初中数学分式方程的应用培优训练(精选40道习题 附答案详解)
初中数学:分式方程习题精选(附参考答案)
初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。
求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。
甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。
已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。
设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。
解分式方程专项练习200题(有答案)资料讲解
解分式方程专项练习 200题(有答案)(8)(4) +2=_-(9)A 】1 J-24时1 ~ 1x-1x 2-l(5)(10)=0.(11) —La - 1 x+1 辽2 — ]JL 』咒 (13)- +3=—X-22-X(19)'; -一=一 =1覆-2 x 2 - 4(12)(X-L )(x-2)^FT =1'二 + = 6 时 1 K - 1x 2-l(14)(15)(20)(18)5a- 4x _ 2 3x _ 6(21)3K__2K_2K-541=0(26)s-i_ ie xH 工+i /_]-疋_](22)$亠一X_1x2-l(24)4 .5 _ 10-I2.3丈K+1(29)(30) - 1 =1 .工―1 F-1(31)x-5 5-x 2 (32)LR「"33)—匚■. - :: 24 _ SX£+2I x2 - 4(38) (36)(47)1 - it 7^21=12(43)''K- 1(48)□ 1(49)d l . ■-'(45)—£ 一X 工一(50)(56) ■12K- 4 y-2 2(57)2 12(58)(54)(55)^-4_2x+5 _JL2K- 4=3x - 6 1丄+ .2 :=1/-9+!- x s+3(61)(67) (65) (70)(76)(73)(72) (79)(77)-2-2K(75)(81)(82)2_361+lT 1 - K*\2-l(88)(84)x+2_ 16H+2x - 2 s£ - 4(89)(85)x _37^2(90)K - 2x+2丄丄3 ___________(97) •;(91)—x-1_2_=1x+1(94)(95)5 工一4 4 英+10x - 2 =3K -6x+1K-l x2=1;(100)对4x+1(92)(101)(x-D (x+2) _ 7^1=° 1 _ 2 :-_ x+1 1 - z| p-i(106) (104) (102) (103)2x+l 对L(108)工+22+K(109)(105)(iii )二j 一二一L 一2X-11-2X(116) ■'■ - 1- _ ■况 T?-1盘 _ ]g _________ 3_亠(耳+2) ( x _ 1) x _ 1(113) - - -■ -=1 .a_ 1a £-2a+l am 9 I 7 m 2 一 3+7m 15(115)(112) (117)(114)汀3- 4 S 2-6H9 点 5(119)(121)- - __ ;K+33 _ - 9(126)(122)(127)(123)2^+93x-9= \-3 2(128)(124)(129)2x+2 (125) (130)(131)(136)(13「— 1 4 —疋(137) 「+2=—x - 3 3 _K(133)(138) 1235(134) (139)X 2X_1_2X£-(140)(141) 2 _ 3 _ 6巫 ]_门_/(147)買+2 _工+£__/+临_工+£ x+1 工+3 x+5 工+7 (143)掘吃时5二时3兀+4(148)=1 - K+1 K+4-it+2 K+3(144) (149)(145) (150)(156)(152) 1 1 _®T5 K +3+6- 2r"2x 2 -18(157)+1(153)g 十2时? 丁 4i 2 -8 1_2亶(158) '■x _ 2 x+2(155)(154) (159)(160)x-2工+216x+2 x _ 2 / 一 q(161)3000 _ go二3000x (1+2C%)工(166)(162)——-4x- 3 3i-6(167)x 43x 『「9 / —乱(163) (165)2 1(164)1 五_ 2K+2工工 -2(168)(169)(170)a _ 3 z~7x _0 x _2+ 二 +x+2 x-h3 y+6 x+7竺=^K-3K-3l96_2x-l _3^-l *工2 _r+4 4 _ x3(175) ——K 2+2I K 2 — 2i(173)號吟寻=。
中考数学复习《分式方程》专项提升训练(附答案)
中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。
初三解分式方程专题练习(附答案)
初三解分式方程专题练习一.解答题(共30小题)1.解方程:.2.解关于的方程:.3.解方程.4.解方程:=+1.6.解分式方程:.5.解方程:.7.(2011•台州)解方程:.8.解方程:.9.解分式方程:.10.解方程:.11.解方程:.12.解方程:.14.解方程:.13.解方程:.15.解方程:16.解方程:.17.①解分式方程;18.解方程:.19.(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.解方程:21.解方程:+=123.解分式方程:22.解方程:.24.解方程:25.解方程:27.解方程:26.解方程:+=128.解方程:29.解方程:30.解分式方程:.初三解分式方程专题练习答案与评分标准一.解答题(共30小题)1.解方程:.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.2.解关于的方程:.解答:解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.3.解方程.解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)4.解方程:=+1.解答:解:原方程两边同乘2(x﹣1),得2=3+2(x﹣1),解得x=,检验:当x=时,2(x﹣1)≠0,∴原方程的解为:x=.5.(2011•威海)解方程:.解答:解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.6.(2011•潼南县)解分式方程:.解答:解:方程两边同乘(x+1)(x﹣1),得x(x﹣1)﹣(x+1)=(x+1)(x﹣1)(2分)化简,得﹣2x﹣1=﹣1(4分)解得x=0(5分)检验:当x=0时(x+1)(x﹣1)≠0,∴x=0是原分式方程的解.(6分)7.(2011•台州)解方程:.解答:解:去分母,得x﹣3=4x (4分)移项,得x﹣4x=3,合并同类项,系数化为1,得x=﹣1(6分)经检验,x=﹣1是方程的根(8分).8.(2011•随州)解方程:.解答:解:方程两边同乘以x(x+3),得2(x+3)+x2=x(x+3),2x+6+x2=x2+3x,∴x=6检验:把x=6代入x(x+3)=54≠0,∴原方程的解为x=6.9.(2011•陕西)解分式方程:.解答:解:去分母,得4x﹣(x﹣2)=﹣3,去括号,得4x﹣x+2=﹣3,移项,得4x﹣x=﹣2﹣3,合并,得3x=﹣5,化系数为1,得x=﹣,检验:当x=﹣时,x﹣2≠0,∴原方程的解为x=﹣.解答:解:方程两边都乘以最简公分母(x﹣3)(x+1)得:3(x+1)=5(x﹣3),解得:x=9,检验:当x=9时,(x﹣3)(x+1)=60≠0,∴原分式方程的解为x=9.11.(2011•攀枝花)解方程:.解答:解:方程的两边同乘(x+2)(x﹣2),得2﹣(x﹣2)=0,解得x=4.检验:把x=4代入(x+2)(x﹣2)=12≠0.∴原方程的解为:x=4.12.(2011•宁夏)解方程:.解答:解:原方程两边同乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),展开、整理得﹣2x=﹣5,解得x=2.5,检验:当x=2.5时,(x﹣1)(x+2)≠0,∴原方程的解为:x=2.5.13.(2011•茂名)解分式方程:.解答:解:方程两边乘以(x+2),得:3x2﹣12=2x(x+2),(1分)3x2﹣12=2x2+4x,(2分)x2﹣4x﹣12=0,(3分)(x+2)(x﹣6)=0,(4分)解得:x1=﹣2,x2=6,(5分)检验:把x=﹣2代入(x+2)=0.则x=﹣2是原方程的增根,检验:把x=6代入(x+2)=8≠0.∴x=6是原方程的根(7分).14.(2011•昆明)解方程:.解答:解:方程的两边同乘(x﹣2),得3﹣1=x﹣2,解得x=4.检验:把x=4代入(x﹣2)=2≠0.解答:(1)解:原方程两边同乘以6x,得3(x+1)=2x•(x+1)整理得2x2﹣x﹣3=0(3分)解得x=﹣1或检验:把x=﹣1代入6x=﹣6≠0,把x=代入6x=9≠0,∴x=﹣1或是原方程的解,故原方程的解为x=﹣1或(6分)16.(2011•大连)解方程:.解答:解:去分母,得5+(x﹣2)=﹣(x﹣1),去括号,得5+x﹣2=﹣x+1,移项,得x+x=1+2﹣5,合并,得2x=﹣2,化系数为1,得x=﹣1,检验:当x=﹣1时,x﹣2≠0,∴原方程的解为x=﹣1.17.(2011•常州)①解分式方程;解答:解:①去分母,得2(x﹣2)=3(x+2),去括号,得2x﹣4=3x+6,移项,得2x﹣3x=4+6,解得x=﹣10,检验:当x=﹣10时,(x+2)(x﹣2)≠0,∴原方程的解为x=﹣10;18.(2011•巴中)解方程:.解答:解:去分母得,2x+2﹣(x﹣3)=6x,∴x+5=6x,解得,x=1经检验:x=1是原方程的解.19.(2011•巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.(2)方程两边同时乘以3(x+1)得3x=2x+3(x+1),x=﹣1.5,检验:把x=﹣1.5代入(3x+3)=﹣1.5≠0.∴x=﹣1.5是原方程的解.20.(2010•遵义)解方程:解答:解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.21.(2010•重庆)解方程:+=1解答:解:方程两边同乘x(x﹣1),得x2+x﹣1=x(x﹣1)(2分)整理,得2x=1(4分)解得x=(5分)经检验,x=是原方程的解,所以原方程的解是x=.(6分)22.(2010•孝感)解方程:.解答:解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.23.(2010•西宁)解分式方程:解答:解:方程两边同乘以2(3x﹣1),得3(6x﹣2)﹣2=4(2分)18x﹣6﹣2=4,18x=12,x=(5分).检验:把x=代入2(3x﹣1):2(3x﹣1)≠0,∴x=是原方程的根.∴原方程的解为x=.(7分)24.(2010•恩施州)解方程:经检验:当x=3时,x﹣4=﹣1≠0,所以x=3是原方程的解.(8分)25.(2009•乌鲁木齐)解方程:解答:解:方程两边都乘x﹣2,得3﹣(x﹣3)=x﹣2,解得x=4.检验:x=4时,x﹣2≠0,∴原方程的解是x=4.26.(2009•聊城)解方程:+=1解答:解:方程变形整理得:=1方程两边同乘(x+2)(x﹣2),得:(x﹣2)2﹣8=(x+2)(x﹣2),解这个方程得:x=0,检验:将x=0代入(x+2)(x﹣2)=﹣4≠0,∴x=0是原方程的解.27.(2009•南昌)解方程:解答:解:方程两边同乘以2(3x﹣1),得:﹣2+3x﹣1=3,解得:x=2,检验:x=2时,2(3x﹣1)≠0.所以x=2是原方程的解.28.(2009•南平)解方程:解答:解:方程两边同时乘以(x﹣2),得4+3(x﹣2)=x﹣1,解得:.检验:当时,,∴是原方程的解;29.(2008•昆明)解方程:解答:解:原方程可化为:,方程的两边同乘(2x﹣1),得2﹣5=2x﹣1,∴原方程的解为:x=﹣1.30.(2007•孝感)解分式方程:.解答:解:方程两边同乘以2(3x﹣1),去分母,得:﹣2﹣3(3x﹣1)=4,解这个整式方程,得x=﹣,检验:把x=﹣代入最简公分母2(3x﹣1)=2(﹣1﹣1)=﹣4≠0,∴原方程的解是x=﹣(6分)。
