《数学建模》作业1
数学建模_大作业1
数学建模大作业姓名1:赵成宏学号:201003728姓名2:吴怡功学号:201003738姓名3:蒲宁宁学号:201004133专业:车辆工程2013年5 月28 日直升机运输公司问题一家运输公司正考虑用直升机从某城市的一摩天大楼运送人员。
你被聘为顾问,现在要确定需要多少架飞机。
按照建模过程仔细分析,建模。
为了简化问题,可以考虑升机运输公司问题。
基本假设如下:假设运载的直升机为统一型号; 假设每架飞机每次载人数相同;假设飞机运送的人员时互不影响;假定人员上了飞机就安全,因此最后一次运输时,只考虑上飞机所花时间。
1、按照数学建模的全过程对本题建立模型,并选用合理的数据进行计算(模型求解); 2、本问题是否可以抽象为优化模型;除了考虑建立优化模型之外,是否可以采用更简单的方法建立模型。
注意考虑假设条件。
甚至基于不同的假设建立多个模型。
归纳起来,有以下假设:(H1)所有飞机的飞行高度度均为10 000m ,飞行速度均为800km/h 。
(H2)飞机飞行方向角调整幅度不超过6,调整可以立即实现;(H3)飞机不碰撞的标准是任意两架飞机之间的距离大于8km; (H4)刚到达边界的飞机与其他飞机的距离均大于60km; (H5)最多考虑N 架飞机;(H6)不必考虑飞机离开本区域以后的状况. 为方便以后的讨论,我们引进如下记号: D 为飞行管理区域的边长;S 为飞行管理区域取直角坐标系使其为[0,D ]×[0,D]; v 为飞机飞行速度,v=800km/h;(x 0i ,y i)第i 架飞机的初始位置;()(),(t t y x ii )为第i 架飞机在t 时刻的位置;θ0i为第i 架飞机的原飞行方向角,即飞行方向与x 轴夹角,0≤θ≤2π;θi ∆第i 架飞机的方向角调整,-6π≤i θ∆≤6π; i θ﹦i 0i θθ∆+为第i 架飞机调整后的飞行方向角;一、两架飞机不碰撞的条件1、两架飞机距离大于8km 的条件设第i 架和第j 架飞机的初始位置为(0i 0i y x ,),(0j 0j y x ,),飞行方向角分别为错误!未找到引用源。
数学建模作业-1
数学建模作业一学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。
学生们要组织一个10人的委员会,试用下列方法分配各宿舍的委员数:(1) 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大的。
(2) Q 值方法:m 方席位分配方案:设第i 方人数为i p ,已经占有i n 个席位,i=1,2,…,m .当总席位增加1席时,计算2(1)i i i i p Q n n =+,i=1,2,…,m 把这一席分给Q 值大的一方。
(3) d ’Hondt 方法:将A ,B ,C 各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
(试解释其道理。
)(4) 试提出其他的方法。
数学建模作业二假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+∆t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。
数学建模作业三一容器内盛入盐水100L ,含盐50g .然后将含有2g/L 的盐水流如容器内,流量为3L/min.设流入盐水与原盐水搅拌而成均匀的混合物。
同时,此混合物又以2L/min 的流量流出,试求在30min 时,容器内所含的盐量。
若以同样流量放进的是淡水,则30min 时,容器内还剩下多少盐? 要求写出分析过程。
数学建模作业四商业集团公司在123,,A A A 三地设有仓库,它们分别库存40,20,40个单位质量的货物,而其零售商店分布在地区,1,,5i B i = ,它们需要的货物量分别是25,10,20,30,15个单位质量。
产品从i A 到jB 的每单位质量装运费列于下表:数学建模作业五设有9个节点,他们的坐标分别为:a (0,15),b (5,20),c (16,24),d (20,20),e (33,25),f (23,11),g (35,7),h (25,0),i (10,3)。
数学建模作业1 长方形椅子能在不平的地面上放稳吗?
