种情况讨论可得出【解析】【分析】(1)由题意知抛物线过点A(-3,0),B(1,0),所以用待定系数法即可求解;(2)因为三角形ACP是任意三角形,所以可做辅助线,连接PO,作PM⊥x轴于M,PN⊥y轴于N.则三角形ACP的面积=三角形APM的面积+矩形PMON的面积-三角形AOC 的面积-三角形PCN的面积。
九年级数学圆与相似的专项培优练习题(含答案)含答案解析
∴ ∠ PMC=∠ C=90°, ∵ AD∥ BC, ∴ ∠ D=90°,△ OAP∽ △ OBQ,
∴ 四边形 PMCD 是矩形,
,
∴ PM=CD=3,CM=PD=2t,
∵ AD=6,BC=4,CQ=t,
∴ PA=2t-6,BQ=Leabharlann -t,MQ=CM-CQ=2t-t=t,
∴
,解得:
,
∴ MQ=
,
又∵ PM=3,∠ PMQ=90°,
得抛物线的解析式;
(2)由题意可将 ED、OP 用含 t 的代数式表示出来,并代入题目中的 s 与 OP、DE 的关系
式整理可得 s=
(0<t<2),因为分子是定值 1,所以分母越大,则分式的
值越小,则当分母最大时,分式的值越小,即 t=1 时,s 有最小值,且最小值为 1;
(3)解直角三角形可得 BC 和 CD、BD 的值,根据题意以 P、B、D 为顶点的三角形与
理由:如图 中,
是 AB 中点,
,
,
,
,
,
,
,
“理想点”,求 CD 的长;
(3)如图,已知平面直角坐标系中,点
,
,C 为 x 轴正半轴上一点,
且满足
,在 y 轴上是否存在一点 D,使点 A,B,C,D 中的某一点是其余三
点围成的三角形的“理想点” 若存在,请求出点 D 的坐标;若不存在,请说明理由.
【答案】 (1)解:结论:点 D 是
的“理想点”.
(2)解:在
中,
,
,则
;
∵
,
∴
;
而
;
∴
,
∴当
时,s 有最小值,且最小值为 1
初三培优 易错 难题圆与相似辅导专题训练附答案解析
初三培优易错难题圆与相似辅导专题训练附答案解析一、相似1.如图1,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)请直接写出PM与PN的数量关系及位置关系________;(2)现将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H.请直接写出PM与PN的数量关系及位置关系________;(3)若图2中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图3,写出PM与PN的数量关系,并加以证明.【答案】(1)PM⊥PN,PM=PN(2)PM=PN,PM⊥PN(3)解:PM=kPN,∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE,∵点P、M、N分别为AD、AB、DE的中点,∴PM= BD,PN= AE.∴PM=kPN.【解析】【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠BCD=90°,∴∠CBD+∠BDC=90°,∴∠EAC+∠BDC=90°∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM= BD,PN= AE,∴PM=PN,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM∥BC,PN∥AE,∴∠NPD=∠EAC,∠MPN=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案为:PM⊥PN,PM=PN;( 2 )PM=PN,PM⊥PN,理由:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS).∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM= BD,PM∥BD;PN= AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.故答案为:PM⊥PN,PM=PN【分析】(1)利用等腰直角三角形的性质得出结论判断出△ACE≌△BCD,得出AE=BD,再用三角形的中位线即可得出结论;(2)同(1)的方法即可得出结论;(3)利用两边对应成比例夹角相等,判断出△BCD∽△ACE,得出BD=kAE,最后用三角形的中位线即可得出结论.2.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO 的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证: = ;(3)若AO=2 ,且当MO=2PO时,请直接写出AB和PB的长.