中考数学总复习《分式方程及其应用》专题训练(附带答案)
中考数学总复习《分式方程及其应用》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________知识梳理分式方程的应用列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行“双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.同步练习一、选择题1.为响应“绿色出行”的号召,小李上班由自驾车改为乘坐公交车.已知小李家距上班地点20km,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程少12km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的43,小李乘公交车上班平均每小时行驶()A.30km B.36km C.40km D.46km2.某服装店用4.5万元购进某种品牌的服装,由于销售状况良好,服装店又调拨11万元资金购进该种服装,但这次的单价比第一次的单价贵20元,购进服装的数量比第一次的2倍还多50件,求该服装第一次的单价.为解决此问题,设该服装第一次的单价为x元,根据题意列出方程,其中正确的是()A.11 4.525020x x=⨯++B.1100004500025020x x=⨯++C.1100004500025020x x=⨯+-D.1100004500025020x x=⨯-+3.甲、乙两地相距160千米,一辆汽车从甲地到乙地的速度比原来提高了25%,结果比原来提前0.4小时到达,那么这辆汽车原来的速度为()A.80千米/小时B.90千米/小时C.100千米/小时D.110千米/小时4.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为;把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍.根据题意列方程为900900213x x⨯=+-,其中x表示()A.快马的速度B.慢马的速度C.规定的时间D.以上都不对5.为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单6.一个圆柱形容器的容积为3Vm,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用t则大,小两根水管的注水速一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间min.7.八年级学生去距学校10千米的荆州博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车A.实际工作时每天铺设的管道比原计划降低了20%,结果延误3天完成了这一任务B.实际工作时每天铺设的管道比原计划降低了20%,结果提前3天完成了这一任务C.实际工作时每天铺设的管道比原计划提高了20%,结果延误3天完成了这一任务D.实际工作时每天铺设的管道比原计划提高了20%,结果提前3天完成了这一任务二、填空题数称为调和数,如15,5,3也是一组调和数.现有一组调和数:x ,3,2(3)x >,则x = . 12.甲、乙两船从相距150km 的A ,B 两地同时匀速沿江出发相向而行,甲船从A 地顺流航行90km 时与从B 地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h ,则江水的流速为 km/h . 13.甲、乙、丙三名工人共承担装搭一批零件.已知甲乙丙丁四人聊天时的对话信息如表,如果每小时只安排1名工人,那么按照甲、乙、丙的轮流顺序至完成工作任务,共需 小时. 甲说:我单独完成任务所需时间比乙单独完成任务所需时间多5小时;乙说:我3小时完成的工作量与甲4小时完成的工作量相等;丙说:我工作效率不高,我的工作效率是乙的工作效率的12;丁说:我没参加此项工作,但我可以计算你们的工作效率,知道工程问题三者关系是:工作效率⨯工作时间=工作总量.三、解答题14.为深刻践行习近平总书记的“绿水青山就是金山银山”重要思想,某单位积极开展植树活动,准备购买甲、乙两种树苗、已知用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗便宜6元.(1)求甲种树苗的单价;(请根据题意列方程解答)(2)若购买这两种树苗共100棵,且费用不超过3800元,则至少购买乙种树苗多少棵?15.科学中,经常需要把两种物质混合制作成混合物,研究混合物的物理性质和化学性质.现将甲、乙两种密度分别为ρ甲,ρ乙的液体混合(ρρ<甲乙),研究混合物的密度(=物体的质量物体的密度物体的体积),假设混合前后液体的总体积不变,令等体积的甲乙两种液体的混合溶液密度为1ρ,等质量的甲乙两种液体的混合溶液的密度为2ρ.(1)请用含ρ甲,ρ乙式子表示1ρ;(2)比较1ρ,2ρ的大小,并通过运算说明理由:(3)现有密度为31.2g /cm 的盐水600g ,加适量的水(密度为31.0g /cm )进行稀释,问:需要加水多少g ,才能使密度为31.1g /cm 的鸡蛋悬浮在稀释后的盐水中?16.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg 产品,甲型机器人搬运800kg 产品所用时间与乙型机器人搬运600kg 产品所用时间相等.根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运kg x 产品,可列方程为__________.小惠同学设甲型机器人搬运800kg 产品所用时间为y 小时,可列方程为__________.(2)求乙型机器人每小时搬运多少千克产品.17.某大型品牌书城购买了A B 、两种新出版书籍,商家用1600元购买A 书籍,1200元购买B 书籍,A B 、两种书籍的进价之和为40元,且购买A 书籍的数量是B 书籍的2倍.(1)求商家购买A 书籍和B 书籍的进价;(2)商家在销售过程中发现,当A 书籍的售价为每本25元,B 书籍的售价为每本33元时,平均每天可卖出50本A 书籍,25本 B 书籍.据统计,B 书籍的售价每降低0.5元平均每天可多卖出5本.商家在保证A 书籍的售价和销量不变且不考虑其他因素的情况下,为了促进B 的销量,想使A 书籍和B 书籍平均每天的总获利为775元,则每本B 书籍的售价为多少元?18.为更好地满足市民休闲、健身需求,提升群众的幸福感获得感,丰都县从年初开始对滨江公园进行“微改造”、“精提升”,将原有的边坡地带改造为观景平台,同时增设多处具有体育、文化、智慧元素的文体场所和设施,把3.5公里滨江健身长廊打造成智慧休闲乐园.施工过程中共有5000吨渣土要运走,现计划由甲、乙两个工程队运走渣土,已知甲、乙两个工程队,原计划乙平均每天运走的渣土比甲平均每天运走的渣土多13,这样乙运走2600吨渣土的时间比甲运走剩下渣土的时间少3天. (1)求原计划乙平均每天运渣土多少吨?(2)实际施工时,甲平均每天运走的渣土比原计划增加了m 吨,乙平均每天运走的渣土比原计划增加了200m ,甲、乙合作10天后,乙临时有其他任务;剩下的渣土由甲再单独工作5天完成.若运走每吨渣土的运输费用为30元,请求出乙工程队的运输费用.答案第1页,共1页 参考答案 1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】A9.【答案】810.【答案】1260012600251.5x x-= 11.【答案】612.【答案】613.【答案】319414.【答案】(1)40元(2)34棵15.【答案】(1)12ρρρ+=乙甲(2)12ρρ>(3)需要加水50g 16.【答案】(1)80060010x x=+ 80060010y y -=(2)乙型机器人每小时搬运30kg 产品 17.【答案】(1)商家购买A 书籍的进价为16元/本,购买B 书籍的进价为24元/本;(2)29元. 18.【答案】(1)200(2)6900。
中考数学分式方程专题训练有答案解析
分式方程一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣33.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣24.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或26.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+27.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣48.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣110.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =二.填空题11.方程:的解是.12.若关于x的方程的解是x=1,则m= .13.若方程有增根x=5,则m= .14.如果分式方程无解,则m= .15.当m= 时,关于x的方程=2+有增根.16.用换元法解方程,若设,则可得关于的整式方程.17.已知x=3是方程一个根,求k的值= .18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程.三.解答题19.解分式方程1;2.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.分式方程参考答案与试题解析一、选择题1.下列各式中,是分式方程的是A.x+y=5 B.C. =0 D.考点分式方程的定义.分析根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.解答解:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中含未知数x,故是分式方程.D、不是方程,是分式.故选C.点评本题考查的是分式方程的定义,即分母中含有未知数的方程叫做分式方程.2.关于x的方程的解为x=1,则a=A.1 B.3 C.﹣1 D.﹣3考点分式方程的解.专题计算题.分析根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.解答解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.点评解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.3.分式方程=1的解为A.x=2 B.x=1 C.x=﹣1 D.x=﹣2考点解分式方程.专题计算题.分析本题的最简公分母是2x﹣3,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答解:方程两边都乘2x﹣3,得1=2x﹣3,解得x=2.检验:当x=2时,2x﹣3≠0.∴x=2是原方程的解.故选A.点评1解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.2解分式方程一定注意要代入最简公分母验根.4.下列关于分式方程增根的说法正确的是A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根考点分式方程的增根.分析分式方程的增根是最简公分母为零时,未知数的值.