运筹学04-整数规划-匈牙利解法
运筹学匈牙利法
运筹学匈牙利法运筹学匈牙利法(Hungarian Algorithm),也叫匈牙利算法,是解决二部图最大(小)权完美匹配(也称作二分图最大权匹配、二分图最小点覆盖)问题的经典算法,是由匈牙利数学家Kuhn和Harold W. Kuhn发明的,属于贪心算法的一种。
问题描述在一个二分图中,每个节点分别属于两个特定集合。
找到一种匹配,使得所有内部的节点对都有连边,并且找到一种匹配方案,使得该方案的边权和最大。
应用场景匈牙利算法的应用场景较为广泛,比如在生产调度、货车调度、学生对导师的指定、电影的推荐等领域内,都有广泛的应用。
算法流程匈牙利算法的伪代码描述如下:进行循环ɑ、选择一点未匹配的点a作为起点,它在二分图的左边β、找出a所有未匹配的点作为下一层节点ɣ、对下一层的每个节点,如果它在右边未匹配,直接匹配ɛ、如果遇到一个已经匹配的节点,进入下一圈,考虑和它匹配的情况δ、对已经匹配的点,将它已经匹配的点拿出来,作为下一层节点,标记这个点作为已被搜索过ε、将这个点作为当前层的虚拟点,没人配它,看能否为它找到和它匹配的点ζ、如果能匹配到它的伴侣,令它们成对被匹配最后输出最大权匹配。
算法优缺点优点:相比于暴力求解二分图最大权匹配来说,匈牙利算法具有优秀的解决效率和高效的时间复杂度,可以在多项式时间(O(n^3))内解决二分图最大权匹配问题。
缺点:当二分图较大时,匈牙利算法还是有很大的计算复杂度,复杂度不佳,算法有效性差。
此时就需要改进算法或者使用其他算法。
总结匈牙利算法是一个常见的解决二分图最大权匹配问题的算法,由于其简洁、易用、效率优秀等特性,广泛应用于学术和实际问题中。
匈牙利算法虽然在处理较大规模问题时效率不佳,但仍然是一种值得掌握的经典算法。
整数规划问题的求解
C o 3 4
x1
分支定界法
x2
A
Page 16
由 于Z 21 Z 1, 选 择 LP 21进 行 分 枝 , 增 加 约 束 x1 4及x1 5, 得 线 性 规 划 LP 211 及LP 212 :
10
A
x2 7不可行
max Z 4 x1 3 x 2 1.2 x1 0.8 x 2 10 2 x1 2.5 x 2 25 LP 22 : x1 4,x 2 7 x1 , x 2 0
B 6 LP1
LP21
LP21:X=(4.33,6),Z21=35.33
整数规划问题的求解
整数规划问题的求解方法: 分支定界法和割平面法
Page 1
匈牙利法(指派问题)
分支定界法
分支定界法的解题步骤:
Page 2
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下 一步; 2)分支与定界: 任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1 组成两个新的松弛问题,称为分枝。新的松弛问题具有特征:当原问题 是求最大值时,目标值是分枝问题的上界;当原问题是求最小值时,目 标值是分枝问题的下界。 检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
运筹学--第四章 整数规划与分配问题
一、整数线性规划问题的提出
引例:生产组织计划问题与选址问题 例4-1(生产组织计划问题)某工厂在一个计划期 内拟生产甲、乙两种大型设备。除了A、B两种部件 需要外部供应且供应受到严格限制之外,该厂有充 分的能力来加工制造这两种设备所需的其余零件, 并且所需原材料和能源也可满足供应。每种设备所 用部件数量和部件的供应限额以及设备的利润由表 3-1-1给出。问该厂在本计划期内如何安排甲、乙 设备的生产数量,才能获取最大利润?
例4-3某人有一背包可以装10公斤重、0.025m3的物
品。他准备用来装甲、乙两种物品,每件物品的重 量、体积和价值如表4-3-1所示。问两种物品各装 多少件,所装物品的总价值最大?
表4-3-1 物品 甲 乙 重量 (公斤/每件) 1.2 0.8 体积 (m3/每件) 0.002 0.0025 价值 (元/每件) 4 3
应寻找仅检查可行的整数组合的一部分,就能定出 分支定界法可用于解纯整数或混合整数线性规划问
最优的整数解的方法。分支定界解法就是其中之一。
题。
–20世纪60年代初由Land Doig和Dakin等提出,是 解整数线性规划的重要方法之一。
–由于这方法灵活且便于用计算机求解,所以现在
它已是解整数规划的重要方法。
了。 但这常常是不行的,因为化整后不见得是可行解; 或虽是可行解,但不一定是最优解。 因此,对求最优整数解的问题,有必要另行研究。
例4-4 说明整数规划问题的求解不能直接在单纯形
法最优解的基础上四舍五入 求下述整数规划问题的最优解(P105)
max z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0, 且均取整数值 1 2
《管理运筹学》分配问题与匈牙利算法
2019/9/10
第 12页
第4章 整数规划与分配问题
4 5 4 ◎ √
◎ 1 Ø 4
2 ◎ 4 3
3
7
1
Ø
√
√
3 4 3 ◎
◎ 1 Ø 5
2 ◎ 4 4
2
6
0
Ø
3 4
◎ 1 2 ◎ 2 6
3 ◎
Ø 5
4 4
◎
Ø
得到4个独立零元素, 所以 最优解矩阵为:
7
8
11
9
-7
运筹学
0 13 11 2
6 0 10 11
0 5 7 4
0 1
4
2
2019/9/10
第 6页
第4章 整数规划与分配问题
运筹学
0 13 11 2
6 0 10 11
0 5 7 4
0
1
4
2
-0 -0 -4 -2
0 13 7 0 6 0 6 9 0 5 3 2 0 1 0 0
2019/9/10
第 11页
第4章 整数规划与分配问题
运筹学
第三步,作最少的直线覆盖所有0元素:
4 5 4 ◎ √
◎ 1 Ø 4
2 ◎ 4 3
3
7
1
Ø
√
√
独立零元素的个数m等于最少直线数l,即l=m=3<n=4;
第四步,变换矩阵(bij)以增加0元素:没有被直线覆盖的所有元素中的最小元素为1,然后 打√各行都减去1;打√各列都加上1,得如下矩阵,并转第二步进行试指派:
第4章 整数规划与分配问题
