光纤光学特性测量实验预习要求
光纤实验(一)指导书
《光纤技术实验》(一)武汉理工大学物理系2006-2-10目录ZY12OFCom23BH1光纤通信原理实验系统简介 (I)光纤实验箱使用注意事项 (V)无源器件简介 ............................................................................................................. V I 上篇光纤光学实验一光纤光学基本知识演示实验 (2)实验二光纤与光源耦合方法实验 (4)实验三多模光纤数值孔径(NA)测量实验 (7)实验四多模光纤插入损耗测试实验 (10)实验五单模光纤弯曲损耗测试实验 (13)实验六光纤活动连接器损耗测试实验 (16)实验七分路器插入损耗和分光比测试实验 (19)实验八波分复用器插入损耗和光串扰测试实验 (22)实验九光纤隔离器参数测量实验 (25)下篇光纤通信原理与技术实验一半导体激光器P-I特性测试实验 (28)实验二发光二极管P-I特性测试曲线 (32)实验三模拟信号光纤传输实验 (35)实验四数字信号光纤传输实验 (39)实验五电话光纤传输系统实验 (42)实验六图像光纤传输系统实验 (45)实验七系统眼图、抖动测试实验 (48)实验八时分复用解复用实验 (53)实验九波分复用技术实验 (57)实验十光纤线路接口码型HDB3编译码实验 (60)实验十一数字光接收机性能测试实验 (66)ZY12OFCom23BH1光纤通信原理实验系统简介本实验箱是为配合《光纤通信》课程的理论教学,结合目前光纤通信工程技术最新进展,为了提高大专院校学生实际操作和动手能力而研制开发的。
一、产品的系统特点光纤H1型实验箱注重产品的系统和功能组成,产品的设计着重体现系统性、先进性、实用性,并根据市场及客户实际需求,充分考虑工艺外观结构、产品的功能和性价比。
整个系统分电接口终端、光接口终端和光传输三大部分,各自独立又相互关联,所有模块在单独进行实验同时又可系统集联,实验灵活丰富,可设计、可比较、可操作、可观测性强。
实验一光纤的几何特性测试实验
实验一光纤的几何特性测试实验姓名:学号:一、实验的目的和意义1、了解光纤的基本结构2、学习光纤的处理方法,包括光纤的剥线、端面切割和清洗等等方法3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构4、学会Matlab处理实验数据5、掌握光学实验注意事项和实验室安全隐患及事故处理方法光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。
光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过严格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。
光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几何参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。
[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。
光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。
[2]本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。
因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。
[3]二、实验的系统结构和实验步骤1、实验的系统结构实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。
实验系统的基本结构图如下:2、实验仪器光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑3、实验步骤(1)制作光纤端面样品日常使用的光纤都经过多层保护处理,而我们实验所需的是由纤芯和包层组成的裸纤,并且由于光纤由折射率不同的纤芯包层组成、对缺损很敏感以及连接损耗等原因,必须使用专用的光纤切割机处理端面,这样才能更好的观察或熔接等加工处理。
光纤的光学特性实验报告
一、实验目的1. 了解光纤的基本结构和光学特性。
2. 学习测量光纤的数值孔径、截止波长等关键参数。
3. 掌握光纤的光学特性实验方法及数据分析。
二、实验原理光纤是一种利用光的全反射原理进行信息传输的介质。
光纤的光学特性主要包括数值孔径(NA)、截止波长、衰减系数等。
本实验主要测量光纤的数值孔径和截止波长。
三、实验仪器与设备1. 光纤测试仪2. 氦氖激光器3. 光纤耦合器4. 光纤切割机5. 光纤剥皮器6. 光纤微弯器7. 光纤测试软件四、实验步骤1. 光纤制备:将待测光纤两端分别进行剥皮、切割和清洁处理,确保光纤端面平整。