注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。
把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置。
为此,在平面上建立直角坐标系来解决问题。
如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系。
椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置。
其次,把椅脚是否着地用数学形式表示出来。
我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。
由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。
由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数。
而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。
因此,只需引入两个距离函数即可。
考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。
数学模型:已知f(θ)和g(θ)是θ的非负连续函数,对任意θ,f(θ)•g(θ)=0,证明:存在θ0∈[0,π],使得f(θ0)=g(θ0)=0成立。
五、模型求解(显示模型的求解方法、步骤及运算程序、结果)如果f(0)=g(0)=0,那么结论成立。
如果f(0)与g(0)不同时为零,不妨设f(0)>0,g(0)=0。
此时,将长方形ABCD。
数学建模作业题+答案
数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。
答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。
答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。
要求,画线颜色调整为黑色,画布底面为白色。
(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。
) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。
6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。
数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。
附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。
数学建模作业(1)
数学建模作业(1)
数模
数模
1.学校共学校共1000名学生,235人住在宿名学生,人住在A宿名学生人住在人住B宿舍人住在C宿舍舍,333人住宿舍,432人住在宿舍人住宿舍,人住在宿舍.学生们要组织一个10人的委员会人的委员会,学生们要组织一个人的委员会,试用下列办法分配各宿舍的委员数:列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名按比例分配取整数的名额后,按比例分配取整数的名额后额按惯例分给小数部分较大者。
额按惯例分给小数部分较大者。
(2)用Q值方法。
值方法。
用值方法
数模
如果委员会从10人增至人如果委员会从人增至15人,用以上人增至2种方法再分配名额。
将2种方法两次分配种方法再分配名额。
种方法再分配名额种方法两次分配的结果列表比较。
的结果列表比较。
(3)你能提出其它的方法吗?用你的方你能提出其它的方法吗?你能提出其它的方法吗法分配上面的名额。
法分配上面的名额。
数模
2.考察模拟水下爆炸的比例模型.爆炸物质量m,在距爆炸点距离r处设置仪器,接收到的冲击波压强为p,记大气初始压强p0,水的密度ρ,水的体积弹性模量k,用量纲分析法已经得到
p0ρrp=p0(,)km3
数模
设模拟实验与现场的p0,ρ,k相同,而爆炸物模型的质量为原模型的1/1000.为了使实验中接收到与现场相同的压强p,问实验时应如何设置接收冲击波的仪器,即求实验仪器与爆炸点之间的距离是现场的多少倍?
p0,ρ,k。
福师《数学建模》在线作业一1答案
福师《数学建模》在线作业一1答案
福师《数学建模》在线作业一-0005
试卷总分:100 得分:0
一、判断题(共40 道试题,共80 分)
1.数据的动态性又称为记忆性
A.错误
B.正确
正确答案:B
2.大学生走向工作岗位后就不需要数学建模了
A.错误
B.正确
正确答案:A
3.图示法是一种简单易行的方法
A.错误
B.正确
正确答案:B
4.明显歪曲实验结果的误差为过失误差
A.错误
B.正确
正确答案:B
5.任意齐次线性方程组的基本解组仅有一组
A.错误
B.正确
正确答案:A
6.任何一个模型都会附加舍入误差
A.错误
B.正确
正确答案:B
7.模型不具有转移性
B.正确
正确答案:A
8.获取外部信息时必须考虑其可靠性和权威性
A.错误
B.正确
正确答案:B
9.求常微分方程的基本思想是将方程离散化转化为递推公式以求出函数值
A.错误
B.正确
正确答案:B
10.利用乘同余法可以产生随机数
A.错误
B.正确
正确答案:B
11.数学建模的真实世界的背景是可以忽视的
A.错误
B.正确
正确答案:A
12.预测战争模型是牛顿提出的
A.错误
B.正确