运筹学基础及应用第4章-整数规划与分配问题
整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。
运筹学指派问题的匈牙利法
运筹学课程设计指派问题的匈牙利法专业:姓名:学号:1.算法思想:匈牙利算法的基本思想是修改效益矩阵的行或列,使得每一行或列中至少有一个为零的元素,经过修正后,直至在不同行、不同列中至少有一个零元素,从而得到与这些零元素相对应的一个完全分配方案。
当它用于效益矩阵时,这个完全分配方案就是一个最优分配,它使总的效益为最小。
这种方法总是在有限步內收敛于一个最优解。
该方法的理论基础是:在效益矩阵的任何行或列中,加上或减去一个常数后不会改变最优分配。
2.算法流程或步骤:1.将原始效益矩阵C的每行、每列各元素都依次减去该行、该列的最小元素,使每行、每列都至少出现一个0元素,以构成等价的效益矩阵C’。
2.圈0元素。
在C’中未被直线通过的含0元素最少的行(或列)中圈出一个0元素,通过这个0元素作一条竖(或横)线。
重复此步,若这样能圈出不同行不同列的n个0元素,转第四步,否则转第三步。
3.调整效益矩阵。
在C’中未被直线穿过的数集D中,找出最小的数d,D中所有数都减去d,C’中两条直线相交处的数都加的d。
去掉直线,组成新的等价效益矩阵仍叫C’,返回第二步。
X=0,这就是一种最优分配。
最低总4.令被圈0元素对应位置的X ij=1,其余ij耗费是C中使X=1的各位置上各元素的和。
ij算法流程图:3.算法源程序:#include<iostream.h>typedef struct matrix{float cost[101][101];int zeroelem[101][101];float costforout[101][101];int matrixsize;int personnumber;int jobnumber;}matrix;matrix sb;int result[501][2];void twozero(matrix &sb);void judge(matrix &sb,int result[501][2]);void refresh(matrix &sb);void circlezero(matrix &sb);matrix input();void output(int result[501][2],matrix sb);void zeroout(matrix &sb);matrix input(){matrix sb;int m;int pnumber,jnumber;int i,j;float k;char w;cout<<"指派问题的匈牙利解法:"<<endl;cout<<"求最大值,请输入1;求最小值,请输入0:"<<endl;cin>>m;while(m!=1&&m!=0){cout<<"请输入1或0:"<<endl;cin>>m;}cout<<"请输入人数(人数介于1和100之间):"<<endl;cin>>pnumber;while(pnumber<1||pnumber>100){cout<<"请输入合法数据:"<<endl;cin>>pnumber;}cout<<"请输入工作数(介于1和100之间):"<<endl;cin>>jnumber;while(jnumber<1||jnumber>100){cout<<"请输入合法数据:"<<endl;cin>>jnumber;}cout<<"请输入"<<pnumber<<"行"<<jnumber<<"列的矩阵,同一行内以空格间隔,不同行间以回车分隔,以$结束输入:\n";for(i=1;i<=pnumber;i++)for(j=1;j<=jnumber;j++){cin>>sb.cost[i][j];sb.costforout[i][j]=sb.cost[i][j];}cin>>w;if(jnumber>pnumber)for(i=pnumber+1;i<=jnumber;i++)for(j=1;j<=jnumber;j++){sb.cost[i][j]=0;sb.costforout[i][j]=0;}else{if(pnumber>jnumber)for(i=1;i<=pnumber;i++)for(j=jnumber+1;j<=pnumber;j++){sb.cost[i][j]=0;sb.costforout[i][j]=0;}}sb.matrixsize=pnumber;if(pnumber<jnumber)sb.matrixsize=jnumber;sb.personnumber=pnumber;sb.jobnumber=jnumber;if(m==1){k=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]>k)k=sb.cost[i][j];for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=k-sb.cost[i][j];}return sb;}void circlezero(matrix &sb){int i,j;float k;int p;for(i=0;i<=sb.matrixsize;i++)sb.cost[i][0]=0;for(j=1;j<=sb.matrixsize;j++)sb.cost[0][j]=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]==0){sb.cost[i][0]++;sb.cost[0][j]++;sb.cost[0][0]++;}for(i=0;i<=sb.matrixsize;i++)for(j=0;j<=sb.matrixsize;j++)sb.zeroelem[i][j]=0;k=sb.cost[0][0]+1;while(sb.cost[0][0]<k){k=sb.cost[0][0];for(i=1;i<=sb.matrixsize;i++){if(sb.cost[i][0]==1){for(j=1;j<=sb.matrixsize;j++)if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