2. 光纤连接:将激光器输出端连接到光纤耦合器,光纤耦合器另一端连接到待测光纤。
3. 数值孔径测量:- 调整激光器输出功率,使光斑在光纤端面中心。
- 将光纤微弯器放置在光纤另一端,调整微弯器角度,使光斑从光纤端面中心移出。
- 记录光斑移出光纤端面的角度,即为光纤的数值孔径。
4. 截止波长测量:- 将激光器输出波长设置为一定值。
- 调整光纤微弯器角度,使光斑从光纤端面中心移出。
- 逐渐减小激光器输出波长,直至光斑不再从光纤端面中心移出,记录此时的波长,即为光纤的截止波长。
五、实验结果与分析1. 数值孔径测量结果:本实验测得光纤的数值孔径为0.22。
2. 截止波长测量结果:本实验测得光纤的截止波长为1550nm。
六、讨论1. 数值孔径是光纤的重要参数之一,它决定了光纤的色散和模场直径。
本实验测得光纤的数值孔径为0.22,符合普通单模光纤的数值孔径范围。
2. 截止波长是光纤的一个重要参数,它决定了光纤的传输带宽。
本实验测得光纤的截止波长为1550nm,说明该光纤适用于1550nm波段的光通信。
七、结论通过本次实验,我们成功测量了光纤的数值孔径和截止波长,掌握了光纤的光学特性实验方法。
实验结果表明,该光纤符合普通单模光纤的特性,可用于1550nm波段的光通信。
八、实验心得本次实验让我们对光纤的光学特性有了更深入的了解,也提高了我们的实验操作技能。
光纤基础实验教学指导
光纤基础实验教学指导光导纤维(optical fiber),简称光纤,是一种可传导光波的玻璃纤维。
光纤在20世纪50年代首先应用于图像传输,主要在医学上用于观察人体内部。
当时用的光纤传输损耗很大,即使最透明的优质光学玻璃,损耗也达到1000dB/km。
在理论的指导下,人们不断改进光纤制造工艺,光纤的损耗已经达到2dB/km。
从而使长距离多路通信传输成为可能。
随着光纤研究的深入,人们发现某些光纤易受温度、压力、电场、和磁场等环境因素的影响,导致光强、相位、频率、偏振态和波长的变化。
光纤无需其他中介就能把待测量和光纤内的传导光联系起来,能够很容易的制成以光纤为传感媒质的传感器。
从而诞生了一门全新的光纤传感技术。
它的基本工作原理是:将稳定光源发出的光送入光纤并传输到测量现场,在测量现场的被测量对光的特性,如光的振幅、偏振态、相位、频率等进行调制,然后由同一根光纤或另一根光纤返回到光探测器,根据光特性的变化测出被测信号。
或者把光信号转化为电信号后进行测量。
光纤传感器以其高灵敏度,抗电磁干扰,可绕曲,结构简单,体积小,易于微机连接,便于遥测等优点,获得广泛应用。
本实验将学习光纤的光学特性数值孔径的测试方法、光纤的切割、耦合的理论知识和实验方法,光纤Mach-Zehnder干涉仪的原理,对温度和应变传感的测量。
一、教学目的1、掌握光纤端面制备方法和光纤端面耦合方法。
2、数值孔径的概念和测量方法。
二、教学要求1、实验三小时完成。
2、学习训练光纤端面制备技术。
3、学习掌握光纤与光源耦合技术。
4、定性观察M-Z双光纤干涉实验。
三、教学重点和难点1、重点:数值孔径的测量。
2、难点:光纤端面制备技巧。
四、讲授内容(约20分钟)1.光纤结构图1是光纤结构示意图。
它呈同心圆柱状,在折射率为n1的圆柱形纤芯外面是折射率为n2(n1>n2)的同心圆柱包层。
纤芯的作用是传导光波,包层的作用是将光波封闭在纤芯中传播。
光纤是玻璃细丝,性脆,易折断,为此在包层的外面又加上涂敷层,它一般由硅桐树脂或丙烯盐酸材料制成,可增加光纤的韧性和机械强度,防止光纤受外界损伤。
光纤光学与半导体激光特性实验指导书
光纤光学与半导体激光特性实验指导书光纤光学与半导体激光器的电光特性20世纪70年代光纤制造技术和半导体激光器技术的突破性发展,光纤通信已成为现代社会最主要的通信手段之一。
本实验利用通信用单模光纤和可见光(红光)半导体激光器对光通信过程进行了一个开放的、原理性的模拟,以期通过实际操作,对光纤本身的光学特性和半导体激光器的电光特性进行一个初步的研究。
使学生对光纤和半导体激光器有一个基本的了解和认识。
一.实验目的1.理解和巩固光学的基本原理和知识;2.了解掌握光纤的使用技巧和处理方法;3.了解掌握半导体激光器的使用方法和电光特性;4、了解掌握光纤的一些光学特性和参数测量方法。
二.基本原理光纤通信的光学理论是建立在光的全反射理论和波导理论上的。
现代光通信中使用的光纤一般分为单模光纤和多模光纤两种。
它们在结构上的区别主要在于纤芯的几何尺寸上,图1是光纤结构图。
它由三层结构构成:(1)纤芯:由掺有少量其他元素的石英玻璃构成(为提高折射率),对于单模光纤,直径约9.2 mm,而对于多模光纤,纤芯直径一般为50 mm。
这是它们在结构上的最主要区别。
(2)包层:由石英玻璃构成,但由于成分的差异它的折射率比纤芯的折射率略微低一些,以形成全反射条件。
直径约为125 mm。
(3)涂覆层:为了增加光纤的强度和抗弯性、保护光纤,在包层外涂覆了塑料或树脂保护层。
其直径约245 mm。
激光主要在纤芯和包层中传播。
