高数-矩阵的概念及运算

合集下载

高等数学教材矩阵

高等数学教材矩阵

高等数学教材矩阵在高等数学教材中,矩阵是一个重要的概念。

矩阵具有广泛的应用,并在许多领域中起着关键作用,如线性代数、概率论、计算机图形学等等。

本文将详细介绍矩阵的定义、基本运算、特殊矩阵等内容,以帮助读者更好地理解和应用矩阵。

一、矩阵的定义矩阵是一个由m行n列元素排列成的矩形阵列。

其中,m表示矩阵的行数,n表示矩阵的列数。

矩阵中的每个元素可以是任意的数值,可以是实数或复数。

我们用大写字母A、B等来表示矩阵。

二、矩阵的基本运算1. 矩阵的加法:对于两个行数和列数相同的矩阵A和B,它们的和记作A + B,即A和B的对应元素相加得到新的矩阵。

2. 矩阵的数乘:将一个矩阵A的每个元素都乘以一个常数k,得到新的矩阵kA。

3. 矩阵的乘法:对于一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘积记作AB,即A的行与B的列相乘,得到一个新的m行p列的矩阵。

三、特殊矩阵1. 零矩阵:所有元素均为零的矩阵称为零矩阵,用0表示。

2. 单位矩阵:主对角线上的元素均为1,其余元素均为0的矩阵称为单位矩阵,用I表示。

3. 对角矩阵:除了主对角线上的元素外,其余元素都为0的矩阵称为对角矩阵。

4. 转置矩阵:将矩阵A的行和列对调得到的新矩阵称为A的转置矩阵,记作A^T。

四、矩阵的性质与定理1. 矩阵的加法具有交换律和结合律。

2. 数乘与矩阵的加法满足分配律。

3. 矩阵的乘法具有结合律,但一般不满足交换律。

4. 矩阵的转置满足转置的转置法则,即(A^T)^T = A。

五、矩阵的应用1. 线性方程组的求解:矩阵可用于解决线性方程组,通过矩阵的运算,可以转化为求解矩阵的逆或行列式等问题。

2. 矩阵的特征值与特征向量:通过矩阵的特征值和特征向量,可以研究矩阵的稳定性、振动问题等。

3. 矩阵在图像处理中的应用:计算机图形学中,矩阵可以用于表示和处理图像,如图像的旋转、缩放、平移等操作。

总结:矩阵是高等数学中的重要概念,具有广泛的应用。

大学高等数学第六章2矩阵及其运算

大学高等数学第六章2矩阵及其运算

1 2 1 4
D
142
2 3 1 5
3 1 2 11
编辑ppt
5111
2 2 1 4
D1 2
3
1
142 5
0 1 2 11
11 5 1
1 2 2 4
D3 2
3
2
426 5
3 1 0 11
15 1 1
1 2 1 4
D2 2
2
1
284 5
3 0 2 11
11 1 5
1 2 1 2
D4 2
要的“矩形数表”,在数学学科中,则可用矩阵
来表示。
编辑ppt
● 矩阵的概念
矩阵的定义(见书P233定义1) 矩阵的一般形式如下:
a11 a12 ......a1n
a
21
a 22 ......a 2n
......
a m 1 a m 2 . . . . . .a m n
a 其中:i j 称作矩阵的元素。
Am nO m nAm n
(2)结合律 (A+B)+C = A+(B+C) 编辑ppt
●矩阵的减法
a11

A
a m1
a1n
a mn
Am nAm nO m n
,则称矩阵
a11 a m1
a1n
为A
的负矩阵,记作
A

a mn
若A、B为同型矩阵,则规定 ABA(B),
即 ABaijbij m n编辑ppt
作AB 。
注意:同型是相等的必要条件。 如:
2 0 0
0
0
2 0
0
2
2 0

高数-矩阵的概念及运算

高数-矩阵的概念及运算

a21 a22
an1 an2
an1 an2 ann
a1n
a2n
ann
显然, n 阶方阵的转置仍然是n 阶方阵. (AT)T =A.
系数矩阵和增广矩阵
例2. 2. 1 三元线性方程组
x1 2x2 3x3 8, 1 2 3
5x2 2x3 4,
2 x1
3x3 2
0 2
10 6 5
2
3 1
求全年电视销售情况? 7 10 3 6 5 5
1
2
2 3 0 1
定义
矩阵——矩形数表
a11
A
a21
M
a12 L a22 L M
a1n
a2n
M
用大写黑体拉丁字母A,B,C等表示
am1 am2 L amn
元素 aij 数学理论中,元素可以是数,也可以是其他对象; 方阵:m=n时, 称n阶方阵或n阶矩阵; 1阶矩阵就是一个数.
接着用中行“中禾不尽者遍乘左行而以直除……”, 即接着消去左右两行中的中禾每秉的实, 同现代的解 一次方程组的加减消元法十分一致.
最后: 左方下禾不尽者,上为法,下为实,实即下禾 之实。求中禾,以法乘中行下实,而除下禾之实。 余如中禾秉数而一,即中禾之实。求上禾,亦以法 乘右行下实,而除下禾、中禾之实。余如上禾秉数 而一,即上禾之实。实皆如法,各得一斗。”
法国的彪特在刘徽之后约一千三百年的《算术》一 书中开始用不甚完整 (没有认识负数) 的加减消元法 解联立一次方程组。
前面解题过程中的方框即可视为矩阵, 可见矩阵并 以矩阵解一次方程组是我国古代数学家首创.
2.2.2 矩阵的加减和倍数
1、矩阵的加法
1) 定义
设有两个m n矩阵 A aij , B bij , 那末矩阵

矩阵的定义与基本运算

矩阵的定义与基本运算

矩阵的定义与基本运算矩阵是线性代数中的重要概念,广泛应用于各个领域,如数学、物理、计算机科学等。

它是由一组数按照规定的排列方式组成的矩形阵列。

在本文中,我们将探讨矩阵的定义、基本运算以及其在实际应用中的重要性。

一、矩阵的定义矩阵可以用一个大写字母表示,如A、B等。

一个m行n列的矩阵可以表示为A=[a_ij],其中1 ≤ i ≤ m,1 ≤ j ≤ n。

矩阵中的每个元素a_ij都是一个实数或复数。

矩阵的行数m和列数n分别称为矩阵的维数,记作m×n。

二、矩阵的基本运算1. 矩阵的加法矩阵的加法是指对应位置上的元素相加。

如果两个矩阵A和B的维数相同,即都是m×n,则它们的和记作C=A+B,其中C的维数也是m×n。

具体而言,C的第i行第j列的元素等于A的第i行第j列的元素与B的第i行第j列的元素之和。

2. 矩阵的数乘矩阵的数乘是指将矩阵的每个元素都乘以一个常数。

如果矩阵A的维数是m×n,常数k是一个实数或复数,则kA表示将A的每个元素都乘以k得到的新矩阵。

具体而言,kA的第i行第j列的元素等于k乘以A的第i行第j列的元素。

3. 矩阵的乘法矩阵的乘法是指将两个矩阵相乘得到一个新的矩阵。

如果矩阵A的维数是m×n,矩阵B的维数是n×p,则它们的乘积记作C=AB,其中C的维数是m×p。

具体而言,C的第i行第j列的元素等于A的第i行的元素与B的第j列的元素分别相乘后再相加得到的结果。

4. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。

如果矩阵A的维数是m×n,则它的转置记作A^T,维数是n×m。

具体而言,A^T的第i行第j列的元素等于A的第j行第i列的元素。

三、矩阵在实际应用中的重要性矩阵在实际应用中具有广泛的重要性。

以下是矩阵在几个领域中的应用示例:1. 线性代数矩阵在线性代数中起着重要的作用。

线性方程组的求解可以通过矩阵的运算来实现。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。

本文将介绍矩阵的基本概念、运算规则以及常见的应用。

一、矩阵的基本概念矩阵是由数个数排列成的矩形阵列。

矩阵可以用方括号表示,例如:A = [a11, a12, a13;a21, a22, a23;a31, a32, a33]其中a11、a12等为矩阵元素,按行排列。

