2004年-2011年贵阳课改实验区中考数学试题
2024年贵州贵阳中考数学试题及答案(1)
2024年贵州贵阳中考数学试题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C.D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x = B. 12x =,20x = C. 13x =,22x =- D. 12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD^9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB Ð=°,24OA =,则»AB 长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( ).的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC V 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF Ð=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122´中任选3个代数式求和;的(2)先化简,再求值:()21122x x -×+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的32名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC Ð=°,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物222根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A Ð;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ¢为法线,AO 为入射光线,OD 为折射光线.)测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ¢在同一平面内,测得20cm AC =,45A Ð=°,折射角32DON Ð=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°»,cos320.84°»,tan 320.62°»)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC Ð相等的角:______;2【(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB Ð=°,点P 在AOB Ð的平分线上,PA OA ^于点A .(1)【操作判断】如图①,过点P 作PC OB ^于点C ,根据题意在图①中画出PC ,图中APC Ð的度数为______度;(2)问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【参考答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】C【11题答案】【答案】C【12题答案】二、填空题(本大题共4题,每题4分,共16分)【13题答案】【14题答案】【答案】5【15题答案】【答案】20【16题答案】三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)见解析(2)12x-,1【18题答案】【答案】(1)3 yx =(2)a c b<<,理由见解析【19题答案】【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【20题答案】【答案】(1)见解析(2)12【21题答案】【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【22题答案】【答案】(1)20cm(2)3.8cm【23题答案】1(2)163(3)163【24题答案】【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【25题答案】【答案】(1)画图见解析,90(2)见解析 (3)23或832024年贵州贵阳中考数学试题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C.D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x = B. 12x =,20x = C. 13x =,22x =- D. 12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD^9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB Ð=°,24OA =,则»AB 长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( ).的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC V 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF Ð=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122´中任选3个代数式求和;的(2)先化简,再求值:()21122x x -×+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的32名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC Ð=°,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物222根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A Ð;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ¢为法线,AO 为入射光线,OD 为折射光线.)测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ¢在同一平面内,测得20cm AC =,45A Ð=°,折射角32DON Ð=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°»,cos320.84°»,tan 320.62°»)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC Ð相等的角:______;2【(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB Ð=°,点P 在AOB Ð的平分线上,PA OA ^于点A .(1)【操作判断】如图①,过点P 作PC OB ^于点C ,根据题意在图①中画出PC ,图中APC Ð的度数为______度;(2)问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【参考答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】C【11题答案】【答案】C【12题答案】二、填空题(本大题共4题,每题4分,共16分)【13题答案】【14题答案】【答案】5【15题答案】【答案】20【16题答案】三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)见解析(2)12x-,1【18题答案】【答案】(1)3 yx =(2)a c b<<,理由见解析【19题答案】【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【20题答案】【答案】(1)见解析(2)12【21题答案】【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【22题答案】【答案】(1)20cm(2)3.8cm【23题答案】1(2)163(3)163【24题答案】【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【25题答案】【答案】(1)画图见解析,90(2)见解析 (3)23或83。
贵州省贵阳市中考数学试卷(含答案)
将x=2代入 ,得 .
17.(2011贵州贵阳,17,10分)
贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们
积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:
∴这次比赛中收到的参赛作品为 =200份.
∴二等奖的获奖人数为200×20%=40.
条形统计图补充如下图所示:
(3)一等奖获奖人数为20,二等奖获奖人数为40,三等奖获奖人数为48,优秀奖获奖人数为92.
18.(2011贵州贵阳,18,10分)
如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD于点F.
记数法表示为(A)5×105(B)5×104(C)0.5×105(D)0.5×104
【答案】B
3.(2010贵州贵阳,3,3分)一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是
(A) (B) (C) (D)
【答案】C
4.(2010贵州贵阳,4,3分)一个几何体的三视图如图所示,则这个几何体是
贵阳市2011年初中毕业生学业考试试题卷
数学
(满分150分,考试时间120分钟)
一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)
1.(2010贵州贵阳,1,3分)如果“盈利10%”记为+10%,那么“亏损6%”记为
(1)求证:△ADE≌△BCE;(5分)
(2)求∠AFB的度数.(5分)
贵阳市2011年初中毕业生学业考试试题卷