0)break;sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;if(sb.cost[0][j]>0)for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][j]==0&&sb.zeroelem[p][j]==0){sb.zeroelem[p][j]=2;sb.cost[p][0]--;sb.cost[0][j]--;sb.cost[0][0]--;}}}for(j=1;j<=sb.matrixsize;j++){if(sb.cost[0][j]==1){for(i=1;i<=sb.matrixsize;i++)if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0)break;sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;if(sb.cost[i][0]>0)for(p=1;p<=sb.matrixsize;p++)if(sb.cost[i][p]==0&&sb.zeroelem[i][p]==0){sb.zeroelem[i][p]=2;sb.cost[i][0]--;sb.cost[0][p]--;sb.cost[0][0]--;}}}}if(sb.cost[0][0]>0)twozero(sb);elsejudge(sb,result);}void twozero(matrix &sb){int i,j;int p,q;int m,n;float k;matrix st;for(i=1;i<=sb.matrixsize;i++)if(sb.cost[i][0]>0)break;if(i<=sb.matrixsize){for(j=1;j<=sb.matrixsize;j++){st=sb;if(sb.cost[i][j]==0&&sb.zeroelem[i][j]==0){sb.zeroelem[i][j]=1;sb.cost[i][0]--;sb.cost[0][j]--;sb.cost[0][0]--;for(q=1;q<=sb.matrixsize;q++)if(sb.cost[i][q]==0&&sb.zeroelem[i][q]==0){sb.zeroelem[i][q]=2;sb.cost[i][0]--;sb.cost[0][q]--;sb.cost[0][0]--;}for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][j]==0&&sb.zeroelem[p][j]==0){sb.zeroelem[p][j]=2;sb.cost[p][0]--;sb.cost[0][j]--;sb.cost[0][0]--;}k=sb.cost[0][0]+1;while(sb.cost[0][0]<k){k=sb.cost[0][0];for(p=i+1;p<=sb.matrixsize;p++){if(sb.cost[p][0]==1){for(q=1;q<=sb.matrixsize;q++)if(sb.cost[p][q]==0&&sb.zeroelem[p][q]==0)break;sb.zeroelem[p][q]=1;sb.cost[p][0]--;sb.cost[0][q]--;sb.cost[0][0]--;for(m=1;m<=sb.matrixsize;m++)if(sb.cost[m][q]=0&&sb.zeroelem[m][q]==0){sb.zeroelem[m][q]=2;sb.cost[m][0]--;sb.cost[0][q]--;sb.cost[0][0]--;}}}for(q=1;q<=sb.matrixsize;q++){if(sb.cost[0][q]==1){for(p=1;p<=sb.matrixsize;p++)if(sb.cost[p][q]==0&&sb.zeroelem[p][q]==0)break;sb.zeroelem[p][q]=1;sb.cost[p][q]--;sb.cost[0][q]--;sb.cost[0][0]--;for(n=1;n<=sb.matrixsize;n++)if(sb.cost[p][n]==0&&sb.zeroelem[p][n]==0){sb.zeroelem[p][n]=2;sb.cost[p][0]--;sb.cost[0][n]--;sb.cost[0][0]--;}}}}if(sb.cost[0][0]>0)twozero(sb);elsejudge(sb,result);}sb=st;}}}void judge(matrix &sb,int result[501][2]){int i,j;int m;int n;int k;m=0;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1)m++;if(m==sb.matrixsize){k=1;for(n=1;n<=result[0][0];n++){for(i=1;i<=sb.matrixsize;i++){for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1)break;if(i<=sb.personnumber&&j<=sb.jobnumber)if(j!