图1 光纤结构示意图1.光纤端面的处理为了使激光在输入光纤和输出光纤时有一个理想的状态,如较高的耦合效率,均匀对称的光斑和模式。
一般均需要对光纤的端面进行较为细致的处理。
一般光纤端面的处理有两种主要方法。
一种是使用专用刀具进行切割。
另一种为研磨处理。
在本实验中,采用较为简单的手工刀具切割,以使光纤端面较为平整。
2.光纤的耦合和耦合效率在本实验中,光纤的耦合是指将激光从光纤端面输入光纤,以使激光可沿着光纤进行传输。
在这里采用了一套有五个自由度的调整机构来进行光纤的耦合。
光纤特性实验实验报告
一、实验目的本次实验旨在通过对光纤特性的研究,了解光纤的基本原理、结构以及传输特性,为后续的光纤通信技术学习和应用奠定基础。
实验内容主要包括光纤的折射率、损耗、色散等特性的测量和分析。
二、实验原理光纤是一种利用光的全反射原理进行光信号传输的介质。
根据传输模式的不同,光纤可分为单模光纤和多模光纤。
单模光纤只能传输一个光波,具有低损耗、低色散等优点,适用于长距离通信;多模光纤可以传输多个光波,具有低成本、易于制造等优点,适用于短距离通信。
三、实验仪器与材料1. 光纤实验箱2. 光纤光源3. 光功率计4. 光纤耦合器5. 光纤跳线6. 光纤衰减器7. 光纤连接器8. 示波器9. 计算机及数据采集软件四、实验步骤1. 光纤连接与测试(1)将光纤光源、光纤跳线、光纤耦合器、光功率计等设备按照实验要求连接好。
(2)打开实验箱,确保光纤连接正确无误。
(3)调整光源功率,使光功率在合适范围内。
2. 光纤损耗测量(1)将光功率计设置为“功率模式”。
(2)将光纤跳线连接到光功率计的输入端,记录光功率计显示的功率值P1。
(3)将光纤跳线的一端连接到光纤光源的输出端,另一端连接到光功率计的输入端,记录光功率计显示的功率值P2。
(4)计算光纤损耗:L = 10lg(P1/P2)。
3. 光纤色散测量(1)将示波器设置为“频谱分析模式”。
(2)将光纤跳线连接到示波器的输入端,记录示波器显示的频谱图。
(3)根据频谱图,分析光纤的色散特性。
4. 光纤折射率测量(1)将光纤光源、光纤跳线、光纤耦合器、光功率计等设备按照实验要求连接好。
(2)调整光源功率,使光功率在合适范围内。
(3)将光纤跳线的一端连接到光纤光源的输出端,另一端连接到光功率计的输入端,记录光功率计显示的功率值P1。
(4)将光纤跳线的一端连接到光纤耦合器的输入端,另一端连接到光功率计的输入端,记录光功率计显示的功率值P2。
(5)根据光纤损耗公式,计算光纤的折射率:n = sqrt(P1/P2)。
光纤基本特性测试实验报告
实验报告课程名称: 光通信技术实验 指导老师: 成绩:__________________ 实验名称:光纤基本特性测试(一)实验类型: 基础型 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得实验1-2 光纤数值孔径性质和测量一、实验目的和要求1、熟悉光纤数值孔径的定义和物理意义2、掌握测量光纤数值孔径的基本方法二、实验内容和原理光纤数值孔径(NA )是光纤能接收光辐射角度范围的参数,同时它也是表征光纤和光源、光检测器及其它光纤耦合时的耦合效率的重要参数。
图一表示阶梯多模光纤可接收的光锥范围。
因此光纤数值孔径就代表光纤能传输光能的大小,光纤的NA 大,传输能量本领大。
NA 的定义式是:式中n0 为光纤周围介质的折射率,θ为最大接受角。
n1和n2分别为光纤纤芯和包层的折射率。
光纤在均匀光场下,其远场功率角分布与理论数值孔径NAm 有如下关系:其中θ是远场辐射角,Ka 是比例因子,由下式给出:专业:姓名:学号: 日期: 地点:装订线式中P(0)与P(θ)分别为θ= 0和θ=θ处远场辐射功率,g 为光纤折射率分布参数。
计算结果表明,若取P(θ) / P(0) = 5%,在g≥2时Ka的值大于0.975。
因此可将P(θ)曲线上光功率下降到θ的正弦值定义为光纤的数值孔径,称之为有效数值孔径:中心值的5%处所对应的角度e本实验正是根据上述原理和光路可逆原理来进行的。
三、主要仪器设备He-Ne 激光器、读数旋转台、塑料光纤、光纤微调架、毫米尺、白屏、短波长光功率计一套(功率显示仪1件、短波光探测器1只)。
四、实验步骤方法一:光斑法测量(如图2)1、实验系统调整;a.调整He-Ne激光管,使激光束平行于实验平台面;b.调整旋转台,使He-Ne激光束通过旋转轴线;c.放置待测光纤在光纤微调架上,使光纤一端与激光束耦合,另一端与短波光探测器正确连接;d.仔细调节光纤微调架,使光纤端面准确位于旋转台的旋转轴心线上,并辅助调节旋转台使光纤的输出功率最大。
光纤实验实训报告
1. 熟悉光纤的基本结构和光学特性。
2. 掌握光纤的连接方法和熔接技术。
3. 了解光纤通信系统的基本原理和应用。
4. 提高动手操作能力和实验技能。
二、实验内容1. 光纤的基本结构及光学特性2. 光纤熔接技术3. 光纤通信系统基本原理与应用三、实验原理1. 光纤的基本结构:光纤由纤芯、包层和涂覆层组成,纤芯的折射率高于包层,使得光在纤芯与包层的界面发生全反射,从而实现光的传输。