贵阳市2011年初中毕业生学业考试试题卷(与九年级报纸相同题对照)数 学●1.如果“盈利10%”记为+10%,那么“亏损6%”记为( )A .16%- B.6%- C .6%+ D .4%+ 相同题:贵阳专版合订本第6页“(一)‘数与式’的概念和性质的考法分析”例1的题目2●3.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是( )A .12 B .16 C .13D .23相同题:中考课标版41期第4版第10题●4.一个几何体的三视图如图所示,则这个几何体是( ) A .圆柱 B .三棱锥 C .球 D .圆锥相同题:人九合订本35页“三视图”例2●5.某市甲、乙、丙、丁四支中学生足球队在市级联赛中进球数分别为:7、7、6、5,则这组数据的众数是( )A .5B .6C .7D .6.5 相同题:贵阳专版17页第9题●8.如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x 与货车在隧道内的长度y 之间的关系用图象描述大致是( )相同题:贵阳专版8页“三、“函数”的考法分析”例1中的题目1●10.如图,反比例函数11k y x和正比例函数22y k x =的图象交于()13A --,、()13B ,两点,若12k k x x>,则x 的取值范围是( ) A .10x -<<B .11x -<<C .101x x <-<<或D .10x -<<或1x >相同题:贵阳专版13页第14题●11.如图,ED AB AF ∥,交ED 于点C ,138ECF ∠=°,则A ∠=___________度. 相同题:贵阳专版11页第3题●12.一次函数23y x =-的图象不经过...第___________象限. 相同题:中考课标版31期第2版【随堂练习】第1题●13.甲、乙两人分别在六次射击中的成绩如下表:(单位:环)第1次 第2次 第3次 第4次 第5次 第6次甲 6 7 7 8 6 8 乙596859这六次射击中成绩发挥比较稳定的是____________. 相同题:贵阳专版19页第8题●15.如图,已知等腰Rt ABC △的直角边长为1,以Rt ABC △的斜边AC 为直角边,画第二个等腰Rt ACD △,再以Rt ACD △的斜边AD 为直角边,画第三个等腰Rt ADE △,…,依次类推直到第五个等腰Rt AFG △,则由这五个等腰直角三角形所构成的图形的面积为___________. 相同题:贵阳专版23页第15题●17.(本题满分10分)贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三次 数成绩人 员等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是__________.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?相近题:北师大版24期第3版第16题●19.(本题满分10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3、4、5、x.甲、乙两人每次同时..从袋中各随机模出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数 10 20 30 60 90 120 180 240 330 450 “和为8”出现的频数 2 10 13 24 30 37 58 82 110 150 “和为8”出现的频率解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是__________.(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.相近题:北师大版12期第3版第21题●20.(本题满分10分)某过街天桥的设计图是梯形ABCD (如图所示),桥面DC 与地面AB 平行,DC =62米,AB =88米.左斜面AD 与地面AB 的夹角为23°,右斜面BC 与地面AB 的夹角为30°,立柱DE AB ⊥于E ,立柱CF AB ⊥于F ,求桥面DC 与地面AB 之间的距离.(精确到)相近题:人教版22期第2版《28.2解直角三角形》第9(1)题●22.(本题满分10分)在 ABCD 中,10AB =,60ABC ∠=°,以AB 为直径作O ⊙,边CD 切O ⊙于点E . (1)圆心O 到CD 的距离是____________.(2)求由弧AE 、线段AD 、DE 所围成的阴影部分的面积.(结果保留π和根号)相近题:人教版合订本38页第 23题。
贵阳市历年数学中考真题及答案.docx
2009年中考贵阳市数学试题—、选择题(每小题3分,共30分)1. (一2) 一(一1)的计算结果是( )2. 下列调查中,适合进行普查的是( )A. 《新闻联播》电视栏目的收视率 C. 一批灯泡的使用寿命 3. 将整式9-?分解因式的结果是( )A. (3—x )2B. (3+x ) (3—x )4. 正常人行走时的步长大约是( )B. 我国中小学生喜欢上数学课的人数 D. 一个班级学生的体重 C ・(9-x )2D. (9+x )(9-x )5. 已知两个相似三角形的相似比为2 : 3,则它们的面积比为()A. 2 : 3B. 4 : 9C. 3 : 2D.迈:萌6. 如图,晚上小亮在路灯下散步,他从力处向着路灯灯柱方向径总走到B 处,这一过程中他在该路灯灯光下的影子( )A.逐渐变短B.逐渐变长C. 先变短后变长D.先变长后变短若昇点的坐标为(1,2),则3点的坐标为( )10. 方•列数 Q],Q/p 其中 01=5X2+1, 02=5X3+2, 03=5X4+3,G4=5X5+4, d5 = 5X6+5,…,当 a tt =2009 时,〃的值等于( )A. 2010B. 2009C. 401D. 334二、 填空题(每小题4分,共20分)11. 某水库的水位上升3m 记作+ 3m,那么水位下降4m 记作 __________ m. 12. 九年级(5)班冇男生27人,女生29人.班主任向全班发放准考证时,任意抽取一张准考证,恰好是女牛•准考证的概率是 ______13. 如图,已知而积为1的正方形仙仞 的对角线相交于点O,过点O 任意作一条直线分别交AD. BC 于E 、F,则阴影部 分的面积是 ______________ .14. 如图,二次函数的图象与轴和交于点(一1, 0)和(3, 0),贝IJ它的对称轴是直线 ______ .15. 已知总角三角形的两条边长为3和4,则第三边的长为 ________________三、 解答题A. 2B. -2C. 一3D. 3A ・ 0.5cm B. 5m C. 50cm D. 50m 7. 统计了这27人销售最(单位:件) 500 450 400 350 300200 人数(单位:人) 1446 7 58. 9.A ・(1, -2) B. (-1, 2) C. ( — 1, —2) D. (2, 1)某公司销伟部有销伟人员27人,销伟部为了制定某种商品的销伟定额,某月的销伟情况如下表,则该公同销售人员这个月销伟竝的屮位数是( 件 件 件件如图,丹是OO 的切线,切点为ZAPO=36°,则ZAOP=(A. 54°B. 64°C. 44°D. 36°2已知止比例函数与反比例函数的图彖相交于昇、B 两点16.(7分)从不等式:2x—1<5, 3x>0, x~1^2x屮任取两个不等式,组成一个一元一次不等式组,解你所得到的这个不等式组,并在数轴上表示其解集合.17. (8分)如图,已知一次函数y=x+1与反比例函数y=^的图象都经过点(1,加).(1) 求反比例函数的关系式;(4分)(2) 根据图象点接写出使这两个按数值都小于0吋x 的取值范围.(4分)18. (10分)为了解某中学九年级学牛中考体育成绩情况,现从中抽収部分学牛的体育成绩进行分段C4: 50分、B : 49-40分、C : 39〜30分、D : 29〜0分)统计结果如图1、图 2所示.中考体育成绩(分数段)统计图 中考体育成绩(分数段百分比)统计图 人数根据上面提供的信息,回答下列问题:(1) 本次抽查了多少名学生的体育成绩?(2分) (2) 在图1中,将选项〃的部分补充完整?(3分) (3) 求图2屮。
2011年贵州遵义中考数学试题及答案
2011年贵州省遵义市中考数学试题一、选择题(本题共10小题,每小题3分,共30分)1、(2011•遵义)下列各数中,比﹣1小的数是( B )A、0B、﹣2C、错误!未找到引用源。
D、1考点:有理数大小比较。
2、(2011•遵义)如图是一个正六棱柱,它的俯视图是( C )A、B、C、D、考点:简单几何体的三视图。
3、(2011•遵义)某种生物细胞的直径约为0.00056m,将0.00056用科学记数法表示为( B )A、0.56×10﹣3B、5.6×10﹣4C、5.6×10﹣5D、56×10﹣5考点:科学记数法—表示较小的数。
4、(2011•遵义)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( D )A、115°B、120°C、145°D、135°考点:平行线的性质。
5、(2011•遵义)下列运算正确的是( C )A、a2+a3=a5B、(a﹣2)2=a2﹣4C、2a2﹣3a2=﹣a2D、(a+1)(a﹣1)=a2﹣2考点:平方差公式;合并同类项;完全平方公式。
6、(2011•遵义)今年5月,某校举行“唱红歌”歌咏比赛,有17位同学参加选拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的( A )A、中位数B、众数C、平均数D、方差考点:统计量的选择。
7、(2011•遵义)若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,则m的取值范围是( D )A、m<0B、m>0C、m<2D、m>2考点:一次函数的性质。
8、(2011•遵义)若a、b均为正整数,且错误!未找到引用源。
,则a+b的最小值是( B )A、3B、4C、5D、6考点:估算无理数的大小。
9、(2011•遵义)如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是( A )A、DE=DOB、AB=ACC、CD=DBD、AC∥OD考点:切线的判定;圆周角定理。
2004年贵州省贵阳市中考数学试卷及答案
国家基础教育课程改革贵阳实验区2004年初中升学考试试卷数学考生注意:1.本卷共8页,三大题共26小题,满分150分.考试形式为闭卷,考试时间为120分钟.一、填空题(每题3分,共30分)1.据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为______千克.2.分解因式:x 2-1=________.3.如图1,直线a ∥b ,则∠ACB =_______.4.抛物线y =-4(x +2)2+5的对称轴是______.5.如图2,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______.6.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是_____.7.如图3,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30°,则⊙O 的直径等于______cm.8.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有_____人.9.正n 边形的内角和等于1080°,那么这个正n 边形的边数n =_____.10.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图4),则这串珠(图2)A28° 50° a C bB(图1)(图3)(图4)子被盒子遮住的部分有____颗. 二、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请把正确选项的字母选入该题括号内.