=result[k][1])break;k++;}if(i==sb.matrixsize+1)break;elsek=n*sb.matrixsize+1;}if(n>result[0][0]){k=result[0][0]*sb.matrixsize+1;for(i=1;i<=sb.matrixsize;i++)for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1){result[k][0]=i;result[k++][1]=j;}result[0][0]++;}}else{refresh(sb);}}void refresh(matrix &sb){int i,j;float k;int p;k=0;for(i=1;i<=sb.matrixsize;i++){for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==1){sb.zeroelem[i][0]=1;break;}}while(k==0){k=1;for(i=1;i<=sb.matrixsize;i++)if(sb.zeroelem[i][0]==0){sb.zeroelem[i][0]=2;for(j=1;j<=sb.matrixsize;j++)if(sb.zeroelem[i][j]==2){sb.zeroelem[0][j]=1;}}for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]==1){sb.zeroelem[0][j]=2;for(i=1;i<=sb.matrixsize;i++)if(sb.zeroelem[i][j]==1){sb.zeroelem[i][0]=0;k=0;}}}}p=0;k=0;for(i=1;i<=sb.matrixsize;i++){if(sb.zeroelem[i][0]==2){for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]!=2)if(p==0){k=sb.cost[i][j];p=1;}else{if(sb.cost[i][j]<k)k=sb.cost[i][j];}}}}for(i=1;i<=sb.matrixsize;i++){if(sb.zeroelem[i][0]==2)for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=sb.cost[i][j]-k;}for(j=1;j<=sb.matrixsize;j++){if(sb.zeroelem[0][j]==2)for(i=1;i<=sb.matrixsize;i++)sb.cost[i][j]=sb.cost[i][j]+k;}for(i=0;i<=sb.matrixsize;i++)for(j=0;j<=sb.matrixsize;j++)sb.zeroelem[i][j]=0;circlezero(sb);}void zeroout(matrix &sb){int i,j;float k;for(i=1;i<=sb.matrixsize;i++){k=sb.cost[i][1];for(j=2;j<=sb.matrixsize;j++)if(sb.cost[i][j]<k)k=sb.cost[i][j];for(j=1;j<=sb.matrixsize;j++)sb.cost[i][j]=sb.cost[i][j]-k;}for(j=1;j<=sb.matrixsize;j++){k=sb.cost[1][j];for(i=2;i<=sb.matrixsize;i++)if(sb.cost[i][j]<k)k=sb.cost[i][j];for(i=1;i<=sb.matrixsize;i++)sb.cost[i][j]=sb.cost[i][j]-k;}}void output(int result[501][2],matrix sb) {int k;int i;int j;int p;char w;float v;v=0;for(i=1;i<=sb.matrixsize;i++){v=v+sb.costforout[i][result[i][1]];}cout<<"最优解的目标函数值为"<<v;k=result[0][0];if(k>5){cout<<"解的个数超过了限制."<<endl;k=5;}for(i=1;i<=k;i++){cout<<"输入任意字符后输出第"<<i<<"种解."<<endl;cin>>w;p=(i-1)*sb.matrixsize+1;for(j=p;j<p+sb.matrixsize;j++)if(result[j][0]<=sb.personnumber&&result[j][1]<=sb.jobnumber)cout<<"第"<<result[j][0]<<"个人做第"<<result[j][1]<<"件工作."<<endl;}}void main(){result[0][0]=0;sb=input();zeroout(sb);circlezero(sb);output(result,sb);}4. 算例和结果:自己运算结果为:->⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡3302102512010321->⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡330110241200032034526635546967562543----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡可以看出:第1人做第4件工作;第2人做第1件工作;第3人做第3件工作;第4人做第2件工作。
运筹(第四章整数规划)(1)
2023/2/22
28
(3)设法使每一行都有一个打括号的“0”元素。 按定理1继续对矩阵进行变换:
ⅰ)从矩阵未被直线覆盖的元素中找出最小者k,
ⅱ)对矩阵中无直线覆盖的行,令 ui k ,有直 线覆盖的列,令 v j k 。其余为0。
ⅲ)对矩阵的每个元素计算 aij ui v j ,得到 一个新矩阵,转第三步重复进行,直至每一行都有 一打括号的0元素。
2023/2/22
3
§1.2 整数规划的求解特点
求整数解的线性规划问题,不是用四舍五入法或
去尾法对性规划的非整数解加以处理就能解决的,
用枚举法又往往会计算量太大,所以要用整数规
划的特定方法加以解决。
例: 求解下列整数规划:
max z 3x1 2x2
2x1 3x2 14
s.t
x1
0.5x2
2023/2/22
14
解:设x j 表示代号为j的包装箱的订做数量。
0, 不订j包装箱 y j 1, 订j包装箱