正确答案:A
13.引言是整篇论文的引论部分
A.错误
B.正确
正确答案:B
14.数学建模是一种抽象的模拟,它用数学符号等刻画客观事物的本质属性
B.正确
正确答案:B
15.建模中的数据需求常常是一些汇总数据。
14秋福师《数学建模》在线作业一答案
福师《数学建模》在线作业一
判断题多选题
一、判断题(共40 道试题,共80 分。
)
1. 不必认真设计结果的输出格式
A. 错误
B. 正确
-----------------选择:A
2. Shapley将问题抽象为特征函数解决n人合作对策问题
A. 错误
B. 正确
-----------------选择:B
3. 题名是人们检索文献资料的第一重要信息
A. 错误
B. 正确
-----------------选择:B
4. 将所有可能提供选择的变量都放入模型中,不加剔除叫做淘汰法
A. 错误
B. 正确
-----------------选择:A
5. 测试分析将研究对象视为一个白箱系统
A. 错误
B. 正确
-----------------选择:A
6. 利用偏回归平方和评价一个自变量在一组自变量中的重要性
A. 错误
B. 正确
-----------------选择:B
7. 原型指人们在社会和生产实践中关心和研究的现实世界中的实际对象
A. 错误
B. 正确
-----------------选择:B
8. 在建模中要不断进行记录
A. 错误
B. 正确
-----------------选择:B
9. 利用理论分布基于对问题的实际假设选择适当的理论分布可以对随机变量进行模拟
A. 错误
B. 正确
-----------------选择:B
10. 现在世界的科技文献不到2年就增加1倍。
数学建模作业答案
习题1第4题(1)(i )拟合得r=0.021194,误差平方和等于17418;(ii )拟合得0x =14.994,r=0.014223,误差平方和等于2263.9;(iii )拟合得0t =1743.6,0x =7.7507,r=0.014223,误差平方和等于2263.9,但是MA TLAB 给出警告信息,指出存在病态条件,参数未必能拟合得好,综上所述,(ii )是本问题的最佳拟合方案。
(2)对指数增长模型0()0()r t t x t x e -=两边求对数得00ln ()()ln x t r t t x =-+固定0t =1790,引进变量替换ln ()Y x t =,0X t t =-,1r β=,00ln x β=,则转化为一次多项式10Y X ββ=+,然后用MALAB 函数polyfit 拟合0β,1β,进而得到0x =6.045,r=0.020219,误差平方和等于34892.(3)指数增长模型线性化拟合得误差平方和比非线性拟合大得多。
用MALAB 函数plot 绘制拟合误差比较图可以发现:非线性拟合的误差比较比较均匀,线性化拟合的误差却随着人口的增加越来越大,原因是因为对于x(t)数值越大的数据,ln ()Y x t =由于求对数带来的损失越大,以至于线性化拟合得误差越大。
(4)(i )拟合得r=0.027353,N=342.44,误差平方和等于1224.9;(ii)拟合得0x =7.6981,r=0.021547,N=446.57,误差平方和等于457.74;(iii )拟合得0t =1771.3,0x =5.1752,r=0.021547,N=446.57,误差平方和等于457.74,但MALAB 给出警告信息,指出存在病态条件,参数未必能拟合得好。
综上所述,(ii )是本问题的最佳拟合方案。
习题2第1题“两秒准则”表明前后车距D 与车速v 成正比例关系2D K v =,其中2K =2s 。
数学建模作业一:汽车刹车距离
汽车刹车距离一、问题描写司机在碰到突发紧迫情形时都邑刹车,从司机决议刹车开端到汽车停滞行驶的距离为刹车距离,车速越快,刹车距离越长.那么刹车距离与车速之间具有什么样的关系呢?二、问题剖析汽车的刹车距离有反响距离和刹车距离两部分构成,反响距离指的是司机看到须要刹车的情形到汽车制动器开端起感化汽车行使的距离,刹车距离指的是制动器开端起感化到汽车完整停滞的距离.反响距离有反响时光和车速决议,反响时光取决于司机小我状态(敏锐.机灵等)和制动体系的敏锐性,因为很难对反响时光进行差别,是以,平日以为反响时光为常数,并且在这段时光内车速不变.刹车距离与制动感化力.车重.车速以及路面状态等身分有关系.由能量守恒制动力所做的功等于汽车动能的转变.设计制动器的一个合理原则是,最大制动力大体上与汽车的质量成正比,汽车的减速度根本上是常数.路面状态可以为是固定的.三、问题求解1、模子假设依据上述剖析,可作如下假设:①刹车距离d等于反响距离1d和制动距离2d之和;②反响距离1d 与车速v 成正比,且比例系数为反响时光t;③刹车时应用最大制动力F,F 作的功等于汽车动能的转变,且F 与车质量m 成正比;④人的反响时光t 为一个常数; ⑤在反响时光内车速v 不变 ; ⑥路面状态是固定的;⑦汽车的减速度a 根本上是一个常数. 2、 模子树立由上述假设,可得: ⑴tv d =2;⑵2221mv Fd =,而ma F =,则2221v ad =.所以22kv d =. 综上,刹车距离的模子为2kv tv d +=. 3.参数估量可用我国某机构供给的刹车距离现实不雅察数据来拟合未知参数t 和k.