矩阵论 线性空间与线性变换概述
线性空间与线性变换
![线性空间与线性变换](https://img.taocdn.com/s3/m/1cd56af81b37f111f18583d049649b6648d709ab.png)
线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。
本文将介绍线性空间的定义、性质以及线性变换的概念和特性。
一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。
具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。
即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。
2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。
3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。
4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。
线性空间的性质还包括零向量、负向量和线性相关性。
零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。
线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。
二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。
具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。
2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。
线性变换的性质还包括零变换、恒等变换和可逆性。
零变换表示线性变换将所有向量映射为零向量。
恒等变换表示线性变换将每个向量映射为其本身。
可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。
三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。
线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。
矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
![矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换](https://img.taocdn.com/s3/m/5b681e70b0717fd5370cdc62.png)
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.
线性空间与线性变换
![线性空间与线性变换](https://img.taocdn.com/s3/m/252f772fb94ae45c3b3567ec102de2bd9605de28.png)
线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。
本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。
一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。
2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。
3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。
4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。
5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。
6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。
7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。
8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。
9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。
线性空间的例子包括n维向量空间和函数空间等。
它们满足上述定义中的所有条件。
二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。
2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。
3. 线性变换T将零向量映射为目标线性空间的零向量。
线性变换的例子包括平移、旋转和缩放等。
它们保持向量空间的线性结构和线性关系。
三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。
给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。
工程硕士矩阵论第一章
![工程硕士矩阵论第一章](https://img.taocdn.com/s3/m/c14b51a6c77da26925c5b0a0.png)
n 例 n维向量空间 R(及其子空间)按照向量的加 法以及向量与实数的加法及数乘两种运 算下构成一个实线性空间,记为 R mn .
例 区间[a,b]上的全体连续实函数,按照函数的 加法及数与函数的乘法构成一个实线性空间,记为 C[a,b].
定理1.2 设W是线性空间V的非空子集, 则W是V的子空间的充要条件是: W对V 中的线性运算封闭.
例 函数集合 f x C a, b f a 0是线性空间C[a,b] 的子空间.
例 函数集合 f x C a, b f a 1 不是线性空间 C[a,b]的子空间.
例
22 R 求
中
1 1 2 2 1 1 2 0 A1 0 1 , A2 0 2 , A3 1 0 , A4 1 1 ,
的秩和极大无关组.
第三节 线性子空间
一.子空间的概念 定义 设V为数域P上的线性空间,W是V 的非空子集,若 W关于 V中的线性运算也 构成数域 P 上的线性空间,则称 W 是 V 的 线性子空间,简称子空间. 对任何线性空间V ,显然由V中单个零向 量构成的子集是V的子空间,称为V的零子空 间; V本身也是V的子空间.这两个子空间称 为V的平凡子空间.其它子空间称为V的非平 凡子空间.
• 若ka=0,则k=0或a=0
第二节 基、坐标与维数
一.向量组的线性相关性 1.有关概念 定义 设V为数域P上的线性空间,对V 中的向 , 1 , 2 ,, m , 如果存在一组数 量(元素) k1 , k 2 ,, k m P ,使得
则称 或 可由向量组 1 , 2 ,, m 线性表示. k1 , k 2 ,, k m 称为组合系数(或表示系数)
矩阵论学习-(线性空间与线性变换)
![矩阵论学习-(线性空间与线性变换)](https://img.taocdn.com/s3/m/5edc10456294dd88d0d26bb8.png)
ka1 ,
kb1 +
k( k 2
1 ) a21
ka2 ,
kb2
+
k(
k2
1)
a22
=
ka1
+
ka2 ,
kb1
+
kb2
+
k( k 2
1) (
a21
+
a22 )
+
k2 (
a1 a2 )
.
4
矩 阵 论 学 习 辅 导 与 典型 题 解 析
故有 k⊙ ( α β) = ( k⊙α) ( k⊙β) , 即八条运算法则皆成立 , V 在实域 R 上构
第一章 线性空间与线性变换
线性空间是某一类事物从量方面的一个数学抽象, 线性变换则是反映线性空 间元素之间最基本的线性函数关系 , 它们是研究线性代数的理论基础 .理解本章的 主要概念 , 掌握基本定理、结论和方法 , 对学好矩阵论起着关键的作用 .