每小题4分,共24分)11.下列调查,比较容易用普查方式的是( )(A )了解贵阳市居民年人均收入 (B )了解贵阳市初中生体育中考的成绩 (C )了解贵阳市中小学生的近视率 (D )了解某一天离开贵阳市的人口流量 12.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) (A )小明的影子比小强的影子长 (B )小明的影长比小强的影子短 (C )小明的影子和小强的影子一样长 (D )无法判断谁的影子长13.棱长是1cm 的小立方体组成如图5所示的几何体,那么这个几何体的表面积是( ) (A )36cm 2(B )33cm 2(C )30cm 2(D )27cm 214.已知一次函数y=kx+b 的图象(如图6),当x <0时,y 的取值范围是( ) (A )y >0 (B )y <0 (C )-2<y <0 (D )y <-215.数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩 是否稳定,于是老师需要知道小明这5次数学成绩的( ) (A )平均数或中位数 (B )方差或极差 (C )众数或频率 (D )频数或众数 16.已知抛物线21(4)33y x =--的部分图象(如图7),图象再次与x 轴相交时的坐标是( )(A )(5,0) (B )(6,0) (C )(7,0) (D )(8,0)三、解答题:17.(本题满分8分)先化简,再求值:231()11x x x x x x---+,其中2x =.(图5)(图6)(图7)18.(本题满分10分)下面两幅统计图(如图8、图9),反映了某市甲、乙两所中学学生参加课外活动的情况.请你通过图中信息回答下面的问题.(1)通过对图8的分析,写出一条你认为正确的结论;(3分) (2)通过对图9的分析,写出一条你认为正确的结论;(3分)(3)2003年甲、乙两所中学参加科技活动的学生人数共有多少?(4分)19.(本题满分12分)如图10,一次函数y ax b =+的图象与反比例函数k y x=的图象交于M 、N 两点.(1)求反比例函数和一次函数的解析式;(8分)(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.(4分)20.(本题满分9分)由一些大小相同的小正方体组成的简单几何体的主视图和俯视图(如图11)./年甲校乙校甲、乙两校参加课外活动的学生人数统计图(1997~2003年)(图8)2003年甲、乙两校学生参加课外活动情况统计图m ) N (图10)(1)请你画出这个几何体的一种左视图;(5分)(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.(4分)21.(本题满分6分)质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等.(1)请采用计算器模拟实验的方法,帮质检员抽取被检产品;(3分) (2)如果没有计算器,你能用什么方法抽取被检产品?(3分)22.(本题满分8分)某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元 . 小彬经常来该店租碟,若每月租碟数量为x 张.(1)写出零星租碟方式应付金额y 1(元)与租碟数量x (张)之间的函数关系式;(2分)(2)写出会员卡租碟方式应付金额y 2(元 )与租碟数量x (张)之间的函数关系式;(2分) (3)小彬选取哪种租碟方式更合算?(4分)主视图俯视图 (图11)23.(本题满分8分)同一底上的两底角相等的梯形是等腰梯形吗?如果是,请给出证明(要求画出图形,写出已知、求证、证明);如果不是,请给出反例(只需画图说明).24.(本题满分9分)某居民小区有一朝向为正南方向的居民楼(如图12),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么?(5分) (2)若要使超市采光不受影响,两楼应相距多少米?(4分)(结果保留整数,参考数据:531065sin 32,cos 32,tan 321001258≈≈≈鞍)25.(本题满分12分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(6分)(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(6分)(图12)26.(本题满分14分)如图13,四边形ABCD 中,AC =6,BD =8且AC ⊥BD 顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1;再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……如此进行下去得到四边形A n B n C n D n .(1)证明:四边形A 1B 1C 1D 1是矩形;(6分)(2)写出四边形A 1B 1C 1D 1和四边形A 2B 2C 2D 2的面积;(2分) (3)写出四边形A n B n C n D n 的面积;(2分) (4)求四边形A 5B 5C 5D 5的周长.(4分)国家基础教育课程改革贵阳实验区2004年初中升学考试 数学参考解答及评分标准评卷教师注意:如果学生用其它方法,只要正确、合理,酌情给分. 一、 填空题(每小题3分,共30分)1. 115.410⨯; 2. (1)(1)x x +-; 3. 78; 4. 2x =-; 5. 2.5;6.11147. 3.6; 8. 5; 9. 8; 10. 27. 二、 选择题(每小题4分,共24分)11.B 12.D 13.A 14.D 15.B 16.C 三、 解答题17.原式=3(1)(1)x x +--……………………………………………………………………(4分)=24x +……(5分)当2x =时,原式=2)4+=……………(8分)(图13)18.(1)1997年至2003年甲校学生参加课外活动的人数比乙校增长的快……………………(3分) (学生给出其它答案,只要正确、合理均给3分) (2)甲校学生参加文体活动的人数比参加科技活动的人数多;……………………………(6分) (学生给出其它答案,只要正确、合理均给3分)(3)200038%110560%1423⨯+⨯=……………………………………………………(9分) 答:2003年两所中学的学生参加科技活动的总人数是1423人.…………………………(10分)19.(1)将N (-1,-4)代入k y x=中 得k =4……………………………………………(2分)反比例函数的解析式为4y x=………………………………………………………………(3分)将M (2,m )代入解析式4y x=中 得m =2…………………………………………(4分)将M (2,2),N (-1,-4)代入y ax b =+中224a b a b +=⎧⎨-+=-⎩ 解得a =2 b =-2……………………………………………………(7分) 一次函数的解析式为22y x =-……………………………………………………………(8分) (2)由图象可知:当x <-1或0<x <2时反比例函数的值大于一次函数的值.………(12分) 20.(1)左视图有以下5种情形(只要画对一种即给5分):(2)8,9,10,11.n =…………………………………………………………………………(9分) 21.(1)利用计算器模拟产生随机数与这批产品编号相对应,产生10个号码即可. ………(3分)(2)利用摸球游戏或抽签等.…………………………………………………………………(6分) 22.(1)1y x = (2分) (2)20.412y x =+………………………………………(4分) (3) 当x >20时,选择会员卡方式合算当x =20时,两种方式一样当x <20时,选择零星租碟方式合算…………………………………………………(8分)23.是等腰梯形……………………………………………………………………………………(1分)已知:梯形ABCD ,AD ∥BC 且∠B =∠C (或∠A =∠D )………………………………(2分) 求证:梯形ABCD 是等腰梯形……………………………………………………………(3分) 证明一:过点A 作AE ∥DC ,交BC 于E …………………………(4分)∵AD ∥BC AE ∥DC∴四边形AECD 是平行四边形,∴∠AEB =∠C ,AE=DC …………………………………………………(5分) ∵∠B =∠CAB CDE∴∠AEB =∠B ………………………………………………………………………(6分)∴AB =AE ……………………………………………………………………………(7分) ∴AB=DC∴梯形ABCD 是等腰梯形………………………………………………………(8分)证明二:过A 、D 两点分别作AE ⊥BC ,DF ⊥BC 垂足为E 、F ∵AE ⊥BC 、DF ⊥BC∴AE ∥DF 且∠AEB =∠DFC∵AD ∥BC∴四边形AEFD 是平行四边形 ∴AE=DF ∵∠AEB =∠DFC ∠B =∠C ∴△AEB ≌△DFC ∴AB =DC ∴梯形ABCD 是等腰梯形证明三:延长BA 、CD 交于E 点∵∠B =∠C ∴BE=CE∴AD ∥BC ∴∠EAD =∠B ,∠EDA =∠C ∴∠EAD =∠EDA ∴AE=DE ∴AB=DC ∴梯形ABCD 是等腰梯形24.(1)如图设CE=x 米,则AF =(20-x )米……………(1分)tan 32,A F E F?即20-x =15tan 32,11x ≈ °………(4分)∵11>6, ∴居民住房的采光有影响.(5分) (2)如图:sin 32,A B B F?820325B F =⨯=…(8分)两楼应相距32米…………………………………………(9分) 25. (1)设此一次函数解析式为.y kx b =+…………………(1分)则15252020k b k b +=⎧⎨+=⎩,解得:k =-1,b =40,……………………(5分)即:一次函数解析式为40y x =-+………………………(6分)(2)设每件产品的销售价应定为x 元,所获销售利润为w 元…………………………(7分) w =2(10)(40)50400x x x x --=-+-=2(25)225x --+………………………………………………………………………(10分) 产品的销售价应定为25元,此时每日获得最大销售利润为225元……………………(12分)26(1)证明∵点A 1,D 1分别是AB 、AD 的中点,∴A 1D 1是△ABD 的中位线………………(1分)∴A 1D 1∥BD ,1112A DB D =,同理:B 1C 1∥BD ,1112B C B D =……………………(2分)∴11A D ∥11B C ,11A D =11B C , ∴四边形1111A B C D 是平行四边形………………(4分) ∵AC ⊥BD ,AC ∥A 1B 1,BD ∥11A D ,∴A 1B 1⊥11A D 即∠B 1A 1D 1=90°………(5分)A BCDE FAB CDE32° EDA F C 32° FDA20C15 E∴四边形1111A B C D 是矩形…………………………………………………………………(6分) (2)四边形1111A B C D 的面积为12;四边形2222A B C D 的面积为6;…………………(8分) (3)四边形n n n n A B C D 的面积为1242n⨯;……………………………………………(10分)(4)方法一:由(1)得矩形1111A B C D 的长为4,宽为3;∵矩形5555A B C D ∽矩形1111A B C D ;∴可设矩形5555A B C D 的长为4x ,宽为3x ,则514324,2x x =⨯ …………………………………………………………………………(12分)解得14x =;∴341,34x x ==;…………………………………………………………(13分)∴矩形5555A B C D 的周长=372(1)42+=.………………………………………………(14分)方法二:矩形5555A B C D 的面积/矩形1111A B C D 的面积=(矩形5555A B C D 的周长)2/(矩形1111A B C D 的周长)2即34∶12 =(矩形5555A B C D 的周长)2∶142∴矩形5555A B C D 的周长72=。