2. 光纤熔接技术:利用光纤熔接机将两根光纤的端面熔接在一起,形成低损耗的连接。
3. 光纤通信系统基本原理:利用光纤作为传输介质,将电信号转换为光信号,通过光纤传输,再将光信号转换为电信号。
四、实验仪器与材料1. 光纤熔接机2. 光纤测试仪3. 光纤跳线4. 光纤耦合器5. 光纤连接器6. 光纤7. 电源1. 光纤基本结构及光学特性观察- 观察光纤的结构,了解纤芯、包层和涂覆层的组成。
- 使用光纤测试仪测量光纤的折射率、衰减等参数。
2. 光纤熔接技术- 准备两根光纤,将光纤端面切割平整。
- 使用光纤熔接机将两根光纤熔接在一起。
- 使用光纤测试仪测试熔接点的衰减。
3. 光纤通信系统基本原理与应用- 搭建光纤通信系统,包括光发射机、光纤、光接收机等。
- 使用信号发生器发送信号,通过光纤传输,再由光接收机接收并恢复信号。
- 测试通信系统的传输速率、误码率等指标。
六、实验结果与分析1. 光纤基本结构及光学特性观察- 观察到光纤由纤芯、包层和涂覆层组成,纤芯的折射率高于包层。
- 光纤测试仪测量结果显示,光纤的衰减系数为0.2dB/km,折射率为1.5。
2. 光纤熔接技术- 熔接完成后,使用光纤测试仪测试熔接点的衰减,结果显示衰减小于0.1dB。
3. 光纤通信系统基本原理与应用- 搭建的光纤通信系统能够正常传输信号,传输速率达到10Mbps,误码率为0。
七、实验总结通过本次实验,我们熟悉了光纤的基本结构、光学特性,掌握了光纤熔接技术,了解了光纤通信系统的基本原理和应用。
光纤的光学特性实验报告
光纤的光学特性实验报告光纤的光学特性实验报告引言:光纤是一种用于传输光信号的细长柔软的玻璃或塑料线材。
它具有高速传输、大容量、抗干扰等优点,在通信、医学、工业等领域得到广泛应用。
本实验旨在探究光纤的光学特性,了解其传输特性、损耗和色散等参数。
一、实验原理光纤的传输原理是基于全反射的现象。
当光线从光密度较高的介质射入光密度较低的介质时,会发生全反射。
光纤由两部分组成:芯和包层。
芯是光的传输通道,包层则用于保护芯。
光纤的传输特性与芯和包层的折射率有关。
二、实验设备和材料1. 光纤:包括单模光纤和多模光纤。
2. 光源:如激光器或LED。
3. 光功率计:用于测量光纤的光功率。
4. 光纤衰减器:用于调节光纤的损耗。
5. 光纤色散分析仪:用于测量光纤的色散。
三、实验步骤1. 准备工作:将实验设备连接好,确保光源的稳定输出和光功率计的准确测量。
2. 测量光纤的损耗:将光纤连接到光源和光功率计之间,记录不同长度下的光功率值,并计算损耗。
3. 测量光纤的色散:将光纤连接到光源和光纤色散分析仪之间,调节光纤的长度,记录不同长度下的色散值。
四、实验结果与分析1. 光纤的损耗:根据测量数据,绘制光功率与光纤长度的关系曲线。
从曲线中可以观察到光纤的损耗随着长度的增加而增加,这是由于光纤材料的吸收和散射引起的。
同时,可以计算出单位长度的损耗值,评估光纤的传输质量。
2. 光纤的色散:根据测量数据,绘制色散值与光纤长度的关系曲线。
色散是指光信号在光纤中传输过程中不同波长的光速度差异引起的现象。
从曲线中可以观察到色散值随着光纤长度的增加而增加,这是由于光纤的折射率剖面引起的。
通过计算色散系数,可以评估光纤对不同波长光信号的传输性能。
五、实验结论通过本实验,我们了解到光纤的光学特性与其折射率、长度等因素密切相关。
光纤的损耗和色散是影响光纤传输质量的重要参数。
在实际应用中,需要根据具体需求选择合适的光纤类型和长度,以达到最佳的传输效果。
光纤特性研究实验报告
一、实验目的1. 了解光纤的基本结构和组成,掌握光纤的基本特性。
2. 研究光纤的传输特性,包括损耗、色散和带宽等。
3. 掌握光纤连接与测试方法,提高实验操作技能。
二、实验原理光纤是一种利用光的全反射原理进行光信号传输的介质。
它主要由纤芯、包层和护套组成。
光纤的传输特性主要取决于纤芯和包层的折射率分布。
三、实验仪器与材料1. 光纤测试仪2. 光纤连接器3. 光纤跳线4. 光源5. 光功率计6. 光纤测试软件四、实验步骤1. 光纤连接与测试(1)将光纤连接器连接到光纤跳线两端。
(2)将光纤跳线的一端连接到光源,另一端连接到光纤测试仪。
(3)使用光纤测试仪测试光纤的损耗、色散和带宽等参数。
2. 光纤损耗测试(1)调整光源输出功率,记录光纤测试仪显示的光功率。
(2)将光纤跳线插入测试仪,再次记录光功率。
(3)计算光纤损耗:损耗 = (P1 - P2) / P1,其中P1为光源输出功率,P2为光纤输出功率。
3. 光纤色散测试(1)使用不同波长的光源,如850nm和1310nm,进行测试。
(2)记录光纤测试仪显示的光功率。
(3)计算光纤色散:色散= (ΔP1 - ΔP2) / Δλ,其中ΔP1和ΔP2分别为不同波长下的光纤损耗,Δλ为波长差。
4. 光纤带宽测试(1)使用不同频率的信号源,如10GHz和20GHz,进行测试。
(2)记录光纤测试仪显示的光功率。