目标函数
6
min z 1200 y j 5x1 8x2 10x3 j 1
12.1x4 16.3x5 18.2x6
约束条件
x j My j , j 1,...6
2023/2/22
i 1
5
8 xij 15 ,i 1,...4
j 1
5
7 xij 12 , i 5,6
j 1 5
yij 3,
i 1,..., 6
j 1
6
yij 3,
i 1
j 1,...,5
y5 j y6 j 1 j 1,..., 5
每天开放14小时 大学生值班8-15小时 研究生值班7-12小时 每周不超过3次
匈牙利算法——精选推荐
二分图最优匹配:对于二分图的每条边都有一个权(非负),要求一种完备匹配方案,使得所有匹配边的权和最大,记做最优完备匹配。
(特殊的,当所有边的权为1时,就是最大完备匹配问题)解二分图最优匹配问题可用穷举的方法,但穷举的效率=n!,所以我们需要更加优秀的算法。
先说一个定理:设M是一个带权完全二分图G的一个完备匹配,给每个顶点一个可行顶标(第i个x顶点的可行标用lx[i]表示,第j个y顶点的可行标用ly[j]表示),如果对所有的边(i,j) in G,都有lx[i]+ly[j]>=w[i,j]成立(w[i,j]表示边的权),且对所有的边(i,j) in M,都有lx[i]+ly[j]=w[i,j]成立,则M是图G的一个最优匹配。
Kuhn-Munkras算法(即KM算法)流程:v(1)初始化可行顶标的值v(2)用匈牙利算法寻找完备匹配v(3)若未找到完备匹配则修改可行顶标的值v(4)重复(2)(3)直到找到相等子图的完备匹配为止KM算法主要就是控制怎样修改可行顶标的策略使得最终可以达到一个完美匹配,首先任意设置可行顶标(如每个X节点的可行顶标设为它出发的所有弧的最大权,Y节点的可行顶标设为0),然后在相等子图中寻找增广路,找到增广路就沿着增广路增广。
而如果没有找到增广路呢,那么就考虑所有现在在匈牙利树中的X节点(记为S集合),所有现在在匈牙利树中的Y节点(记为T 集合),考察所有一段在S集合,一段在not T集合中的弧,取delta = min {l(xi)+l(yj)-w(xi,yj) , | xi in S, yj in not T} 。
明显的,当我们把所有S集合中的l(xi)减少delta之后,一定会有至少一条属于(S, not T)的边进入相等子图,进而可以继续扩展匈牙利树,为了保证原来属于(S,T )的边不退出相等子图,把所有在T 集合中的点的可行顶标增加delta。
随后匈牙利树继续扩展,如果新加入匈牙利树的Y节点是未盖点,那么找到增广路,否则把该节点的对应的X匹配点加入匈牙利树继续尝试增广。
运筹学中匈牙利算法解题步骤
运筹学中匈牙利算法解题步骤解题步骤:指派问题是0-1 规划的特例,也是运输问题的特例,当然可用整数规划,0-1 规划或运输问题的解法去求解,这就如同用单纯型法求解运输问题一样是不合算的。
利用指派问题的特点可有更简便的解法,这就是匈牙利法,即系数矩阵中独立 0 元素的最多个数等于能覆盖所有 0 元素的最少直线数。
第一步:变换指派问题的系数矩阵(c ij)为(b ij),使在(b ij)的各行各列中都出现0元素,即(1) 从(c ij)的每行元素都减去该行的最小元素;(2) 再从所得新系数矩阵的每列元素中减去该列的最小元素。
第二步:进行试指派,以寻求最优解。
在(b ij)中找尽可能多的独立0元素,若能找出n个独立0元素,就以这n个独立0元素对应解矩阵(x ij)中的元素为1,其余为0,这就得到最优解。
找独立0元素,常用的步骤为:(1)从只有一个0元素的行(列)开始,给这个0元素加圈,记作◎。
然后划去◎所在列(行)的其它0元素,记作Ø ;这表示这列所代表的任务已指派完,不必再考虑别人了。
(2)给只有一个0元素的列(行)中的0元素加圈,记作◎;然后划去◎所在行的0元素,记作Ø.(3)反复进行(1),(2)两步,直到尽可能多的0元素都被圈出和划掉为止。
(4)若仍有没有划圈的0元素,且同行(列)的0元素至少有两个,则从剩有0元素最少的行(列)开始,比较这行各0元素所在列中0元素的数目,选择0元素少的那列的这个0元素加圈(表示选择性多的要“礼让”选择性少的)。
然后划掉同行同列的其它0元素。
可反复进行,直到所有0元素都已圈出和划掉为止。
(5)若◎元素的数目m 等于矩阵的阶数n,那么这指派问题的最优解已得到。
若m < n, 则转入下一步。
第三步:作最少的直线覆盖所有0元素。
(1)对没有◎的行打√号;(2)对已打√号的行中所有含Ø元素的列打√号;(3)再对打有√号的列中含◎元素的行打√号;(4)重复(2),(3)直到得不出新的打√号的行、列为止;(5)对没有打√号的行画横线,有打√号的列画纵线,这就得到覆盖所有0元素的最少直线数 l 。
匈牙利解法
匈牙利解法1. 什么是匈牙利解法匈牙利解法,又被称为马尔科夫链匈牙利算法,是一种用于求解带权二部图最优的数学算法,该算法是Hungarianmathematician D.Kőnig在1930年发表的,是组合优化领域里最著名的算法之一,引起了众多数学家重视。
2. 匈牙利解法的基本概念简单地说,匈牙利解法可以把求解最优匹配的问题转换成一个线性规划问题,根据求出的最优值,可以得出最大权重的匹配方案。
匈牙利解法的核心思想是将人和工作、机器和工序之间的捆绑情况视为一个矩阵,根据权重进行分析。
解决矩阵匹配问题的方法就是在较小的花销下找出一个最优的权重,并使用这个最优的权重来进行匹配,从而实现满足要求的任务。
3. 匈牙利解法的主要步骤(1)确定矩阵尺寸:根据需要建立一个矩阵,由需要匹配的两组元素来构成,将矩阵中的每一元素都赋有相应的能力值,并确定矩阵的尺寸。
(2)确定最小权重:对矩阵的每一行,求出其中的最小值,并从该行中减去它;同样的,求出每一列的最小值,并从该列中减去它。
(3)求出最小权重:经过上述操作后,得出的矩阵里的元素,就是权重的最小值。
(4)得出最优结果:根据得到的最小权重值,来构建一个二部图,即使用一列最小值来匹配另一列,使得总权重最小。
4. 应用匈牙利解法可以用来解决很多实际上的问题,例如以最少花费排派最多的人,把人和机器配对,最终得到一个最优的解决方案;可以用来测定一篇文章中两个语料库之间的最大重合度,以及字频排序等。