2005年贵阳中考数学试卷(课程改革实验区)
2005年贵阳中考数学试卷(课程改革实验区)一. 填空题(每小题3分,共30分) 1. 3-的相反数是_________。
2. 如图,AB//DC ,AD//BC ,如果∠B=50°,那么∠D=_________。
3. 分解因式:=+-502022x x _________。
4. 如图,已知圆O 的半径为5,弦AB=8,P 是弦AB 上任意一点,则OP 的取值范围是_________。
5. 某校招收实验班学生,从每5个报名的学生中录取3人。
如果有100人报名,那么有_________人可能被录取。
6. 如图,P 是反比例函数图像在第二象限上的一点,且矩形PEOF 的面积为3。
则反比例函数的表达式是_________。
7. 一个盒子里有4个除颜色外其余都相同的玻璃球,1个红色,1个绿色,2个白色。
现随机从盒子里一次取出两个球,则这两个球都是白球的概率是_________。
8. 已知二次函数)0(2≠++=a c bx ax y 的顶点坐标(-1,-3.2)及部分图像(如图所示),由图像可知关于x 的一元二次方程02=++c bx ax 的两个根分别是3.11=x 和=2x _________。
9. 如图,等边三角形ABC 的内切圆面积为9π,则△ABC 的周长为_________。
10. 如图,在梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,且AC=8cm ,BD=6cm ,则此梯形的高为_________cm 。
二. 选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请把正确选项的字母选入该题括号内。
每小题4分,共20分)11. 一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A. m 3102.2-⨯B. m 2102.2-⨯C. m 31022-⨯D. m 1102.2-⨯12. 如图,过A 点的一次函数的图像与正比例函数x y 2=的图像相交于点B 。
贵阳市2011年初中毕业生学业考试试题卷数学升级版(附答案)
游戏规则是:随意转两个转盘,并将转得的数相乘,若积为奇数,霍华德得 12 次罚球机会;
若积为偶数,诺维茨基得 7 次罚球机会。若游戏公平,求霍华德与诺维茨基的罚球命中率之
比及霍华德罚球命中率的最大值。(5 分)
19.制造一个甲、乙产品所需的 A、B 材料如下表所示,做一个乙产品的成本(即所花的原材
料的价格总和)比甲产品高 3 元,且 50 元可以购买 5kgA 材料和 7kgB 材料。(7 分)
C. 7
D. 14
第 10 题图
9.△ABC 中,设cos ∠B =������,当∠������不是最大内角时,������的取值范围是
A. 0< ������ <1
√2 B. 2 < ������ <1
C. 0
< ������
<
1 2
D. 0< ������ <
√2 2
10. ������ = ������������2 + ������������ + ������与������ = ������������的图像如图所示,当������������2 + ������������ + ������≥
D
主视图
左视图
第 5 题图
第 7 题图 当������=3 时,经过 2011 次运算后的结果是
1
A. 6
B. 2
C. 3
D. 3
8.一个箱子里装着奥巴马和本•拉登的照片,其中奥巴马的照片
有 1808 张。随意抽出 1 张照片,抽到本•拉登的照片的概率为
7 ,则箱子里共有 911
张照片
A. 911
B. 1822
贵阳市2011年初中毕业生学业考试试题卷【答案】
一、选择题(共10小题,每小题3分,满分30分)1、解答:解:根据题意可得:盈利为“+”,则亏损为“﹣”,∴亏损6%记为:﹣6%.故选:B.2、分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将50000用科学记数法表示为5×104.故选B.3、考点:概率公式。
分析:根据概率公式知,骰子共有六个面,其中向上一面的数字小于3的面有1,2,故掷该骰子一次,则向上一面的数字是1的概率是,向上一面的数字是2的概率是,从而得出答案.解答:解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中向上一面的数字小于3的面有1,2,∴掷该骰子一次,向上一面的数字是1的概率是,向上一面的数字是,2的概率是,∴向上一面的数字小于3的概率是,故选C.点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.4、.解答:解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆和一点可得为圆锥.故选D.5、考点:众数。
分析:众数就是出现次数最多的数,据此即可求解.解答:解:这组数据的众数是7.故选C.6、考点:勾股定理;实数与数轴。
分析:本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.解答:解:由勾股定理可知,∵OB==,∴这个点表示的实数是.故选D.7、考点:含30度角的直角三角形;垂线段最短。
分析:利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.解答:解:根据垂线段最短,可知AP 的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选D.8、分析:先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.解答:解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,∴反应到图像上应选A.故选A.9、解答:解:①正三角形的每个内角是60°,能整除360°,能够铺满地面;②正方形的每个内角是90°,能整除360°,能够铺满地面;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能够铺满地面;④正六边形的每个内角是120°,能整除360°,能够铺满地面;⑤正八边形的每个内角为:180°﹣360°÷8=135°,不能整除360°,不能够铺满地面.故选B.10、分析:根据题意知反比例函数和正比例函数相交于A、B两点,若要,只须y1>y2,在图像上找到反比例函数图像在正比例函数图像上方x的取值范围.解答:解:根据题意知:若,则只须y1>y2,又知反比例函数和正比例函数相交于A、B两点,从图像上可以看出当x<﹣1或0<x<1时y1>y2,故选C.二、填空题(共5小题,每小题4分,满分20分)11、分析:首先由邻补角求出∠DCF,再由并行线的性质得出∠A.解答:解:∠DCF=180°﹣∠ECF=180°﹣138°=42°,又ED∥AB,∴∠A=∠DCF=42°.故答案为:42.点评:此题考查的知识点是并行线的性质及邻补角,关键是先由邻补角求出∠DCF,再由并行线的性质求出∠A.12、解答:解:∵一次函数y=2x﹣3中,k=2>0,∴此函数图像经过一、三象限,∵b=﹣3<0,∴此函数图像与y轴负半轴相交,∴此一次函数的图像经过一、三、四象限,不经过第二象限.故答案为:二.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图像经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.13、分析:先根据平均数的定义分别计算出甲和乙的平均数,甲=乙=7;再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]计算出它们的方差,然后根据方差的意义即可确定答案.解答:解:∵甲=(6+7+7+8+6+8)=7,乙=(5+9+6+8+5+9)=7;∴S 2甲=[(6﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(6﹣7)2+(8﹣7)2]=,S 2乙=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=3;∴S 2甲<S 2乙,∴甲在射击中成绩发挥比较稳定.故答案为甲.点评:本题考查了方差的定义和意义:数据x 1,x 2,…x n ,其平均数为,则其方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2];方差反映了一组资料在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.14、分析:开口向下,二次项系数为负,对称轴为直线x=1,可根据顶点式写出满足条件的函数解析式.解答:解:二次函数的图像开口向下,则二次项系数为负,即a <0,满足条件的二次函数的表达式为y=﹣x 2.故答案为:y=﹣x 2.15、分析:根据△ABC 是边长为1的等腰直角三角形,利用勾股定理分别求出Rt △ABC 、Rt △ACD 、Rt △ADE 的斜边长,然后利用三角形面积公式分别求出其面积,找出规律,再按照这个规律得出第四个第五个等腰直角三角形的面积,相加即可.解答:解:∵△ABC 是边长为1的等腰直角三角形,∴S △ABC =×1×1==21﹣2; AC==,AD==2…,∴S △ACD =××=1=22﹣2;S △ADE =×2×2=2=23﹣2…∴第n 个等腰直角三角形的面积是2n ﹣2.∴S △AEF =24﹣2=4,S △AFG =25﹣2=8, 由这五个等腰直角三角形所构成的图形的面积为+1+2+4+8=15.5.故答案为:15.5.三、解答题(共10小题,满分100分)16、分析:先确定选x 2﹣1作分母,x 2+x 作分子,然后花简代数式,化为最简后再代入x 的值计算.解答:解:==,当x=2时,原式==2.17、请你根据图中所给信息解答下列问题:(1) 一等奖所占的百分比是 10% .