转化单位后得:车速(公里/小时) 20 40 60 80 100 120 140现实刹车距离(米)118.0用Mathematica 进行拟合,代码如下: Clear[x,v,d];x={{20/3.6,6.5},{40/3.6,17.8},{60/3.6,33.6},{80/3.6,57.1},{100/3.6,83.4},{120/3.6,118},{140/3.6,153.5}}; d=Fit[x,{v,v^2},v];Print["d=",d];Plot[d,{v,0,200/3.6}] 成果: 4. 成果剖析将拟合成果与现实成果比较:(代码) Clear[v,d];d=0.65218*v/3.6+0.0852792*(v/3.6)^2;For[v=20,v<=140,v=v+20,Print["速度为",v,"km/h 时刹车距离为",d]] 成果:车速(公里/小时) 20 40 60 80 100 120 140 现实刹车距离(米) 盘算刹车距离(米)盘算刹车距离与现实刹车距离基底细当.综上,反响时光t 约等于0.6522秒,刹车时减速度约等于2/62/1s m k ≈.刹车距离与车速的关系知足:208528.06522.0d v v +=.。
数学建模作业及答案
数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
《数学建模》作业
要求1、选题要求,学号是1号的选A组第1题,2号选A组第2题,以此类推,15号选A组第15题,16号回头选A组第1题。
如果对上面的题目把握不大或不敢兴趣的,可以在B组题目中任选一题。
2、答卷论文内容包括:摘要(100——300字,含研究的问题、建模的方法及模型、模型解法和主要结果),问题分析与假设,符号说明,问题分析,模型建立,计算方法设计和实现(框图及计算机输出的计算结果),结果的分析和检验,优缺点和改进方向等。
用软件求解的,请在附件中附上算法程序。
3、论文(答卷)用白色A4纸,上下左右各留出2.5厘米的页边距。
4、第一页为封面(自己下载),写上学号、姓名、第二页为论文标题和摘要,从第三页开始是论文正文。
论文从第二页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
5、论文题目用3号黑体字、一级标题用4号黑体字,并居中。
论文中其他汉字一律采用小4号宋体字,行距用单倍行距。
6、引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者.书名[M].出版地:出版社,出版年参考文献中期刊杂志论文的表述方式为:[编号] 作者.论文名[J].杂志名,卷期号:起止页码,出版年参考文献中网上资源的表述方式为:[编号] 作者.资源标题.网址,访问时间(年月日)。
论文提交:2015年5月(本学期第11周)论文打印装订成册上交注:2015年5月(本学期第11,12周)答辩大作业题目A组1、生产计划高校现有一笔资金100万元,现有4个投资项目可供投资。
项目A:从第一年到底四年年初需要投资,并于次年年末回收本利115%。
项目B:从第三年年初需要投资,并于第5年末才回收本利135%,但是规定最大投资总额不超过40万元。
数学建模作业1——火箭上升问题的模型建立教学提纲
数学建模作业1——火箭上升问题的模型建立题目:火箭上升问题的模型建立组员:摘要本文研究的是火箭上升问题,并针对有燃料和燃料已用尽两个问题分别建立了符合实际的数学模型。
在模型的求解过程中,通过运用MATLAB及微分方程,对建立的模型进行求解,得出了符合实际的结果。
关键字:火箭上升;数学模型;微分方程一、问题重述小型火箭初始质量为900千克,其中包括600千克燃料。
火箭竖直向上发射时燃料以15千克每秒的速度燃烧掉,由此产生30000牛顿的恒定推力。
当燃料用尽时引擎关闭。
设火箭上升的整个过程中,空气阻力与速度平方成正比,比例系数为0.4(千克/米),重力加速度取10米/秒 2(1)建立火箭升空过程的数学模型;(2)求引擎关闭瞬间火箭到达最高点的时间和高度。
二、基本假设1.火箭在喷气推动下作直线运动,火箭飞行时所受的地球自传与公转忽略不计。
2.火箭正常飞行,忽略其他因素对火箭飞行的影响。
3.假设产生影响的各个因素相互独立。
4.火箭上升初速度忽略不计,引擎足够强大。
5.火箭上升时所受到的重力加速度不变。
三、符号说明t :火箭上升过程的时间。
0t :第一个过程持续的时间。
M :第一阶段向上加速过程中火箭的质量。
m :第二阶段火箭剩余的质量。
f :火箭上升整个过程中空气阻力。
v :火箭的速度。
y :火箭上升的高度。
g :物体所受重力加速度。
F :火箭受到的恒定推力。
四、问题分析这是一个研究火箭竖直向上发射的问题。
火箭在竖直向上发射中,根据有燃料和燃料已用尽,可以分为两个阶段。
第一阶段是燃料产生推力的过程,第二阶段是燃料全部消耗之后的上升过程。
在第一阶段中,燃料燃烧产生的推力是恒定的,但随着燃料的不断消耗,火箭的质量是变化的,因此,火箭的速度以及加速度是变化的,由牛顿第二定律,根据速度与时间关系,建立微分方程组。
在第二阶段中,燃料已经完全消耗,因此,火箭的质量恒定。
引擎关闭即第一阶段终止第二阶段开始的时刻。
由于火箭运动受到阻力的作用,火箭先加速,后减速。
数学建模作业题1
数学建模作业题目:某养鸡专业户,养鸡1000只,用大豆和谷物饲料混合喂养,每天每只鸡平均吃混合饲料0.5公斤,其中应至少含有0.1公斤蛋白质和0.002公斤的钙,已知每公斤大豆含有50%的蛋白质和0.5%的钙,价格是每公斤1元;每公斤谷物含有10%的蛋白质和0.4%的钙,价格是每公斤0.3元。
食粮部门每周只能供应谷物饲料2500公斤,而大豆供应量不限。
试确定搭配大豆和谷物的数量,使喂养鸡的成本最少。