(3)计算光纤带宽:带宽 = (P2 - P1) / P1,其中P1为低频信号下的光纤损耗,P2为高频信号下的光纤损耗。
五、实验结果与分析1. 光纤损耗测试结果显示,实验所用光纤的损耗在1.5dB/km左右。
2. 光纤色散测试结果显示,实验所用光纤的色散在0.1ps/nm·km左右。
3. 光纤带宽测试结果显示,实验所用光纤的带宽在20GHz左右。
六、实验结论1. 通过实验,我们了解了光纤的基本结构和组成,掌握了光纤的基本特性。
2. 光纤的损耗、色散和带宽等参数对光纤传输性能具有重要影响。
光纤光学基础实验报告
一、实验目的1. 了解光纤的基本结构和特性。
2. 掌握光纤通信的基本原理。
3. 学习光纤连接和测试的基本方法。
4. 熟悉光纤通信系统中的关键器件。
二、实验原理光纤通信是一种利用光波在光纤中传输信息的技术。
其基本原理是利用光的全反射原理,将光信号从光纤的一端传输到另一端。
光纤具有低损耗、宽带宽、抗干扰等优点,是现代通信系统中的重要传输介质。
三、实验仪器与设备1. 光纤测试仪2. 光纤跳线3. 光纤耦合器4. 光源5. 光功率计6. 光纤连接器四、实验内容1. 光纤基本特性测试(1)光纤衰减测试:使用光纤测试仪测量光纤的衰减系数,并与理论值进行比较。
(2)光纤带宽测试:使用光纤测试仪测量光纤的带宽,分析其传输性能。
(3)光纤连接损耗测试:使用光纤跳线和连接器,连接两根光纤,测量连接损耗。
2. 光纤通信系统搭建(1)搭建光纤通信系统,包括发送端、接收端、光纤、光模块等。
(2)使用光源和光功率计测试系统性能,分析系统中的损耗和噪声。
3. 光纤通信系统测试(1)测试系统传输速率,分析其性能。
(2)测试系统误码率,分析其抗干扰能力。
(3)测试系统稳定性,分析其长期运行性能。
五、实验结果与分析1. 光纤基本特性测试结果(1)光纤衰减测试:实验测得光纤的衰减系数为0.18dB/km,与理论值0.2dB/km基本一致。
(2)光纤带宽测试:实验测得光纤的带宽为20GHz,满足系统传输需求。
(3)光纤连接损耗测试:实验测得连接损耗为0.5dB,符合预期。
2. 光纤通信系统搭建与测试结果(1)系统传输速率:实验测得系统传输速率为1.5Gbps,满足设计要求。
(2)系统误码率:实验测得系统误码率为10^-9,说明系统抗干扰能力强。
(3)系统稳定性:实验测得系统运行稳定,长期性能良好。
六、实验结论1. 光纤具有低损耗、宽带宽、抗干扰等优点,是现代通信系统中的重要传输介质。
2. 光纤通信系统性能良好,满足设计要求。
3. 通过实验,掌握了光纤基本特性测试、光纤通信系统搭建与测试方法。
光纤测量_实验报告
一、实验目的1. 理解光纤测量的基本原理和实验方法。
2. 掌握光纤传感器的使用和操作。
3. 通过实验,了解光纤测量在各个领域的应用。
二、实验原理光纤测量技术是利用光纤的物理、化学和光学特性进行各种物理量测量的技术。
光纤传感器具有体积小、重量轻、抗电磁干扰、防腐性好、灵敏度高等优点,广泛应用于压力、应变、温度、湿度、转速等测量领域。
实验中主要使用的是光纤光栅传感器,其原理是利用光纤光栅的反射或透射峰的波长与光栅的折射率、温度、应变等物理量的关系进行测量。
通过测量光栅反射或透射峰的波长变化,可以得到被测物理量的信息。
三、实验仪器与设备1. 光纤光栅传感器2. 光纤光源3. 光纤光栅解调仪4. 温度控制器5. 应变片6. 压力传感器7. 湿度传感器8. 转速传感器9. 实验台四、实验内容1. 光纤光栅温度测量实验(1)将光纤光栅传感器固定在实验台上,连接光纤光源和解调仪。
(2)设置解调仪的测量参数,如波长范围、分辨率等。
(3)调节温度控制器,使温度逐渐升高,记录不同温度下光栅反射峰的波长变化。
(4)分析波长变化与温度的关系,得出温度与波长的转换公式。
2. 光纤光栅压力测量实验(1)将光纤光栅传感器固定在实验台上,连接光纤光源和解调仪。
(2)将应变片贴在实验台上,连接压力传感器。
(3)施加不同压力,记录光栅反射峰的波长变化。
(4)分析波长变化与压力的关系,得出压力与波长的转换公式。
3. 光纤光栅湿度测量实验(1)将光纤光栅传感器固定在实验台上,连接光纤光源和解调仪。
(2)将湿度传感器连接到实验台上。
(3)调节湿度控制器,使湿度逐渐变化,记录光栅反射峰的波长变化。
(4)分析波长变化与湿度的关系,得出湿度与波长的转换公式。
4. 光纤光栅转速测量实验(1)将光纤光栅传感器固定在实验台上,连接光纤光源和解调仪。
(2)将转速传感器连接到实验台上。
(3)调节转速控制器,使转速逐渐变化,记录光栅反射峰的波长变化。
(4)分析波长变化与转速的关系,得出转速与波长的转换公式。
光纤特性测量实验报告
(4)记录光纤测试仪显示的输出功率和传输时间。
(5)将光衰减器连接到光纤跳线的另一端。
(6)调整光衰减器的衰减值。
(7)记录光纤测试仪显示的输出功率和传输时间。
(8)计算光纤的色散。
五、实验数据与分析
1. 光纤跳线损耗
测试结果:跳线损耗为0.5dB。
2. 光纤传输损耗
(3)调整信号发生器的输出功率。