(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?分析:(1)用100%减去各个小扇形的百分比即可得到一等奖所占的百分比;(2)用一等奖的人数除以一等奖所占的百分比即可得到所有参赛作品份数;(3)用总数分别乘以各个小扇形的百分比即可得到各奖项获奖学生分别有多少人.解答:解:(1)一等奖所占的百分比是:100%﹣46%﹣24%﹣20%=10%; (2)在此次比赛中,一共收到:20÷10%=200份;(3)一等奖有:20人,二等奖有:200×20%=40人,三等奖有:200×24%=48人,优秀奖有:200×46%=92人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的资料;扇形统计图直接反映部分占总体的百分比大小.18、分析:(1)由题意正方形ABCD 的边AD=BC ,在等边三角形CDE 中,CE=DE ,∠EDC 等于∠ECD ,即能证其全等.(2)根据等边三角形、等腰三角形、并行线的角度关系,可以求得∠AFB 的度数.解答:(1)证明:∵ABCD 是正方形∴AD=BC ,∠ADC=∠BCD=90°又∵三角形CDE 是等边三角形∴CE=CD ,∠EDC=∠ECD=60°∴∠ADE=∠ECB ∴△ADE ≌△BCE .(2)解:∵△CDE是等边三角形,∴CE=CD=BC∴△CBE为等腰三角形,且顶角∠ECB=90°﹣60°=30°∴∠EBC=(180°﹣30°)=75°∵AD∥BC∴∠AFB=∠EBC=75°.19、分析:(1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;(2)根据小球分别标有数字3、4、5、x,用列表法或画树形图法说明当x=7时,得出数字之和为9的概率,即可得出答案.解答:解:(1)利用图表得出:实验次数越大越接近实际概率,所以出现“和为8”的概率是0.33.(2)当x=7时,∴∴两个小球上数字之和为9的概率是:=,当x=5时,两个小球上数字之和为9的概率是.20、分析:设桥面DC与地面AB之间的距离为x米,分别用x表示出AE和BF,AE+BF=AB﹣DC,则得到关于x的一元一次方程,从而求出x.解答:解:设桥面DC与地面AB之间的距离为x米,即DE=CF=x,则AE=cot23°x,BF=cot30°x,AE+BF=AB﹣DC,∴cot23°x+cot30°x=88﹣62,解得:x≈7.5,21、分析:(1)由二次函数y=﹣x2+2x+m的图像与x轴的一个交点为A(3,0),利用待定系数法将点A的坐标代入函数解析式即可求得m的值;(2)根据(1)求得二次函数的解析式,然后将y=0代入函数解析式,即可求得点B的坐标;(3)根据(2)中的函数解析式求得点C的坐标,由二次函数图像上有一点D(x,y)(其中x>0,y>0),可得点D在第一象限,又由S△ABD=S△ABC,可知点D与点C的纵坐标相等,代入函数的解析式即可求得点D的坐标.解答:解:(1)∵二次函数y=﹣x2+2x+m的图像与x轴的一个交点为A(3,0),∴﹣9+2×3+m=0,解得:m=3;(2)∴二次函数的解析式为:y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得:x=3或x=﹣1,∴B(﹣1,0);(3)过点D作DE⊥AB,∵当x=0时,y=3,∴C(3,0),若S△ABD=S△ABC,∵D(x,y)(其中x>0,y>0),则可得OC=DE=3,∴当y=3时,﹣x2+2x+3=3,解得:x=0或x=2,∴点D的坐标为(2,3).22、分析:(1)连接OE,则OE的长就是所求的量;(2)阴影部分的面积等于梯形OADE的面积与扇形OAE的面积的差.解答:解(1)连接OE.∵边CD切⊙O于点E.∴OE⊥CD;则OE就是圆心O到CD的距离,则圆心O到CD的距离是×AB=5.故答案是:5;(2)∵四边形ABCD是平行四边.∴∠C=∠DAB=180°﹣∠ABC=120°,∴∠BOE=360°﹣90°﹣60°﹣120°=90°,∴∠AOE=90°,作EF∥CB,∴∠OFE=∠ABC=60°,∴OF=.EC=BF=5﹣.则DE=10﹣5+=5+,则直角梯形OADE的面积是:(OA+DE)×OE=(5+5+)×5=5+.扇形OAE的面积是:=.则阴影部分的面积是:5+﹣.23、分析:(1)生产1件A产品需要的时间+生产1件B产品需要的时间=35分钟,生产3件A产品需要的时间+生产2件B产品需要的时间=85分钟,可根据这两个等量关系来列方程组求解;(2)可根据(1)中计算的生产1件A,B产品需要的时间,根据“每生产一件A种产品,可得报酬1.50元,每生产一件B种产品,可得报酬2.80元”来计算出生产A,B产品每分钟的获利情况,然后根据他的工作时间,求出这两个获利额,那么他的工资范围就应该在这两个获利额之间.解答:解:(1)解:设小李每生产一件A种产品、每生产一件B种产品分别需要x分钟和y分钟,根据题意,得,解之,得,答:小李每生产一件A种产品、每生产一件B种产品分别需要15分钟和20分钟;(2)由(1)知小李生产A种产品每分钟可获利1.50÷15=0.1元,生产B种产品每分钟可获利2.80÷20=0.14元,若小李全部生产A种产品,每月的工资数目为0.1×22×8×60=1056元,若小李全部生产B种产品,每月的工资数目为0.14×22×8×60=1478.4元.∴小李每月的工资数目不低于1056元而不高于1478.4元.24、分析:(1)根据矩形的对角线互相平分及点E的坐标即可得出答案.(2)根据题意画出图形,然后可找到点D的坐标.解答:解:(1)M=(,)=(2,1.5).(2)根据平行四边形的对角线互相平分可得:D'(1,﹣1),D''(﹣3,5),D''(5,3).25、分析:(1)先用含x的代数式(12﹣3x)÷3=4﹣x表示横档AD的长,然后根据矩形的面积公式列方程,求出x的值.(2)用含x的代数式(12﹣4x)÷3=4﹣x表示横档AD的长,然后根据矩形面积公式得到二次函数,利用二次函数的性质,求出矩形的最大面积以及对应的x的值.(3)用含x的代数式(a﹣nx)÷3=﹣x表示横档AD的长,然后根据矩形的面积公式得到二次函数,利用二次函数的性质,求出矩形的最大面积以及对应的x的值.解答:解:(1)AD=(12﹣3x)÷3=4﹣x,列方程:x(4﹣x)=3,x2﹣4x+3=0,∴x1=1,x2=3,答:当x=1或3米时,矩形框架ABCD的面积为3平方米;(2)AD=(12﹣4x)÷3=4﹣x,S=x(4﹣x)=﹣x2+4x,当x=﹣=时,S最大==3,答:当x=时,矩形架ABCD的面积S最大,最大面积是3平方米;(3)AD=(a﹣nx)÷3=﹣x,S=x(﹣x)=﹣x2+x,当x=﹣=时;S最大==.答:当x=时,矩形ABCD的面积S最大,最大面积是平方米.。
【2011年】中考贵州贵阳数学卷中考数学真题及答案
贵阳市2011年初中毕业生学业考试试题卷数 学考生注意:1.本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.可以使用科学计算器.一、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1.如果“盈利10%”记为+10% ,那么“亏损6%”记为(A )-16% (B )-6% (C ) +6% (D ) +4%2.2011年9月第九次全国少数民族传统体育运动会将在贵阳举行,为营造一个清洁、优美、 舒适的美好贵阳,2011年3月贵阳启动了“自己动手,美化贵阳”活动,在活动过程中,志愿者们陆续发放了50000份倡议书.50000这个数用科学记数法表示为 (A )5105⨯ (B )4105⨯ (C )5105.0⨯ (D )4105.0⨯ 3.一枚质地均匀的正方体骰子,其六面上分别刻有1、2、3、4、5、6 六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是 (A )21 (B )61 (C )31(D )32 4.一个几何体的三视图如图,则这个几何体是(A )圆锥 (B )三棱锥 (C )球 (D )圆锥 5.某市甲、乙、丙、丁四支中学生足球队在市级联赛中进球数分别为 7、7、6、5,则这组数据的众数是(A )5 (B )6 (C )7 (D )6.5 6.如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在 数轴上, 以原点O 为圆心,对角线OB 的长为半径画弧,交 正半轴于一点,则这个点表示的实数是 (A )2.5 (B )22 (C )3 (D )5 7.如图,ABC ∆中,ο90=∠C ,3=AC ,ο30=∠B ,点P 在BC 边上的动点,则AP 长不可能...是 (A )3.5 (B )4.2(C )5.8 (D )78.如图所示,货车匀速通过隧道(隧道长大于货车长) 时,货车从进入隧道至离开隧道的时间x 与货车在隧道(第7题图)30°(CP(第8题图)道隧内的长度y 之间的关系用图象描述大致是( )9.有下列五种正多边形地砖:①正三角形 ②正方形 ③正五边形 ④正六边形⑤正八边形.现要用同一种大小一样、形状相同的正多边形地砖铺设地面,其中能做到彼此之间不留空隙、不重叠地铺设的地砖有(A )4种 (B )3种 (C )2种 (D )1种10.如图,反比例函数x k y 11=和正比例函数x k y 22=的图象交于 )3,1(--A 、)3,1(B 两点,若x k xk21>,则x 的取值范围是(A )01<<-x (B )11<<-x(C )1-<x 或10<<x (D )01<<-x 或1>x二、填空题(每小题4分,共20分)11.如图,ED ∥AB ,AF 交ED 于C ,ο138=∠ECF则=∠A ▲ 度.12.一次函数32-=x y 的图象不经过...第 ▲ 象限. 13.甲、乙两人分别在六次射击中的成绩如下表:(单位:环)这六次射击中成绩发挥比较稳定的是 ▲ .14.写出一个开口向下的二次函数的表达式 ▲ . 15.如图,已知等腰ABC Rt ∆的直角边为1,以ABC Rt ∆的斜 边AC 为直角边,画第二个等腰ACD Rt ∆,再以ACD Rt ∆ 的斜边AD 为直角边,画第三个ADE Rt ∆,…,依此类推直 到第五个 等腰AFG Rt ∆,则由这五个第腰直角三角形所构成 的图形的面积为 ▲ .三、解答题16.(本题满分8分)在三个整式12-x ,122++x x ,x x +2中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再求当2=x 时分式的值.17.(本题满分10分)贵阳某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题: (1)一等奖所占的百分比是多少?(3分) (2)在此次比赛中,一共所到了多少份 参赛作品?请将条形统计图补充完整;(4分) (3)各奖项获奖学生分别有多少人?(3分)18.(本题满分10分)如图,点E 是正方形ABCD 内一点,CDE ∆是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . (1)求证:BCE ADE ∆≅∆;(5分) (2)求AFB ∠的度数.(5分)19.