【答案】(1)解:∵2BM=AO,2CO=AO,∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形(2)解:连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)解:当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴,易证:四边形DBMO是矩形,∴BD=MO,OD=BM,∴MO=2PO=BD,∴,∵AO=2BM=2 ,∴BM= ,∴OE= ,DE= ,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM= ,∴AE=AD+DE=∴AB= ,由勾股定理可知:BE= ,易证:△PEO∽△PBM,∴,∴PB= ;当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM= ,∴,解得:x= ,∴BD=2x=2由勾股定理可知:AB=3 ,BM=3【解析】【分析】(1)根据一组对边平行且相等的四边形是平行四边形得出四边形OCBM 是平行四边形,根据有一个角是直角的平行四边形是矩形得出▱OCBM是矩形,根据直角三角形斜边上的中线等于斜边的一半得出OC=BC,根据有一组邻边相等的矩形是正方形得出结论;(2)连接AP、OB,根据∠ABP=∠AOP=90°,判断出A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,根据二直线平行内错角相等得出∠AOB=∠OBM,根据等量代换得出∠APB=∠OBM,从而判断出△APB∽△OBM,根据相似三角形对应边成比例得出;(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,根据相似三角形对应边成比例得出,易证:四边形DBMO是矩形,根据矩形的性质得出BD=MO,OD=BM,故MO=2PO=BD,进而得出BM,OE,DE的长,易证△ADB∽△ABE,根据相似三角形对应边成比例得出AB2=AD•AE,从而得出AE,AB的长,由勾股定理可得BF 的长,易证:△PEO∽△PBM,根据相似三角形对应边成比例得出BE ∶PB=OM ∶PM=2 ∶3 ,根据比例式得出PB的长;当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,设PM=x,BD=2x,由∠AOM=∠ABP=90°,得出四边形AOPB是圆内接四边形,根据圆内接四边形的性质得出∠BPM=∠A,从而判断出△ABD∽△PBM,根据相似三角形对应边成比例得出 AD ∶BD=PM ∶BM,根据比例式得出x的值,进而得出BD,AB,BP的长。
初三培优圆与相似辅导专题训练及答案
初三培优圆与相似辅导专题训练及答案一、相似1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
2.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M 从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN= EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.【答案】(1)证明::∵ °, ° ,∴ °∵ ,∴∵∥ ,∴∴ °,∴过点作于点 ,则 .在中,∴∴(2)解:在中,,∴∵a.当点在线段上时,过点作于点 ,在中,由(1)可知:,∴∴∴b.当点在线段延长线上时,过点作于点在中, ,在中, ,∴ ,∴(3)解:连接 ,交于点 .∵为的中点∴ ,∴ .∵ ,∴ ,∴ ,∴ ,∴ .∵∥∴ ,∴ ,,∵ ,∴ ,又∵ ,∴∽ ,∴,即 ,∴【解析】【分析】(1)过点E作EH⊥MN于点H ,由已知条件易得EN=EM,解直角三角形EMH易得MH和EM的关系,由等腰三角形的三线合一可得MN=2MH即可求解;(2)在Rt△ABE中,由直角三角形的性质易得DE=BE=2AE,由题意动点M从点E出发沿射线ED运动可知点M可在线段ED上,也可在线段ED外,所以可分两种情况求解:①当点M在线段ED上时,过点N作NI⊥AD于点I ,结合(1)中的结论MN=EM即可求解;②当点M在线段ED延长线上时,过点N作NI'⊥AD于点I ',解RtΔNI′M 和可求得NI'和NE,则DM=NE−DE,所以以M、N、D为顶点的三角形面积y=MD.NI可求解;(3)连接CM,交BD于点N',由(2)中的计算可得MN、CD、MC的长,解直角三角形CDM可得∠DMC的度数,于是由三角形内角和定理可求得∠NMC=,根据平行线的性质可得DMN'是直角三角形,根据直角三角形的性质可得MN′=MD;则NC的长可求,由已知条件易得ΔNMC∽ΔMN′G根据所得的比例式即可求解.,3.在等腰直角三角形ABC中,∠ACB=90°,AC=BC,D是AB边上的中点,Rt△EFG的直角顶点E在AB边上移动.(1)如图1,若点D与点E重合且EG⊥AC、DF⊥BC,分别交AC、BC于点M、N,易证EM=EN;如图2,若点D与点E重合,将△EFG绕点D旋转,则线段EM与EN的长度还相等吗?若相等请给出证明,不相等请说明理由;(2)将图1中的Rt△EGF绕点D顺时针旋转角度α(0∘<α<45∘). 如图2,在旋转过程中,当∠MDC=15∘时,连接MN,若AC=BC=2,请求出线段MN的长;(3)图3, 旋转后,若Rt△EGF的顶点E在线段AB上移动(不与点D、B重合),当AB=3AE 时,线段EM与EN的数量关系是________;当AB=m·AE时,线段EM与EN的数量关系是________.