矩阵的行数为m,列数为n,则该矩阵称为m×n矩阵。

矩阵可以是实数矩阵,也可以是复数矩阵。

实数矩阵的元素全为实数,复数矩阵的元素可以是复数。

例如:B = [3+2i, -4-7i, 5+6i;-2+3i, 1-5i, -2i]二、矩阵的运算1. 矩阵的加法和减法若A、B为同型矩阵(行数和列数相同),则有:A +B = [a11+b11, a12+b12, a13+b13;a21+b21, a22+b22, a23+b23;a31+b31, a32+b32, a33+b33]A -B = [a11-b11, a12-b12, a13-b13;a21-b21, a22-b22, a23-b23;a31-b31, a32-b32, a33-b33]2. 矩阵的数乘若A为m×n矩阵,k为标量,则有:kA = [ka11, ka12, ka13;ka21, ka22, ka23;ka31, ka32, ka33]3. 矩阵的乘法若A为m×n矩阵,B为n×p矩阵,则它们的乘积AB为m×p矩阵,满足:AB = [c11, c12, c13;c21, c22, c23;c31, c32, c33]其中:c11 = a11b11 + a12b21 + a13b31c12 = a11b12 + a12b22 + a13b32c13 = a11b13 + a12b23 + a13b33...c33 = a31b13 + a32b23 + a33b334. 矩阵的转置若A为m×n矩阵,则其转置记作A^T,为n×m矩阵,满足:A^T = [a11, a21, a31;a12, a22, a32;a13, a23, a33]三、矩阵的应用1. 网络图论矩阵可以用于表示和分析网络图论中的关系和连接。

矩阵知识点归纳范文

矩阵知识点归纳范文

矩阵知识点归纳范文矩阵是线性代数中一个重要的概念,具有广泛的应用。

矩阵可以表示一个线性方程组的系数矩阵,也可以用于描述图像处理、网络分析等领域。

以下是矩阵的基础知识点的归纳:1.矩阵的定义与表示:矩阵是一个有序的数表,通常用大写字母表示。

矩阵的元素可以是实数或复数。

矩阵通常用方括号[]或圆括号(表示,不同的元素用逗号或空格隔开。

矩阵的行数与列数分别称为矩阵的阶。

2.矩阵的运算:-矩阵的加法:两个相同阶的矩阵相加,即对应位置的元素相加。

-矩阵的乘法:两个矩阵相乘,第一个矩阵的列数必须等于第二个矩阵的行数。

结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

矩阵乘法可以表示为A*B=C。

3.矩阵的转置:矩阵的转置是将原矩阵的行变为列,列变为行。

转置后的矩阵记作A^T。

转置满足以下性质:-(A^T)^T=A-(A+B)^T=A^T+B^T-(k*A)^T=k*A^T4.矩阵的逆:对于一个n阶方阵A,如果存在一个n阶方阵B,使得A*B=B*A=I,其中I是单位矩阵,则称A可逆,B称为A的逆矩阵,记作A^(-1)。

要求A可逆的一个必要条件是A的行列式不等于零。

逆矩阵满足以下性质:-(A^(-1))^(-1)=A-(A*B)^(-1)=B^(-1)*A^(-1)-(k*A)^(-1)=(1/k)*A^(-1)5.矩阵的行列式:矩阵 A 的行列式用 det(A) 表示,是一个数值,用于判断矩阵是否可逆。

行列式满足以下性质:- 如果 A 的其中一行(列)为 0,或者 A 的两行(列)相同,则det(A)=0。

-交换A的两行(列),行列式的值取负。

-如果A的其中一行(列)的元素全部乘以一个非零常数k,行列式的值乘以k。

-将A的其中一行(列)的元素与另一行(列)对应位置的元素相加乘以一个常数k,行列式的值不变。

6.矩阵的秩:矩阵的秩是指矩阵行(列)的最大线性无关组中的向量个数。

秩可以用来判断矩阵的行(列)是否线性相关。

矩阵的定义及其运算规则

矩阵的定义及其运算规则

矩阵的定义及其运算规则矩阵是数学中的一种重要工具,用于表示数字和符号的矩形阵列。

矩阵由m行n列的数字或符号排列组成,每个数字或符号称为矩阵的元素。

矩阵通常用大写字母表示,例如A,B,C等。

矩阵的大小由它的行数和列数决定,并用m×n表示。

矩阵的运算规则包括加法、减法、数乘和乘法四种运算。

1.加法:对应位置上的元素相加对于相同大小的两个矩阵A和B,它们的加法定义如下:A+B=C其中C的元素由对应位置上的两个矩阵元素相加得到。

2.减法:对应位置上的元素相减对于相同大小的两个矩阵A和B,它们的减法定义如下:A-B=D其中D的元素由对应位置上的两个矩阵元素相减得到。

3.数乘:矩阵的每个元素与一个标量相乘对于一个矩阵A和一个实数k,它们的数乘定义如下:kA=E其中E的元素由矩阵A的每个元素与k相乘得到。

4.乘法:矩阵的行与列的对应元素相乘后求和对于两个矩阵A(m×n)和B(n×p),它们的乘法定义如下:AB=F其中F是一个m×p的矩阵,F的每个元素由矩阵A的其中一行与矩阵B的对应列的元素相乘后求和得到。

矩阵的运算满足以下一些基本性质:1.加法的交换律:A+B=B+A2.加法的结合律:(A+B)+C=A+(B+C)3.加法的零元素:存在一个零矩阵O,满足A+O=A4.减法的定义:A-B=A+(-B)5.数乘的结合律:(k1k2)A=k1(k2A)6.数乘的分配律:(k1+k2)A=k1A+k2A7.数乘的分配律:k(A+B)=kA+kB8.乘法的结合律:(AB)C=A(BC)9.乘法的分配律:A(B+C)=AB+AC和(A+B)C=AC+BC10.乘法的分配律:k(AB)=(kA)B=A(kB)矩阵的运算在应用中具有广泛的应用,包括线性代数、计算机图形学、优化、概率论等。

通过矩阵的运算规则,可以对线性方程组进行求解、描述线性变换、优化问题、图像处理等。

矩阵的运算规则是学习线性代数和其他数学领域的重要基础知识。

2.2高等数学矩阵的运算

2.2高等数学矩阵的运算

(2) 结合律: (A+B)+C = A+(B+C).
(3)
A
a11
a21
am1
a12
a22
am1
a1n
a2n
amn
aij
.
称为矩阵A的负矩阵.
(4) A+(–A) = O, A–B = A+(–B).
2
二、数与矩阵相乘
定义: 数与矩阵A=(aij)的乘积定义为(aij), 记作 A 或A, 简称为数乘. 即
x7 3
=(a11x1+a21x2+a31x3)x1+(a12x1+a22x2+a32x3)x2+(a13x1+a23x2+a33x3)x3
a11 x12
a22 x22
a33
x
2 3
(a12 a21 )x1 x2 (a13 a31 )x1 x3 (a23 a32 )x2 x3 .
4、共轭矩阵 定义: 当 A = (aij) 为复矩阵时, 用aij表示aij 的共轭 复数, 记A (aij ), 称 A 为A 的共轭矩阵. 运算性质
设A, B为复矩阵, 为复数, 且运算都是可行的, 则:
1 A B A B;
2 A A;
3 AB AB.
16
五、小结 加法 数与矩阵相乘
方阵A 为反对称矩阵的充分必要条件是: –A=AT.
例7: 设列矩阵X = (x1 x2 ···xn)T, 满足XTX = 1, E 为n 阶单位矩阵, H = E – 2XXT, 证明: H为对称矩阵, 且
HHT = E.
证明: 因为 HT = (E – 2XXT)T = ET– 2(XXT)T = E – 2XXT = H.