(4)记录光纤测试仪显示的输出功率。
(5)将光衰减器连接到光纤跳线的另一端。
(6)调整光衰减器的衰减值。
(7)记录光纤测试仪显示的输出功率。
(8)计算光纤的传输损耗。
3. 测量光纤色散
(1)将信号发生器连接到光纤测试仪的输入端口。
(2)将光纤跳线连接到信号发生器和光纤测试仪的输出端口。
3. 光功率计
4. 光衰减器
5. 光纤连接器
6. 信号发生器
7. 示波器
四、实验步骤
1. 测试光纤跳线损耗
(1)将光纤跳线插入光纤测试仪的输入端口。
(2)调整测试仪的测试模式为“跳线损耗”。
(3)记录测试仪显示的跳线损耗值。
2. 测量光纤传输损耗
(1)将信号发生器连接到光纤测试仪的输入端口。
(2)将光纤跳线连接到信号发生器和光纤测试仪的输出端口。
1. 实验过程中,注意安全操作,避免设备损坏。
2. 测量时,确保光纤连接牢固,避免信号泄露。
3. 实验数据应准确记录,以便后续分析。
4. 实验过程中,注意观察现象,分析实验结果。
通过本次实验,我们不仅掌握了光纤特性测量的方法,还提高了对光纤技术的认识。在今后的学习和工作中,我们将继续关注光纤技术的发展,为我国光纤通信事业贡献力量。
光纤参数测量实验报告(3篇)
第1篇一、实验目的1. 熟悉光纤的基本特性和结构。
2. 掌握光纤参数测量的基本原理和方法。
3. 了解光纤连接、衰减、色散等关键参数的测量方法。
4. 培养实验操作技能和数据分析能力。
二、实验原理光纤作为一种传输信息的介质,其性能参数直接关系到光通信系统的质量和效率。
本实验主要测量以下光纤参数:1. 光纤长度:通过光时域反射仪(OTDR)测量光纤的长度。
2. 光纤衰减:通过插入损耗测试仪测量光纤在特定波长下的衰减。
3. 光纤色散:通过色散分析仪测量光纤在特定波长下的色散。
4. 光纤连接损耗:通过插入损耗测试仪测量光纤连接器的插入损耗。
三、实验仪器与材料1. 光纤测试仪:包括光时域反射仪(OTDR)、插入损耗测试仪、色散分析仪等。
2. 光纤跳线:用于连接测试仪和被测光纤。
3. 被测光纤:用于测试的光纤。
4. 光纤连接器:用于连接被测光纤和跳线。
四、实验步骤1. 光纤长度测量- 将被测光纤连接到OTDR上。
- 启动OTDR,进行光纤长度测量。
- 记录测量结果。
2. 光纤衰减测量- 将被测光纤连接到插入损耗测试仪上。
- 选择测试波长,设置测试参数。
- 进行衰减测量,记录结果。
3. 光纤色散测量- 将被测光纤连接到色散分析仪上。
- 选择测试波长,设置测试参数。
- 进行色散测量,记录结果。
4. 光纤连接损耗测量- 将被测光纤连接到跳线上,再将跳线连接到插入损耗测试仪上。
- 进行连接损耗测量,记录结果。
五、实验数据与分析1. 光纤长度测量结果- 测量结果:X米- 分析:与理论值基本一致,说明被测光纤长度准确。
2. 光纤衰减测量结果- 测量结果:Y dB- 分析:与理论值基本一致,说明被测光纤衰减符合要求。
3. 光纤色散测量结果- 测量结果:Z ps/nm·km- 分析:与理论值基本一致,说明被测光纤色散符合要求。
4. 光纤连接损耗测量结果- 测量结果:A dB- 分析:与理论值基本一致,说明被测光纤连接器质量良好。
光纤特征实验报告
一、实验目的本次实验旨在了解光纤的基本特性,包括其结构、光学特性、传输特性和应用领域。
通过实验,掌握光纤的耦合、传输损耗、色散等关键参数,并了解光纤在实际通信系统中的应用。
二、实验原理光纤是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
光纤具有低损耗、高带宽、抗电磁干扰等优点,广泛应用于通信、传感、医疗等领域。
三、实验仪器与材料1. 光纤耦合器2. 光纤连接器3. 光功率计4. 光源5. 光纤测试平台6. 计算机及测试软件四、实验内容1. 光纤耦合实验(1)将光纤连接器连接到光纤耦合器上,确保连接牢固。
(2)将光源连接到光纤耦合器的一端,另一端连接光纤测试平台。
(3)使用光功率计测量光源输出功率和接收到的功率。
(4)分析耦合效率,计算耦合损耗。
2. 光纤传输损耗实验(1)将光纤连接器连接到光纤耦合器上,确保连接牢固。
(2)将光源连接到光纤耦合器的一端,另一端连接光纤测试平台。
(3)调整光源输出功率,使接收到的功率在光功率计的测量范围内。
(4)记录不同距离处的接收功率,计算光纤传输损耗。
3. 光纤色散实验(1)将光纤连接器连接到光纤耦合器上,确保连接牢固。
(2)将光源连接到光纤耦合器的一端,另一端连接光纤测试平台。
(3)使用光频谱分析仪测量不同波长处的光功率。
(4)分析光纤的色散特性,计算色散参数。
4. 光纤应用实验(1)搭建光纤通信系统,包括光发射模块、光纤、光接收模块和终端设备。
(2)调整系统参数,确保通信质量。
(3)测试通信系统的性能,如误码率、传输速率等。
五、实验结果与分析1. 光纤耦合实验耦合效率为80%,耦合损耗为3.5dB。
2. 光纤传输损耗实验在1km距离内,光纤传输损耗为0.2dB/km。
3. 光纤色散实验单模光纤的色散参数为0.1ps/nm·km。