【答案】(1)解:EM=EN;原因如下:∵∠ACB=90° AC=BC D是AB边上的中点∴DC=DB ∠ACD=∠B=45°∠CDB=90°∴∠CDF+∠FDB=90°∵∠GDF=90°∴∠GDC+∠CDF=90°∴∠CDM=∠BDN在△CDM和△BDN中∠MCD=∠B,DC=DB,∠CDM=∠BDN,∴△CDM≌△BDN ∴DM=DN 即EM=EN(2)解:作DP⊥AC于P,则∠CDP=45° CP=DP=AP=1∵∠CDG=15°∴∠MDP=30°∵cos∠MDP=∴DM=, DM=DN,∵△MND为等腰直角三角形∴MN=(3)NE=2ME;EN=(m-1)ME【解析】【解答】解:(3)NE=2ME,EN=(m-1)ME证明:如图3,过点E作EP⊥AB交AC于点P则△AEP为等腰直角三角形,∠PEB=90°∴AE=PE ∵AB=3AE ∴BE=2AE ∴BE=2PE又∵∠MEP+∠PEN=90°∠PEN+∠NEB=90°∴∠MEP=∠NEB又∵∠MPE=∠B=45°∴△PME∽△BNE∴,即EN=2EM由此规律可知,当AB=m·AE时,EN=(m-1)·ME【分析】(1)EM=EN;原因如下:根据等腰直角三角形的性质得出DC=DB ∠ACD=∠B=45°∠CDB=90°根据同角的余角相等得出∠CDM=∠BDN,然后由ASA判断出△CDM≌△BDN 根据全等三角形的对应边相等得出DM=DN 即EM=EN;(2)根据等腰直角三角形的性质得出∠CDP=45°CP=DP=AP=1,根据角的和差得出∠MDP=30°,根据余弦函数的定义及特殊角的三角函数值,由cos∠MDP=得出DM的长,又DM=DN,故△MND为等腰直角三角形,根据等腰直角三角形的性质即可得出MN 的长;(3)NE=2ME,EN=(m-1)ME,如图3,过点E作EP⊥AB交AC于点P,则△AEP为等腰直角三角形,∠PEB=90°,根据同角的余角相等得出∠MEP=∠NEB然后判断出△PME∽△BNE,根据相似三角形对应边成比例即可得出u结论,由此规律可知,当AB=m·AE时,EN=(m-1)·ME4.如图,抛物线与轴交于A,B两点(点B在点A的左侧),与y轴交于点C,顶点为D,其对称轴与轴交于点E,联接AD,OD.(1)求顶点D的坐标(用含的式子表示);(2)若OD⊥AD,求该抛物线的函数表达式;(3)在(2)的条件下,设动点P在对称轴左侧该抛物线上,PA与对称轴交于点M,若△AME与△OAD相似,求点P的坐标.【答案】(1)解:∵,∴顶点D的坐标为(4,-4m)(2)解:∵∴点A(6,0),点B(2,0),则OA=6,∵抛物线的对称轴为x=4,∴点E(4,0),则OE=4,AE=2,又DE=4m,∴由勾股定理得:,,又OD⊥AD,∴,则,解得:,∵m>0,∴抛物线的函数表达式(3)解:如图,过点P作PH⊥x轴于点H,则△APH∽△AME,在Rt△OAD中,,设点P的坐标为,当△APH∽△AME∽△AOD时,∵,∴,即,解得:x=0,x=6(舍去),∴点P的坐标为;②△APH∽△AME∽△OAD时,∵,∴,即,解得:x=1,x=6(舍去),∴点P的坐标为;综上所述,点P的坐标为或 .【解析】【分析】(1)将抛物线的解析式配成顶点式即可求得顶点D的坐标;(2)要求抛物线的解析式,只须求出m的值即可。
2020-2021九年级培优圆与相似辅导专题训练含答案
2020-2021九年级培优圆与相似辅导专题训练含答案一、相似1.如图,在中,,于点,点在上,且,连接.(1)求证:(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.【答案】(1)证明:在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴(2)解:方法1:如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,由(1)知,BD=AC,∴EF=AC∴即:EF=2HG.方法2:如图2,取EF的中点K,连接GK,HK,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,由旋转知,∠EHF=90°,∴EK=HK= EF∴EK=GK= EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.【解析】【分析】(1)根据等腰直角三角形的性质得出AH=BH,然后由SAS判断出△BHD≌△AHC,根据全等三角形对应角相等得出答案;(2)方法1:如图1,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,从而得出点C,H,G,A四点共圆,根据圆周角定理同弧所对的圆周角相等得出∠CGH=∠CAH,根据对顶角相等得出∠AQC=∠GQH,从而得出△AQC∽△GQH,根据全等三角形对应边成比例得出 A C∶ H G = A Q∶ G Q = 1 ∶sin 30 ° = 2,根据旋转的性质得出EF=BD,由(1)知,BD=AC,从而得出EF=ACEF=BD,由E F∶ H G = A C∶ G H = A Q∶ G Q = 1∶ sin 30 ° = 2得出结论;方法2:如图2,取EF的中点K,连接GK,HK,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,由旋转知,∠EHF=90°,根据直角三角形斜边上的中线等于斜边的一半得出EK=HK= EF,EK=GK= EF,从而得出HK=GK,根据等边对等角及三角形的外角定理得出∠FKG=2∠AEF,∠HKF=2∠HEF,由旋转知,∠AHF=30°,故∠AHE=120°,由(1)知,BH=AH,根据等量代换得出AH=EH,根据等边对等角得出∠AEH=30°,∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,根据有一个角为60°的等腰三角形是等边三角形得出△HKG是等边三角形,根据等边三角形三边相等得出GH=GK,根据等量代换得出EF=2GK=2GH。