矩阵知识点完整归纳

矩阵知识点完整归纳

矩阵知识点完整归纳矩阵是现代数学中的一种重要数学工具,广泛应用于各个学科领域。

在线性代数中,矩阵是最基本的对象之一,研究的对象是矩阵的性质和运算规律。

本文将对矩阵的知识点进行完整归纳。

一、矩阵的定义与表示方法矩阵是m行n列的数表,由m×n个数组成。

它可以用方括号“[ ]”表示,其中的元素可以是实数、复数或其他数域中的元素。

矩阵的第i行第j列的元素记作a_ij。

二、矩阵的运算1.矩阵的加法:对应元素相加。

2.矩阵的减法:对应元素相减。

3.矩阵与标量的乘法:矩阵的每个元素都乘以该标量。

4.矩阵的乘法:第一个矩阵的行乘以第二个矩阵的列,求和得到结果矩阵的对应元素。

5.矩阵的转置:将矩阵的行与列互换得到的新矩阵。

6.矩阵的逆:如果一个n阶方阵A存在逆矩阵A^-1,则称A为可逆矩阵。

三、特殊矩阵1.零矩阵:所有元素均为0的矩阵。

2.单位矩阵:对角线上的元素均为1,其余元素均为0的矩阵。

3.对称矩阵:转置后与原矩阵相等的矩阵。

4.上三角矩阵:主对角线以下的元素均为0的矩阵。

5.下三角矩阵:主对角线以上的元素均为0的矩阵。

6.对角矩阵:只有主对角线上有非零元素,其余元素均为0的矩阵。

7.可逆矩阵:存在逆矩阵的方阵。

8.奇异矩阵:不可逆的方阵。

四、矩阵的性质和定理1.矩阵的迹:矩阵主对角线上元素之和。

2.矩阵的转置积:(AB)^T=B^TA^T。

3.矩阵的乘法满足结合律但不满足交换律:AB≠BA。

4.矩阵的乘法满足分配律:A(B+C)=AB+AC。

5.矩阵的行列式:用于判断矩阵是否可逆,计算方式为按行展开法或按列展开法。

6.矩阵的秩:矩阵的列向量或行向量的极大无关组中的向量个数。

7.矩阵的特征值与特征向量:Ax=λx,其中λ为特征值,x为特征向量。

8.矩阵的迹与特征值之间的关系:矩阵的迹等于特征值之和。

五、应用领域1.线性方程组的求解:通过矩阵运算可以求解线性方程组。

2.三角形面积计算:通过矩阵的行列式可以求解三角形的面积。

高一数学必修一 - 矩阵知识点总结

高一数学必修一 - 矩阵知识点总结

高一数学必修一 - 矩阵知识点总结
1. 矩阵的定义
矩阵是由数个数按一定规律排列成的矩形阵列。

一般用大写字
母表示矩阵,如A、B等。

2. 矩阵的基本运算
2.1 矩阵的加法
两个矩阵相加,要求它们的行数和列数相等,对应位置上的元
素相加。

2.2 矩阵的数乘
即将矩阵的每个元素都乘以一个数。

2.3 矩阵的乘法
两个矩阵相乘,要求第一个矩阵的列数等于第二个矩阵的行数。

3. 矩阵的转置
将矩阵的行变为列,列变为行,得到的新矩阵称为原矩阵的转
置矩阵。

4. 矩阵的特殊类型
4.1 零矩阵
所有元素都为0的矩阵。

4.2 单位矩阵
对角线上元素都为1,其余元素为0的矩阵。

4.3 对称矩阵
矩阵A的转置矩阵等于矩阵A本身。

4.4 三角矩阵
上三角矩阵或下三角矩阵,除了对角线上及其以下或以上的元素外,其余元素都为0。

5. 矩阵的逆
如果一个矩阵A与另一个矩阵B相乘等于单位矩阵,那么矩阵A就称为可逆矩阵,B称为其逆矩阵。

6. 矩阵的应用
矩阵在线性代数、几何学、计算机科学等领域有广泛应用,常用于表示线性方程组、图像处理、网络分析等问题。

以上是高一数学必修一中关于矩阵的知识点总结。

参考资料:。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算一、矩阵的基本概念矩阵是线性代数中的一种基本工具,它是由一组数按照矩形排列而成的表格结构。