(本题满分10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x .甲、乙两人每次同时..从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行摸球总次数 10 20 30 60 90 120 180 240 330 450 “和为8”出现的频率 21013 243037 5882110150“和为8”出现的频率0.20 0.50 0.430.40 0.33 0.310.32 0.34 0.33 0.33(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是 ▲ .(4分) (2)如果摸出的这两个小球上数字之和为9的概率是31,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.(6分) 20.(本题满分10分)某过街天桥的设计图是梯形ABCD (如图所示),桥面DC 与地面AB 平行,62=DC 米,88=AB 米.左斜面AD 与地面AB 的夹角为ο23,右斜面BC 与地面AB 的夹角为ο30,立柱AB DE ⊥于E ,立柱AB CF ⊥于F ,求桥面DC 与地面AB 之间的距离.(精确到0.1米)21.(本题满分10分)如图所示,二次函数m x x y ++-=22的图象与x 轴的一个交点 为A )0,3(,另一个交点为B ,且与y 轴交于点C . (1)求m 的值;(3分) (2)求点B 的坐标;(3分)(3)该二次函数图象上有一点),(y x D (其中0>x ,0<y ), 使ABC ABD S S ∆∆=,求点D 坐标.(4分) 22.(本题满分10分)在□ABCD 中,10=AB ,ο60=∠ABC ,以AB 为直径作 ⊙O ,边CD 切⊙O 于点E .(1)圆心O 到CD 的距离是 ▲ . (4分)(2)求由弧AE 、线段AD 、DE 所围成的阴影部分的面积.(结果保留π和根号)(6分) 23.(本题满分10分)童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A 、B 两种产品,工人每生产一件A 种产品可得报酬1.50元,每生产一件B 种产品可得报酬2.80元.该厂工人可以选择A 、B 两种产品中的一种或两种进行生产.工人小李生产1件A 产品和1件B 产品需35分钟;生产3件A 产品和2件B 产品需85分钟. (1)小李生产1件A 产品的需要 ▲ 分钟,生产1件B 产品的需要 ▲ 分钟.(4分) (2)求小李每月的工资收入范围.(6分) 24.(本题满分12分)[阅读]在平面直角坐标系中,以任意两点),(11y x P 、 ),(22y x Q 为端点的线段中点坐标为)2,2(2121y y x x ++.[运用] (1)如图,矩形ONEF 的对角线相交于点M ,ON 、OF 在x 轴和y 轴上,O 坐标原点,点E 的坐标为)3,4(,则点M 的坐标为 ▲ ;(4分)(第20题图)DCBA30°23°()(2)在直角坐标系中,有)2,1(-A ,)1,3(B ,)4,1(C 三点,另有一点D 与A 、B 、C 构成平行四边形的顶点,求点D 的坐标.(6分) 25.(本题满分12分)用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②③中的一种). 设竖档x AB =米,请根据以上图案回答下列问题:(题中的不锈钢材料总长均指各图中所有黑线的长度和,所有横档和竖档分别与AD 、AB 平行)(1)在图①中,如果不锈钢材料总长度为12米,当x 为多少时,矩形框架ABCD 的面积为3平方米?(4分)(2)在图②中,如果不锈钢材料总长度为12米,当x 为多少时,矩形框架ABCD 的面积S 最大?最大面积是多少?(4分)(3)在图③中,如果不锈钢材料总长度为a 米,共有n 条竖档,那么当x 为多少时,矩形框架ABCD 的面积S 最大?最大面积是多少?。
2024年贵州省中考数学真题试卷及解析
2024年贵州省中考数学真题试卷一、选择题(本大题共12题,每题3分,共36分.每小题均有A ,B ,C,D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D. 3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A.B. C.D. 5. 一元二次方程220x x -=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =-D. 12x =-,21x =- 6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 7. 为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A. 100人B. 120人C. 150人D. 160人 8. 如图,ABCD 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD ⊥ 9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则AB 的长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )甲 乙A. x y =B. 2x y =C. 4x y =D. 5x y =12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( )A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13. ________.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和 (2)先化简,再求值:()21122x x -⋅+,其中3x =. 18. 已知点()1,3在反比例函数k y x=的图象上. (1)求反比例函数的表达式(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒,8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件: ①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin320.52︒≈,cos320.84︒≈,tan320.62︒≈)23. 如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______(2)求证:OD AB ⊥(3)若2OA OE =,2DF =,求PB 的长.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.(1)求y 与x 的函数表达式(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .图① 图① 备用图(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度 (2)【问题探究】如图①,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA += (3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF 的值.2024年贵州省中考数学真题试卷答案解析一、选择题.1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】C5. 【答案】B6. 【答案】A7. 【答案】D8. 【答案】B9. 【答案】A10.【答案】C11. 【答案】C12. 【答案】D【解析】解∶ ①二次函数2y ax bx c =++的顶点坐标为()1,4- ∴二次函数图象的对称轴是直线=1x -,故选项A 错误∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x - ①二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误∵抛物线开口向下, 对称轴是直线=1x -∴当1x <-时,y 随x 的增大而增大,故选项C 错误设二次函数解析式为()214y a x =++把()3,0-代入,得()20314a =-++ 解得1a =-①()214y x =-++当0x =时,()20143y =-++=①二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确故选D . 二、填空题.13.14. 【答案】515. 【答案】2016.【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌△,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M ,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点AB BC CD AD ∴===,BE EC CF DF ===,D FCM ∠=∠,B D ∠=∠在ABE 和ADF △中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABE ADF ≌∴AE AF =在ADF △和MCF △中D FCM DF CFAFD MFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ADF MCF ≌∴CM AD =,AF MF =5AE =5AE AF MF ∴===过E 点作EN AF ⊥交N 点90ANE ∴∠=︒4sin5EAF ∠=,5AE = 4EN ∴=,3AN =∴2NF AF AN =-=527MN ∴=+=在Rt ENM △中EM ==即12EM EC CM BC BC =+=+=AB BC CD AD ===AB BC ∴==故答案为. 三、解答题.17. 【答案】(1)见解析 (2)12x -,1 【解析】(1)解:选择①,②,③ 2022(1)+-+-421=++7=选择①,②,④212222+-+⨯ 421=++7=选择①,③,④()0212122+-+⨯ 411=++6=选择②,③,④()012122-+-+⨯ 211=++4=(2)解:()21122x x -⋅+ ()()11(1)21x x x =-+⋅+ 12x -= 当3x =时,原式3112-==. 18. .【答案】(1)3y x =(2)a c b <<,理由见解析【小问1详解】解:把()1,3代入k y x =,得31k = ∴3k = ∴反比例函数的表达式为3y x =【小问2详解】解:∵30k =>∴函数图象位于第一、三象限∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<< ∴0a c b <<<∴a c b <<.19. 