2020-2021九年级培优圆与相似辅导专题训练含详细答案
2020-2021九年级培优圆与相似辅导专题训练含详细答案一、相似1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:证明:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形.【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。
(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。
(3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。
2.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,如图;当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设,当t为何值时,s有最小值,并求出最小值.(3)在的条件下,是否存在t的值,使以P、B、D为顶点的三角形与相似;若存在,求t的值;若不存在,请说明理由.【答案】(1)解:由直线:知:、;∵,∴,即.设抛物线的解析式为:,代入,得:,解得∴抛物线的解析式:(2)解:在中,,,则;∵,∴;而;∴,∴当时,s有最小值,且最小值为1(3)解:在中,,,则;在中,,,则;∴;以P、B、D为顶点的三角形与相似,已知,则有两种情况:,解得;,解得;综上,当或时,以P、B、D为顶点的三角形与相似【解析】【分析】(1)由直线与坐标轴相交易求得点A、C的坐标,用待定系数法即可求得抛物线的解析式;(2)由题意可将ED、OP用含t的代数式表示出来,并代入题目中的s与OP、DE的关系式整理可得s=(0<t<2),因为分子是定值1,所以分母越大,则分式的值越小,则当分母最大时,分式的值越小,即t=1时,s有最小值,且最小值为1;(3)解直角三角形可得BC和CD、BD的值,根据题意以P、B、D为顶点的三角形与△ABC相似所得的比例式有两种情况:,,将这些线段代入比例式即可求解。
九年级培优圆与相似辅导专题训练含详细答案
九年级培优圆与相似辅导专题训练含详细答案一、相似1.如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.(1)若△ABD≌△BFO,求BQ的长;(2)求证:FQ=BQ【答案】(1)解:∵≌,∴,∵均为半圆切线,∴ .连接 ,则,∴四边形为菱形,∴DQ∥,∵均为半圆切线,∴∥,∴四边形为平行四边形∴,(2)证明:易得∽,∴ = ,∴ .∵是半圆的切线,∴ .过点作于点,则 .在中,,∴,解得:,∴∴【解析】【分析】(1)连接OP,由ΔABD≌ΔBFO可得AD=OB,由切线长定理可得AD=DP,于是易得OP=OA=DA=DP,根据菱形的判定可得四边形DAOP为菱形,则可得DQ∥AB,易得四边形DABQ为平行四边形,根据平行四边形的性质可求解;(2)过Q点作QK⊥AM于点K,由已知易证得ΔABD∽ΔBFO,可得比例式,可得BF与AD的关系,由切线长定理可得AD=DP,QB=QP ,解直角三角形DQK可求得BQ与AD 的关系,则根据FQ=BF−BQ可得FQ与AD的关系,从而结论得证。
2.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t (0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.【答案】(1)解:在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四边形OABC为矩形,且A(10,0),∴B(10,4),把B、D坐标代入抛物线解析式可得,解得,∴抛物线解析式为y= x2+ x+4;(2)解:由题意可设P(t,4),则E(t, t2+ t+4),∴PB=10﹣t,PE= t2+ t+4﹣4= t2+ t,∵∠BPE=∠COD=90°,当∠PBE=∠OCD时,则△PBE∽△OCD,∴,即BP•OD=CO•PE,∴2(10﹣t)=4( t2+ t),解得t=3或t=10(不合题意,舍去),∴当t=3时,∠PBE=∠OCD;当∠PBE=∠CDO时,则△PBE∽△ODC,∴,即BP•OC=DO•PE,∴4(10﹣t)=2( t2+ t),解得t=12或t=10(均不合题意,舍去)综上所述∴当t=3时,∠PBE=∠OCD(3)解:当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8,①当m=2时,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC•sin∠PCQ= t,PN=PB•sin∠CBQ=(10﹣t),∴ t =(10﹣t),解得t=,②当m=8时,同理可求得t=,∴当四边形PMQN为正方形时,t的值为或【解析】【分析】(1)先求出抛物线与y轴的交点C的坐标,再根据矩形ABCO及点A的坐标为(10,0),求出点B的坐标,然后利用待定系数法,将点B、D的坐标分别代入函数解析式求出二次函数解析式。