§1 .1 线性空间 , 基、维数及坐标
一、线性空间与子空间
mn
mn
mn
∑ ∑ ( aij + bij ) = ∑∑ aij + ∑ ∑ bij = 0
i = 1j = 1
i = 1j = 1
i = 1j = 1
即有 A + B∈ W4 , 同样由于 kA = ( kaij ) m × n ,
mn
mn
∑∑ kaij = k∑∑ aij = k0 = 0
i = 1j = 1
i = 1j = 1
即有 kA∈ W4 .加法运算和数乘运算封闭 , 故 W4 是一个子空间 .
⑥ ( kl ) ⊙α=
矩阵理论第一章线性空间与线性变换13
![矩阵理论第一章线性空间与线性变换13](https://img.taocdn.com/s3/m/44a9bdf728ea81c758f5784a.png)
主讲教师 杨建平
教材:矩阵论及其应用
(中国科技大学出版社,黄有度等)
• 参考书: • 矩阵分析(北京理工大学出版社,史荣昌) • 矩阵理论(高等教育出版社,黄廷祝等) • 矩阵论(科学出版社,戴华)
矩阵理论
内容简介 第一章 线性空间与线性变换 第二章
—矩阵与Jordan标准形
第三章 矩阵分析及矩阵函数 第四章 矩阵微分方程
n 又 C n 为线性空间, 故 x1 x2 C ,因此 A( x1 x2 ) R( A),
又 A( x1 x2 ) Ax1 Ax 2 y1 y2 故 y1 y2 R( A), 同理, 当 k C 时,有 ky1 R( A), 由于 C n 为线性空间, 容易验证 R( A) 中的加法和数乘满足8条规则,故 R( A) 为C上的线性空间。
则把f(x)在 x a 处按 Taylor 公式展开后,有
例8
1 (1, 2 (0,
在 n 维线性空间 R n 中,它的一个基为:
0,,0) T 1,,0)
0,,1)
T
T n
T
n (0,
对于任一向量 (a1 , a2 ,, an ) R , 有
R( A) { y | y Ax , N ( A) {x | Ax 0,
x C n} x C n}
按 C n 中的加法和数乘运算,则 R( A) 和 N ( A) 都是复数 域C上的线性空间,其中 N ( A) 叫做矩阵A的零空间,(或核), 也叫做方程组Ax=0的解空间。
证明: 设 y1, y2 R( A), 则存在 x1 , x2 Cn, 使得 y1 Ax1, y2 Ax 2
矩阵论——讲稿
![矩阵论——讲稿](https://img.taocdn.com/s3/m/356ebe36bceb19e8b9f6ba6c.png)
(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
例 3 K = R 时, R n —向量空间;
R m×n —矩阵空间
第一章 线性空间与线性变换(第 1 节)
3
Pn[t]—多项式空间; C[a,b] —函数空间 K = C 时, Cn —复向量空间; Cm×n —复矩阵空间 例 4 集合 R + = {m m是正实数 } ,数域 R = {k k是实数 } .
0
a 12
a
22
ai
j1
I
S 2
=
{A
=
a11
0
0
a
22
a 11
, a22
∈
R}
S 1
U
S 2
=
{A
=
a11 a21
a 12
a
22
aa 12 21
=
0,
ai
j
∈
R}
S 1
+
S 2
=
{A
=
a11 a21
a 12
a 22
ai j ∈ R}
2.数域:关于四则运算封闭的数的集合.
2.减法运算:线性空间V 中, x − y = x + (− y) .
第三章线性空间与线性变换 - 同济大学数学系
![第三章线性空间与线性变换 - 同济大学数学系](https://img.taocdn.com/s3/m/76acd80a192e45361066f5b1.png)
21
GEM
例1 设
R
2 2
a b = a , b, c , d R c d
2 2 R 是实数域 R 上的线性空间。 则
22
GEM
自然基
1 0 0 1 0 0 0 0 E11 = 0 0 , E12 = 0 0 , E 21 = 1 0 , E 22 = 0 1
= a1 + a2 cos x + b1 + b2 sin x
= a sin x + b S[ x ].
ls1 = la1 sin x + b1 = la1 sin x + b1 S[ x ]
\ S x 是一个线性空间.