解答解:分式方程的增根是使最简公分母的值为零的解.故选D.点评本题考查了分式方程的增根,使最简公分母的值为零的解是增根.5.方程+=0可能产生的增根是A.1 B.2 C.1或2 D.﹣1或2考点分式方程的增根.专题计算题.分析本题由增根的定义可知分式分母为0,即x﹣1=0或x﹣2=0,解出即可.解答解:∵方程+=0有增根,∴x﹣1=0或x﹣2=0,解得x=1或2,点评本题主要考查增根的定义,解题的关键是使最简公分母x﹣1x﹣2=0.6.解分式方程,去分母后的结果是A.x=2+3 B.x=2x﹣2+3 C.xx﹣2=2+3x﹣2 D.x=3x﹣2+2考点解分式方程.专题计算题.分析找出各分母的最小公分母,同乘以最小公分母即可.解答解:左右同乘以最简公分母x﹣2,得x=2x﹣2+3,故选B.点评本题考查了解分式方程的内容.注意在乘以最小公分母时,不要漏乘.7.要把分式方程化为整式方程,方程两边需要同时乘以A.2xx﹣2 B.x C.x﹣2 D.2x﹣4考点解分式方程.专题计算题.分析把分式方程化为整式方程,乘以最简公分母2xx﹣2即可.解答解:∵方程的最简公分母2xx﹣2,∴方程的两边同乘2xx﹣2即可.故选A.点评本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.找出最简公分母是解此题的关键.8.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是A.小时B.小时C.小时D.小时考点列代数式分式.分析往返一次所需要的时间是,顺水航行的时间+逆水航行的时间,根据此可列出代数式.解答解:根据题意可知需要的时间为: +点评本题考查列代数式,关键知道时间=路程÷速度,从而列出代数式.9.若关于x的方程有增根,则m的值是A.3 B.2 C.1 D.﹣1考点分式方程的增根.专题计算题.分析有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,应先确定增根是1,然后代入化成整式方程的方程中,求得m的值.解答解:方程两边都乘x﹣1,得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选:B.点评增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程A. =B. =C. =D. =考点由实际问题抽象出分式方程.专题应用题.分析关键描述语是:“有两块面积相同的小麦试验田”;等量关系为:第一块试验田的面积=第二块试验田的面积.解答解:第一块试验田的面积是,第二块试验田的面积为.那么方程可表示为.点评列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到相应的等量关系是解决问题的关键.二.填空题11.方程:的解是.考点解分式方程.专题计算题.分析本题考查解分式方程的能力,观察可得方程最简公分母为:xx+1,方程两边去分母后化为整式方程求解.解答解:方程两边同乘以xx+1,得x2+x+1x﹣1=2xx+1,解得:x=﹣.经检验:x=﹣是原方程的解.点评1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.2解分式方程一定注意要验根.3方程中有常数项的注意不要漏乘常数项,本题应避免出现x2+x+1x﹣1=2的情况出现.12.若关于x的方程的解是x=1,则m= 2 .考点分式方程的解.分析根据分式方程的解的定义,把x=1代入原方程求解可得m的值.解答解:把x=1代入方程,得,解得m=2.故应填:2.点评本题主要考查了分式方程的解的定义,属于基础题型.13.若方程有增根x=5,则m= 5 .考点分式方程的增根.专题计算题.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣5化为整式方程,再把增根x=5代入求解即可.解答解:方程两边都乘x﹣5,得x=2x﹣5+m,∵原方程有增根x=5,把x=5代入,得5=0+m,解得m=5.故答案为:5.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.如果分式方程无解,则m= ﹣1 .考点分式方程的解.专题计算题.分析分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评本题考查了分式方程无解的条件,是需要识记的内容.15.当m= 3 时,关于x的方程=2+有增根.考点分式方程的增根.专题方程思想.分析由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘x﹣3化为整式方程,再把增根x=3代入求解即可.解答解:方程两边都乘x﹣3,得x=2x﹣3+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,3=0+m,解得m=3.故答案为:3.点评本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.2006 南通用换元法解方程,若设,则可得关于的整式方程2y2﹣4y+1=0 .考点换元法解分式方程.专题压轴题;换元法.分析本题考查用换元法整理分式方程的能力,根据题意得设=y,代入方程可把原方程化为整式.解答解:设=y,则可得=,∴可得方程为2y+=4,整理得2y2﹣4y+1=0.点评用换元法解分式方程是常用的方法之一,换元时要注意所设分式的形式及式中不同的变形.17.已知x=3是方程一个根,求k的值= ﹣3 .考点分式方程的解.分析根据方程的解的定义,把x=3代入原方程,得关于k的一元一次方程,再求解可得k 的值.解答解:把x=3代入方程,得,解得k=﹣3.故应填:﹣3.18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程﹣=8 .考点由实际问题抽象出分式方程.分析求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.解答解:原计划用的时间为:,实际用的时间为:.所列方程为:﹣=8.点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.三.解答题19.解分式方程1;2.考点解分式方程.分析1首先乘以最简公分母x﹣3x去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.2首先乘以最简公分母x﹣1x+1去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.解答解:1去分母得:2x=3x﹣3,去括号得:2x=3x﹣9,移项得:2x﹣3x=﹣9,合并同类项得:﹣x=﹣9,把x的系数化为1得:x=9检验:当x=9时,xx﹣3=54≠0.∴原方程的解为:x=9.2去分母得:x+1=2,移项得:x=2﹣1,合并同类项得:x=1.检验:当x=1时,x﹣1x+1=0,所以x=1是增根,故原方程无解.点评此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具考点分式方程的应用.专题应用题.分析求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.解答解:设甲每天加工x个玩具,那么乙每天加工35﹣x个玩具.由题意得:.5分解得:x=15.7分经检验:x=15是原方程的根.8分∴35﹣x=209分答:甲每天加工15个玩具,乙每天加工20个玩具.10分点评应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服考点分式方程的应用.专题应用题.分析关键描述语为:“共用9天完成任务”;等量关系为:用老技术加工60套用的时间+用新技术加工240套用的时间=9.解答解:设服装厂原来每天加工x套演出服.根据题意,得:.3分解得:x=20.经检验,x=20是原方程的根.答:服装厂原来每天加工20套演出服.6分点评分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学考点分式方程的应用.分析设一班有x人,则二班有人.根据五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的倍,二班平均每人比一班多捐1本书,可列方程求解.解答解:设一班有x人,则二班有人.根据题意得:,解得:x=50.经检验:x=50是原方程的解.=×50=60.答:一班有50人,二班有60人.点评本题考查分式方程的应用,关键是设出人数,以平均每人捐的本数做为等量关系列方程求解.23.请你编一道可化为一元一次方程的分式方程且不含常数项的应用题,并予以解答.考点分式方程的应用.分析本题答案开放,根据题意要求,先写出符合要求的方程,如:,然后根据此方程编拟应用题.解答解:甲乙两个车间分别制造相同的机器零件,已知甲车间每小时比乙多制造10个机器零件,这样甲车间制造170个机器零件与乙制造160个所用时间相同,求甲乙两车间每小时各制造机器零件多少个点评此题考查分式方程的应用,为开放性试题,答案不唯一.。
(含答案)八年级下册分式方程的应用练习30题应用题(精选)
分式方程的应用练习30题1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则:120204020=++x解得:x =80经检验,x =80是原方程的解。
答:乙单独整理需80分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则:3001500900+=x x 解得:x =450经检验:x =450是原方程的解。
答:第一块试验田每亩收获蔬菜450千克。
3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x 千米/时,则247197=-+xx 解得:x =5经检验:x =5是原方程的解。
所以,骑自行车的速度为:4x =20(千米/时)答:步行速度是5千米/时,骑自行车 的速度是20千米/时。
4、小兰的妈妈在供销大厦用12.5元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.4元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:设她第一次在供销大厦买了x 瓶酸奶,则:12.518.40.23(1)5x x =++ 解得:x =5经检验:x =5是原方程的解。
答:她第一次在供销大厦买了5瓶酸奶。
5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
(1)求这种纪念品4月份的销售价格。
分式方程专项练习50题(有答案)
分式方程专项练习50题(有答案)1.$\frac{x}{x+2}=\frac{2}{x-1}$,改写为$x(x-1)=2(x+2)$。
2.$\frac{5x-3}{x^2}=0$,当 $5x-3=0$ 时成立,即$x=\frac{3}{5}$。
3.$\frac{x}{x}+\frac{1}{x}=1$,当 $x\neq 0$ 时成立。
4.$x^2+2x=0$,当 $x=0$ 或 $x=-2$ 时成立。
5.$\frac{13}{x(x-2)}=\frac{1}{x-1}$,改写为 $13(x-1)=x(x-2)$。
6.$\frac{1}{x-1}-\frac{2}{x+1}=\frac{1}{2}$,改写为$3x^2-2x-5=0$,当 $x=\frac{1}{3}$ 或 $x=-\frac{5}{3}$ 时成立。
7.$\frac{x+1}{x-1}=\frac{x}{x+1}$,改写为 $x^2-1=0$,当 $x=1$ 或 $x=-1$ 时成立。
8.$\frac{2x-5}{3-x}=\frac{2x-2}{x+1}$,改写为 $4x^2-13x+7=0$,当 $x=1$ 或 $x=\frac{7}{4}$ 时成立。