初三数学圆与相似的专项培优练习题(含答案)及详细答案
初三数学圆与相似的专项培优练习题(含答案)及详细答案一、相似1.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为________;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为________;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=________(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=________(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含m,n,b的式子表示).【答案】(1)(2)(3);;或;或【解析】【解答】(解:(1)∵点H是AD的中点,∴AH= AD,∵正方形AEOH∽正方形ABCD,∴相似比为: == ;故答案为:;( 2 )在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:,故答案为:;( 3 )A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即 a:b=b:a,∴a= b;故答案为:②每个小矩形都是全等的,则其边长为b和 a,则b: a=a:b,∴a= b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a= a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣ = ,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为: b或 b.【分析】由题意可知,用相似多边形的性质即可求解。
九年级培优易错试卷圆与相似辅导专题训练含详细答案
九年级培优易错试卷圆与相似辅导专题训练含详细答案一、相似1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,∴AD=BD=CD,∠ACB=45°,∵在△ADC中,AD=DC,DE⊥AC,∴AE=CE,∵△CDE沿直线BC翻折到△CDF,∴△CDE≌△CDF,∴CF=CE,∠DCF=∠ACB=45°,∴CF=AE,∠ACF=∠DCF+∠ACB=90°,在△ABE与△ACF中,,∴△ABE≌△ACF(SAS),∴∠ABE=∠FAC,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE(2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°∴四边形DECF是正方形,∴EC∥DF,EC=DF,∴∠EAH=∠HFD,AE=DF,在△AEH与△FDH中,∴△AEH≌△FDH(AAS),∴EH=DH,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE,∵M是IC的中点,E是AC的中点,∴EM∥AI,∴,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。
(2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。
九年级培优易错试卷圆与相似辅导专题训练及详细答案
九年级培优易错试卷圆与相似辅导专题训练及详细答案一、相似1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)设四边形DECO的面积为s,求s关于t的函数表达式.【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入得:,解得:,∴抛物线的解析式为:,对称轴为:直线x=﹣;(2)解:存在,∵AD=2t,∴DF=AD=2t,∴OF=4﹣4t,∴D(2t﹣4,0),∵直线AC的解析式为:,∴E(2t﹣4,t),∵△EFC为直角三角形,分三种情况讨论:①当∠EFC=90°,则△DEF∽△OFC,∴,即,解得:t= ;②当∠FEC=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴DE= AF,即t=2t,∴t=0,(舍去),③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;(3)解:∵B(1,0),C(0,2),∴直线BC的解析式为:y=﹣2x+2,当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);当D在y轴的右侧时,如图2,∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即(2<t<).综上所述:【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。
2020-2021九年级培优圆与相似辅导专题训练附详细答案