【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误 (3)13【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26 故答案为:7.38,8.26【小问2详解】解:∵用时越少,成绩越好∴7.38是男生中成绩最好的,故小星的说法正确∵女生8.3秒为优秀成绩,8.328.3>∴有一人成绩达不到优秀,故小红的说法错误【小问3详解】列表为:由表格可知共有6种等可能结果,其中抽中甲的有2种故甲被抽中的概率为2163=. 20. 【答案】(1)见解析 (2)12【小问1详解】选择①证明:∵AB CD ∥,AD BC ∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形选择②证明:∵AD BC =,AD BC ∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形【小问2详解】解:∵90ABC ∠=︒∴4BC ===∴矩形ABCD 的面积为3412⨯=.21. 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5,6名学生 (2)至少种植甲作物5亩【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x ,y 名学生根据题意,得32272222x y x y +=⎧⎨+=⎩ 解得56x y =⎧⎨=⎩答:种植1亩甲作物和1亩乙作物分别需要5,6名学生【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩根据题意,得:()561055a a +-≤解得5a ≥答:至少种植甲作物5亩.22. 【答案】(1)20cm(2)3.8cm【小问1详解】解:在Rt ABC 中,45A ∠=︒∴45B ∠=︒∴20cm BC AC ==【小问2详解】解:由题可知110cm 2ON EC AC ===∴10cm NB ON ==又∵32DON ∠=︒∴tan 10tan32100.62 6.2cm DN ON DON =⋅∠=⨯︒≈⨯=∴10 6.2 3.8cm BD BN DN =-=-=.23. 【答案】(1)DCE ∠(答案不唯一) (2)163 (3)163【小问1详解】解:∵DC DE =∴DCE DEC ∠=∠故答案为:DCE ∠(答案不唯一)【小问2详解】证明:连接OC∵PC 是切线∴OC CD ⊥,即90DCE ACO ∠+∠=︒∵OA OC =∴OAC ACO ∠=∠∵DCE DEC ∠=∠,AEO DEC ∠=∠∴90AEO CAO ∠+∠=︒∴90AOE ∠=︒∴OD AB ⊥【小问3详解】解:设OE x =,则2AO OF BO x ===∴EF OF OE x =-=,22OD OF DF x =+=+∴2DC DE DF EF x ==+=+在Rt ODC △中,222OD CD OC =+∴()()()2222222x x x +=++解得14x =,20x =(舍去)∴10OD =,6CD =,8OC = ∵tan OP OC D OD CD == ∴8106OP = 解得403OP = ∴163BP OP OB =-=. 24. 【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元 (3)2【小问1详解】解∶设y 与x 的函数表达式为y kx b =+把12x =,56y =;20x ,40y =代入,得12562040k b k b +=⎧⎨+=⎩ 解得280k b =-⎧⎨=⎩①y 与x 的函数表达式为280y x =-+【小问2详解】解:设日销售利润为w 元根据题意,得()10w x y =-⋅()()10280x x =--+22100800x x =-+-()2225450x =--+①当25x =时,w 有最大值为450①糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元【小问3详解】解:设日销售利润为w 元根据题意,得()10w x m y =--⋅()()10280x m x =---+()22100280080x m x m =-++--①当()100250222m m x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭①糖果日销售获得的最大利润为392元 ①()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭化简得2601160m m -+=解得12m =,258m =(舍去)∴m 的值为2.25.【答案】(1)画图见解析,90(2)见解析 (3)23或83【小问1详解】解:如图,PC 即为所求∵90AOB ∠=︒,PA OA ⊥,PC OB ⊥∴四边形OAPC 是矩形∴90APC ∠=︒故答案为:90【小问2详解】证明:过P 作PC OB ⊥于C由(1)知:四边形OAPC 是矩形∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥∴PA PC =∴矩形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒∵PN PM ⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =∴APM CPN △≌△∴AM CN =∴OM ON OM CN OC +=++OM AM AP =++OA AP =+2AP =【小问3详解】解:①当M 在线段AO 上时,如图,延长NM ,PA 相交于点G由(2)知2OM ON PA +=设OM x =,则3ON x =,2AO PA x ==∴AM AO OM x OM =-==∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌∴3AG ON x ==∵90AOB ∠=︒,PA OA ⊥∴AP OB ∥∴ONF PGF ∽∴33325OF ON x PF PG x x ===+ ∴53PF OF = ∴53833OP OF +== ②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒,PC AO ∥∵PN PM ⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =∴APM CPN △≌△∴AM CN =∴ON OM -OC CN OM =+-AO AM OM =+-AO AO =+2AO =∵33ON OM x ==∴AO x =,2CN AM x ==∵PC AO ∥∴CGN OMN ∽ ∴CG CN OM ON=,即23CG x x x = ∴23CG x =∵PC AO∥∴OMF PGF∽∴3253OF OM xPF PG x x===+∴53 PF OF=∴53233 OPOF-==综上,OPOF的值为23或83.。
2004年基础教育课程改革国家实验区贵阳市初中毕业生学业考试试题
2004年基础教育课程改革国家实验区贵阳市初中毕业生学业
考试试题
佚名
【期刊名称】《天府数学》
【年(卷),期】2004(000)008
【总页数】3页(P54-55,79)
【正文语种】中文
【中图分类】O1
【相关文献】
1.时代在召唤 --2004年国家首批课改实验区黑龙江省宁安市初中毕业生学业水平考试数学命题设想
2.新理念新设想新评价 --2004年国家首批课改实验区黑龙江省宁安市初中毕业生学业水平考试英语出题设想
3.2004年国家课改实验区黑龙江省宁安市初中毕业生学业水平考试数学试题
4.2004年国家课改实验区黑龙江省宁安市初中毕业生学业水平考试英语试题
5.2004年国家课改实验区黑龙江省宁安市初中毕业学业水平考试试题
因版权原因,仅展示原文概要,查看原文内容请购买。
云南省贵州省2011年中考数学试题分类解析汇编 专题1 实数
某某某某2011年中考数学试题分类解析汇编专题1:实数一、选择题1.(某某某某3分)某某小学1月份某天的气温为5℃,最低气温为﹣1℃,则某某这天的气温差为A 、4℃B 、6℃C 、﹣4℃D 、﹣6℃【答案】B 。
【考点】有理数的减法。
【分析】这天的温差就是最高气温与最低气温的差,即5-(-1)=5+1=6℃。
故选B 。
2.(某某某某3分)据2010年全国第六次人口普查数据公布,某某省常住人口为45966239人,45966239用科学记数法表示且保留两个有效数字为A 、4.6×107B 、4.6×106C 、4.5×108D 、4.5×107【答案】A 。
【考点】科学记数法,有效数字。
【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
45966239一共8位,从而45966239=4.5966239×107。
有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字。
所以4.5966239×107≈4.6×107。
故选A 。
3.(某某某某、某某、某某、某某、某某、怒江、迪庆、某某3分)第六次全国人口普查结果公布:某某省常住人口约为46000000人,这个数据用科学记数法可表示为人.A.64610⨯B.74.610⨯C.80.4610⨯D.84.610⨯【答案】B 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
2005年贵阳中考数学试卷(课程改革实验区)
2005年贵阳中考数学试卷(课程改革实验区)一. 填空题(每小题3分,共30分) 1. 3-的相反数是_________。
2. 如图,AB//DC ,AD//BC ,如果∠B=50°,那么∠D=_________。
3. 分解因式:=+-502022x x _________。
4. 如图,已知圆O 的半径为5,弦AB=8,P 是弦AB 上任意一点,则OP 的取值范围是_________。
5. 某校招收实验班学生,从每5个报名的学生中录取3人。
如果有100人报名,那么有_________人可能被录取。
6. 如图,P 是反比例函数图像在第二象限上的一点,且矩形PEOF 的面积为3。
则反比例函数的表达式是_________。
7. 一个盒子里有4个除颜色外其余都相同的玻璃球,1个红色,1个绿色,2个白色。
现随机从盒子里一次取出两个球,则这两个球都是白球的概率是_________。
8. 已知二次函数)0(2≠++=a c bx ax y 的顶点坐标(-1,-3.2)及部分图像(如图所示),由图像可知关于x 的一元二次方程02=++c bx ax 的两个根分别是3.11=x 和=2x _________。
9. 如图,等边三角形ABC 的内切圆面积为9π,则△ABC 的周长为_________。
10. 如图,在梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,且AC=8cm ,BD=6cm ,则此梯形的高为_________cm 。
二. 选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请把正确选项的字母选入该题括号内。