9
GEM
例5 在区间[a, b]上全体实连续函数,对函数的 加法与数和函数的数量乘法,构成实数域R上的 线性空间,记作C[a, b]。
下的坐标。
26
GEM
解:设
1 2 = x1 A1 + x2 A2 + x3 A3 + x4 A4 1 1
x1 + x3 + x4 = x1 + x2 x1 x2 x3 x1
27
GEM
x1 + x3 + x4 = 1 x x x = 2 1 2 3 \ = 1 x1 + x2 =1 x1
对于多项式的加法、数乘多项式构成线性空间。
6
GEM
例3 n 次多项式的全体
Q[ x ]n = { an-1 x n-1+ + a 1 x + a 0 a n-1 0 }
01_矩阵论_第一章线性空间与线性变换
![01_矩阵论_第一章线性空间与线性变换](https://img.taocdn.com/s3/m/862993380b4c2e3f57276341.png)
则有
1 0 0 1 0 0 0 0 A a11 0 0 a12 0 0 a21 1 0 a22 0 1
因此 R22 中任何一个向量都可写成向量组
1 0 0 1 0 0 0 0 E11 0 0 , E12 0 0 , E21 1 0 , E22 0 1
Pn [ x] { ai xi | ai R}
i 0 n 1
在通常多项式加法和数乘多项式运算下构成线性 空间 Pn[x]。 值得指出的是次数等于 n 1 的多项式集合
V { ai x | ai R, an1 0}
i i [a, b] = {f (x) | f (x) 是区间 [a, b] 上 实连续函数 } ,对于函数的加法与数乘运算构成 实数域上的线性空间。
定义 1.3 设 1, 2, …, n 是线性空间 Vn(F) 的一组基,若 V,
xi i (1 2
i 1 n
x1 x2 n ) x n
(1.1)
则称数 x1, x2, …, xn 是 在基 {1, 2, …, n} 下 的坐标,(1.1) 式中向量 (x1, x2, …, xn)T 为 的坐 标向量,也简称为坐标。
从上述线性空间例子中可以看到,许多常见 的研究对象都可以在线性空间中作为向量来研究。 另外应理解加法和数乘分别是 V 中的一个二元运 算和数域 F 和 V 中元素间的运算,要求运算满足 定义 1.1 中的八条性质,它们已不再局限在数的 加法、乘法的概念中。
一个数学例子 取集合为正实数集合 R+,F 为实数域 R,加 法“”和数乘“”如下定义 :a, bR+,ab = ab, :kR(i.e. F ),aR+,k a = ak。 在此运算下,R+ 是 R 上的一个线性空间,其中 加法零元素是 R+ 中的数 1,R+ 中元素 a 的负元素 是 a1。
矩阵理论课件 第一章 线性空间与线性变换
![矩阵理论课件 第一章 线性空间与线性变换](https://img.taocdn.com/s3/m/478cd76584254b35effd3433.png)
a1n
a2n
ann
前述关系可以表示为 AT 或 T T A
则称矩阵 A 为基 到基 的过渡矩阵(唯一且可逆)
定义2 (坐标变换)
设x V L(P) ,向量 x 在 基 和基 下的
坐标之间的关系,称之为坐标变换。
坐标变换与过渡矩阵的关系:
设 x k1x1 k2 x2 kn xn 和 x t1 y1 t2 y2 tn yn
和 W W1 W2 为直和,记为 W W1 W2 。
例6 设 R4的3个子空间:
① V1 (a, b, 0, 0)T a, b R ② V2 (0,0,c, 0)T c R ③ V3 (0,d,e, 0)T d,e R
容易验证V1 是V2直和, V1 V3不,V是2 直 V和3。
事实上 不妨设简单基为 (III )e1, e2 , , en ( x1, x2 , , xn ) (e1, e2 , , en )C1 ( y1, y2 , , yn ) (e1, e2 , , en )C2
( x1, x2 , , xn )C11C2
C C11C2
例4 设线性空间P3[t] 的两个基为: (I ) f1(t) 1, f2(t) 1 t, f3(t) 1 t t 2,
表示,不妨记
y1 a11x1 a21x2
y2
a12 x1
a22 x2
yn a1n x1 a2n x2
称上述关系为两组基的基变换。
an1xn an2 xn
ann xn
x1
y1
a11 a12
若记
x2
,
y2
A
a21
a22
xn
yn
an1 an2
矩阵论知识点
![矩阵论知识点](https://img.taocdn.com/s3/m/d3127a47bf23482fb4daa58da0116c175f0e1eb6.png)
矩阵论知识点最近考试不断,今天终于告一段落了。
矩阵论我花了将近两个礼拜复习,多少有点感悟,所以赶紧写下来,不然估计到时候又还给老师了,也希望自己的见解对你们也有帮助!!总的来说矩阵论就讲了如下6个知识点:(1)线性空间与线性变换(2)范数理论及其应用(3)矩阵分析及其应用(4)矩阵分解(5)特征值的估计(6)广义逆矩阵1.线性空间与线性变换1.1线性空间首先我们需要知道什么是空间??空间其实就是向量的集合,而什么是线性空间呢??线性空间就是满足8条性质的向量集合,这8条性质分别如下:所以矩阵论考试里面如果要你证明一个向量集合是线性空间??只需要证明集合满足上述8条性质就可以了,该证明的难度在于怎么表示该集合中的向量。
然后对于线性空间中的元素(元素很多),我们肯定不可能通过枚举法将每个元素枚举出来的吧,这样不太现实。
最好的方法就是找到线性空间中的基,通过这些基和坐标我们就可以表示出线性空间中所有的向量。
针对上述想法,我们就应该考虑满足条件基的存在性和唯一性,得到的结果是这样的基是存在的但是不唯一!!当时这里就牵涉到另一个问题,线性空间的基是不唯一的,对于同一个元素在不同基下坐标肯定是不同的!!如果我们知道基与基之间的关系,我们是否可以知道坐标与坐标的关系,这就推导出了下面公式:之后的一个概念就是线性子空间,这个名词我们可以拆开进行理解,子空间说明了该空间是一个线性空间的子集,线性说明这个子空间满足齐次性和叠加性,具体形式如下:最后一个概念是线性子空间的交与和,这和集合的交与和性质差不多,这里我需要重点介绍的直和的概念,直和的概念和集合的并类似,不同的是直和中并的两个集合是不相交的,即两个集合中没有共同元素。
以上就是线性空间中所有的知识点。
1.2线性变换及其矩阵这一节出现一个概念叫做线性变换,记为T,出现线性变换的原因就是对于一个向量我们希望通过某种变换将该向量转变成我希望的目标向量,换句话说线性变换就相当于函数,自变量就相当于我们已知的向量,因变量就是我们的目标向量,这样应该好理解点。
矩阵第一章 线性空间与线性变换
![矩阵第一章 线性空间与线性变换](https://img.taocdn.com/s3/m/2affeb31b90d6c85ec3ac6ea.png)
第一章 线性空间与线性变换§1 线性空间的概念定义1 如果复数的一个非空集合P 含有非零的数,且其中任意两数的和、差、积、商(除数不为零)仍属于该集合,则称数集P 为一个数域。