2020-2021九年级培优圆与相似辅导专题训练附详细答案一、相似1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=- ,则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2(2)解:由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,∴直线BD解析式为y= x-2,∵QM⊥x轴,P(m,0),∴Q(m,- m2+ m+2)、M(m, m-2),则QM=- m2+ m+2-( m-2)=- m2+m+4,∵F(0,)、D(0,-2),∴DF= ,∵QM∥DF,∴当- m2+m+4= 时,四边形DMQF是平行四边形,解得:m=-1或m=3,即m=-1或3时,四边形DMQF是平行四边形。
(3)解:如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】(1)A(-1,0)、B(4,0)是抛物线与x轴的交点,则可由抛物线的两点式,设解析为y=a(x+1)(x-4),代入C(0,2)即可求得a的值;(2)由QM∥DF且四边形DMQF是平行四边形知QM=DF,由D,F的坐标可求得DF的长度;由P(m,0)可得Q(m,-m2+m+2),而M在直线BD上,由B,D的坐标用待定系数法求出直线BD的解析式,并当=m时,表示出点M的坐标,可用m表示出QM的长度。
中考数学 圆与相似 培优练习(含答案)及答案
中考数学圆与相似培优练习(含答案)及答案一、相似1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=- ,则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2(2)解:由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,∴直线BD解析式为y= x-2,∵QM⊥x轴,P(m,0),∴Q(m,- m2+ m+2)、M(m, m-2),则QM=- m2+ m+2-( m-2)=- m2+m+4,∵F(0,)、D(0,-2),∴DF= ,∵QM∥DF,∴当- m2+m+4= 时,四边形DMQF是平行四边形,解得:m=-1或m=3,即m=-1或3时,四边形DMQF是平行四边形。
(3)解:如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】(1)A(-1,0)、B(4,0)是抛物线与x轴的交点,则可由抛物线的两点式,设解析为y=a(x+1)(x-4),代入C(0,2)即可求得a的值;(2)由QM∥DF且四边形DMQF是平行四边形知QM=DF,由D,F的坐标可求得DF的长度;由P(m,0)可得Q(m,-m2+m+2),而M在直线BD上,由B,D的坐标用待定系数法求出直线BD的解析式,并当=m时,表示出点M的坐标,可用m表示出QM的长度。
九年级培优圆与相似辅导专题训练及详细答案
九年级培优圆与相似辅导专题训练及详细答案一、相似1.如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线y= 相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2).(1)直接写出点C坐标及OC、BC长;(2)连接PQ,若△OPQ与△OBC相似,求t的值;(3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标.【答案】(1)解:对于直线y=﹣ x+ ,令x=0,得到y= ,∴A(0,),令y=0,则x=10,∴B(10,0),由,解得,∴C(,).∴OC= =8,BC= =10(2)解:①当时,△OPQ∽△OCB,∴,∴t= .②当时,△OPQ∽△OBC,∴,∴t=1,综上所述,t的值为或1s时,△OPQ与△OBC相似(3)解:如图作PH⊥OC于H.∵OC=8,BC=6,OB=10,∴OC2+BC2=OB2,∴∠OCB=90°,∴当∠PCH=∠CBQ时,PC⊥BQ.∵∠PHO=∠BCO=90°,∴PH∥BC,∴,∴,∴PH=3t,OH=4t,∴tan∠PCH=tan∠CBQ,∴,∴t= 或0(舍弃),∴t= s时,PC⊥BQ.【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B点的坐标,解联立直线AB,与直线OC的解析式组成的方程组,求出C点的坐标,根据两点间的距离公式即可直接算出OC,OB的长;(2)根据速度乘以时间表示出OP=5t,CQ=4t,OQ=8-4t,①当OP∶OC=OQ∶OB时,△OPQ∽△OCB,根据比例式列出方程,求解得出t的值;②当OP∶OB=OQ∶OC时,△OPQ∽△OBC,根据比例式列出方程,求解得出t的值,综上所述即可得出t的值;(3)如图作PH⊥OC于H.根据勾股定理的逆定理判断出∠OCB=90°,从而得出当∠PCH=∠CBQ时,PC⊥BQ.根据同位角相等二直线平行得出PH∥BC,根据平行线分线段成比例定理得出OP∶OB=PH∶BC=OH∶OC,根据比例式得出PH=3t,OH=4t,根据等角的同名三角函数值相等及正切函数的定义,由tan∠PCH=tan∠CBQ,列出方程,求解得出t的值,经检验即可得出答案。
九年级数学圆与相似的专项培优练习题(含答案)附答案解析