9.$\frac{2x-5}{x-2}-\frac{1}{x+2}=x$,改写为 $3x^2-4x-3=0$,当 $x=\frac{1\pm\sqrt{13}}{3}$ 时成立。
10.$\frac{2x-1}{x+1}=1-\frac{1}{x+1}$,改写为 $x^2+3x-2=0$,当 $x=-3+\sqrt{11}$ 或 $x=-3-\sqrt{11}$ 时成立。
11.$\frac{x}{x+1}+\frac{x}{x-1}=2$,改写为 $2x^2-2x-1=0$,当 $x=\frac{1\pm\sqrt{3}}{2}$ 时成立。
12.$\frac{1}{x-1}+\frac{1}{x+1}=\frac{4}{x^2-1}$,改写为 $3x^4-8x^2-5=0$,当 $x=\pm\sqrt{\frac{5}{3}}$ 或$x=\pm\sqrt{\frac{8}{3}}$ 时成立。
初中数学分式方程的应用培优训练题(附答案详解)
初中数学分式方程的应用培优训练题(附答案详解)1.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成. (1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?2.已知一个长方形的面积为6,它的一边为x ,它的另一边长为y ,周长为p .(1)填空:(用含x 的代数式表示)① y=__________;② p=__________;(2)当x 值从2增大到a+2时,y 的值减少了2,求增量a 的值;(3)当x=m 时,p 的值为1p ;当1x m =+时,p 的值为2p ,求21p p -的值,并化成最简分式.3.在Rt△ABC 中,∠B=90°,AB=3cm ,BC=4cm.(1)如图1,点P 从点A 出发,沿AB 匀速运动;点Q 从点C 出发,沿CB 匀速运动.两点同时出发,在B 点处首次相遇.设点P 的速度为xcm/s. 表示点Q 的速度是多少cm/s (用含x 的代数式表示);(2)在(1)的条件下,两点在B 点处首次相遇后,点P 的运动速度每秒提高了2 cm ,并沿B→C→A 的路径匀速运动;点Q 保持原速度不变,沿B→A→C 的路径匀速运动,如图2.两点在AC 边上点D 处再次相遇后停止运动.又知AD=1cm.求点P 原来的速度x 的值.4.广州市中山大道快速公交(简称BRT )试验线道路改造工程中,某工程队小分队承担了300米道路的改造任务.为了缩短对站台和车道施工现场实施围蔽的时间,在确保工程质量的前提下,该小分队实际施工时每天比原计划多改造道路20%,结果提前5天完成了任务,求原计划平均每天改造道路多少米?5.如果一辆汽车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上行驶的平均速度是多少千米∕小时?6.近年来,泰州多条动车路线的开通进一步加强了与其他城市的沟通,同时也为市民的出行带来了方便.已知某市到泰州的路程约为900km,一列动车的平均速度比特快列车快50%,所需时间比特快列车少2h,求该列动车的平均速度.7.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的1 3后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已修建道路多少米?(2)求原计划每小时修建道路多少米?8.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用12天;(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.9.某单位在疫情期间用3000 元购进A、B 两种口罩1100 个,购买A种口罩与购买B 种口罩的费用相同,且A种口罩的单价是B 种口罩单价的1.2 倍求A,B 两种口罩的单价各是多少元?10.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?11.甲、乙两火车站相距1200千米,采用“和谐号”动车组提速后,列车行驶的速度是原来的2.5倍,从甲站到乙站的时间缩短了6小时,求列车提速前的速度.12.工程队在完成某项工程的过程中,因提高了工作效率从而缩短了工作时间.经测试:工作时间缩短的百分率是工作效率提高的百分率的2倍,且提高工作效率后的工作量是原来工作量的0.88倍.若完成原来工作量的时间为3小时,求提高工作效率后完成工作量所花的时间.13.A市到B市的距离约为210km,小刘开着小轿车,小张开着大货车,都从A市去B市,小刘比小张晚出发1小时,最后两车同时到达B市,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少.(列方程解答)(2)当小刘出发时,求小张离B市还有多远.14.阅读材料:一般情形下等式11x y+=1不成立,但有些特殊实数可以使它成立,例如:x=2,y=2时,1122+=1成立,我们称(2,2)是使11x y+=1成立的“神奇数对”.请完成下列问题:(1)数对(43,4),(1,1)中,使11x y+=1成立的“神奇数对”是;(2)若(5﹣t,5+t)是使11x y+=1成立的“神奇数对”,求t的值;(3)若(m,n)是使11x y+=1成立的“神奇数对”,且a=b+m,b=c+n,求代数式(a﹣c)2﹣12(a﹣b)(b﹣c)的最小值.15.某市从今年1月l同起调整居民用水价格,每立方米水费上涨20%.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.16.小丽和爸爸进行1200米竞走比赛,爸爸的速度是小丽的1.5倍,小丽走完全程比爸爸多用5分钟,小丽和爸爸每分钟各走多少米?17.某校初二年级的同学乘坐大巴车去展览馆参观,展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.18.列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积.(1)在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.设首届进博会企业平均展览面积为x平方米,把下表补充完整:第二届330 000(2)根据以上分析,列出方程(不解..方程). 19.如图,“主收1号”小麦的试验田是边长为am(a >1)的正方形去掉一个边长为1m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a ﹣1)m 的正方形,两块试验田的小麦都收获了500kg.(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的3a a+(kg)倍,求a 的值 (3)利用(2)中所求的a 的值,分解因式x 2﹣ax ﹣108=_____.20.一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于14,求这个分数. 21.设231,24x A B x x =-=--,当x 为何值时A 与B 的值相等. 22.阅读:对于两个不等的非零实数a 、b ,若分式()()x a x b x--的值为零,则x a =或x b =.又因为()()()()2x a x b x a b x ab ab x a b x x x ---++==+-+,所以关于x 的方程ab x a b x+=+有两个解,分别为1x a =,2x b =. 应用上面的结论解答下列问题:(1)方程p x q x+=的两个解分别为12x =-,23x =,则p =_________,q =_________; (2)方程23x x -+=的两个解分别为1x a =,2x b =,求44a b +的值; (3)关于x 的方程222221n n x n x +-+=+的两个解分别为()1212x x x x <、,求122122x x +-的值.23.列分式方程解应用题:从甲地到乙地的路程是15千米,小明骑自行车从甲地到乙地先走,40分钟后,小亮骑自行车从甲地出发,结果同时到达,已知小亮的速度是小明速度的3倍,求小明,小亮两人的速度。
分式方程练习题及答案
分式方程练习题及答案一、填空题1. 将分式 $\frac{3}{4}$ 化为小数,计算结果保留两位小数。
解答:0.752. 若 $\frac{a}{3} = \frac{2}{5}$,求 $a$ 的值。
解答:$a = \frac{6}{5}$3. 已知 $\frac{x}{4} = \frac{5}{12}$,求 $x + 2$ 的值。
解答:$x + 2 = \frac{5}{3}$4. 若 $\frac{2}{x} = \frac{7}{16}$,求 $x$ 的值。
解答:$x = \frac{32}{7}$5. 解方程 $\frac{1}{2x} - \frac{3}{4} = \frac{1}{8}$,求 $x$ 的值。
解答:$x = \frac{5}{2}$二、选择题1. 若 $\frac{2}{3}x - 1 = \frac{5}{6}$,则 $x =$A. $-\frac{1}{4}$B. $\frac{1}{2}$C. $\frac{7}{9}$D.$\frac{9}{7}$解答:C. $\frac{7}{9}$2. 若 $x - \frac{2}{3} = \frac{x}{5}$,则 $x =$A. $-\frac{1}{4}$B. $\frac{3}{2}$C. $\frac{15}{17}$D.$\frac{5}{7}$解答:B. $\frac{3}{2}$3. 若 $\frac{x}{3} = \frac{2}{5x}$,则 $x =$A. $-2$B. $-\frac{1}{2}$C. $\frac{1}{2}$D. 2解答:D. 24. 若 $\frac{3}{2} - \frac{4}{x} = \frac{5}{6}$,则 $x =$A. $-\frac{8}{3}$B. $\frac{24}{15}$C. $\frac{35}{2}$D.$\frac{6}{5}$解答:B. $\frac{24}{15}$5. 若 $2 - \frac{3}{x} = \frac{1}{4}$,则 $x =$A. 4B. 5C. 6D. 8解答:C. 6三、解答题1. 解方程 $\frac{x}{4} + \frac{1}{3} = \frac{5}{6}$,求 $x$ 的值。
人教版八年级数学上册 15.3 分式方程 培优训练(含答案)