4. 光纤应用实验通信系统误码率为10^-9,传输速率为10Gbps。
六、结论通过本次实验,我们掌握了光纤的基本特性,包括耦合、传输损耗、色散等。
光纤特性实验研究实验报告
光纤特性实验研究一、光纤耦合及光纤器件传输效率测试实验光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
前香港中文大学校长高锟和George A. Hockham首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖A】实验原理1.光纤的结构纤芯材料的主体是二氧化硅,里面掺极微量的其他材料,例如二氧化锗、五氧化二磷等。
掺杂的作用是提高材料的光折射率。
纤芯直径约5~~75μm(芯径一般为50或62.5μm)。
光纤外面有低折射率包层,包层有一层、二层(内包层、外包层)或多层(称为多层结构),但是总直径在100~200μm上下(直径一般为125μm)。
包层的材料一般用纯二氧化硅,也有掺极微量的三氧化二硼,最新的方法是掺微量的氟,就是在纯二氧化硅里掺极少量的四氟化硅。
掺杂的作用是降低材料的光折射率。
这样,光纤纤芯的折射率略高于包层的折射率。
两者折射率的区别,保证光主要限制在纤芯里进行传输。
包层外面还要涂一种涂料,是加强用的树脂涂层,可用硅铜或丙烯酸盐。
涂料的作用是保护光纤不受外来的损害,增加光纤的机械强度。
光纤的最外层是套层,它是一种塑料管,也是起保护作用的,不同颜色的塑料管还可以用来区别各条光纤。
2.光纤的数值孔径概念:入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。
这个角度就称为光纤的数值孔径。
光纤的数值孔径大些对于光纤的对接是有利的。
不同厂家生产的光纤的数值孔径不同。
3.光纤的种类:A.按光在光纤中的传输模式可分为:单模光纤和多模光纤。
多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
例如:6 00MB/KM的光纤在2KM时则只有300MB的带宽了。
因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。
光纤光学实验报告
光纤光学实验报告光纤光学实验报告引言:光纤光学实验是一项重要的实验,它涉及到光的传输、衰减、折射等基本光学原理。
通过实验,我们可以更好地理解光纤的工作原理以及光的传输特性。
本文将围绕光纤光学实验展开讨论,从实验前的准备工作、实验步骤和实验结果等方面进行详细介绍。
实验前的准备工作:在进行光纤光学实验之前,我们需要做一些准备工作。
首先,我们需要准备好实验所需的材料和仪器,包括光纤、光纤连接器、光纤光源、光纤功率计等。
其次,我们需要熟悉光纤的基本原理和相关的光学知识,这样才能更好地理解实验的过程和结果。
最后,我们需要做好实验的安全措施,确保实验过程中的安全。
实验步骤:1. 实验的第一步是连接光纤。
我们首先需要将光纤连接器连接到光纤的两端,确保光纤的连接牢固。
在连接光纤时,我们需要注意光纤的方向,确保光信号能够正常传输。
2. 实验的第二步是测量光纤的衰减。
我们可以使用光纤功率计来测量光纤的衰减情况。
将光纤光源连接到一端的光纤连接器上,然后将光纤功率计连接到另一端的光纤连接器上,通过测量功率计的读数,我们可以得到光纤的衰减情况。
3. 实验的第三步是观察光纤的折射现象。
我们可以使用一束光线照射到光纤的一端,然后观察光线在光纤中的传播情况。
通过观察光线的弯曲程度和传播路径,我们可以了解光纤的折射特性。
4. 实验的第四步是测量光纤的传输损耗。
我们可以使用光纤功率计来测量光纤的传输损耗。
将光纤光源连接到一端的光纤连接器上,然后将光纤功率计连接到另一端的光纤连接器上,通过测量功率计的读数,我们可以得到光纤的传输损耗情况。
实验结果:通过实验,我们可以得到以下几个结果:1. 光纤的衰减情况:根据测量的结果,我们可以得知光纤的衰减程度,这对于实际应用中的光纤传输非常重要。
2. 光纤的折射特性:通过观察光线在光纤中的传播情况,我们可以了解光纤的折射特性,这对于光纤的设计和应用都有重要意义。
3. 光纤的传输损耗:通过测量光纤的传输损耗,我们可以了解光纤的传输效率,这对于光纤的使用和维护都非常重要。
光钎光学实验报告
实验题目:光纤光学特性研究一、实验目的1. 了解光纤的基本原理和特性;2. 掌握光纤的连接和测试方法;3. 研究光纤的传输特性,如损耗、色散等;4. 探究光纤在通信、传感等领域的应用。
二、实验原理光纤是一种由高纯度玻璃或塑料制成的细长传输介质,其内部具有低损耗的特性。
光纤通信利用光的全反射原理,将光信号从光纤的一端传输到另一端。
本实验主要研究以下光纤特性:1. 传输损耗:光纤的传输损耗是指光信号在光纤中传播时能量逐渐减弱的现象。
损耗主要分为吸收损耗和散射损耗。
2. 色散:光信号在光纤中传播时,不同频率的光信号传播速度不同,导致光信号发生展宽的现象。
色散分为模式色散、材料色散和波导色散。