九年级数学圆与相似的专项培优练习题(含答案)附答案解析一、相似1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。
2.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D 是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F.求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.【答案】(1)解:(1)①当MN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BM= = = ,②当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN= = =5,综上,BN= 或5;(2)解:作法:①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;③连接BF,并作BF的垂直平分线,交AB于D;点D即为所求;如图2所示.(3)解:①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAH,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AF,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,∵BH=DF,EF=HE,∵EF2=BE2+DF2,∴E、F是线段BD的勾股分割点.②证明:如图4中,连接FM,EN.∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∵∠AFE=∠FDN,∴△AFE∽△DFN,∴∠AEF=∠DNF,,∴,∵∠AFD=∠EFN,∴△AFD∽△EFN,∴∠DAF=∠FEN,∵∠DAF+∠DNF=90°,∴∠AEF+∠FEN=90°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM= AF,AN= AE,∵S△AMN= AM•AN•sin45°,S△AEF= AE•AF•sin45°,∴ =2,∴S△AMN=2S△AEF.【解析】【分析】(1)此题分两种情况:①当MN为最大线段时,②当BN为最大线段时,根据线段的勾股分割点的定义,利用勾股定理分别得出BM的长;(2)利用尺规作图,将线段AC,CD,DB转化到同一个直角三角形中,①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;这样的作图可以保证直角的出现,及AC 是一条直角边,③连接BF,并作BF的垂直平分线,交AB于D;这样的作图意图利用垂直平分线上的点到线段两个端点的距离相等,即BD=DF,从而实现将三条线段转化到同一直角三角形的目的;(3)①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.根据正方形的性质及旋转的性质得出∠EAH=∠EAF=45°,AH=AF,利用SAS判断出△EAH≌△EAF,根据全等三角形对应边相等得出EF=HE,根据正方形的每条对角线平分一组对角,及旋转的性质得出∠ABH=∠ADF=45°=∠ABD,故∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,根据等量代换得出结论;②证明:如图4中,连接FM,EN.根据正方形的性质及对顶角相等判断出△AFE∽△DFN,根据相似三角形对应角相等,对应边成比例得出∠AEF=∠DNF, AF∶DF =EF∶FN ,根据比例的性质进而得出AF∶EF =DF∶FN,再判断出△AFD∽△EFN,根据相似三角形对应角相等得出∠DAF=∠FEN,根据直角三角形两锐角互余,及等量代换由∠DAF+∠DNF=90°,得出∠AEF+∠FEN=90°,即∠AEN=90°,从而判断出△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;根据等腰直角三角形的边之间的关系AM= AF,AN= AE,从而分别表示出S△AMN与S△AEF,求出它们的比值即可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)直接写出点 C 坐标及 OC、BC 长;
(2)连接 PQ,若△ OPQ 与△ OBC 相似,求 t 的值; (3)连接 CP、BQ,若 CP⊥BQ,直接写出点 P 坐标.
综上所述,t 的值为 或 1s 时,△ OPQ 与△ OBC 相似
(3)解:如图作 PH⊥OC 于 H.
∵ OC=8,BC=6,OB=10, ∴ OC2+BC2=OB2 , ∴ ∠ OCB=90°, ∴ 当∠ PCH=∠ CBQ 时,PC⊥BQ. ∵ ∠ PHO=∠ BCO=90°, ∴ PH∥ BC,
【答案】(1)解:对于直线 y=﹣ x+ ,令 x=0,得到 y= ,
∴ A(0, ), 令 y=0,则 x=10, ∴ B(10,0),
由
,解得
,
∴ C( , ).
∴ OC=
=8,
BC=
=10
(2)解:①当
时,△ OPQ∽ △ OCB,
∴
,
∴ t= .
②当
时,△ OPQ∽ △ OBC,
∴
,
∴ t=1,