人教版 八年级数学 15.3 分式方程 培优训练一、选择题(本大题共10道小题)1. 甲志愿者计划用若干个工作日完成社区的某项工作.从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A. 8B. 7C. 6D. 52. 分式方程x x +1=12的解是( )A. x =1B. x =-1C. x =2D. x =-23. 分式方程x -31-1=0的解为( ) A .x =1 B .x =2 C .x =3 D .x =44. (2020·抚顺本溪辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( ) A .3000x =420080x - B .3000x +80=4200x C .4200x =3000x -80 D .3000x =420080x +5. (2020·广西北部湾经济区)甲、乙两地相距600km ,提速前动车的速度为vkm /h ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min ,则可列方程为( ) A . B . C .20D .206. (2020·宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x 元,则列方程正确的是( )A .150008x -=12000xB .150008x +=12000xC .15000x =120008x -D . 15000x =12000x +87. (2020自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .40 B .40 C .40D .408. 随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( ) A . B .80C .80D .9. (2020·齐齐哈尔)若关于x 的分式方程3x x -2=m2-x+5的解为正数,则m 的取值范围为( ) A .m <﹣10 B .m ≤﹣10 C .m ≥﹣10且m ≠﹣6 D .m >﹣10且m ≠﹣610. (2020·黑龙江龙东)已知关于x 的分式方程4的解为非正数,则k 的取值范围是( ) A .k ≤﹣12 B .k ≥﹣12 C .k >﹣12 D .k <﹣12二、填空题(本大题共5道小题)11. (2020·菏泽)方程111-+=-x x x x 的解是______.12. (2020·绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天,设原计划每天加工零件x 个,可列方程______.13. 分式方程3122x xx x-+=--的解是 .14. (2020·湘潭)若37y x =,则x yx -=________.15. (2020·潍坊)若关于x 的分式方程33122x m x x +=+--有增根,则m =_________.三、解答题(本大题共5道小题)16. (2020·郴州)解方程:11412+-=-x x x17. (12分)小刚去超市买画笔,第一次花60元买了若干支A 型画笔,第二次超市推荐了B 型画笔,但B 型画笔比A 型画笔的单价贵2元,他又花100元买了相同支数的B 型画笔.(1)超市B 型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B 型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次性购买不超过20支,则每支B 型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折,设小刚购买的B 型画笔x 支,购买费用为y 元,请写出y 关于x 的函数关系式. (3)在(2)的优惠方案下,若小刚计划用270元购买B 型画笔,则能购买多少支B 型画笔?18. (2020·毕节)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个. (2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?19. (2020·泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?20. 某企业有九个生产车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A ,B 两组检验员,其中A 组有8名检验员.他们先用两天将第一、二两个车间的成品检验完毕后,再去检验第三、四两个车间的所有成品,又用去了三天时间;同时,用这五天时间,B 组检验员也检验完余下的五个车间的成品.如果每名检验员的检验速度一样快,每个车间原有的成品为a 件,每个车间每天生产b 件成品.(1)用含a ,b 的式子表示B 组检验员检验的成品总数; (2)求B 组检验员的人数.人教版 八年级数学 15.3 分式方程 培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】设甲志愿者计划完成此项工作的天数为x 天,依题意得1x ×2+(1x +1x )(x -2-3)=1, 解得x =8.2. 【答案】A【解析】从形式上看是可以化为一元一次方程的分式方程,可以先去分母得:2x =x +1,∴x =1.也可以利用方程的解的概念,把所提供的四个答案代入检验;可得正确答案为A ,体现了数学问题可以从多个角度去分析问题,解决问题.3. 【答案】C【解析】本题考查了分式方程的解法.先去分母,化分式方程为整式方程3-(x -1)=0.解得x =4.经检验x =4是分式方程的解.所以x =4是原分式方程的解.4. 【答案】D【解析】由“原来公司投递快件的能力每周3000件,”可知快递公司人数可表示为3000x人,由“快递公司为快递员更换了快捷的交通工具后投递快件的能力由每周3000件提高到4200件”,可知快递公司人数可表示为420080x+人,再结合快递公司人数不变可列方程:3000x=420080x+.故选项D正确.5. 【答案】A【解析】因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:.因此本题选A.6. 【答案】B【解析】设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,根据“用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等”得:150008 x+=12000x.7. 【答案】A.【解析】本题考查了分式方程在实际问题中的应用,本题数量关系清晰,难度不大,解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为万平方米,依题意,得:40,即40.因此本题选A.8. 【答案】D【解析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据“人数=投递快递总数量÷人均投递数量”结合快递公司的快递员人数不变,列出关于x的分式方程:.9. 【答案】D【解析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m的范围即可.去分母得:3x=﹣m+5(x﹣2),解得:x=m+102,由方程的解为正数,得到m+10>0,且m+10≠4,则m的范围为m>﹣10且m≠﹣6,故选:D.10. 【答案】 A 【解析】本题考查了分式方程的解法,用含字母的式子表示方程的解,解:方程4两边同时乘以(x ﹣3)得:x ﹣4(x ﹣3)=﹣k ,∴x ﹣4x +12=﹣k ,∴﹣3x =﹣k ﹣12,∴x4,∵解为非正数,∴4≤0,∴k ≤﹣12.故选:A .二、填空题(本大题共5道小题)11. 【答案】 x =31【解析】解分式方程的基本思路是通过去分母化为整式方程求解,解分式方程必须验根,把可能产生的增根舍去.方程两边同乘x (x -1),得(x -1)2=x (x +1),化简,得3x =1.∴x =31.经检验,x =31是原分式方程的根.12. 【答案】240x =2401.5x +2 【解析】实际每天加工零件1.5x 个.原计划的工作时间=240x (天),实际的工作时间=2401.5x (天),根据“结果比原计划少用2天”可列方程240x =2401.5x +2.13. 【答案】53【解析】去分母,得 32,x x x --=-解得53x =.检验:53x =是分式方程的根.14. 【答案】47【解析】本题主要考查了比的基本性质,准确利用性质变形是解题的关键. 根据比例的基本性质变形,代入求职即可; 由37y x =可设3y k =,7x k =,k 是非零整数, 则7344777--===x y k k k x k k . 故答案为:47.15. 【答案】3【解析】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值. ()332x m x =++-,解得12m x +=.又∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=,∴2x =,122m +=,解得:3m =,三、解答题(本大题共5道小题)16. 【答案】解:=+1,方程两边都乘(x -1)(x +1),得 x (x +1)=4+(x -1)(x +1), 解得x =3,检验:当x =3时,(x -1)(x +1)=8≠0. 故x =3是原方程的解.17. 【答案】解:(1)设超市B 型画笔单价a 元,则A 型画笔单价为(a -2)元, 由题意列方程,得601002a a=-, 解得,5a =.经检验5a =是原分式方程的根. 答:超市B 型画笔单价是5元. (2)由题意知,当小刚购买的B 型画笔支数x ≤20时,费用为y =0.9×5x =4.5x ;当小刚购买的B 型画笔支数x >20时,费用为y =20×0.9+(x -20)×0.8×5=4x +10.所以 4.5,(20)410,()x x y x x ≤⎧=⎨+⎩>20,其中x 为正整数.(3)当4.5x =270(x ≤20)时,解得x =60,因为60>20不符合题意,舍去. 当4x +10=270(x >20)时,解得x =65. 答:小刚能购买65支B 型画笔.18. 【答案】解:(1)设每个乙种书柜的进价是x 元,则每个甲种书柜的进价是(1+20%)x 元 . 根据题意,得5400120%x +()=6300x-6.解得x =300.经检验x=300是原方程的解.当x=300时,(1+20%)x=360.所以每个乙种书柜的进价是300元,每个甲种书柜的进价是360元.(2)设购进乙种书柜a个,则购进甲种书柜(60-a)个.设购进书柜所需费用w元.根据题意,得w=360(60-a)+300a=-60+21600.∵2(60-a)≥a,∴a≤40.所以该校应购进乙种书柜40个,购进甲种书柜20个时,购进书柜所需费用最少.19. 【答案】(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元.根据题意,得:4000x+10﹦8400 1.4x.解得x﹦200.经检验:x﹦200是原方程的根.∴1.4x﹦1.4×200﹦280(元).∴A,B两种茶叶每盒进价分别为200元,280元.(2)设第二次A种茶叶购进m盒,则B种茶叶购进(100—m)盒.打折前A种茶叶的利润为m2×100﹦50m.B种茶叶的利润为100—m2×120﹦6 000—60m.打折后A种茶叶的利润为m2×10﹦5m.B种茶叶的利润为0.由题意得:50m+6 000—60m+5m﹦5800.解方程,得:m﹦40.∴100—m﹦100—40﹦60(盒).∴第二次购进A种茶叶40盒,B种茶叶60盒.20. 【答案】解:(1)B组检验员检验的成品总数为(5a+25b)件. (2)∵每名检验员的检验速度一样,∴=,解得a=4b.即每名检验员的速度为==b.B组检验员的人数为==12.答:B组检验员的人数为12人.。
初二分式方程练习题及答案
初二分式方程练习题及答案分式方程是代数学中的重要概念之一,它是由分数组成的等式或不等式。
初二是学习代数的关键年级,通过练习分式方程,学生们能够加深对于代数的理解,并提高解决实际问题的能力。
本文将为初二学生们提供一些分式方程的练习题及其答案,供大家参考和练习。
练习题一:求下列分式方程的解:1. (x+1)/3 + (2x-1)/4 = 1/22. (3x-4)/5 - (2x-1)/2 = 2/33. (3x+2)/4 + (5x-1)/6 = (2x+5)/3解答一:1. 将等式两边的分式通分,得到:4(x+1) + 3(2x-1) = 6/2化简得:4x + 4 + 6x - 3 = 3整理得:10x + 1 = 3再整理得:10x = 2解得:x = 2/10 = 1/52. 将等式两边的分式通分,得到:2(3x-4) - 5(2x-1) = 2/3 * 10化简得:6x - 8 - 10x + 5 = 20/3整理得:-4x - 3 = 20/3再整理得:-4x = 20/3 + 3解得:x = (20/3 + 3) / -43. 将等式两边的分式通分,得到:3(3x+2) + 2(5x-1) = 4(2x+5)化简得:9x + 6 + 10x - 2 = 8x + 20整理得:9x + 10x - 8x = 20 - 6 + 2解得:x = 16/11练习题二:解下列分式方程组:1. { (x+1)/3 = (2y-1)/4, (x-y)/2 = (3x+2y)/10 }2. { (3x-1)/2 + (2y+1)/3 = 1, (4x-2)/5 - (y-3)/4 = 2 }解答二:1. 针对第一个方程:将等式两边的分式通分,得到:4(x+1) = 3(2y-1)化简得:4x + 4 = 6y - 3针对第二个方程:将等式两边的分式通分,得到:5(x-y) = 2(3x+2y)化简得:5x - 5y = 6x + 4y将两个方程整合:4x + 4 = 6y - 35x - 5y = 6x + 4y接下来,通过解方程组得到变量的值,再代入检验:解出:x = -19/21, y = 5/21将x、y代入原方程组,检验是否成立。