矩阵由行和列组成,行表示矩阵的水平方向,列表示矩阵的垂直方向。

一个m行n列的矩阵可记作A = [aij],其中i代表行号,j代表列号,aij表示矩阵A在第i行第j列的元素。

二、矩阵的基本运算1. 矩阵的加法给定两个相同大小的矩阵A和B,它们的和矩阵C可以通过循环计算得到。

对应元素相加即可,即Ci,j = Ai,j + Bi,j。

2. 矩阵的数乘给定一个矩阵A和一个实数k,实数k与矩阵A的乘积矩阵B可以通过循环计算得到。

每个元素都乘以k,即Bi,j = k * Ai,j。

3. 矩阵的乘法矩阵的乘法涉及到两个矩阵A和B,前提是A的列数等于B的行数。

它们的乘积矩阵C可以通过循环计算得到。

行乘以列的规则是Ci,j = Σ(Ai,k * Bk,j),其中k代表循环的次数,Σ表示累加求和。

三、矩阵的特殊类型1. 零矩阵全为零的矩阵称为零矩阵,记作0。

2. 单位矩阵主对角线上元素全为1,其余元素全为0的矩阵称为单位矩阵,记作I。

3. 对角矩阵除了主对角线上的元素外,其余元素都为零的矩阵称为对角矩阵。

4. 转置矩阵将矩阵A的行变成列,列变成行得到的新矩阵称为A的转置矩阵,记作A^T。

四、矩阵的性质与应用1. 可逆矩阵如果一个方阵A存在一个方阵B,使得AB=BA=I,那么矩阵A称为可逆矩阵。

可逆矩阵的逆矩阵记作A^-1。

2. 矩阵的秩一个矩阵的秩是指矩阵中非零行的最小数目。

秩反映了矩阵所包含的独立行或列的数量。

3. 矩阵的应用矩阵在许多科学和工程领域中都有广泛的应用,例如线性方程组的解法、图像处理、数据压缩、网络分析等。

五、总结矩阵是线性代数中重要的数学工具,由行和列组成。

矩阵的基本运算包括加法、数乘和乘法,可以通过循环计算得到。

矩阵的特殊类型包括零矩阵、单位矩阵、对角矩阵和转置矩阵。

可逆矩阵和秩是矩阵的重要性质。

矩阵知识点归纳

矩阵知识点归纳

矩阵知识点归纳矩阵是线性代数中一种重要的数学工具,它广泛应用于科学、工程、计算机科学等领域。

本文将对矩阵的基本概念、运算法则以及常见的矩阵类型进行归纳总结。

一、矩阵的基本概念1. 矩阵的定义:矩阵是由m行n列的元素排列而成的矩形阵列,用大写字母表示,如A。

其中,m表示矩阵的行数,n表示矩阵的列数。

2. 元素:矩阵中的数值称为元素,用小写字母表示,如a。

矩阵A的第i行第j列的元素表示为a_ij。

3. 零矩阵:所有元素都为0的矩阵,用0表示。

4. 单位矩阵:主对角线上的元素为1,其他元素为0的矩阵,用I表示。

5. 行向量和列向量:只有一行的矩阵称为行向量,只有一列的矩阵称为列向量。

二、矩阵的运算法则1. 矩阵的加法:两个相同维数的矩阵相加,即对应位置的元素相加。

2. 矩阵的减法:两个相同维数的矩阵相减,即对应位置的元素相减。

3. 矩阵的数乘:用一个数乘以矩阵的每个元素。

4. 矩阵的乘法:矩阵乘法需要满足左矩阵的列数等于右矩阵的行数。

若A是m×n的矩阵,B是n×p的矩阵,那么A与B的乘积AB是m×p的矩阵,且AB的第i行第j列元素为A的第i行与B的第j列对应元素的乘积之和。

5. 转置:将矩阵的行和列对调得到的矩阵称为原矩阵的转置。

若A为m×n的矩阵,其转置记作A^T,即A的第i行第j列元素等于A^T的第j行第i列元素。

三、常见的矩阵类型1. 方阵:行数和列数相等的矩阵称为方阵。

2. 对角矩阵:主对角线以外的元素都为0的方阵称为对角矩阵。

3. 上三角矩阵:主对角线以下的元素都为0的方阵称为上三角矩阵。

4. 下三角矩阵:主对角线以上的元素都为0的方阵称为下三角矩阵。

5. 对称矩阵:元素满足a_ij=a_ji的方阵称为对称矩阵。

6. 反对称矩阵:元素满足a_ij=-a_ji的方阵称为反对称矩阵。

7. 单位矩阵:主对角线上的元素为1,其他元素为0的方阵称为单位矩阵。

四、矩阵的性质1. 矩阵的零点乘法:任何矩阵与零矩阵相乘,结果都是零矩阵。

第二章 矩阵及其运算总结

第二章 矩阵及其运算总结

§1 矩阵及其运算一、矩阵的基本概念(必考)矩阵,是由m*n个数组成的一个m行n列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置.比如,或表示一个m*n 矩阵,下标ij 表示元素位于该矩阵的第行、第列.元素全为零的矩阵称为零矩阵. 特别地,一个m*1矩阵,也称为一个 m维列向量;而一个 1*n矩阵B=(b1,b2,…,bn),也称为一个 n维行向量.当一个矩阵的行数m与烈数n 相等时,该矩阵称为一个 n阶方阵.若一个n阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: .单位矩阵与实数中的‘1’的运算相近.如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵是一个阶下三角矩阵.例题:1.A既是上三角矩阵,又是下三角矩阵,则A必是对角矩阵2.两矩阵既可相加又可相乘的充要条件是两矩阵为同阶方阵.3.A=(l≠n),则A的主对角线上个元素的和为 (设矩阵为2行3列的矩阵,找规律)二、矩阵的运算1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:.给定矩阵,我们定义其负矩阵为: .这样我们可以定义同型矩阵的减法为: .由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:(1)交换律:; (2)结合律:;(3)存在零元:;(4)存在负元:.2 、数与矩阵的乘法的运算律:(1);(2);(3);(4) .3 、矩阵的乘法(必考)设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵的列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且(即左行乘右列)矩阵的乘法满足下列运算律(假定下面的运算均有意义):(1)结合律:; (2)左分配律:;(3)右分配律:;(4)数与矩阵乘法的结合律:;(5)单位矩阵的存在性:.若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:, .注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(必考重要)(1)矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等.正是由于这个原因,一般来讲,在实数中的某些运算不再适应,如,,反过来,这些公式成立的条件又恰是A、B 可逆.例:A,B,C 是同阶矩阵,A ≠0,若AB=BC,必有B=C,则A满足可逆(2)两个非零矩阵的乘积可能是零矩阵,即未必能推出或者. 同理,A ≠0,B ≠0,而AB却肯能等于0.例题:(选择题5、6)(3)矩阵的乘法不满足消去律:如果并且,未必有 .4 、矩阵的转置:定义:设为矩阵,我们定义的转置为一个矩阵,并用表示的转置,即:.矩阵的转置运算满足下列运算律:(1);(2);(3);(4) (重要).5、对称矩阵:n 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵.若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当且仅当对任意的成立.从而反对称矩阵对角线上的元素必为零.对称矩阵具有如下性质:(1)对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;(2)两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;(3)如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即.运算性质:1) (2) (3)(4) (5)三、逆矩阵1.定义 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==.则A 称为可逆矩阵或非奇异矩阵.B 称为A 的逆矩阵,.由定义可得,A 与B 一定是同阶的,而且A 如果可逆,则A 的逆矩阵是唯一的.这是因为(反证法),如果1B 、2B 都是A 的逆矩阵,则有E A B AB ==11,E A B AB ==22,那么22212111)()(B EB B A B AB B E B B =====所以逆矩阵是唯一的.我们把矩阵A 的逆矩阵记作1-A .逆矩阵有下列性质: (1)如果A 可逆,则1-A 也可逆,且A A =--11)(.由可逆的定义,显然有A 与1-A 是互逆的. (2)如果A 、B 是两个同阶可逆矩阵,则)(AB 也可逆,且111)(---=A B AB .(必考重点) 这是因为 E A A AEA ABB A A B AB =⋅===------111111)())((E B B EB B B A A B AB A B ====------111111)())((,所以111)(---=A B AB .(必考重点)这个结论也可以推广到有限个可逆矩阵想乘的情形. (3)可逆矩阵A 的转置矩阵T A 也是可逆矩阵,且T T A A )()(11--=.这是因为E E A A A A T T TT===--)()(11,E E AA A A T T T T ===--)()(11所以 T TA A )()(11--=.(4)如果A 是可逆矩阵,则有11--=A A .这是因为E AA=-1,两边取行列式有 11=⋅-A A ,所以111--==A AA . 矩阵可逆的条件(1)n 阶方阵A 可逆的充分必要条件是| A | ≠ 0(也即r (A )= n );(2)n 阶方阵A 可逆的充分必要条件是A 可以通过初等变换(特别是只通过初等行(列)变换)化为n 阶单位矩阵;(3)n 阶方阵A 可逆的充分必要条件是A 可以写成一些初等矩阵的乘积;(4)n 阶方阵A 可逆的充分必要条件是A 的n 个特征值不为零;(5)对于n 阶方阵A ,若存在n 阶方阵B 使得AB = E (或BA = E ),则A 可逆,且A -1= B. 逆矩阵的有关结论及运算必考 ——求法方法1 定义法:设A 是数域P 上的一个n 阶方阵,如果存在P 上的n 阶方阵B ,使得AB = BA= E ,则称A 是可逆的,又称B 为A 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 惟一确定,记为A -1.例1:设A 为n 阶矩阵,且满足22A - 3A + 5E = 0,求A -1.【解】22 2 -12A - 3A + 5E = 02A - 3A = - 5E23-A - A =E 552323A (- A - E) = - A - E = E555523A A = - A - E55∴∴∴∴可逆且方法 2 伴随矩阵法:A -1= 1|A|A*.