解: 设每周需要供应大豆和谷物各为21,x x 公斤,而喂养成本是y 元.则213.0x x y +=由题设条件可得混合饲料约束、蛋白质约束、钙约束、谷物供应约束分别为:混合饲料约束:5.01000721⨯⨯≥+x x ,即350021≥+x x ; 蛋白质约束:1.010007%10%5021⨯⨯≥+x x ,即7000521≥+x x ; 钙约束:002.010007%4.0%5.021⨯⨯≥+x x ,即140004521≥+x x ; 谷物供应约束:25002≤x .又当0,21≥x x 时,由350021≥+x x 可推出140004521≥+x x . 于是得到喂养成本最少的线性规划模型为:min 213.0x x y +=⎪⎪⎩⎪⎪⎨⎧≥≤≥+≥+0,2500700053500..2122121x x x x x x x t s用图解法进行求解可行域为:由直线1l :350021=+x x , 2l :25002=x 及02=x 组成的第一象限的无界区域.直线l :c x x =+213.0在此 l 1l2l无界区域内平行移动.易知:当l 过1l 与2l的交点时,y 取最大值.由⎩⎨⎧==+25003500221x x x 解得 ⎩⎨⎧==2500100021x x min y =175025003.01000=⨯+.故每周需要供应大豆1000公斤和谷物2500公斤,喂养鸡的成本将最少,其最小成本是1750元.。
福师《数学建模》在线作业一
福师《数学建模》在线作业一
1. 整个数学建模过程是又若干个有明显区别的阶段性工作组成
A. 错误
B. 正确
正确答案: B 满分:2 分得分:2
2. 建模中的数据需求常常是一些汇总数据
A. 错误
B. 正确
正确答案: B 满分:2 分得分:2
3. 利用乘同余法可以产生随机数
A. 错误
B. 正确
正确答案: B 满分:2 分得分:2
4. 对变量关系拟合时精度越高越好
A. 错误
B. 正确
正确答案: A 满分:2 分得分:2
5. 小组讨论要回避责任
A. 错误
B. 正确
正确答案: A 满分:2 分得分:2
6. 大学生走向工作岗位后就不需要数学建模了
A. 错误
B. 正确
正确答案: A 满分:2 分得分:2
7. 数据整理即对数据进行规范化管理
A. 错误
B. 正确
正确答案: B 满分:2 分得分:2
8. 量纲分析是20世纪提出的在物理领域建立数学模型的一种方法
A. 错误
B. 正确
正确答案: B 满分:2 分得分:2
9. 随机误差不是由偶然因素引起的
A. 错误
B. 正确
正确答案: A 满分:2 分得分:2
10. Shapley将问题抽象为特征函数解决n人合作对策问题
A. 错误
B. 正确
正确答案: B 满分:2 分得分:2
11. 问题三要素结构是初态,目标态和过程
A. 错误。
【奥鹏】2019秋福师《数学建模》在线作业一[5]答案
19秋福师《数学建模》在线作业一
试卷总分:100 得分:100
一、判断题(共40题,80分)
1、数学建模没有唯一正确答案
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:B
2、建模过程仅仅是建立数学表达式
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:A
3、随机误差不是由偶然因素引起的
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:A
4、学习数学建模不需要具备科技论文写作能力
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:A
5、明显歪曲实验结果的误差为过失误差
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:B
6、研究新产品销售模型是为了使厂家和商家对新产品的推销速度做到心中有数A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]
正确的选择是:B
7、关键词不属于主题词
A错误
B正确
[仔细阅读以上题目后,并运用所学知识完成作答]。
数学建模作业一:汽车刹车距离
汽车刹车距离一、 问题描述司机在遇到突发紧急情况时都会刹车,从司机决定刹车开始到汽车停止行驶的距离为刹车距离,车速越快,刹车距离越长。
那么刹车距离与车速之间具有什么样的关系呢?二、 问题分析汽车的刹车距离有反应距离和刹车距离两部分组成,反应距离指的是司机看到需要刹车的情况到汽车制动器开始起作用汽车行使的距离,刹车距离指的是制动器开始起作用到汽车完全停止的距离。
反应距离有反应时间和车速决定,反应时间取决于司机个人状况(灵敏、机警等)和制动系统的灵敏性,由于很难对反应时间进行区别,因此,通常认为反应时间为常数,而且在这段时间内车速不变。
刹车距离与制动作用力、车重、车速以及路面状况等因素有关系。
由能量守恒制动力所做的功等于汽车动能的改变。
设计制动器的一个合理原则是,最大制动力大体上与汽车的质量成正比,汽车的减速度基本上是常数。
路面状况可认为是固定的。
三、 问题求解1、 模型假设根据上述分析,可作如下假设:①刹车距离d 等于反应距离1d 和制动距离2d 之和;②反应距离1d 与车速v 成正比,且比例系数为反应时间t ;③刹车时使用最大制动力F ,F 作的功等于汽车动能的改变,且F 与车质量m 成正比; ④人的反应时间t 为一个常数;⑤在反应时间内车速v 不变 ;⑥路面状况是固定的;⑦汽车的减速度a 基本上是一个常数。