3. 谐振频率:光纤的谐振频率是指光纤在特定波长下发生谐振的频率。
谐振频率与光纤的长度、直径和折射率有关。
三、实验仪器与设备1. 光纤:单模光纤、多模光纤;2. 光源:激光器;3. 光功率计;4. 光纤连接器;5. 光纤测试仪;6. 光纤熔接机;7. 光纤跳线;8. 光纤测试平台。
四、实验步骤1. 光纤连接:将光纤连接器插入光纤熔接机,对光纤进行熔接。
熔接完成后,检查光纤连接是否牢固。
2. 光功率测试:将光纤跳线连接到光源和光功率计上,调整光源输出功率。
通过光功率计测量输入和输出功率,计算光纤的传输损耗。
3. 色散测试:将光纤跳线连接到光源和光纤测试仪上,调整光源输出波长。
通过光纤测试仪测量不同波长下的传输损耗,分析光纤的色散特性。
4. 谐振频率测试:将光纤跳线连接到光源和光纤测试仪上,调整光源输出波长。
通过光纤测试仪测量光纤的谐振频率。
五、实验结果与分析1. 传输损耗:实验测得单模光纤的传输损耗约为0.2dB/km,多模光纤的传输损耗约为1.5dB/km。
2. 色散:实验测得单模光纤的色散约为0.1ps/(nm·km),多模光纤的色散约为10ps/(nm·km)。
3. 谐振频率:实验测得单模光纤的谐振频率约为1.55μm,多模光纤的谐振频率约为1.3μm。
光纤技术实验部分参考资料
实验6 LED光源I-P特性研究一、实验目的:1. 了解LED光源的发光机理。
2. 观察测量LED光源的光学特性和电学特性。
二、实验原理:LED(即发光二极管)是靠PN结附近的电子和空穴对的复合而进行自发辐射发光。
当给发光二极管的PN结加正向电压时,外加电场将削弱内建电场,便空间电荷区变窄,载流子的扩散运动加强,由于电子迁移率总是远大于空穴的迁移率,因此,电子由N区扩散到P 区是载流子扩散运动的主体。
由半导体的能带理论可知,当导带中的电子与价带中的空穴复合时,电子由高能级跃迁到低能级,电子将多余的能量与发射光子的形式释放出来,产生电致发光现象。
这就是LED的发光机理。
本实验利用FOC-Ⅱ光通信实验系统进行LED光源I-P特性的观察测量,系统所用LED 光源中心波长为850nm。
三、实验内容与步骤:1、取仪器配套的光纤一根,将其中一端与LED光源的插座相连,另一端与PIN探测器的插座相连。
2、接通电源,选择模拟通信方式。
光发射机显示窗上示值为相对偏置电流值,单位为mA,光接收机显示窗上示值为光功率当量。
※注:偏置电流值与光功率当量均为相对值,与真实数值成线性关系,但并非真实数值,且仪器不同可能示值稍有差别。
且由于光探测器有一直流偏置,即便没有光输入时光功率当量窗口仍然有显示(164左右),数据处理时可将此数值减去。
3、调节光发射机的“输入”键至“MIC”档位,调节“调制”键至“DIM”档位。
4、调节光接收机的“模拟”键至“DIM”档位(仅在此档位光功率计示值有效)。
接收机后面板上的探测器切换开关置“光纤通信”档(弹起状态)。
5、调节光发射机上的偏置电流调节按键(上三角键和下三角键),从0开始逐渐加大驱动电流,每次变化lmA,对应记下响应光功率当量,至光功率当量变化不明显为止。
6、将发射机上的偏置电流重新归零,调节光发射机的“输入”键至“正弦波”档位。
(与步骤3、比较,有何不同?)7、再调节发射机偏置电流,并用示波器观察接收机“TP2”端的信号,至波形刚好完全出现,记录下此时的偏置电流值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《光纤光学与半导体激光器电光特性实验》预习要求
(一)通过认真阅读讲义及查阅相关资料,达到下列目标:
了解半导体激光器的电光特性和光纤的基本结构及相关重要参数。
结合激光器-光纤耦合的基本原理,掌握正确有效的光路调整方法。
掌握利用作图法获得半导体激光器阈值电流的方法。
掌握光纤的耦合效率和数值孔径的概念及其测量方法。
初步了解光纤通信原理。
(以上不需写在预习报告中)
(二)在预习报告中回答下列预习题:
1.根据自己的理解及参考资料,用示意图和文字简单描述一下激光在不同入射角下在纤芯
和包层界面发生的折射和反射现象(只考虑轴截面内传输情形);
2.测量半导体激光器电光特性曲线的目的是什么?设计一种简单的测量电光特性曲线的
方法,并列出需要的仪器设备;
3.查阅资料,列举出三种常见的激光器-光纤耦合方式;
4.提高激光器-光纤耦合效率的目的是什么?简要解释;
5.在本实验开始前和结束后有哪些准备和收尾工作需要处理?
6.结合教材及自己的理解,简要叙述一下入射光路的调整方法;
7.简要说明光纤数值孔径的含义及测量方法和过程;
8.初步设计出相应的数据记录表格。
(三)预习思考题(不需写在报告上,上课提问)
1.叙述光纤的结构及各部分的功能;
2.光纤的数值孔径如何定义?写出测量公式并解释其意义;
3.本实验中有哪些注意事项?
(四)拓展题(选做)
1.测量光纤的数值孔径,除了远场强度法,还有哪些常用的测量方法?
2.单模光纤与多模光纤的区别有哪些;
3.模拟信号与数字信号的传输形式有何异同。