定理n 阶矩阵A = a ij 为可逆的充分必要条件是A 非奇异.且11211122221121n n nnnn A A A A A A A A A A A -⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭其中A ij 是|A|中元素a ij 的代数余子式.矩阵112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵,记作A*,于是有A -1=1|A|A*. 注 ①对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意A* = (A ji )n ×n 元素的位置及符号.特别对于2阶方阵11122122a a A a a ⎛⎫= ⎪⎝⎭,其伴随矩阵22122111*a a A a a -⎛⎫=⎪-⎝⎭,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律.②对于分块矩阵A B C D ⎛⎫⎪⎝⎭不能按上述规律求伴随矩阵.例2:已知101A=210325⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求A -1.【解】 ∵| A | = 2 ≠ 0 ∴A 可逆.由已知得111213212223313233A = - 5, A = 10, A = 7A = 2, A = - 2, A = - 2A = - 1, A = 2, A = 1 , A -1= 1|A| A* = 5115212211022511272171122⎛⎫-- ⎪--⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭方法3 初等变换法:注 ①对于阶数较高(n ≥3)的矩阵,采用初等行变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.②也可以利用1E A E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换求得A 的逆矩阵. ③当矩阵A 可逆时,可利用求解求得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法,仅通过初等变换即求出了A -1B 或CA -1.例3::用初等行变换求矩阵231A 013125⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵.【解】()231100125001125001A E 01301001301001301012500123110000611212500112500101301001301001910211100166311341006631310122111001663⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪---⎝⎭-- ⎪⎝⎭⎛--→---⎝⎫⎪⎪⎪⎪ ⎪⎪ ⎪⎭1113410066313A 010********1663-⎛⎫--⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭故 方法4 用分块矩阵求逆矩阵:设A 、B 分别为P 、Q 阶可逆矩阵,则:1111111111111111A A 000B 0C O A A A CB A O A O BD B O B B DA B B O A O B B O AO ----------------⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭例4:已知0052002112001100A ⎛⎫⎪ ⎪=⎪-⎪⎝⎭,求A -1.【解】 将A 分块如下:12005200211200110O A A A O ⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪⎪⎝⎭- ⎪ ⎪⎝⎭其中 125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可求得 1*1*1122121212111,2511||||3A A A A A A ---⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭ 从而11211120033110331200250O A A A O ---⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪== ⎪⎪⎝⎭ ⎪ ⎪- ⎪-⎝⎭方法5 恒等变形法求逆矩阵:有些计算命题表面上与求逆矩阵无关,但实质上只有求出矩 阵的逆矩阵才能算出来,而求逆矩阵须对所给的矩阵等式恒等变 形,且常变形为两矩阵的乘积等于单位矩阵的等式.例8 已知,且,试求.解 由题设条件得3.伴随矩阵 如果n 阶矩阵A 的行列式0≠A ,则称A 是非奇异的(或非退化的).否则,称A 是奇异的(或退化的).(n 阶矩阵A 可逆的充要条件是:|A|≠0)设n n ij a A ⨯=)(,ij A 是A 中元素)21(n j i a ij ,,,, =的代数余子式.矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111*(顺序变化,重点)称为A 的伴随矩阵. 矩阵n n ij a A ⨯=)(为可逆矩阵的充分必要条件是A 为非奇异矩阵,并且当A 可逆时,有*11A AA =-,伴随矩阵 例1. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=313132121A 判断A 是否可逆,如果可逆,求1-A .解: 因为01313132121≠=---=A ,所以A 可逆.又.13221)1(11211)1(;11312)1(71321)1(;63311)1(53112)1(;11332)1(93312)1(;83113)1(333323321331322322221221311321121111=---==-==---=-=--=-=--=-=---==--==--==---=+++++++++A A A A A A A A A所以 ⎪⎪⎪⎭⎫⎝⎛---==-1711691581*1A A A 四、分块矩阵一、分块矩阵的概念对于行数和列数较高的矩阵, 为了简化运算,经常采用分块法,使大矩阵的运算化成若干小矩阵间的运算,同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条纵线和横线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.矩阵的分块有多种方式,可根据具体需要而定注:一个矩阵也可看作以n m ⨯个元素为1阶子块的分块矩阵. 二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意,运算的两矩阵按块能运算,并且参与运算的子块也能运算,即,内外都能运算.1. 设矩阵A 与B 的行数相同、列数相同,采用相同的分块法, 若,,11111111⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=st s t st s t B B B B B A A A A A其中ij A 与ij B 的行数相同、列数相同, 则.11111111⎪⎪⎪⎭⎫ ⎝⎛++++=+st st s s t t B A B A B A B A B A2.设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A Ak 为数, 则.1111⎪⎪⎪⎭⎫ ⎝⎛=st s t kA kA kA kA kA 3.设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成,,11111111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=tr t r st s t B B B B B A A A A A其中pt p p A A A ,,,21 的列数分别等于tq q q B B B ,,,21 的行数, 则,1111⎪⎪⎪⎭⎫ ⎝⎛=sr s r C C C C AB 其中).,,2,1;,,2,1(1r q s p B A C t k kqpk pq ===∑=4. 分块矩阵的转置设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A A则.1111⎪⎪⎪⎪⎭⎫ ⎝⎛=T st T tT s T TA A A A A 5. 设A 为n 阶矩阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A O A O A A21, 其中),,2,1(s i A i =都是方阵, 则称A 为分块对角矩阵.分块对角矩阵具有以下性质:(1) 若 ),,2,1(0||s i A i =≠,则0||≠A ,且|;|||||||21s A A A A =(2) .112111⎪⎪⎪⎪⎪⎭⎫⎝⎛=----s A O A O A A(3) 同结构的对角分块矩阵的和、差、积、商仍是对角分块矩阵. 且运算表现为对应子块的运算。

大学数学易考知识点线性代数中的矩阵运算规则

大学数学易考知识点线性代数中的矩阵运算规则

大学数学易考知识点线性代数中的矩阵运算规则在大学数学中,线性代数是一门重要且基础的课程。

而在线性代数的学习过程中,矩阵运算规则是一个非常关键的知识点。

学好线性代数中的矩阵运算规则,不仅可以帮助我们更好地理解和应用线性代数的概念,还对于接触更高级的数学课程以及在实际问题中的分析与计算有着重要的作用。

一、矩阵的定义和表示方法矩阵是一种非常重要且灵活的数学工具,它是由一些数按照矩形排列组成的矩形阵列。

在线性代数中,矩阵通常使用大写的字母来表示,例如矩阵A,B,C等。

矩阵的元素可以是实数或复数。

矩阵的行数和列数分别称为矩阵的阶数,用m * n表示,其中m表示行数,n表示列数。

矩阵的表示方法有多种,常见的有行向量的表示方法和列表示方法。

行向量表示方法即将矩阵的元素按照行的顺序排列在一起,用方括号[ ]表示;列表示方法即将矩阵的元素按照列的顺序排列在一起,用方括号( )表示。

例如一个3阶2列的矩阵A可以表示为:A = [a11 a12][a21 a22][a31 a32]二、矩阵的加法和减法矩阵的加法和减法是矩阵运算中的基本运算之一。