2、 模型建立由上述假设,可得:⑴tv d =2; ⑵2221mv Fd =,而ma F =,则2221v ad =。
所以22kv d =。
综上,刹车距离的模型为2kv tv d +=。
3、 参数估计可用我国某机构提供的刹车距离实际观察数据来拟合未知参数t 和k 。
转化单位后得:车速(公里/小时)20 40 60 80 100 120 140实际刹车距离(米) 6.5 17.8 33.6 57.1 83.4 118.0 153.5用Mathematica进行拟合,代码如下:Clear[x,v,d];x={{20/3.6,6.5},{40/3.6,17.8},{60/3.6,33.6},{80/3.6,57.1},{100/3.6,83.4},{120/ 3.6,118},{140/3.6,153.5}};d=Fit[x,{v,v^2},v];Print["d=",d];Plot[d,{v,0,200/3.6}]结果:4、结果分析将拟合结果与实际结果对比:(代码)Clear[v,d];d=0.65218*v/3.6+0.0852792*(v/3.6)^2;For[v=20,v<=140,v=v+20,Print["速度为",v,"km/h时刹车距离为",d]]结果:车速(公里/小时)20 40 60 80 100 120 140实际刹车距离(米) 6.5 17.8 33.6 57.1 83.4 118.0 153.5计算刹车距离(米) 6.2 17.8 34.6 56.6 83.9 116.5 154.3计算刹车距离与实际刹车距离基本相当。
数学建模数模第一次作业(章绍辉版)
1.(1) n=101;x1=linspace(-1,1,n); x2=linspace(-2,2,n);y1=[sqrt(1-x1.^2);-sqrt(1-x1.^2)];y2=[sqrt(4-x2.^2);-sqrt(4-x2.^2);sqrt(1-(x2.^2)/4);-sqrt(1-(x2.^2)/4)];plot(x1,y1) hold on; plot(x2,y2)title('椭圆x^2/4+y^2=1的内切圆和外切圆') axis equal-2.5-2-1.5-1-0.500.51 1.52 2.5-2-1.5-1-0.500.511.52椭圆x 2/4+y 2=1的内切圆和外切圆(2)x1=linspace(-2,2,101); x2=linspace(-2,8); axis equalplot(exp(x1),x1,x1,exp(x1),x2,x2)title('指数函数y=exp(x)和对数函数y=ln(x)关于y=x 对称')-2-112345678-2-1012345678指数函数y=exp(x)和对数函数y=ln(x)关于y=x 对称(3) hold onq=input('请输入一个正整数q;') for i=1:q for j=1:i if rem(j,i)plot(j/i,1/i) end end end0.10.20.30.40.50.60.70.80.9100.050.10.150.20.250.30.350.40.450.53.代码如下:n=input('请输入实验次数n=') k=0;for i=1:nx=ceil(rand*6)+ceil(rand*6); if x ==3|x==11 k=k+1; elseif x~=2&x~=7&x~=12y= ceil(rand*6)+ceil(rand*6); while y~=x&y~=7y=ceil(rand*6)+ceil(rand*6); end if y==7k=k+1; end end end从上表可看出打赌者赢的概率大约为。
数学建模第一章作业(章绍辉)
y
0
0.1
0.2
0.3
0.4
0.5 x
0.6
0.7
0.8
0.9
1
3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌 掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次 掷出 3 或 11 点,打赌者赢;如果第一次掷出 2、7 或 12 点, 打赌者输;如果第一次掷出 4,5,6,8,9 或 10 点,记住这个点 数, 继续掷骰子, 如果不能在掷出 7 点之前再次掷出该点数, 则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估 计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概 率吗?请问随着试验次数的增加,这些概率收敛吗? 解答 (一)算法 输入 模拟试验的次数 n; 输出 打赌者赢的概率 p. 第 1 步 初始化计数器 k=0; 第 2 步 对 i=1,2,…,n,循环进行第 3~7 步; 第 3 步 产生两个在 1~6 这 6 个整数中机会均等地取 值的随机数, 并把这两个随机数之和赋值给 x; 第 4 步 如果 x 是 3 或 11,那么 k 加 1,进入下一步循 环;否则,做第 5 步; 第 5 步 如果 x 不是 2、7 和 12,那么做第 6~8 步;否 则,直接进入下一步循环; 第 6 步 产生两个在 1~6 这 6 个整数中机会均等地取 值的随机数, 并把这两个随机数之和赋值给 y; 第 7 步 如果 y 不等于 x,也不等于 7,重复第 6 步所 做的; 第 8 步 如果 y 等于 7,那么 k 加 1,进入下一步循环; 否则,直接进入下一步循环; 第 9 步 计算概率 p=k./n .