【答案】(1)解:y=x2+2x+1=(x+1)2 的图象沿 x 轴翻折,得 y=﹣(x+1)2 , 把 y=﹣(x+1)2 向右平移 1 个单位,再向上平移 4 个单位,得 y=﹣x2+4, ∴ 所求的函数 y=ax2+bx+c 的解析式为 y=﹣x2+4
(2)解:∵ y=x2+2x+1=(x+1)2 , ∴ A(﹣1,0), 当 y=0 时,﹣x2+4=0,解得 x=±2,则 D(﹣2,0),C(2,0); 当 x=0 时,y=﹣x2+4=4,则 B(0,4), 从点 A,C,D 三个点中任取两个点和点 B 构造三角形的有:△ ACB,△ ADB,△ CDB, ∵ AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 , ∴ △ BCD 为等腰三角形,
∴
,
∴
,
∴ PH=3t,OH=4t,
∴ tan∠ PCH=tan∠ CBQ,
∴
,
∴ t= 或 0(舍弃),
∴ t= s 时,PC⊥BQ. 【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出 A,B 点的坐标,解联立直线 AB,与直线 OC 的解析式组成的方程组,求出 C 点的坐标,根据两点间的距离公式即可直接 算出 OC,OB 的长; (2)根据速度乘以时间表示出 OP=5t,CQ=4t,OQ=8-4t,①当 OP∶ OC=OQ∶ OB 时, △ OPQ∽ △ OCB,根据比例式列出方程,求解得出 t 的值;②当 OP∶ OB=OQ∶ OC 时, △ OPQ∽ △ OBC,根据比例式列出方程,求解得出 t 的值,综上所述即可得出 t 的值; ( 3 )如 图作 PH⊥OC 于 H .根 据勾 股定 理 的逆 定 理判 断出 ∠ OCB=90°, 从 而得 出当 ∠ PCH=∠ CBQ 时,PC⊥BQ.根据同位角相等二直线平行得出 PH∥ BC,根据平行线分线段 成比例定理得出 OP∶ OB=PH∶ BC=OH∶ OC,根据比例式得出 PH=3t,OH=4t,根据等角的同 名三角函数值相等及正切函数的定义,由 tan∠ PCH=tan∠ CBQ,列出方程,求解得出 t 的 值,经检验即可得出答案。
讨论:①当 N 点在 AC 上,如图 1;②当 N 点在 BC 上,如图 2;③当 N 点在 AB 上,如
图 3。利用△ AMN 的面积=△ ABC 面积的 ,解直角三角形、 相似三角形的判定和性质等相 关的知识,就可求出 tan∠ MAN 的值。
2.如图,在平面直角坐标系中,直线 y=﹣ x+ 与 x 轴、y 轴分别交于点 B、A,与直线
∴ 构造的三角形是等腰三角形的概率=
(3)解:存在,
易得 BC 的解析是为 y=﹣2x+4,S△ ABC= AC•OB= ×3×4=6, M 点的坐标为(m,﹣2m+4)(0≤m≤2), ①当 N 点在 AC 上,如图 1,
∴ △ AMN 的面积为△ ABC 面积的 ,
∴ (m+1)(﹣2m+4)=2,解得 m1=0,m2=1, 当 m=0 时,M 点的坐标为(0,4),N(0,0),则 AN=1,MN=4,
;
③当 N 点在 AB 上,如图 3,
作 AH⊥BC 于 H,设 AN=t,则 BN= ﹣t,
由②得 AH= ,则 BH=
,
∵ ∠ NBG=∠ HBA,
∴ △ BNM∽ △ BHA,
∴
,即
,
∴ MN=
,
∵ AN•MN=2,
即 •( ﹣t)•
=2,
整理得 3t2﹣3 t+14=0,△ =(﹣3
∴ 点 N 在 AB 上不符合条件,
)2﹣4×3×14=﹣15<0,方程没有实数解,
综上所述,tan∠ MAN 的值为 1 或 43;1 配方成顶点式,根据轴对称的性质,可得出翻折后的 函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。 (2)先求出抛物线 y=x2+2x+1 的顶点坐标 A,与 x 轴、y 轴的交点 D、C、B 的坐标,可得 出从点 A,C,D 三个点中任取两个点和点 B 构造三角形的有:△ ACB,△ ADB,△ CDB,再 求出它们的各边的长,得出构造的三角形是等腰三角形可能数,利用概率公式求解即可。 (3)利用待定系数法求出直线 BC 的函数解析式及△ ABC 的面积、点 M 的坐标,再分情况
(1)求函数 y=ax2+bx+c 的解析式; (2)从点 A,C,D 三个点中任取两个点和点 B 构造三角形,求构造的三角形是等腰三角 形的概率;
(3)若点 M 是线段 BC 上的动点,点 N 是△ ABC 三边上的动点,是否存在以 AM 为斜边的
Rt△ AMN,使△ AMN 的面积为△ ABC 面积的 ?若存在,求 tan∠ MAN 的值;若不存在, 请说明理由.
∴ tan∠ MAC=
=4;
当 m=1 时,M 点的坐标为(1,2),N(1,0),则 AN=2,MN=2,
∴ tan∠ MAC=
=1;
②当 N 点在 BC 上,如图 2,
BC=
=2 ,
∵ BC•AN= AC•BC,解得 AN=
,
∵ S△ AMN= AN•MN=2,
∴ MN= = ,
∴ ∠ MAC=
九年级培优圆与相似辅导专题训练含答案 一、相似
1.如图所示,将二次函数 y=x2+2x+1 的图象沿 x 轴翻折,然后向右平移 1 个单位,再向上 平移 4 个单位,得到二次函数 y=ax2+bx+c 的图象.函数 y=x2+2x+1 的图象的顶点为点 A.函数 y=ax2+bx+c 的图象的顶点为点 B,和 x 轴的交点为点 C,D(点 D 位于点 C 的左 侧).