数域有一个简单性质,即所有的数域都包含有理数域作为它的一部分。
特别地,每个数域都包含整数0和1。
定义1-1 设V 是一个非空集合,P 是一个数域。
如果(1)在集合V 上定义了一个二元运算“+”(通常称为加法),使得,V ∈∀y x ,,都有V ∈+y x ;(2)在数域P 的元素与集合V 的元素之间还定义了数量乘法运算,使得V P ∈∈∀x ,λ有V ∈x λ;(3)上述两个运算满足下列八条规则:1) V ∈∀y x ,,都有x y y x +=+; 2) V ∈∀z y x ,,,有)()(z y x z y x ++=++;3) V 中存在零元素,记为θ,对于V ∈∀x ,都有x x =+θ;4) V ∈∀x ,都有V ∈y ,使得θ=+y x 。
y 称为x 的负元素;5) V ∈∀x ,都有x x =1;P ∈,∀μλ,V ∈∀y x ,,下列三条成立:6) x x )()(λμμλ=; 7) x x x νλμλ+=+)(; 8) y x y x λλλ+=+)(,则集合V 叫做数域P 上的线性空间或向量空间。
当P 是实数域时,V 叫实线性空间;当P 是复数域时,V 叫复线性空间。
例1-1 若P 是数域,V 是分量属于P 的n 元有序数组的集合}|),,,{(21P x x x x V i n ∈∀= ,若对于V 中任两元素),,,(21n x x x X =,),,,(21n y y y Y =及每个P k ∈(记作P k ∈∀),定义加法及数量乘法为),,,(2211n n y x y x y x Y X +++=+ ,),,,(21n kx kx kx kX =则容易验证,集合V 构成数域P 上的线性空间。
矩阵分析引论--第一章 线性空间与线性变换-线性变换的概念、线性变换的矩阵、不变子空间
![矩阵分析引论--第一章 线性空间与线性变换-线性变换的概念、线性变换的矩阵、不变子空间](https://img.taocdn.com/s3/m/dbe6e893336c1eb91b375d63.png)
(2) T(k ) kT( ).
则称T 是线性空间V 的一个线性变换.
目录 上页 下页 返回 结束
第一章第五六七节 线性变换的概念及其矩阵、不变子空间
若′T ( ) , 则T ( )或′称为向量 ∈V 在线 性变换T 下的象,而 称为T ()或′的原象.
第一章 线性空间与线性变换
第五节 线性变换的概念 第六节 线性变换的矩阵 第七节 不变子空间
第一章第五六七节 线性变换的概念及其矩阵、不变子空间
第五节 线性变换的概念
一、线性变换的定义
设V 是数域P上的线性空间,从V 到V 的映 射称为V 的变换. 定义1-7:设V 是数域P上的线性空间,若V 上
R[a,b]:实连续函数空间
t
T ( f (t)) a f (u)du (a t b).
5. V , T ( ) 0.
零变换 0
6. V , T ( ) .
单位变换 I
目录 上页 下页 返回 结束
第一章第五六七节 线性变换的概念及其矩阵、不变子空间
二、线性变换的性质
1、若T是线性变换,则 T(0) 0, T( ) T( ).
2、线性变换T保持向量的线性组合与线性关系式,
即
m
m
kii T ( ) kiT (i );
i 1
i 1
m
m
kii 0
kiT (i ) 0 .
i 1
i 1
3、线性变换T 把线性相关的向量组变换成线性
相关的向量组.
注:线性变换不能保持线性无关的关系.