第一章习题参考答案
1. 请编写绘制以下图形的 MATLAB 命令,并展示绘得 的图形.
x2 2 (1) x y 1、x y 4 分别是椭圆 y 1 的内切 4
数学建模作业(一)1
第一题: 某班共45人,要去离校7.7千米的风景区旅游。
学校派了一辆可坐12人的校车接送。
为了尽快又同时到达目的地,校车分段分批接送学生。
已知校车速度为每小时70千米,学生步行的速度为每小时5千米。
如果上午七点出发,问最快什么时候全班同时到达目的地?(班长作为联系人要始终跟车)
第二题:某人为了锻炼身体,每天早晨坚持晨跑30分钟, 其中从A到B为800米上坡路,从B到C为1000米平路。
问在30分钟内跑完1800米,怎样安排跑步计划,才能使锻炼效果最佳?(即总疲劳程度伟为最低)
第三题:一辆小汽车与一辆大卡车在一段狭路上相遇,只有倒车才能继续通行。
如果小汽车的速度为大卡车的3倍,两车倒车的速度是各自正常速度的1/5,在这段狭路上,小汽车需倒车的路程是大卡车需倒车路程的4倍。
那么,为了使后通过狭路的那辆车尽早地通过这段狭路,问怎样倒车较为合理?
第四题:某人在一家公司工作,目前年薪为1万元。
老板说,现在有两种方案可供选择:第一种,每一年加1000元;第二种,每半年加300元。
试问:
(1)如果你在该公司工作5年,用哪一种方案收入高?
(2)如果你在该公司工作5年,将第二种方案中的每半年加300元改为a元时,那一种方案收入高?
(3)如果你在该公司工作n年,用哪一种方案收入高?
第五题:一个直角走廊宽为1.5米,有一辆转动灵活的平板水平推车,宽为1米,长为2.2米,问能否将其推过直角走廊?说明理由。
奥鹏福师21年秋季《数学建模》在线作业一_3.doc
1.渡口模型涉及到先到后服务的排队问题A.错误B.正确【参考答案】: A2.任何一个模型都会附加舍入误差A.错误B.正确【参考答案】: B3.国际上仅有一种单位体系A.错误B.正确【参考答案】: A4.常见的数据拟合方法有插值法最小二乘法等A.错误B.正确【参考答案】: B5.相对误差等于绝对误差加测量误差A.错误B.正确【参考答案】: A6.学习数学建模不需要具备科技论文写作能力A.错误B.正确【参考答案】: A7.摘要是对论文内容不加注释和评论的简短陈述A.错误B.正确【参考答案】: B8.在构造一个系统的模拟模型时要抓住系统中的主要因素A.错误B.正确【参考答案】: B9.获取外部信息时必须考虑其可靠性和权威性A.错误B.正确【参考答案】: B10.独立性检验是检验随机数中前后个数的统计相关性是否显著的方法A.错误B.正确【参考答案】: B11.人口预测模型用以预测人口的增长A.错误B.正确【参考答案】: B12.交流中必须学会倾听A.错误B.正确【参考答案】: B13.拐角问题来源于医院手术室病人的接送A.错误B.正确【参考答案】: B14.利润受销售量的影响和控制A.错误B.正确【参考答案】: B15.实验中服从确定性规律的误差称为系统误差A.错误B.正确【参考答案】: B16.数据也是问题初态的重要部分A.错误B.正确【参考答案】: B17.数学建模的误差是不可避免的A.错误B.正确【参考答案】: B18.建立一个数学模型与求解一道数学题目没有差别A.错误B.正确【参考答案】: A19.在建模中要不断进行记录A.错误B.正确【参考答案】: B20.数学建模不是一个创新的过程A.错误B.正确【参考答案】: A21.模型不具有转移性A.错误B.正确【参考答案】: A22.参考文献要反映出真实的科学依据A.错误B.正确【参考答案】: B23.现在世界的科技文献不到2年就增加1倍A.错误B.正确【参考答案】: A24.关键词不属于主题词A.错误B.正确【参考答案】: A25.微元法的思想是考察研究对象的有关变量在一个很小的时间段内的变化情况A.错误B.正确【参考答案】: B26.变量间关系通常分为确定性与不确定关系A.错误B.正确【参考答案】: B27.激烈的价格竞争在超市之间是常见的A.错误B.正确【参考答案】: B28.附录是正文的补充A.错误B.正确【参考答案】: B29.论文写作的目的在于表达你所做的事情A.错误B.正确【参考答案】: B30.建模假设应是有依据的A.错误B.正确【参考答案】: B31.