每小题4分,共20分)11. 一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A. m 3102.2-⨯B. m 2102.2-⨯C. m 31022-⨯D. m 1102.2-⨯12. 如图,过A 点的一次函数的图像与正比例函数x y 2=的图像相交于点B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵阳课改实验区2004年中考数学试题一、填空题(每题3分,共30分)1、据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为__________千克.2、分解因式:x 2 1=____________.3、如图1,直线a ∥b ,则∠ACB =__________.4、抛物线y =-4(x +2)2+5的对称轴是___________.5、如图2,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______.6、口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是___________.7、如图3,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30°,则⊙O 的直径等于______cm.8、某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有_________人.9、正n 边形的内角和等于1080°,那么这个正n 边形的边数n =_________.10、一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图4),则这串珠子被盒子遮住的部分有____颗.二、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请把正确选项的字母选入该题括号内.每小题4分,共24分) 11、下列调查,比较容易用普查方式的是【 】(A )了解贵阳市居民年人均收入 (B )了解贵阳市初中生体育中考的成绩 (C )了解贵阳市中小学生的近视率(D )了解某一天离开贵阳市的人口流量12、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 【 】(A )小明的影子比小强的影子长 (B )小明的影长比小强的影子短(C )小明的影子和小强的影子一样长 (D )无法判断谁的影子长BCDAEP F(图2)A28° 50° aC bB(图1)A B CO (图3)(图4)13、棱长是1cm 的小立方体组成如图5所示的几何体,那么这个几何体的表面积是【 】(A )36cm 2 (B )33cm 2(C )30cm 2 (D )27cm 214.、知一次函数y =kx +b 的图象(如图6),当x <0时,y 的取值范围是 【 】(A )y >0(B )y <0(C )-2<y <0 (D )y <-215、数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的【 】(A )平均数或中位数 (B )方差或极差 (C )众数或频率 (D )频数或众数16、已知抛物线21(4)33y x =--的部分图象(如图7),图象再次与x 轴相交时的坐标是【 】 (A )(5,0) (B )(6,0) (C )(7,0) (D )(8,0)三、解答题: 17.(本题满分8分)先化简,再求值:xx x x x x 1)113(2-⋅+--,其中22x =-.(图5)-2 1xy 0(图6)xy-2 -1 0 -1 -41 3 4 5 6 7 1 (图7)-3 2 2 -2 8 o18.(本题满分10分)下面两幅统计图(如图8、图9),反映了某市甲、乙两所中学学生参加课外活动的情况.请你通过图中信息回答下面的问题.(1)通过对图8的分析,写出一条你认为正确的结论;(3分) (2)通过对图9的分析,写出一条你认为正确的结论;(3分)(3)2003年甲、乙两所中学参加科技活动的学生人数共有多少?(4分)19.(本题满分12分)如图10,一次函数y ax b =+的图象与反比例函数ky x=的图象交于M 、N 两点.(1)求反比例函数和一次函数的解析式;(8分)(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.(4分)时间/年 500 2000年 2003年 人数/个1000 15002000 625 600110520001997年 甲校 乙校 甲、乙两校参加课外活动的学生人数统计图(1997~2003年) (图8) 12%38% 50%60% 30%10% 2003年甲、乙两校学生参加课外活动情况统计图文体活动 科技活动 其他(图9) M (2,m ) xy O N (-1,-4) (图10)20.(本题满分9分)由一些大小相同的小正方体组成的简单几何体的主视图和俯视图(如图11).(1)请你画出这个几何体的一种左视图;(5分)(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.(4分)主视图俯视图(图11)21.(本题满分6分)质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等.(1)请采用计算器模拟实验的方法,帮质检员抽取被检产品;(3分)(2)如果没有计算器,你能用什么方法抽取被检产品?(3分)22.(本题满分8分)某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元 . 小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y1(元)与租碟数量x(张)之间的函数关系式;(2分)(2)写出会员卡租碟方式应付金额y2(元)与租碟数量x(张)之间的函数关系式;(2分)(3)小彬选取哪种租碟方式更合算?(4分)23.(本题满分8分)同一底上的两底角相等的梯形是等腰梯形吗?如果是,请给出证明(要求画出图形,写出已知、求证、证明);如果不是,请给出反例(只需画图说明).24.(本题满分9分)某居民小区有一朝向为正南方向的居民楼(如图12),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么?(5分) (2)若要使超市采光不受影响,两楼应相距多少米?(4分)(结果保留整数,参考数据:8532tan ,12510632cos ,1005332sin ≈≈≈)25.(本题满分12分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(6分) (2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多 少元?(6分) x (元) 15 20 30 … y (件) 25 20 10 … 32° AD太阳光 新楼居民楼(图12) C B26.(本题满分14分)如图13,四边形ABCD 中,AC =6,BD =8且AC ⊥BD 顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1;再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……如此进行下去得到四边形A n B n C n D n . (1)证明:四边形A 1B 1C 1D 1是矩形;(6分)(2)写出四边形A 1B 1C 1D 1和四边形A 2B 2C 2D 2的面积;(2分) (3)写出四边形A n B n C n D n 的面积;(2分) (4)求四边形A 5B 5C 5D 5的周长.(4分)2005年贵阳中考数学试卷(课程改革实验区)一. 填空题(每小题3分,共30分) 1. 3-的相反数是_________。
2. 如图,AB//DC ,AD//BC ,如果∠B=50°,那么∠D=_________。
3. 分解因式:=+-502022x x _________。
4. 如图,已知圆O 的半径为5,弦AB=8,P 是弦AB 上任意一点,则OP 的取值范围是_________。
5. 某校招收实验班学生,从每5个报名的学生中录取3人。
如果有100人报名,那么有_________人可能被录取。
A B CB 1C 1 DD 1 A 1D 2 C 2B 3 A 3C 3 B 2D 3 A 2 …(图13)6. 如图,P 是反比例函数图像在第二象限上的一点,且矩形PEOF 的面积为3。
则反比例函数的表达式是_________。
7. 一个盒子里有4个除颜色外其余都相同的玻璃球,1个红色,1个绿色,2个白色。
现随机从盒子里一次取出两个球,则这两个球都是白球的概率是_________。
8. 已知二次函数)0(2≠++=a c bx ax y 的顶点坐标(-1,-3.2)及部分图像(如图所示),由图像可知关于x 的一元二次方程02=++c bx ax 的两个根分别是3.11=x 和=2x _________。
9. 如图,等边三角形ABC 的内切圆面积为9π,则△ABC 的周长为_________。
10. 如图,在梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,且AC=8cm ,BD=6cm ,则此梯形的高为_________cm 。
二. 选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请把正确选项的字母选入该题括号内。
每小题4分,共20分)11. 一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A. m 3102.2-⨯B. m 2102.2-⨯C. m 31022-⨯D. m 1102.2-⨯12. 如图,过A 点的一次函数的图像与正比例函数x y 2=的图像相交于点B 。
能表示这个一次函数图像的方程是( )A. 032=+-y xB. 03=--y xC. 032=+-x yD. 03=-+y x13. 某同学利用影子长度测量操场上旗杆的高度。
在同一时刻,他测得自己影子长为0.8m ,旗杆的影子长为7m ,已知他的身高为1.6m ,则旗杆的高度为( )A. 8mB. 10mC. 12mD. 14m14. 在一次射击练习中,甲、乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7 乙:7 10 9 9 10则这次练习中,甲、乙两人方差的大小关系是( )A. 22乙甲S S > B. 22乙甲S S < C. 22乙甲S S =D. 无法确定15. 如图,一圆柱体的底面周长为24cm ,高AB 为4cm ,BC 是直径,一只蚂蚁从点A 出发沿着圆柱体的表面爬行到点C 的最短路程大约是( )A. 6cmB. 12cmC. 13cmD. 16cm三. 解答题16. (本题满分8分)先化简,再选择使原式有意义而你喜欢的数代入求值: 2132446222--+-⋅+-+x x x x x x x17. (本题满分10分)在一次数学探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等。