目录 上页 下页 返回 结束
第一章第五六七节 线性变换的概念及其矩阵、不变子空间
向量空间中的线性变换和矩阵变换
![向量空间中的线性变换和矩阵变换](https://img.taocdn.com/s3/m/85b4b891250c844769eae009581b6bd97e19bc45.png)
向量空间中的线性变换和矩阵变换在线性代数中,向量空间是一个重要的概念,它是一组元素的集合,这些元素可以相加和相乘,满足一些特定的规则。
线性变换和矩阵变换则是向量空间中的基本操作,它们有着重要的应用,例如在机器学习和物理学等领域中。
一、线性变换的定义和性质线性变换是指将一个向量空间中的向量映射到另一个向量空间中的向量的变换。
严格地说,线性变换应该满足以下两个性质:1. 对于任意向量a和b,有T(a+b) = T(a) + T(b);2. 对于任意向量a和标量k,有T(ka) = kT(a)。
这两个性质分别对应向量的加法和乘法。
线性变换不仅用于向量空间中,还可以应用于其他数学领域,例如微积分和拓扑学等。
线性变换有很多重要的性质,例如:1. 线性变换可以用矩阵表示;2. 线性变换保持向量空间的结构不变;3. 线性变换可以有逆变换,逆变换也是线性变换。
这些性质使得线性变换成为了一个非常常见的数学工具。
二、矩阵变换的定义和性质矩阵变换是指将一个向量空间中的向量用矩阵相乘的方式进行变换。
矩阵变换的定义可以表示为:T(x) = Ax其中T表示矩阵变换,A表示一个矩阵,x表示一个向量。
矩阵变换中的矩阵A具有很多特殊的性质,例如:1. 矩阵A可以表示线性变换;2. 矩阵A的行列式为0时,矩阵A不可逆,否则可逆;3. 矩阵A的秩表示变换后空间的维度;4. 矩阵A的特征值和特征向量可以用于描述变换的性质。
矩阵变换可以方便地进行计算,并且可以应用于很多实际问题中。
三、线性变换与矩阵变换的关系线性变换和矩阵变换有着密切的关系。
事实上,线性变换可以用矩阵表示,也可以通过矩阵变换来实现。
具体来说,任何一个线性变换T都可以表示成矩阵变换的形式:T(x) = Ax其中x表示一个向量,A表示一个矩阵。
如果我们在一个标准基下进行求解,那么矩阵A的每一列就是变换后的基向量的坐标。
同时,任何一个矩阵变换也可以表示成线性变换的形式。
对于任意矩阵A,可以定义一个线性变换T,使得:T(x) = Ax这里的x同样表示一个向量。
第一章 矩阵论
![第一章 矩阵论](https://img.taocdn.com/s3/m/500e0b31a32d7375a4178032.png)
例 设V为数域P上的线性空间, 1 , 2 ,, m 是V中的一组元素,则
Span 1 , 2 , , m k1 1 k 2 2 k m m k1 , k 2 , , k m P
是V 的子空间,称为 1 , 2 ,, m的生成子空 间, 1 , 2 ,, m称为该子空间的生成元. •
定义1.7 设 1 , 2 ,, n和 1 , 2 ,, n是n维线性空间 V 的两组基,显然它们可以互相线性表示,若
1 c11 1 c 21 2 c n1 n , 2 c12 1 c 22 2 c n 2 n , n c1n 1 c 2n 2 c nn n ,
1 x 3 2 x 2 x 2 x 3 x 2 x 1 3 x 3 2x 2 x 1 4 x 3 x 2 1
求由基 渡矩阵.
第三节 线性子空间
一.子空间的概念 定义 设V为数域P上的线性空间,W是V 的非空子集,若W关于V中的线性运算也 构成数域P上的线性空间,则称W是V的 线性子空间,简称子空间. 对任何线性空间V ,显然由V中单个零向 量构成的子集是V的子空间,称为V的零子空 间; V本身也是V的子空间.这两个子空间称 为V的平凡子空间.其它子空间称为V的非平 凡子空间.
二.线性空பைடு நூலகம்的定义与性质
1、线性空间的定义
定义
n 例2 n维向量空间 R(及其子空间)按照向量的加 法以及向量与实数的数乘都构成实线性空间。
例3 全体 m n实矩阵,在矩阵的加法及数乘两种运 算下构成一个实线性空间,记为 R mn .
例4 区间[a,b]上的全体连续实函数,按照函数的 加法及数与函数的乘法构成一个实线性空间,记为 C[a,b].
矩阵分析第章线性空间与线性变换概述
![矩阵分析第章线性空间与线性变换概述](https://img.taocdn.com/s3/m/4c2459bc0975f46526d3e107.png)
1
(f,g) f(x)g(x)dx 1
求 R [ x ]4 的一组标准正交基.