中考数学总复习《分式方程》专项练习题及答案
中考数学总复习《分式方程》专项练习题及答案班级:___________姓名:___________考号:____________一、单选题1.分式方程3x﹣2x−1=0的解为()A.x=1B.x=2C.x=3D.x=4 2.分式方程3x=2x−1的解为()A.x=1B.x=2C.x=3D.x=4 3.下列算式中,你认为正确的是().A.ba−b−ab−a=−1B.1÷ba·ab=1C.3a−1=13a D.1(a+b)2⋅a2−b2a−b=1a+b4.若关于x的方程m−1x−2=x2−x有增根,则m的值为()A.3B.2C.1D.-15.2019年受各种因素的影响,猪肉市场不断上升。
据调查今年5月份的价格是1月份猪肉价格的1.25倍,小英妈妈用20元钱在5月份购得猪肉比在1月份购得的猪肉少0.4斤,设今年1月份的猪肉每斤是x元,根据题意,下列方程中正确的是()A.20x= 201.25x- 0.4B.201.25x=20x- 0.4C.20x+ 0.4 = 201.25x D.201.25x=20x+ 0.46.若关于x的分式方程x+ax−2+a2=12x−4无解,则a的值为()A.−32B.2C.−32或2D.−32或﹣27.x=−1是下列哪个分式方程的解()A.2x+1=1x B.x+1x2−1=0C.2x+1−1x+2=0D.2x−1+1x+2=08.解分式方程1x−1+1=0,正确的结果是()A.x=0B.x=1C.x=2D.无解9.A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为()A.1200x+40= 800x B.1200x−40=800xC .1200x = 800x−40D .1200x= 800x+4010.若关于x 的分式方程 x x−2 =2﹣ m2−x 的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,311.分式方程 1x−3+1=x 3−x的解为( )A .无解B .x = 1C .x = −1D .x = −212.以下说法:①关于x 的方程x+ 1x =c+ 1c的解是x=c (c≠0);②方程组 {xy +yz =63xz +yz =23的正整数解有2组; ③已知关于x ,y 的方程组 {x +3y =4−ax −y =3a ,其中﹣3≤a≤1,当a=1时方程组的解也是方程x+y=4﹣a 的解;其中正确的有( ) A .②③B .①②C .①③D .①②③二、填空题13.关于x 的分式方程 m x−2+3x−2=1 有增根,则m 的值为 .14.分式方程 1x+1+1x−1=0 的解是 .15.若关于y 的方程32−y =4+my−2+1无解,则m 的值为 .16.解分式方程 x x 2−1+x 2−1x =43 时设 xx 2−1=y ,则方程化为关于 y 的整式方程是 17.小王与小李约定下午3点在学校门口见面,为此,他们在早上8点将自己的手表对准,小王于下午3点到达学校门口,可是小李还没到,原来小李的手表比正确时间每小时慢4分钟.如果小李按他自己的手表在3点到达,则小王还需要等 分钟(正确时间)18.方程 2x 2−x =3x−2+1 的解是 .三、综合题19.一个批发兼零售的文具店规定:凡一次购买铅笔300支以上(不包括300支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,小明来该店购买铅笔,如果给学校九年级学生每人购买1支,那么只能按零售价付款,需用150元;如果多购买60支,那么可以按批发价付款,同样需用150元.(1)这个学校九年级的学生总数在什么范围内?(2)如果按批发价购买360支与按零售价购买300支所付款相同,那么这个学校九年级学生有多少人?20.小琳、晓明两人在100m的跑道上匀速跑步训练,他们同时从起点出发,跑向终点.(1)设小琳速度为v(m/s),写出小琳跑完全程所用的时间t(s)与速度v(m/s)之间的函数关系式;(2)已知晓明的速度是小琳速度的1.25倍,两人跑完全程,小琳要比晓明多用4s,用分式方程求小琳、晓明两人匀速跑步的速度?21.某超市计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用6400元购进甲种水果的数量与用8000元购进乙种水果的数量一样多.(1)求甲、乙两种水果每千克的进价分别是多少元?(2)该超市根据平常的销售情况确定,购进两种水果共2000千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过34200元.购回后,该超市决定将甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则该超市应如何进货,才能获得最大利润,最大利润是多少?22.今年,长沙开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某学校开学初购进A型和B型两种分类垃圾桶,购买A型垃圾桶花费了2500元,购买B型垃圾桶花费了2000元,且购买A型垃圾桶数量是购买B型垃圾桶数量的2倍,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花30元.(1)求购买一个A型垃圾桶、B型垃圾桶各需多少元?(2)由于实际需要,学校决定再次购买分类垃圾桶,已知此次购进A型和B型两种分类垃圾桶的数量一共为50个,恰逢市场对这两种垃圾桶的售价进行调整,A型垃圾桶售价比第一次购买时提高了8%,B型垃圾桶按第一次购买时售价的9折出售,如果此次购买A型和B型这两种垃圾桶的总费用不超过3240元,那么此次最多可购买多少个B型垃圾桶?23.近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?24.为感受数学的魅力,享受学习数学的乐趣,我校开展了首届校园数学节活动,让学生体会“学数学其乐无穷,用数学无处不在,爱数学终身受益”.现年级决定购买A、B两种礼品奖励在此次数学活动中的优秀学生,已知A种礼品的单价比B种礼品的单价便宜3元,已知用3600元购买A种礼品的数量是用1350元购买B种礼品的数量的4倍.(1)求A种礼品的单价;(2)根据需要,年级组准备购买A、B两种礼品共150件,其中购买A种礼品的数量不超过B种礼品的3倍.设购买A种礼品m件,所需经费为W元,试写出W与m的函数关系式,并请你根据函数关系式求所需的最少经费.参考答案1.【答案】C2.【答案】C3.【答案】D4.【答案】D5.【答案】B6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】A13.【答案】-314.【答案】x=015.【答案】-716.【答案】3y2-4y+3=017.【答案】3018.【答案】x=−1 319.【答案】(1)解:设这个学校九年级学生有x人依题意,得:{x⩽300x+60>300解得:240<x⩽300.答:这个学校九年级的学生总数大于240且小于等于300.(2)解:设铅笔的零售价为y元,则批发价为300 360y元依题意,得:150300360y−150y=60解得:y=1 2经检验,y=12是原分式方程的解,且符合题意∴150y=300.答:这个学校九年级学生有300人. 20.【答案】(1)解:由题意t= 100v(2)解:设小琳速度为xm/s ,则晓明的速度为1.25xm/s由题意: 100x ﹣1001.25x=4解得x=5经检验:x=5是分式方程的解 1.25x= 254答:小琳、晓明两人匀速跑步的速度分别为5m/s , 254m/s .21.【答案】(1)解:设甲种水果的进价是x 元,则乙种水果的进价是(x +4)元 根据题意,得8000x+4=6400x解得经检验,x =16是原分式方程的解 ∴x +4=20答:甲、乙两种水果的进价分别是16元 、20元.(2)解:设购进甲种水果a 千克,则购进乙种水果(2000−a)千克,利润为w 元w =(20−16)a +(25−20)(2000−a)=−a +10000∵甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过34200元 ∴{a ≤3(2000−a),16a +20(2000−a)≤34200, 解得w 随着a 的增大而减小 ∴当a =1450时w 取得最大值 此时2000−a =550答:超市进货甲种水果1450千克,乙种水果550千克,才能获得最大利润 ,最大利润是8550元.22.【答案】(1)解:设购买一个 A 型垃圾桶需 x 元,则购买一个 B 型垃圾桶需 (x +30) 元.由题意得: 2500x =2000x+30×2 .解得: x =50 .经检验 x =50 是原分式方程的解. ∴x +30=80 .答:购买一个 A 型垃圾桶、 B 型垃圾桶分别需要50元和80元. (2)解:设此次购买 a 个 B 型垃圾桶,则购进 A 型垃圾桶 (50−a) 个 由题意得: 50×(1+8%)(50−a)+80×0.9a ≤3240 . 解得 a ≤30 .∵a是整数∴a最大为30.答:此次最多可购买30个B型垃圾桶.23.【答案】(1)解:设每台甲种空气净化器为x元,乙种净化器为(x+300)元,由题意得:6000 x=7500 x+300解得:x=1200经检验得:x=1200是原方程的解则x+300=1500答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.(2)解:设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据题意得:1200y+1500(30﹣y)≤42000y≥10答:至少进货甲种空气净化器10台.24.【答案】(1)解:设A种笔记本的单价为x元,则B种笔记本的单价为(x+3)元由题意得:3600x=4×1350x+3解得:x=6经检验:x=6是方程的解,且符合题意答:A种礼品的单价为6元;(2)由(1)可知,B种笔记本的单价为9元由题意得:W=6m+9(150-m)=-3m+1350又∵-3<0∴W随m的增大而减小又∵A种礼品的数量不超过B种礼品的3倍∴m≤3(150−m),解得:m≤112.5∵m为整数∴当m=112时W最小值=1014.答:所需的最少经费为1014元.。
初中数学:分式方程应用题专题练习附详解(精)
(1)实际购买时,该农产品多少元每千克?
(2)据预测,该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元,已知冷库存放这批农产品,每天需要支出各种费用合计为280元,同时,平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售,该公司可获得利润19600元?
(1)求每盒口罩和每盒水银体温计的价格各是多少元?
(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.
(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?
经检验,x=40原方程的解,
∴x+8=48.