匈牙利解法也可以用于最小距离网络流等问题,所以它是一种十分灵活且有效的数学计算算法。
运筹学04-整数规划-匈牙利解法
13 8 7 2 2 1 7 0 12 0 0 4 2
6
11
0
4 2
11 8 9 0 1 3 2
1 8 4
0 1 1 0 8 0 0 4
第四章 整数规划
例:有甲、乙、丙、丁四个熟练工人,他们都是多面手, 有4个任务要他们完成,若规定每人只分配一次任务, 而每项任务只能由一个人完成,每人未完成每项任务的 工时耗费如表所示,问如何分配使完成任务的总工时耗 费最少?
表 零件机床 甲 乙 丙 丁 零件 A 4 9 8 6 1 任务分配工时耗费表 B 1 8 4 5 1 C 8 4 6 7 1 D 2 7 3 2 1 机床 1 1 1 1
7
4
0
4
0 2
2
2 4 // 0 0
0 2 1 0//
// 0
7
4
0
4
0 2
2
2 4 // 0 0
第四章 整数规划
D、目标函数为最大的任务分配问题
如果目标函数为MAX型,则不属于标准的任务分配模型,不 能直接运用匈牙利解法求解,这就需要先对max模型进行变换, 然后再求解。 例:有甲、乙、丙、丁4人分别操作4台机器,每个工人操作不 同机器时的产值如表,求对4个工人分配不同机器时总产 值最大的方案。
分配问题与匈牙利法
C (95 c ij )
解: M=95,令
10 0 C = 13 9
0 1 X= 0 0
3 8 12 5
22 17 16 15
5 0 5 7
0 0 1 0
《运筹学匈牙利法》课件
总结
匈牙利算法的优缺点和适 用范围
匈牙利算法具有较高的精度和效 率,但受数据结构限制,应用对 象有一定局限性。
匈牙利算法的进一步研究 方向
运筹学在日常生活中的重 要性和应用前景
未来可继续深入探究匈牙利算法 和其他优化算法在实际问题中的 应用,完善算法理论和算法应用。
随着科技的不断发展,运筹学在 日常生活中的应用前景越来越广 泛,对提高效率和优化资源分配 具有重要意义。
的权值之和达到最大。
解决方案
匈牙利算法
匈牙利算法是解决二分图匹 配问题最经典的算法之一, 在求解最大权匹配和最小路 径覆盖问题方面都有广泛应 用。
拓展匈牙利算法
拓展匈牙利算法是一种扩展 了匈牙利算法的新算法,可 以有效解决复杂数据结构中 的匹配问题。
Байду номын сангаас
应用案例分析
将匈牙利算法应用于实际问 题的案例分析,深入了解如 何应用该算法求解实际问题, 加深理解和应用。
匈牙利法的目的和意义
匈牙利法可以帮助我们有效解决 二分图匹配问题,例如任务分配、 稳定婚姻问题等。
问题解析
1
最小路径覆盖问题
指在一个有向无环图(DAG)里选出尽
最大权匹配问题
2
可能少的路径,这些路径覆盖了DAG图 上的每个点恰好一次。
是一类用二分图描述的优化问题,给定
一个二分图,找到一个匹配使得匹配边
《运筹学匈牙利法》PPT 课件
运筹学匈牙利法是一种优化算法,用于解决二分图匹配问题。本课件将介绍 匈牙利法的背景、意义、解析以及应用案例分析。
背景介绍
运筹学在实际生活中的应用 匈牙利法的提出背景
运筹学的方法广泛应用于物流、 交通、能源、金融等领域,帮助 优化资源分配,提高效率。
整数规划解法-匈牙利 算法部分
max Z=CX
maxZ=CX (B) AX=b X 0
AX=b
(A) X 0
X为整数 (B)为(A)的松弛问题。
3
(2)替代问题的求解 max Z=CX
(B)
AX=b X 0
采用相应的方法(如图解法)求解出替代问题的 最优解,观察其是否满足整数解的要求。如其最 优解就为整数,则结束;如含有分数,则需要进 行分支定界操作。
实际含义:从事情的角度来考虑,表示此事分配给此人效率最高。
24
min
步骤二:继续产生零元素 方法:再找出矩阵每列的最小元素,再分 别从各列中减去它。
0 8 7 5 0 8 11 0 10 4 11 0 2 3 5 0 2 3 0 11 9 5 0 11
31
问
题
2 5 (0) 8 11 (0) 5 4 2 3 (0) 0 0 11 4 5
只能对三个零元素进行标定(代表独立的零 元素只有三个),后续如何操作?
32
非直观法-步骤3(第一种情形)
(3) 重复(1)、(2)两个步骤,可能出现三种 情况: ① 效率矩阵每行都有一个打( )号的零元 素,很显然,按上述步骤得到的打( )号 的零元素都位于不同行不同列,只要令 对应打( )号零元素对应的决策变量xij=1 就找到了问题的最优解;
人
从人的 角度看 从任务 角度看
工作 译成英文 译成日文 译成德文 译成俄文
甲 2 15 13 4
乙 10 4 14 15
丙 9 14 16 13
丁 7 8 11 9
12
指派问题的一般模型
假设: [aij]表示指派问题的效率矩阵 xij表示决策变量,决策变量的取值:
整数规划---匈牙利法
Step4:增加(转移)零元素 a.求出未被直线覆盖的元素中的最小值k(本例中 k=2). b.对打√行减去k,对打√列加上k go to step2
2 (0) 8 11 (0) 5 2 3 (0) 0 13 4
√
5 √ 4 0 √ 5
0 (0) 6 13 (0) 5 4 3 (0) 0 11 2
i =1 j =1 n n
∑x
i =1 n j =1
n
ij
=1 =1
∑x
ij
xij = 0或 ,i = 1 ~ n, j = 1 ~ n 1
显然,这是一个典型的0-1规划问题。也可以看成是一 个产量和销量为1的运输问题。可以用相应方法求解。 但有解分配问题更有效的方法—匈牙利法
匈牙利法
由最大匹配问题的讨论可知,可行解可用一个0-1矩阵 给出。如前例
2 2 4 4 0 0 4 3 6 5 0 4 2 1 0 2 5 0 3 6 3 2 3 1 7 -1 -2
指派问题与匈牙利法
2)试指派(找独立0元素) )试指派(找独立 元素 元素)
2 2 4 4 0
0 4 2 4 5 0 3 0 1 0 1 3 0 3 5 1 2 3 0 5
所以,给出求最大匹配的匈牙利算法
x1 x2 设A = x3 x4 x5
1 0 0 0 0
y1
y2
1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1