(由基 1,x,x2,x3 出发作正交化)
解: 取 1 1 , 2 x , 3 x 2 , 4 x 3
1 o 正交化
111
2 2((21,,11))1
Q(2,1) 11xdx0, 22x
33(( 3 1,, 1 1))1(( 3 2,, 2 2))2
第2章 线性空间与线性变换
主要内容: 2.1 线性空间 2.2 子空间、子空间的直和 2.3 线性变换及其矩阵表示 2.4 欧氏空间 2.5 标准正交基、子空间的正交关系 2.6 正交变换 2.7 酉空间简介
2.5 标准正交基、子空间的正交关系
一、正交向量组 二、标准正交基 三、正交矩阵 四、正交子空间 五、子空间的正交补
Q(3,1) 11x2dx2 3,
(1,1)
1
dx2,
1
(3,2) 11x3dx0,
332 2 3102x21 3
2.5 标准正交基、子空间的正交关系
44 ( (4 1 ,,1 1 ) )1 ( (4 2 ,,2 2 ) )2 ( (4 3 ,,
3 ) 3 )3
Q(4,1) 11x3dx0,
n
(ii) (, )x 1y 1x 2y 2 L x n y n x iy i (3)
i 1
这里
x 1 1 x 2 2 L x n n ,
y 1 1 y 2 2 L y n n .
(iii) || x12Lxn2
2.5 标准正交基、子空间的正交关系
3. 标准正交基的构造 ─施密特(Schmidt)正交化过程
例如: R 3 中 1 ( 1 ,1 ,0 ) , 2 ( 1 ,0 ,1 )线性无关.
第一章线性空间和线性变换概况
![第一章线性空间和线性变换概况](https://img.taocdn.com/s3/m/036ed2084b7302768e9951e79b89680203d86bcf.png)
V1是子空间,dimV1=n-1,一组基为: (-1,0,…,0,1),(0,-1,…,0,1),…,(0,0,…,-1,1)。
例2 微分方程 y3y2y0的解集为 Y{ae2xbex|a,b R }, 则dimY=2。 例3 所有n阶实矩阵的集合Rn×n是n2维线性空间, Eij=eiejT是一个最大线性无关组。
(b) 基与坐标
给定数域F上的线性空间V,x1,x2,…,xr是V中的r个 向量。如果满足:1. x1,x2,…,xr线性无关;2. V中 任意一个向量都可以由x1,x2,…,xr线性表出,则称 x1,x2,…,xr是V的一组基(base),并称xi为基向量。 线性空间的维数就是基中所含基向量个数。
[3]《Foundations of Data Science》,John Hopcroft ,Ravindran Kannan,Version 11/4/2014
❖ 预习、听课、复习、练习(每章至少5题)、阅读相 关文献、考试
主要内容
1. 线性空间与线性变换 2. 矩阵与矩阵的Jordan标准形 3. 内积空间、正规矩阵、Hermite矩阵 4. 矩阵分解 5. 范数、序列、级数 6. 矩阵函数 7. 函数矩阵与矩阵微分方程 8. 矩阵的广义逆 9. Kronecker积
❖ 矩阵的广义逆:将逆矩阵的概念在矩阵不可 逆的情形正在推广就得到了广义逆或伪逆矩 阵的概念,从而使矩阵的求逆运算推广到了 更广的场合。
❖ Kronecker积:Kronecker积是矩阵的另一种 乘法,有广泛的应用。
第一章 线性空间与线性变换
第一章 线性空间与线性变换
1.1 线性空间 1.2 基与坐标、坐标变换 1.3 线性子空间 1.4 线性映射 1.5 线性映射的值域、核 1.6 线性变换的矩阵与线性变换的运算 1.7 n维线性空间的结构 1.8 线性变换的特征值与特征向量 1.9 线性变换的不变子空间 1.10 矩阵的相似形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不交作业,但应该重视练习环节。
第1章:线性空间与线性变换
内容: 线性空间的一般概念
重点:空间的代数与几何结构,与向量空间R n 的关系 线性变换 重点:其中的矩阵处理方法 特点: 研究代数结构——具有线性运算的集合。 研究几何结构——空间的维数和基 看重的不是研究对象本身,而是对象之间的结构关系。 研究的关注点:对象之间数量关系的矩阵处理。 学习特点:具有抽象性和一般性。
二、教学安排
学时配置 讲授第1章至第6章 (48学时) 第1章:10学时; 第2章:8学时 第3章:8学时; 第4章:6学时; 第5章:8学时; 第6章:6学时
考核方式:课程结束考试
卷面成绩为最终成 绩
三、教学指导意见
背景要求:线性代数 矩阵与计算工具:MATLAB,MAPLE, … 矩阵与现代应用:应用选讲 教学参考书:
矩阵论应用介绍 Symmetric matrices are inertia deformation,viscous tensors in continuum mechanics. Graphs can be described in a useful way by square matrices. Markov processes involve stochastic or bistochastic matrices. Quantum chemistry is intimately to matrix group and their representation. Quantum mechanics was called “mechanics of matrices”
n 1
F=R或C
运算:多项式的加法和数乘
•C[a,b]={f(x):f(x)在[a,b]上连续}
运算:函数的加法和数乘
•eg5: V=R+,F=R, a b=ab, a=a
线性空间的抽象:
线性空间的一般形式:
V(F),元素被统称为向量:, ,,
线性空间的简单性质(共性): 定理1 . 1:V(F)具有性质: (1) V(F)中的零元素是惟一的。 (2) V(F)中任何元素的负元素是惟一的。 (3)数零和零元素的性质: 数0 0=0,k0=0,k =0 =0 或k=0 ( 4 ) = ( 1)
余鄂西,矩阵论,高等教育出版社,1995。 方保熔等,矩阵论,清华大学出版社,2004。 Fuzhen Zhang,Matrix Theory,Springer,1999。 Denis Serre, Matrices Theory and Applications, Springer,2002。 R. A. Hom et al, Matrix Analysis, Cambridge University Press, (卷1:人民邮电出版社,2005)
前言
一、矩阵论内容介绍 研究内容:
矩阵与线性空间和线性变换
• 以矩阵为工具研究问题 • 在其中发展矩阵理论
矩阵在各种意义下的化简与分解 矩阵的分析理论 各类矩阵的性质研究
矩阵被认为是最有用的数学工具,既适用于 应用问题,又适合现代理论数学的抽象结构。
矩阵论应用介绍
Scientific computing libraries began growing around matrix calculus. The maximum principle is related to nonnegative matrices. Control theory and stabilization of system with finitely many degrees of freedom involve spectral analysis of matrices. Statistics is widely based on correlation matrices. The discrete Fourier transform, including the fast Fourier transform, make use of Toneralized inverse is involved in least-squares approximation.
1.1 线性空间
一、线性空间的概念 回顾n 维向量空间Rn 推广思想:
抽象出线性运算的本质,在任意研究对象的集 合上定义具有线性运算的代数结构。
定义1.1(P .1)
要点:
• 集合V 与数域F • 向量的加法和数乘向量运算 • 运算性质的公理定义
常见的线性空间
F n={X=(x1,x2,…,xn)T:x F} 运算:向量加法和数乘向量 F mn = {A=[aij]mn:a ijF}; 运算:矩阵的加法和数乘矩阵 i 1 R mn ;C mn 。 ix a i aiR} Pn [x]={p(x)= :
向量0
二、线性空间的基和维数
向量的线性相关与线性无关:
定义形式和向量空间Rn中的定义一样。 有关性质与定理和Rn中的结果一样。
例题1 证明C[0,1]空间中的向量组 {ex,e2x,e3x …,enx},x[0,1] 线性无关。
二、线性空间的基和维数
基与维数的概念:P . 2,定义1 . 2 常见线性空间的基与维数: Fn,自然基{e1,e2,…,en},dim Fn =n Rmn ,自然基{Eij},dim Rmn =mn。 Pn [x] ,自然基{1,x,x2,x3…,x n-1},dimPn [x] =n C[a,b], {1,x,x2,x3…x n-1 …}C[a,b], dim C[a,b]= 约定:
V n (F)表示数域F上的 n 维线性空间。 只研究有限维线性空间。
三、坐标
1 定义 1 .3 (P . 3)设{1,2,…, n } 是空间 n Vn ( F ) 的一组基, Vn ( F ) , = xi i ,则x1 , i 1 x2, …, xn 是在基{i}下的坐标。