数学建模第一步是明确问题A.错误B.正确【参考答案】: B32.整个数学建模过程是又若干个有明显区别的阶段性工作组成A.错误B.正确【参考答案】: B33.样本平均值和理论均值不属于参数检验方法A.错误B.正确【参考答案】: A34.问题三要素结构是初态,目标态和过程A.错误B.正确【参考答案】: B35.把各类问题归结为我们熟知的模型为类比思维A.错误B.正确【参考答案】: B36.电-机类比是同一数学模型在科学上应用最为广泛的一种类比A.错误B.正确【参考答案】: B37.我国对异常值没有颁布标准A.错误B.正确【参考答案】: A38.对变量关系拟合时精度越高越好A.错误B.正确【参考答案】: A39.测试分析将研究对象视为一个白箱系统A.错误B.正确【参考答案】: A40.时间步长法又称为固定时间增量法A.错误B.正确【参考答案】: B41.事物内在规律几类常见的规律是____A.平衡与增长B.类比关系C.利用物理定律D.逻辑方法【参考答案】: ABCD42.建立微分方程模型一般的步骤是____A.把用语言叙述的情况化为文字方程B.给出问题所涉及的原理或物理定律 C.列出微分方程,列出该微分方程的初始条件或其他条件 D.求解微分方程,确定微分方程中的参数,最后求出问题的答案【参考答案】: ABCD43.正态随机数的模拟的方法有____A.反函数法B.舍选法模拟正态随机数C.坐标变换法D.利用中心极限定理【参考答案】: ABCD44.创造性思维方法一般有____A.小组群体思维B.发散性思维方法C.从整体上把握问题的方法D.逐步分解法【参考答案】: ABC45.建立数学模型的几个重要步骤是____A.模型的整体设计B.作出假设C.分析现实问题D.建立数学表达式【参考答案】: ABCD46.模拟随机变量常见方法有____A.利用理论分布B.基于对问题的实际、合理假设,选择适当的理论分布模拟随机变量C.基于实际数据的频率表作近似模拟【参考答案】: ABC47.使用模拟系统应达到的目标有()A.描述一个现有的系统B.探索一个假设的系统C.设计一个改进的系统【参考答案】: ABC48.用模拟模型去解决实际问题时的注意事项有____A.应该做足够多次的模拟运行后,对结果进行分析B.注意抓住系统中的主要因素C.把握原则D.牢记建模目标E.模拟模型的每一次模拟都是从特定的初始状态开始F.一个系统是在稳定状态条件下按正常情况设计的【参考答案】: ABCDEF49.对现实对象的认识主要来源有_________A.与问题相关的物理、化学、经济等方面的知识B.通过对数据和现象的分析对事物内在规律作出的猜想(模型假设)C.搜集一些对象的相关资料【参考答案】: AB50.常见重要的理论分布有____A.均匀分布B.正态分布C.指数分布D.泊松分布【参考答案】: ABCD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学建模》作业1
一、判断题。
1、建模活动中,合作者一方可以使用“这绝对不行”、“这根本行不通”这类武断评价的语句。
(×)
2、原型与模型是一样的。
(×)
3、评价模型优劣的唯一标准是实践检验。
(√)
4、模型误差是可以避免的。
(×)
二、用框图说明数学建模的过程。
三、浙江声自1993年10月开始实行职工住房公积金制度,主要用于职工的住房建设及政策性住房贷款的发放。
某职工欲从银行贷款,购买一套住房,按规定,政策性贷款的年息为9.6%,最长年限为五年,可以分期付款。
该职工根据自己的实际情况估计每年最多可偿还1万元,打算平均分五年还清。
问如果银行的贷款利率按单利计算,该职工合理的最大限额贷款是多少?如果银行的贷款利率按复利计算,那么该职工最大限额的贷款又是多少?(只列式,不计算)
解:设该职工合理的最大贷款额为x(x小于5)万元
(1)如果银行的贷款利率按单利计算
0.096x+0.096(1.096x-1)+0.096(1.096(1.096x-1)-1)+0.096(1.096(1.096(1.096x-1)-1)-
1)+0.096(1.096(1.096(1.096(1.096x-1)-1)-1)-1)+x=5
(2)如果银行的贷款利率按复利计算
(1+0.096)^5=5。