y3
y4
y5
求最大匹配。
有一份中文说明书,需译成英、日、德、俄四种文字,分别 记为E、J、G、R,现有A、B、C、D四人,他们将中文翻 译成不同语种,所需时间如表3-1.问应分配何人去完成何工 作,使所需总时间最少(一人做一件事)。
匈牙利解法
任务二 运输路线的优化技术
• 四、节约里程法 • 配送路线是指各送货车辆向各个客户送货时所要经过的路 线。配送路线合理与否对配送速度、成本、效益影响很大, 采用科学的、合理的方法来优化配送路线,是配送管理中 非常重要的工作。
任务二 运输路线的优化技术
• 2、配送路线优化的方法 • (1)VSP网络图的原理 • 在有很多配送去向的情况下,使用多少辆车,各 辆车按照什么路线运行才能使整个运行距离最短, 或使配送费用最低,这是配送路线优化的问题。 解决这一问题的最有代表性的方法是VSP (Vehicle Scheduing Program)网络图。VSP 可称为车辆安排程序方法。 •
• 解:①作一个没有对流的流向图,用“去线破圈”的方法, 去一线破一圈,有几个圈去掉几条线,把有圈的交通图, 化为不成圈的交通图。一般是去掉长度最长的交通线,比 如,去掉A1B4(7km),破A1B1B2A3B4圈,在去掉 A3B3线(4km),破B2A2B3A3圈,这样,原来有圈的 交通图,变成了不成圈的交通图。
任务一
运输方式的选择
• (二)考虑竞争因素的方法 • 运输方法的选择如直接涉及到竞争优势,则应采用考虑竞 争因素的方法。当买方通过供应渠道从若干个供应商处购 商品时,物流服务和价格就会影响到买方对供应商的选择。 反之,供应商也可以通过供应渠道运输方式的选择控制物 流服务的这些要素,影响买方的惠顾。 •
任务二 运输路线的优化技术
• ②用于求检验数的方法——位势法 • ③用霍撒克法则检验 检验数Aij=Cij-(Ui+Vj)>=0,否 则要进行调整。 • 新方案是否是最优方案,还需要对它进行检验。经计算, 该新方案的所有检验数都是非负的,说明这个方案已经是 最优调运方案了。
整数规划---匈牙利法
x1 (1) 1 0 0 0 x2 0 (1) 1 0 0 x3 0 1 0 0 (1) x4 0 0 (1) 0 0 x5 0 0 1 (1) 1
y1
y2
y3
y4
y5
但礼让原则未必都能得到最大 匹配,其次礼让原则当规模大 时无法使用,且无法用计算机 实现
z' = ∑∑C'ij xij =∑∑Cij xij − a∑xij + b∑xij = ∑Cij xij − a + b = z − a + b
j =1 i =1 n n
利用这个性质,可使原效益矩阵变换为含有很多零 元素的新的矩阵(即每行减去该行的最小值,再每列 也类似),其余C’ij ≥0. 如果C=(C’ij)有n个不同行,不同列的零元素,以下 简称为独立的零元素,则令矩阵x=( xij )中,对这n个独 立的零元素位置取1,其余取0,代入目标函数得z’= 0,它一定是最小(因为C’ij ≥0 )
Step4:增加(转移)零元素 a.求出未被直线覆盖的元素中的最小值k(本例中 k=2). b.对打√行减去k,对打√列加上k go to step2
2 (0) 8 11 (0) 5 2 3 (0) 0 13 4
√
5 √ 4 0 √ 5
0 (0) 6 13 (0) 5 4 3 (0) 0 11 2
进一步考虑
指派问题用匈牙利法计算,模型需要满足的形式: (1)目标函数是求最小值 (2)效益矩阵必须是n阶方阵 (3)效益矩阵中每个元素Cij ≥0,且是常数
如人员分配问题:
x1 x2 x3 x4 x5 y1 y2 y3 y4 y5
x1 x2 A = (aij ) = x3 x4 x5 1 0 0 0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 整数规划
B、任务分配问题的数学模型
设:xij为第i个工人分配去做第j项任务 aij为第i个工人为完成第 j 项任务时的工时消耗。则
1 当分配第j项任务给第i个工人时 x ij 0 当不分配第j项任务给第i个工人时
i,j=1,2,…,n
由于每人只允许分 配一项任务, 且每项任务只能由 一人来完成, 故其数学模型、目 标函数及约束条件 如下:
定理1
设一个任务分配问题的效率矩阵为{aij},若{aij}中每一行元素分别减去 一个常数ui,每一列元素分别减去一个常数vj,得到一个新的效率矩阵{bij}, 其中一个元素bij=aij-ui-vj,则{bij}的最优解等价于{aij}的最优解。
第四章 整数规划
定理2
若一个方阵中的一部分元素为零,一部分元素非零,则覆盖方阵中所 有元素的最少直线等于位于不同行、不同列的零元素最多个数。
m
m
a ij x ij
这样得到新效率矩阵的最优解,根据定理 1,他也是原问题的最优解。 (3)验证最优解的方法:设法用最少的直线数覆盖方阵中位于不同行、 不同列的零元素。 如果覆盖所有零元素的最少直线数等于m,则得到最优解,否则不是
第四章 整数规划
3、匈牙利解法的计算步骤: 第一步:效率矩阵的初始变换----零元素的获得 (1)行变换:找出每行的最小元素,该行各元素减去这个最小元素。 (2)列变换:找出每列的最小元素,该列各元素减去这个最小元素。
分配问题与匈牙利法
C (95 c ij )
解: M=95,令
10 0 C = 13 9
0 1 X= 0 0
3 8 12 5
22 17 16 15
5 0 5 7
0 0 1 0
用匈牙利法求解C’,最优解为:
1 0 0 0 0 0 0 1
表
非最优阵的变换
第四章 整数规划
3、匈牙利解法的计算步骤: 第四步:重新标号
抹掉原来的标号,回到最优性检验,并进行重新标号,直到得到最优解
表
0 2 1 // 0
Hale Waihona Puke // 0试分配过程// 0
7
4 0 2
0
2 4
2 4 0 0
0 2 1 0 //
经变换后的效率矩阵,其每行、每列至少有一个零元素。
4 9 8 6
1
8 4 5
8
4
6 7
2 3 7 5 3 5 2 4
0 4 1 3
7 0 3 5
1 0 3 2 0 2 1 0
0
1 8 4