对于两个相同阶数的矩阵A和B,它们的和与差的定义如下:矩阵A和B的和记为A + B,其定义为将A和B的对应元素相加而得到的矩阵。

即(A + B)ij = Aij + Bij,其中1<=i<=m,1<=j<=n。

矩阵A和B的差记为A - B,其定义为将A和B的对应元素相减而得到的矩阵。

即(A - B)ij = Aij - Bij,其中1<=i<=m,1<=j<=n。

需要注意的是,进行矩阵的加法和减法运算时,要求两个矩阵的阶数相同,即它们的行数和列数都相等。

否则,加法和减法运算是没有定义的。

三、矩阵的数乘矩阵的数乘是矩阵运算中的另一个基本运算。

给定一个矩阵A和一个数α,其数乘运算的定义如下:矩阵A与数α的乘积记为αA,其定义为将A的每个元素乘以α而得到的矩阵。

矩阵知识点总结大一

矩阵知识点总结大一

矩阵知识点总结大一矩阵知识点总结矩阵在线性代数中扮演着重要的角色,它是由若干相同维数的数构成的矩形阵列。

矩阵不仅在数学领域有着广泛的应用,还在物理、工程、计算机科学等众多领域中发挥着重要作用。

本文将对矩阵的相关知识点进行总结,旨在帮助大一学生深入理解和应用矩阵的概念。

一、矩阵的表示与运算矩阵可以通过方括号将其元素按行或按列排列来表示,例如一个 m 行 n 列的矩阵可用以下形式表示:A = [a_ij],其中 i 代表行号,j 代表列号,a_ij 代表矩阵 A 中第i 行第 j 列的元素。

矩阵的加法和减法:设 A、B 为同维数的矩阵,它们的和与差分别为:A +B = [a_ij + b_ij],A - B = [a_ij - b_ij]。

矩阵的数乘:对于矩阵 A 和常数 k,它们的数乘为:kA = [ka_ij]。

矩阵的乘法:设矩阵 A 为 m 行 n 列的矩阵,矩阵 B 为 n 行 p 列的矩阵,则它们的乘积为 m 行 p 列的矩阵 C,其中第 i 行第 j 列的元素为:c_ij = a_i1 * b_1j + a_i2 * b_2j + ... + a_in * b_nj。

矩阵的转置:矩阵 A 的转置记作 A^T,它是将矩阵 A 的行和列对调得到的新矩阵,即 a_ij^T = a_ji。

二、特殊矩阵1. 零矩阵:所有元素都为零的矩阵。

2. 方阵:行数等于列数的矩阵称为方阵。

3. 单位矩阵:主对角线上的元素为1,其余元素皆为零的方阵称为单位矩阵,通常用 I 或 E 表示。

4. 对角矩阵:除了主对角线上的元素外,其余元素皆为零的方阵称为对角矩阵。

5. 对称矩阵:满足 A^T = A 的矩阵称为对称矩阵。

6. 上三角矩阵和下三角矩阵:对于上三角矩阵,主对角线及其以上的元素都不为零,而其余元素都为零;下三角矩阵则相反。

三、矩阵运算的性质矩阵运算具有以下一些基本性质:1. 加法的交换律和结合律:对于任意矩阵 A、B 和 C,有 A + B = B + A 和 (A + B) + C = A + (B + C)。

矩阵知识点总结

矩阵知识点总结

矩阵知识点总结矩阵作为数学中重要的概念之一,在各个领域中都有广泛的应用,尤其在线性代数和计算机图形学中。

本文将基于这一主题,对于矩阵的相关知识点进行总结,以帮助读者更好地理解和应用矩阵。

一、矩阵的定义和表示矩阵是由m行n列元素排列而成的方形阵列。

我们可以用方括号表示一个矩阵,并用逗号分隔元素。

例如:A = [a11, a12, ..., a1n; a21, a22, ..., a2n; ...; am1, am2, ..., amn]其中a_ij代表第i行第j列的元素。

二、矩阵的运算1. 矩阵的加法和减法:对于两个具有相同行列数的矩阵A和B,它们的和(或差)是通过对应的元素相加(或相减)得到的,即:C = A + B (或C = A - B)其中C的每个元素c_ij等于a_ij与b_ij的和(或差)。

2. 矩阵的数乘:对于一个矩阵A和一个标量k,矩阵A的数乘是指将A的每个元素乘以k得到的新矩阵,即:B = k * A其中B的每个元素b_ij等于k与a_ij的乘积。

3. 矩阵的乘法:两个矩阵A和B的乘积C通过A的行与B的列的对应元素相乘并累加得到的矩阵,即:C = A * B其中C的第i行第j列的元素c_ij等于A的第i行与B的第j列对应元素的乘积之和。

三、矩阵的特殊类型1. 零矩阵:所有元素都为0的矩阵被称为零矩阵。

记作O。

2. 单位矩阵:主对角线上的元素全为1,其他元素全为0的矩阵被称为单位矩阵。

记作I。

3. 方阵:行数与列数相等的矩阵被称为方阵。

例如3x3、4x4的矩阵都是方阵。

四、矩阵的性质与应用1. 矩阵的转置:将矩阵A的行与列对调得到的新矩阵被称为矩阵A的转置,记作A^T。

例如,如果A = [a b; c d],则A^T = [a c; b d]。

2. 矩阵的逆:对于一个n阶矩阵A,如果存在一个n阶矩阵B,使得AB = BA = I,那么B被称为A的逆矩阵,记作A^(-1)。

只有非奇异矩阵才存在逆矩阵。

矩阵的概念及其线性运算

矩阵的概念及其线性运算

.第二章 矩阵§2.1 矩阵的概念及其线性运算学习本节内容,特别要注意与行列式的有关概念、运算相区别。

一.矩阵的概念矩阵是一张简化了的表格,一般地⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a a a a a 212222111211 称为n m ⨯矩阵,它有m 行、n 列,共n m ⨯个元素,其中第i 行、第j 列的元素用j i a 表示。

通常我们用大写黑体字母A 、B 、C ……表示矩阵。

为了标明矩阵的行数m 和列数n ,可用n m ⨯A 或()i jm na ⨯表示。

矩阵既然是一张表,就不能象行列式那样算出一个数来。

所有元素均为0的矩阵,称为零矩阵,记作O 。

两个矩阵A 、B 相等,意味着不仅它们的行、列数相同,而且所有对应元素都相同。

记作B A =。

如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵。

n 阶矩阵有一条从左上角到右下角的主对角线。

n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A 。

在n 阶矩阵中,若主对角线左下侧的元素全为零,则称之为上三角矩阵;若主对角线右上侧的元素全为零,则称之为下三角矩阵;若主对角线两侧的元素全为零,则称之为对角矩阵。

主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为E ,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100010001E n ⨯1矩阵(只有一行)又称为n 维行向量;1⨯n 矩阵(只有一列)又称为n 维列向量。