答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)
解:设购买y件甲种商品,则购买(80-y)件乙种商品,
根据题意得:48y+40(80-y)≤3600,
解得:y≤50.
答:最多可购买50件甲种商品.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.
3.第十一届江苏书展在苏州国际博览中心设有400个展台,并在全省多地线上、线下同步举行.本届书展设置了“读经典、学四史、童心向党和百年辉煌”等活动.为保障书展的准备工作比原计划提前2天完成,每天准备展台的个数需比原计划增加 .
分式方程经典训练题(含答案解析)
∴ ,
解得a≠4,
∴a的取值范围为-2<a≤7且a≠4,
又∵y为正整数,
∴a=1,7,
满足条件的整数a的和为1+7=8.
故答案为:8.
【点睛】
此题考查了解分式方程以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
4.
【分析】
根据题意先解分式方程,求得 的值,再根据一次函数图像不经过第二象限确定 的范围,再根据题意求整数解
10.(1)16;(2)10
【分析】
(1)设每本《中国共产党简史》的价格是 元,则每本《论中国共产党历史》的价格为 元,根据题意列出分式方程求解并检验即可;
(2)首先结合(1)的结论求出4月份《简史》和《历史》的价格与数量,再根据题目对5月份购买数量与价格的描述列出一元二次方程,并利用换元思想求解即可.
(2)先求出第二次购入洗手液和消毒液各多少瓶,再结合题意列出关于a的一元一次方程,解出a即可.
【详解】
(1)设一瓶洗手液的价格为x元,则一瓶消毒液的价格为(x+7)元.
根据题意可列方程: ,
解得: ,经检验 是原方程得解.
故一瓶洗手液的价格为8元,一瓶消毒液的价格为8+7=15元.
(2)第二次购入洗手液 瓶,购入消毒液 瓶.
7.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
(方案一)甲队单独完成这项工程,刚好按规定工期完成;
(方案二)乙队单独完成这项工程要比规定工期多用5天;
根据题意可列等式: .
解得: .
分式培优练习题(完整答案)
分式培优练习题(完整答案)分式(一)一选择1下列运算正确的是()A-40=1B(-3)-1=1C(-2m-n)2=4m-nD(a+b)-1=a-1+b-13 2分式yz某z某y的最简公分母是(),,212某9某y8zA72某yz2B108某yzC72某yzD96某yz23用科学计数法表示的树-3.6某10-4写成小数是()A0.00036B-0.0036C-0.00036D-360004若分式某2某5某62的值为0,则某的值为()A2B-2C2或-2D2或35计算11112的结果是()某1某1某11D某某1A1B某+1C6工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派某人挖土,其它的人运土,列方程①72某1某某②72-某=③某+3某=72④3上述所列方程,正确的有()个某3372某A1B2C3D411某213某y317在,,,,,a中,分式的个数是()某22某ymA2B3C4D58若分式方程1a某3有增根,则a的值是()某2a某A-1B0C1D29若111ba,则3的值是()ababababck,则直线y=k某+2k一定经过()bcacabA-2B2C3D-310已知A第1、2象限B第2、3象限C第3、4象限D第1、4象限二填空b2b5b8b11,,,,ab0,其中第7个式子是1一组按规律排列的式子:aa2a3a4第n个式子是27m=3,7n=5,则72m-n31042022231aa2abb24若2,则22bab三化简ab23a2b2314cd2d2c23aa2a122a1a1a12某65某2某2某2四解下列各题1已知112a3ab2b113,求的值2若0<某<1,且某6,求某的值aba2abb某某m2n2mn2mn五(5)先化简代数式m2n2mnmn2mn,然后在取一组m,n的值代入求值六解方程12312422某32某1某1某1某1七2022年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式(二)一、选择题:1.已知某3yz某yz,则的值是()2某yz230.5A.11B.7C.1D.732.一轮船从A地到B地需7天,而从B地到A地只需5天,则一竹排从B地漂到A地需要的天数是()A.12B.35C.24D.473.已知ab6ab,且ab0,则A.2B.22ab的值为()ab2C.2D.2二、填空题:某m224.若关于某的分式方程无解,则m的值为__________.某3某35.若分式某1的值为负数,则某的取值范围是__________.3某2某y24y226.已知,则的y4y某值为______.2某1y4y1三、解答题:7.计算:2m2n28.计算3m233n2mnmn某24某(1)2(2)nmmnnm某8某169.先化简,后求值:2aa2aa2a,b3(2)()1,其中2223aba2abbabab10.解下列分式方程.1242某1某1某111.计算:(1)112.已知某为整数,且11241某(2)1某1某1某21某41某某1222某182为整数,求所有符合条件的某的值.某33某某913.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初2三年级学生每人买1支,则只能按零售价付款,需用m1元,(m为正整数,且m12>100)如果多买60支,则可按批发价付款,同样需用m1元.设初三年级共有某名学生,则①某的取值范围是;②铅笔的零售价每支应为元;③批发价每支应为元.(用含某、m的代数式表示).14.A、B两地相距20km,甲骑车自A地出发向B地方向行进30分钟后,乙骑车自B地出发,以每小时比甲快2倍的速度向A地驶去,两车在距B地12km的C地相遇,求甲、乙两人的车速.2分式(三)一、填空题某y21、在有理式2,,a1,某y,2中属于分式的有.21某32、分式某3的值为0,则某=.3、分式和它的倒数都有意义,则某的取值范围是.4、当某_____时,122(某y)的值为负数;当某、y满足时,的值为;1某33(某y)3y5、若分式的值为4,则某,y都扩大两倍后,这个分式的值为6、当某=时,分式与互为相反数.7、若分式方程1-有增根,则m=.8、要使方程某1某a有正数解,则a的取值范围是9、+.....=_____________10、若=,则分式222=____________abc二、选择题11、已知m、n互为相反数,a、b互为倒数,|某|=2,则A、2B、3C、4D、512.下列式子:(1)mn某2ab的值为()某babaab某y11;;(2);(3)caacab某2y2某y(4)某y某y中正确的是()某y某yA、1个B、2个C、3个D、4个13.下列分式方程有解的是()20A、=2B、某C、0D、1某114.若分式不论m取何实数总有意义,则m的取值范围是()某2某m2A、m≥1B、m>1C、m≤1D、m<115、晓晓根据下表,作了三个推测:某-1①的值随着某的增大越来越小;某②3-某(某>0)的值有可能等于2;③3-某-1(某>O)的值随着某的增大越来越接近于2.某某-1则推测正确的有()A、0个B、1个C、2个D、3个16.已知分式某y的值是a,如果用某、y的相反数代入这个分式所得的值为b,则a、b1某y关系()A、相等B、互为相反数C、互为倒数D、乘积为-1三、解答题21122a2b217、化简:[2+÷(+)]·.aba2b22aba2abb2ab18、当a19、A玉米试验田是边长为a米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B玉米试验田是边长为(a-1)米的正方形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高?314ab4ab,b时,求abab的值.22aba+b(2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题20、观察以下式子:111215527533543>,<,>,22132442645555577372<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数2232的变化情况,并证明你的结论.21、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?22、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,①这个八年级的学生总数在什么范围内?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?分式(一)参考答案一CACBCCBBAB3n13b20nb二1-7,1,29/5,32,4n5aa三11a2,2,3a1某3ac四1提示:将所求式子的分子、分母同时除以ab。
分式方程练习题精选(含答案)
分式方程练习题精选一、选择题:1.以下是方程211x x x-=-去分母的结果,其中正确的是 A .2(1)1x x --= B .2221x x --= C .2222x x x x --=-D .2222x x x x -+=-2.在下列方程中,关于x的分式方程的个数有 .①0432212=+-x x ②.4=ax③;4=x a④.;1392=+-x x ⑤;621=+x⑥211=-+-a x a x .A.2个B.3个C.4个D.5个 3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 .A .x=1B .x=-1C .x=3D .x=-3 6.若分式x 2-12(x+1) 的值等于0,则x 的值为 . A 、1 B 、±1 C 、12 D 、-18.关于x 的方程2354ax a x+=-的根为x=2,则a 应取值 . A.1B.3C.-2D.-37.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x x B 、1421280280=++x x C 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 . A.1 B.3 C.-2 D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =ba 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=xC .32-=x 或1D .32=x 或1-10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A .32180180=+-x xB .31802180=-+xxC .32180180=--x xD .31802180=--xx11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确 12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x人挖土,其它人运土,列方程:①723x x -=②723xx -=③372x x +=④372xx =-上述所列方程,正确的有 .A .1个B .2个C .3个D .4个 二、填空题:13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xmx x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天.16.阅读材料: 方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2,方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 . 三、 解答题:17.解方程)2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫ ⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x ax 的解是正数,求a 的取值范围。