0
7 4
0
表所示,最终表为最优解,此时甲→D,乙→B,丙→A,丁→C 目标函数为 maxf(x)=15+7+13+15=50
分配问题与匈牙利法
非标准型的指派问题: 匈牙利法的条件是:模型求最小值、效率cij≥0。 当遇到各种非标准形式的指派问题时,处理方 法是先将其转化为标准形式,然后用匈牙利法 来求解。
13 8 7 2
2
1 7 0 12 0 0 4 2
6
11
0
4 2
11 8 9 0 1 3 2
1 8 4
0 1 1 0 8 0 0 4
零元素上打上括号,并划去打括号零元素同列的其他零元素。 如果该行没有零元素,或有两个或多个零元素(已划去的不记在 内),则转下行 (2)逐列检查:依照行检查的方法从第一列开始逐列检查。
表 最优性检验
0 2 2 1 0 7 1 (0) 4 0 3 2 1 3 0 2 3 5 0 1 1 4 (0) 3 1 3 ( 0) 3 5 0 /
7
4
0
4
0 2
2
2 4 // 0 0
0 2 1 0//
// 0
7
4
0
4
0 2
2
2 4 // 0 0
第四章 整数规划
D、目标函数为最大的任务分配问题
如果目标函数为MAX型,则不属于标准的任务分配模型,不 能直接运用匈牙利解法求解,这就需要先对max模型进行变换, 然后再求解。 例:有甲、乙、丙、丁4人分别操作4台机器,每个工人操作不 同机器时的产值如表,求对4个工人分配不同机器时总产 值最大的方案。
第四章 整数规划
步骤如下: 对无()的行打√ 对打√行上所有零元素的列打√ 在打√的列上有()的行打√ 重复步骤,直到过程结束 对没有打√的行划横线,对所有打√的列划垂线,这时得 到覆盖矩阵中所有零的最少直线数
( 0) 2 2 1 1 4 (0) 3 1 3 (0) // 3 5 0 0// 7 ( 0) 2 2 1 1 4 (0) 3 1 3 (0) 3 5 0 0 7
第四章 整数规划
3、匈牙利解法的计算步骤: 第三步:非最优阵的变换——零元素的移动
当表中的覆盖所有零的直线数小于m时,得到的不是最优解,因此需要 对表中矩阵进一步进行变换,过程如下: ① 在未被直线覆盖的所有元素中找出最小元素 ② 所有未被直线覆盖的元素都减去这个最小元素 ③ 覆盖线十字交叉处的元素都加上这个最小元素
匈牙利数学家考尼格(Konig)提出的,得名匈牙利解法 (the Hungarian Method of Assignment) 1、匈牙利解法的基本思想---适用条件 基于任务分配问题的标准型,标准型要满足下述三个条件: (1)目标要求为min (2)效率矩阵{aij}为n阶方阵 (3)阵中所有元素aij≥0,且为常数
即甲安排做第二项工作、乙做第一项、丙做第四项、丁做 第三项, 最高总分Z=92+95+90+80=357
分配问题与匈牙利法
2. 不平衡的指派问题
当人数m大于工作数n时,加上m-n项虚拟工作,例如:
5 11 8 6 3 9 6 14 4 2 10 3 17 5 1 5 11 8 6 3 9 6 14 4 2 10 3 17 5 1 0 0 0 0 0 0 0 0 0 0
若某人可做几件事,则将该人化作相同的几个“人”来接受 指派,且费用系数取值相同。 例如:丙可以同时任职A和C工作,求最优指派方案。
甲 乙 丙 15 6 10 20 5 13 10 4 16 9 7 17
15 6 10 10 20 5 13 13 10 4 16 16 9 7 17 17
minf
m
x
i 1 j 1
m m
a ij x ij
x 1 ij j 1 m x ij 1 i 1 x 0 ij
i 1,2, , m j 1,2, , m
或1
第四章 整数规划
C、任务分配问题的解法-----匈牙利解法
/ 0
7
第四章 整数规划
最优性检验后可能可能出现的情况
① 每行都有一个零元素标有括号,显然这些括号零在不同行 和不同列,因此得到最优解。 ②每行、每列都有两个或更多的零,这是从剩有零元素最少的 行开始,比较这行各零元素所在列中零元素的个数,选择零 元素少的那列的这个零元素打括号,划掉同行同列的其他零 元素,然后重复以上步骤,直到所有零都做了标记。 ③矩阵中所有零都做了标记,但标有()的零元素个数少于 m,此时就可以找出能覆盖矩阵中所有零元素的最少直线的 集合。 步骤如下:
分配问题与匈牙利法
4. 某事一定不能由某人做的指派问题
将该人做此事的效率系数取做足够大的数,可用M表示
。
例 分配甲、乙、丙、丁四个人去完成A、B、C、D、E五 项任务。每个人完成各项任务的时间如表所示。由于任务 数多于人数,考虑任务E必须完成,其他4项中可任选3项完 成。试确定最优分配方案,使完成任务的总时间最少。
当人数m小于工作数n时,加上n-m个人,例如
15 6 10 20 5 13 10 4 16 9 7 17
15 6 10 0 20 5 13 0 10 4 16 0 9 7 17 0
分配问题与匈牙利法
3. 一个人可做几件事的指派问题
人员 任务 A 25 B 29 C 31 D 42 E 37
0 4 1 3
7 0 3 5
1 3 0 0
表 效率 矩阵 的 初始 变换
第二步:最优性检验
检查能否找到m个位于不同行、不同列的零元素,即检查覆盖所有零元 素的直线是否为m条
第四章 整数规划
3、匈牙利解法的计算步骤: (1)逐行检查:从第一行开始,如果该行只有一个零元素,就在这个
人员 任务 A 25 B 29 C 31 D 42 E 37
甲
乙
丙 丁
39
34 24
38
27 42
26
28 36
20
40 23
33
32 45
分配问题与匈牙利法
解: 1) 这是不平衡的指派问题,首先转换为标准型,再用 匈牙利法求解。 2) 由于任务数多于人数,所以假定一名虚拟人,设为戊。 因为工作E必须完成,故设戊完成E的时间为M(M为非 常大的数),其余效率系数为0,则标准型的效率矩阵表 示为:
分配问题与匈牙利法
1. 最大化指派问题
处理方法:设m为最大化指派问题系数矩阵C中最大元素。
令矩阵B=(m-cij)nn则以B为系数矩阵的最小化指派问题 和原问题有相同的最优解。
例 某人事部门拟招聘4人任职4项工作,对他们综合 考评的 得分如下表(满分100分),如何安排工作使 总分最多。