行向量、列向量统称为向量。

向量通常用小写黑体字母a ,b ,x ,y ……表示。

向量中的元素又称为向量的分量。

11⨯矩阵因只有一个元素,故视之为数量,即()a a =。

二.矩阵的加、减运算如果矩阵A 、B 的行数和列数都相同,那么它们可以相加、相减,记为B A +、B A -。

分别称为矩阵A 、B 的和与差。

B A ±表示将A 、B 中所有对应位置的元素相加、减得到的矩阵。

矩阵的概念和运算

矩阵的概念和运算

7.2 矩阵的概念和运算课题: 矩阵的概念和运算目的要求: 1.知道零矩阵、单位矩阵、对角矩阵、对称矩阵。

2.掌握矩阵的加法、数乘矩阵、矩阵乘法及转置等概念。

3.会利用矩阵表示线性方程组重点: 矩阵的加法、数乘矩阵、矩阵乘法 难点: 矩阵乘法 教学方法: 讲练结合 教学时数: 4课时 教学进程:一、矩阵的概念定义1 由m ×n 个数排成的m 行n 列数表⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a aa a a a a a 212222111211称为一个m 行n 列矩阵,简称为m ×n 矩阵.其中a ij 表示第i 行第j 列处的元素,i 称为a ij 的行指标,j 称为a ij的列指标.矩阵通常用A ,B ,C …大写字母表示,若需指明矩阵的行数和列数常写为n m ⨯A 或n m ij a A ⨯=)( .例如:⎪⎪⎭⎫⎝⎛-=321210A 为一个2×3矩阵.在以后的讨论中,还会经常用到一些特殊的矩阵,下面分别给出他们的名称:元素全为零的矩阵称为零矩阵,记作n m 0⨯或0,如:⎪⎪⎭⎫ ⎝⎛=⨯0000022 ,⎪⎪⎭⎫⎝⎛=⨯000000032 . 当m =n 时,称A 为n 阶矩阵(或n 阶方阵).只有1行(1×n )或1列(m ×1)的矩阵,分别称为行矩阵和列矩阵,如:()n a a a 11211 ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛12111n a a a .若方阵n n ij a A ⨯=)(的元素a ij =0(i ≠j ),则称A 为对角矩阵,a ii (i =1,2,…,n )称为A 的对角元,如⎪⎪⎭⎫⎝⎛-=5001A 为二阶对角矩阵. 对角元全为数1的对角矩阵称为单位矩阵,n 阶单位矩阵记为I n .形如⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a a a a a a 00022211211、⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n a a a a a a21222111000的矩阵分别称为上三角矩阵和下三角矩阵.把矩阵A 的行与列依次互换,得到的矩阵TA 称为矩阵A 的转置矩阵.即矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211的转置矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn n n m m Ta a a a a a a a a A212221212111.一个m 行n 列矩阵A 的转置矩阵TA 是一个n 行m 列的矩阵.定义2 如果两个m 行n 列的矩阵n m ij a A ⨯=)(,n m ij b B ⨯=)(的对应元素分别相等,即),,2,1;,2,1(n j m i b a ij ij ===那么就称这两个矩阵相等.例1 已知⎪⎪⎭⎫ ⎝⎛-+=b a b a A 33,⎪⎪⎭⎫⎝⎛-+=327d c d c B 而且A =B ,求a , b , c , d . 解 根据矩阵相等的定义,可得方程组⎪⎪⎩⎪⎪⎨⎧=--=+==+33237b a d c d c b a解得a =5, b =2, c =2, d =-1,即当a =5, b =2, c =2, d =-1时A =B .应当注意的是:矩阵与行列式是两个不同的概念,行列式是一个算式,计算结果是一个数,而矩阵是有数构成的一个数表;记法也不同,行列式用的是两条竖线,而矩阵用的是一对圆括号或中括号.二、 矩阵的加法和减法定义 两个m 行n 列的矩阵)(ij a A =与)(ij b B =相加(减),它们的和(差)为)(ij ij b a B A ±=±.显然,两个m 行n 列的矩阵相加(减)得到的和(差)仍是一个m 行n 列的矩阵.应注意,只有当两个矩阵的行数与列数分别相同时,它们才能作加减运算.容易验证,矩阵的加法运算满足以下规律: (1)交换律:A +B =B +A ;(2)结合律:(A +B )+C =A +(B +C ).例2 已知⎪⎪⎪⎭⎫⎝⎛---=123214420A 求A +A T 和A -A T . 解 ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎭⎫ ⎝⎛---=+201026160124212340123214420TA A ;⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛---=-047402720124212340123214420TA A .三、 数与矩阵相乘定义 一个数k 与一个m 行n 列矩阵)(ij a A =相乘,它们的乘积为)(ij ka kA =,并且规定Ak =kA .例如,设⎪⎪⎭⎫⎝⎛-=134765A ,那么⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯-⨯⨯⨯=268141210123242)7(262522A 四 矩阵与矩阵相乘设甲、乙两家公司生产Ⅰ、Ⅱ、Ⅲ三种型号的计算机,月产量(单位:台)为乙甲⎪⎪⎭⎫ ⎝⎛271624182025IIIII I ,如果生产这三种型号的计算机的每台的利润(单位:万元/台)为III II I ⎪⎪⎪⎭⎫ ⎝⎛7.02.05.0,则这两家公司的月利润(单位:万元)应为乙甲⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯+⨯1.341.297.0272.0165.0247.0182.0205.025,可见,甲公司每月的利润为29.1万元,乙公司的利润为34.1万元.矩阵与矩阵乘法的一般定义如下:定义 设m ×p 矩阵p m ij a A ⨯=)(,p ×n 矩阵n p ij b B ⨯=)(,则由元素),,2,1;,2,1(12211n j m i b a b a b a b a c pK Kj iK pj ip j i j i ij ===+++=∑=构成的m ×n 矩阵n m ij c C ⨯=)(称为矩阵A 与B 的乘积,记为C =AB .由定义可知:⑴A 的列数必须等于B 的行数,A 与B 才能相乘;⑵乘积C 的行数等于A 的行数,C 的列数等于B 的列数;⑶乘积C 中第i 行第j 列元素C ij 等于A 的第i 行元素与B 的第j 列元素对应乘积之和,即pj ip j i j i ij b a b a b a c +++= 2211.例3 设⎪⎪⎭⎫ ⎝⎛=123321A ,⎪⎪⎪⎭⎫ ⎝⎛=221331B ,⎪⎪⎭⎫ ⎝⎛=2301D ,求AB ,AD .解 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯=2660211233213213231231233211AB ;AD 无意义.例4 已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=100010001,333231232221131211I a a a a a a a a a A ,求AI 和IA .解 ;100010001333231232221131211333231232221131211A a a a a a a a a a a a a a a a a a a AI =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=.100010001333231232221131211333231232221131211A a a a a a a a a a a a a a a a a a a IA =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛= 由上例可知,单位矩阵I 在矩阵的乘法中与数1在数中的乘法中所起的作用相似.若两个矩阵A 与B 满足AB =BA ,则称A 与B 是可交换的. 由于矩阵乘法不满足交换律,所以在进行运算时,千万要注意,不能把左、右次序颠倒. 矩阵乘法满足如下运算规律: (1)结合律:(AB )C =A (BC );(2)分配律:A (B +C ) =AB + AC ,(B +C ) A = BA + CA ; (3)k (AB )= (kA ) B =A (kB ),k 为任意常数.例5 设⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛=2141,3140B A ,验证A 与B 可交换. 证 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=1028421413140AB ;⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=1028431402141BA ,因为AB =BA ,所以A 与B 可交换.设A 为n 阶矩阵,则 个k kA A A =(k 为正整数)称为矩阵A 的k 次幂.矩阵A 的运算满足kl l k l k l k A A A A A ==+)(,(k ,l 为正整数),由于矩阵乘法一般不满足交换律,因此一般来说k k kB A AB ≠)(.例6 已知⎪⎪⎭⎫ ⎝⎛-=1331A ,求A 3. 解;232322133113312⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=A .8008133123232223⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---==A A A 五、 利用矩阵表示线性方程组对于线性方程组,22112222212111212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211,,,2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m n b b b B x x x X 根据矩阵乘法⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n mn m m n n x x x a a a a a a a a a AX 21212222111211,它是一个m 行一列的矩阵,根据矩阵相等的定义可得,21221122221211212111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++++++m n mn m m n n n n b b b x a x a x a x a x a x a x a x a x a 所以方程组可以用矩阵的乘法B AX =来表示.方程组中系数组成的矩阵A 称为系数矩阵,方程组中系数与常数组成的矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛m mn m m n n b a a a b a a a b a a a 21222221111211称为增广矩阵,记为A ~.例7 利用矩阵表示线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++=+++14322243232414324321432143214321x x x x x x x x x x x x x x x x .解 设,1221,,14322143321443214321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=B x x x x X A 因为B AX =,所以方程组可表示为⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛122114322143321443214321x x x x .小结本讲内容:强调1.矩阵的加法、数乘矩阵、矩阵乘法。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接着用中行“中禾不尽者遍乘左行而以直除……”, 即接着消去左右两行中的中禾每秉的实, 同现代的解 一次方程组的加减消元法十分一致.
最后: 左方下禾不尽者,上为法,下为实,实即下禾 之实。求中禾,以法乘中行下实,而除下禾之实。 余如中禾秉数而一,即中禾之实。求上禾,亦以法 乘右行下实,而除下禾、中禾之实。余如上禾秉数 而一,即上禾之实。实皆如法,各得一斗。”
a21 a22
an1 an2
an1 an2 ann
a1n
a2n
ann
显然, n 阶方阵的转置仍然是n 阶方阵. (AT)T =A.
系数矩阵和增广矩阵
例2. 2. 1 三元线性方程组
x1 2x2 3x3 8, 1 2 3
5x2 2x3 4,
2 x1
3x3 2
0 2
A 与 B 的和记作A B,规定为
a11 b11
A
B
a21
b21
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n a2n b2n
amn bmn
说明
只有当两个矩阵是同型矩阵时,才能进行加法
运算.
例如 (即引例)
12 3 5 1 8 9 1 9 0 6 5 4 3 6 8 3 2 1
150
2.2 矩阵及其运算
矩阵也是是线性代数的重要工 具,矩阵理论的应用,最常见 也最重要的就是解线性方程组。
本节知识点和教学要求
知识点
– 矩阵的概念 -矩阵的加减和倍数
– 矩阵的乘法 -初等变换和矩阵的秩
– 逆矩阵
-求解可逆矩阵方程
教学要求
– 熟练掌握矩阵运算的基本法则
– 熟练运用初等变换,进而能求矩阵的秩
总公司
分公司
技术人员 生产工人 其他 技术人员 生产工人 其他