初中数学分式方程的应用培优训练3(附答案详解) (1)
初中数学分式方程的应用培优训练3(附答案详解)1.某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.2.某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?3.“六一”儿童节前,玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.第一、二批玩具每套的进价分别是多少元?4.某超市销售A,B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A,B两款保温杯的销售单价各是多少元?(2)由于需求量大,A,B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B保温杯的2倍,A保温杯的售价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?5.某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需要将工作效率提高25%,原计划完成这项工程需要多少个月.6.草莓是我们喜爱的一种特色时令水果.草莓一上市,水果店的小李就用3000元购进了一批草莓,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上草莓数量陡增,而自己的草莓卖相已不大好,于是果断地将剩余草莓以低于进价20%的价格全部售出,前后一共获利750元,求小李所进草莓的数量.7.某商场购进甲、乙两种商品,甲种商品共用了20000元,乙种商品共用了24000元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于24600元,问甲种商品按原销售单价至少销售多少件?8.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?9.某校为迎接市中学生田径运动会,计划由八年级(1)班的3个小组制作240面彩旗,后因1个小组另有任务,其余2个小组的每名学生要比原计划多做4面彩旗才能完成任务.如果这3个小组的人数相等,那么每个小组有学生多少名?10.某单位购进一种垃圾分类机器人,据实验分析:在对生活垃圾进行分类时,机器人每小时比人工多分类20桶垃圾,机器人分类120桶垃圾所用的时间与人工分类90桶垃圾所用的时间相同.求机器人每小时进行垃圾分类的桶数.11.六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B 种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元;(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套.12.我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.13.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元;(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯.14.“六·一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?15.在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合作完成这项工程所需的天数.16.两个小组同时从朱自清故居出发,匀速步行前往瘦西湖.两地相距3000米,第一组的步行速度是第二组的1.2倍,并且比第二组早10分钟到达乙地.求第一小组的步行速度是多少千米/小时?17.传统文化与我们生活息息相关,中华传统文化包括古文古诗、词语、乐曲、赋、民族音乐、民族戏剧、曲艺、国画、书法、对联、灯谜、射覆、酒令、歇后语等.在中华优秀传统文化进校园活动中,某校为学生请“戏曲进校园”和民族音乐”做节目演出,其中一场“戏曲进校园”的价格比一场“民族音乐”节目演出的价格贵600元,用20000元购买“戏曲进校园”的场数是用8800元购买“民族音乐节目演出场数的2倍,求一场“民族音乐”节目演出的价格.18.新型冠状病毒肺炎疫情发生后,全社会的积极参与疫情防控工作下,才有了我们的平安复学.为了能在复学前将一批防疫物资送达校园,某运输公司组织了甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱防疫物资,且甲种货车装运900箱防疫物资所用车辆与乙种货车装运600箱防疫物资所用的车辆相等,求甲、乙两种货车每辆车可装多少箱防疫物资?19.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的54,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?20.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工450套防护服,甲厂比乙厂要少用3天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是180元和160元,疫情期间,某医院紧急需要2400套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6000元,那么甲厂至少要加工多少天?21.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?22.为了迎接疫情彻底结束后的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.()1求m的值;()2要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且甲种运动鞋的数量不超过100双,问该专卖店共有几种进货方案;()3在()2的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠()6070a a <<元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?23.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?24.大邑县某汽车出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨25%.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为3200元;旺季所有的货车每天能全部租出,日租金总收入为6000元.(1)求该出租公司这批对外出租的货车共有多少辆?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,该出租公司的日租金总收入最高是多少元?当日租金总收入最高时,每天出租货车多少辆?25.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?26.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A 型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍.已知,A 型车和B 型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多. 27.新冠肺炎疫情爆发之后,全国许多省市对湖北各地进行了援助,广州市某医疗队备好医疗防护物资迅速援助武汉.第一批医疗队员乘坐高铁从广州出发,2.5小时后,第二批医疗队员乘坐飞机从广州出发,两批队员刚好同时到达武汉.已知广州到武汉的飞行距离为800千米,高铁路程为飞行距离的54倍.(1)求广州到武汉的高铁路程;(2)若飞机速度与高铁速度之比为5:2,求飞机和高铁的速度.28.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.29.今年的新冠疫情爆发,使很多农作物积压没法正常销售。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?
初中数学分式方程的应用培优训练(精选40道习题 附答案详解)
1.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为90万元,今年销售额只有80万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知B款汽车每辆进价为7.5万元,每辆售价为10.5万元,A款汽车每辆进价为6万元,若卖出这两款汽车15辆后获利不低于38万元,问B款汽车至少卖出多少辆?
2.小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.
4.近年来,泰州多条动车路线的开通进一步加强了与其他城市的沟通,同时也为市民的出行带来了方便.已知某市到泰州的路程约为900km,一列动车的平均速度比特快列车快50%,所需时间比特快列车少2h,求该列动车的平均速度.
5.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
3.兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.
(1)第一批该款式T恤衫每件进价是多少元?
(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出 时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)
10.为全面改天绿化长度是B队的2倍,若由一个工程队单独完成绿装化,B队比A队要多用6天.
(1)分别求出A,B两队平均每天绿化长度.
(2)若决定由两个工程队共同合作绿化,要求至多4天完成绿化任务,两队都按(1)中的工作效率绿化完2天时,现又多出180米需要绿化,为了不超过4天时限,两队决定从第3天开始,各自都提高工作效率,且A队平均每天绿化长度仍是B队的2倍,则B队提高工作效率后平均每天至少绿化多少米?
8.某商城销售A,B两种自行车 型自行车售价为2 100元 辆,B型自行车售价为1 750元 辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
求每辆A,B两种自行车的进价分别是多少?
现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;
②网店店主期盼最高日利润达到2500元,他的愿望能实现吗?请你说明理由.
14.某文化用品商店用 元采购一批书包,上市后发现供不应求,很快销售完了.商店又去采购第二批同样款式的书包,进货单价比第一次高 元,商店用了 元,所购数量是第一次的 倍.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
9.俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校划购买甲、乙两种品牌的足球供学生使用.已知用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.
(1)求甲、乙两种品牌的足球的单价各是多少元?
(2)学枝准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?