50
100
5
100
300
10

10
200
15Βιβλιοθήκη 2510020我们分别用矩阵 A 和 B 来列出总公司和分公司的职 工人数情况,然后汇总统计用矩阵 A + B 表示,即
A
B
50 10
100 200
5 15
100
25
300 100
10 20
– 熟练运用初等变换求矩阵的逆
– 熟练运用初等变换求解可逆矩阵方程
2.2.1 矩阵的概念
• 引例某商店上半年电视销售情况(单位:百台)
51吋 47吋 42吋
简记为
一分店 7
3
5
7 3 5
二分店 1
2
0
1 2 0
某商店下半年电视销售情况(单位:百台)
一分店 二分店
51吋 10 2
47吋 6 3
42吋 5 1
行数和列数相同的矩阵称同型矩阵,即两个 矩阵相等的先决条件是两者为同型矩阵。
零矩阵 矩阵O= (aij)mn的mn个元素均为零。
0
0
k 1
2 5
0
0
O
k 2 1

0
5
2
k
1
转置矩阵AT
a11 a12 A a21 a22
a1n a2n
AT
a11 a12
(零矩阵的单位性)
(4)A + BT = AT + BT.
(保持转置性)
(5)负矩阵的存在性和矩阵的减法
a11 a12 L
A
=
a21
a22
L
L L L
am1
am1
L
a1n
a2n
L
aij
,
amn
称为矩阵A的负矩阵。
有 A A O, A B A B.
这就是矩阵的减法
例2.2.1 设某公司的职工按男女区分统计如下
向量:1 × n阶矩阵——行向量,
n × 1阶矩阵——列向量.
• 矩阵的简记法:
– (aij)mn –用行向量表示
–用列向量表示
A1, A2,L An
这里,Aj为列向量,Bi为行向量。
B1
B2
M
Bm
矩阵的相等
矩阵的元素都一一对应相等时,两个矩阵才 相等.
行数和列数不相等的矩阵绝不能相等!
5 0
2 3
8
4 2
的系数矩阵和增广矩阵分别是 n元线性方程组的情况见教材127页。
中国古代算书《九章算术》 中的“方程”
刘徽的《九章算术》中《方程》章是这样说的。 “程,课程也。群物总杂, 各列有数,总言其实。 令每行为率,二物者再程,三物者三程,皆如 物数程之,并列为行,故谓之方程.”
这段话的意思可以从《方程》 章的第一道题看 出, 题目是 “今有上禾三秉,中禾二秉,下禾 一秉,实三十九斗; 上禾二秉,中禾三秉,下禾 一秉,实三十四斗;上禾一秉,中禾二秉, 下禾 三秉,实二十六斗。问上、中、下禾实一秉各 几何?” ( 秉——捆)
法国的彪特在刘徽之后约一千三百年的《算术》一 书中开始用不甚完整 (没有认识负数) 的加减消元法 解联立一次方程组。
前面解题过程中的方框即可视为矩阵, 可见矩阵并 以矩阵解一次方程组是我国古代数学家首创.
2.2.2 矩阵的加减和倍数
1、矩阵的加法
1) 定义
设有两个m n矩阵 A aij , B bij , 那末矩阵
《方程》章的解法为
“置上禾三秉, 中禾二秉,下禾一秉, 实三十九斗于右 方; 中、左行列如右方。以右行上禾遍乘中行而以直 除。又乘其次, 亦以直除……” (直除——减去对应 的各数,到不能再减为止). 按照这种解法,列出下列算式:
用右行上禾秉数3遍乘中行各数,得6, 9, 3, 102 减 去右行对应各数,得3, 7, 2, 63,再减一次,得 0, 5, 1, 24,不能再减了 (消去一个未知数——上禾每 秉的实); 又用3遍乘左行各数,得3, 6, 9, 78 减去右 行对应各数,得0, 4, 8, 39. 如下:
12 1 3 8 5 9 13 11 4 1 6 9 5 0 4 7 4 4.
3 3 6 2 8 1 6 8 9
2) 矩阵加法的运算规律
1 A + B = B + A; (交换性) 2 A + B +C = A + B +C. (结合性)
3 Α + Ο = Ο + Α = Α.
10 6 5
2
3 1
求全年电视销售情况? 7 10 3 6 5 5
1
2
2 3 0 1
定义
矩阵——矩形数表
a11
A
a21
M
a12 L a22 L M
a1n
a2n
M
用大写黑体拉丁字母A,B,C等表示
am1 am2 L amn
元素 aij 数学理论中,元素可以是数,也可以是其他对象; 方阵:m=n时, 称n阶方阵或n阶矩阵; 1阶矩阵就是一个数.
相关文档
最新文档